Shapes

Welcome to Pure Mathematics

We are home to 30 faculty, four staff, approximately 60 graduate students, several research visitors, and numerous undergraduate students. We offer exciting and challenging programs leading to BMath, MMath and PhD degrees. We nurture a very active research environment and are intensely devoted to both ground-breaking research and excellent teaching.


News

Events

Thursday, May 1, 2025 4:00 pm - 5:00 pm EDT (GMT -04:00)

Analysis Seminar

Joaco Prandi, University of Waterloo

Bounding the Local Dimension of the Convolution of Measures

Let mu be a finite measure on a metric space X. Then the local dimension of the measure mu at the point x in the support of mu is given by

dim_{loc}mu(x)=lim_r ln(B(x,r))}\ln(r)

In a sense, dim_{loc}mu(x) represents how much mass there is around the point x. The bigger the local dimension, the less mass there is. In this talk, we will explore how the local dimension of the convolution of two measures mu and nu can be bounded by the local dimension of one of the measures. This is based on joint work with Kevin Hare.

MC5417

Friday, May 9, 2025 3:30 pm - 4:30 pm EDT (GMT -04:00)

Geometry and Topology Seminar

Enric Solé-Farré, University College London

The Hitchin and Einstein indices of cohomogeneity one nearly Kahler manifolds

Nearly Kähler manifolds are Riemannian 6-manifolds admitting real Killing spinors. They are the cross-sections of Riemannian cones with holonomy G2. Like the Einstein equation, the nearly Kähler condition has a variational interpretation in terms of volume functionals, first introduced by Hitchin in 2001.

The existence problem for nearly Kähler manifolds is poorly understood, and the only currently known inhomogeneous examples were found in 2017 by Foscolo and Haskins using cohomogeneity one methods. For one of their examples, we establish non-trivial bounds on the coindex of the Hitchin-type and Einstein functionals. We do this by analysing the eigenvalue problem for the Laplacian on coclosed primitive (1,1)-forms under a cohomogeneity-one symmetry assumption.

MC 5417