
Topics in Quantum Information U. Waterloo CO 781, Fall 2006
Debbie Leung Sevag Gharibian
Quantum Error Correction September 25, 2006

Lecture Outline for QEC (Quantum Error Correction) Criterion

• Necessary and sufficient conditions

• Reversal map

• Discretized errors

1 Necessary and Sufficient Conditions for QEC

Let P be the projector on to the code space CL, and let E = {Ei} be a set of errors.

The following statements are then equivalent:

1. PE†
iEiP = CijP , ∀i, j and C ≥ 0, where:

• The notation C ≥ 0 means C is positive semi-definite, i.e. its spectral decomposition has non-
negative eigenvalues.

• The Ei’s are usually chosen to be Pauli operators (i.e. I,X, Y, Z).

2. Any completely positive (CP) map ε[·] =
∑

k Ak·A†
k , Ak ∈ span(E), can be reversed on C, where:

• The · is a placeholder for the argument to the map.

• This means ∃ a trace-preserving completely positive (TCP) map R s.t. R ◦ ε[ρ] = [tr(ε(ρ))] · ρ,
∀ρ s.t. PρP = ρ (i.e. R is a reversal map).

Proof : Statement 1 ⇒ Statement 2

By our assumption of Statement 1, we have some C ≥ 0. Therefore, let us diagonalize C s.t.

∃U s.t. U†CU = D, (1)

where D is diagonal and has non-negative eigenvalues.

Now, take
Fk =

∑
j

ujkEj (2)

.

1

Therefore,

PF †
l FkP =

∑
ij

(u∗il)(ujk)PE†
iEjP (substitute (2)) (3)

=
∑
ij

(u∗il)(ujk)(cijP) (by Statement 1) (4)

=
∑
ij

(U†)li(ujk)(cijP) (5)

=

∑
ij

U†
licijujk

P (6)

= [U†CU]lkP (7)

= dkkδklP (U†CU is diagonal by (1)) (8)

Intuitively, this is because the errors corresponding to k and l should be distinguishable. We can now write:

FkP = Uk

√
PF †

kFkP (Polar Decomposition) (9)

= Uk

√
dkkP (substitute (8)) (10)

= Uk

√
dkkP, (11)

since the operator under the square root should be positive semidefinite, so we can apply the square root
to its eigenvalues. Thus Fk acts unitarily (like Uk) on the code space. This is sometimes called the nonde-
forming condition.

The idea now is to first measure our errors, and based on the result of that measurement, apply the ap-
propriate reversal operator. So, in specifying what our reversal map R should look like, we follow two
steps:

1. First ”detect” which ”k” we’re dealing with by distinguishing between Pk’s, i.e. depending on which
error Fk has taken place, our state will be mapped from the code space to a corresponding error
spaces.

CL

F1

2F

F3

2. Once we know ”k”, we can define our reversal map R by applying the corresponding U†
k . Here, note

that Pk = UkPU
†
k , the Pk’s being orthogonal. We therefore have:

R[·] =
∑

k

U†
k(Pk) · (Pk)Uk (12)

=
∑

k

U†
k(UkPU

†
k) · (UkPU

†
k)Uk (13)

=
∑

k

PU†
k · UkP (Uk unitary) (14)

2

The idea in the expression above is to first make a measurement with our Pk measurement operators,
and then apply the necessary U†

k operator.

Let us now doublecheck that our reversal map works as expected. To begin, we express AlP as:

AlP =
∑
m

b′lmEmP =
∑
m

blmFmP =
∑
m

blm(
√
dmmUmP), (15)

since we can write the E operators in terms of F operators, and using the definition of FkP from before.

Now apply R to our state, ρ, after it has undergone the quantum operation ε(·):

R ◦ ε(ρ) =
∑
kl

(PU†
k)(AlP)ρ(PA†

l)(UkP) (16)

=
∑
kl

(PU†
k)(
∑
m

blm
√
dmmUmP)ρ(

∑
m′

b∗lm′

√
dm′m′PU†

m′)(UkP) (substitute (15))

(17)

=
∑

klmm†

(PU†
k)(blm

√
dmmUmP)ρ(b∗lm′

√
dm′m′PU†

m′)(UkP) (18)

=
∑

klmm†

(blm
√
dmmP (U†

kUm)P)ρ(b∗lm′

√
dm′m′P (U†

m′Uk)P) (19)

=
∑

klmm†

(blm
√
dmmδkmP)ρ(b∗lm′

√
dm′m′δkm′P) (Uk’s unitary and orthogonal)

(20)

=
∑
kl

(blk
√
dkkP)ρ(b∗lk

√
dkkP) (21)

=
∑
kl

(blkb∗lkdkk)PρP (22)

=

(∑
kl

(blkb∗lkdkk)

)
ρ (by defn in Statement 2)

(23)

= [tr(ε(ρ))]ρ (24)

The last line is derived from the fact that:

tr(ε(ρ)) = tr

(∑
l

AlPρPA
†
l

)
(25)

=
∑

l

tr[(PA†
lAlP)ρ] (trace is linear) (26)

=
∑

l

tr[(
∑
m′

b∗lm′

√
dm′m′PU†

m′)(
∑
m

blm
√
dmmUmP)ρ] (substitute (15)) (27)

=
∑

lmm′

b∗lm′blm
√
dm′m′

√
dmmδmm′tr(PPρ) (Um’s unitary and orthogonal) (28)

=
∑
lm

b∗lmblmdmmtr(PρP) (trace is cyclic) (29)

= tr(ρ)
∑
lm

b∗lmblmdmm (by defn in Statement 2) (30)

=
∑
lm

b∗lmblmdmm, (tr(density op) is always 1) (31)

3

as required, thus proving 1 ⇒ 2.

Now let us prove Statement 2 ⇒ Statement 1. As in assumptions for 2, we start with a CP (though not
necessarily TCP) map:

ε[·] =
∑

k

Ek · E†
k (32)

By Statement 2, it is promised that we can find a reversal map R. Let us write it as follows:

R[·] =
∑

l

Bl ·B†
l (33)

Therefore, we have, ∀ρ:

R ◦ ε ◦ P (ρ) =
∑
lk

BlEkPρPE
†
kB

†
l (34)

= tr[ε ◦ P (ρ)] · P (ρ) (defn of R in Statement 2) (35)

Now, let us write [DL:(9)I would change the above to: The RHS of the above 2 equations are two differ-
ent Kraus representations corresponding to the same quantum operations. Using XXX (from Nielsen and
Chuang), we can relate the operation elements as:][SG:(1) Im a bit confused as to which RHSs you’re refer-
ring to. Do you mean the operators Ek and Bl? If yes, how are those 2 the same (i believe i understand how
the unitary freedom idea works, but i dont get the application of it here)? One operation here is the reverse
of the other, no?]

∀l,k BlEkP = flkP, (36)

for some flk. We then have that
(PE†

k′B
†
l)(BlEkP) = f∗lk′flkP (37)

Then summing over l gives us

PE†
k′EkP =

(∑
l

f∗lk′flk

)
P (38)

= ck′kP (C from Statement 1) (39)

Finally, we need to prove that C is positive semi-definite. To see this, note that ck′k above is the k′k entry of
F †F , where F is the matrix having lk entry flk. But F is positive semi-definite, and hence so is C. 2

1.1 Degeneracy

Using the same definitions as before, for our error set E = {Ei}, if C is full rank, we say that the code
space CL is non-degenerate. Otherwise, we call it degenerate. This latter case essentially means that multiple
errors affect our code in the same way (i.e. we don’t have a unique mapping). In this degenerate case, we
therefore have that {EiP} is linearly dependent.

1.2 Quantum Hamming Bound

For a non-degenerate code s.t. CL encodes k qubits in n qubits, the Quantum Hamming Bound states that

2n ≥ 2k · |E|, or by taking the log of both sides, (40)
n− k ≥ log|E| (41)

4

Note that here 2k is the dimension of the code space, and |E| is the number of errors. If C is full rank,
then |E| is also the number of distinguishable errors. We can think of this statement as saying that, in the
non-degenerate case, each error gives us a 2k-dimension subspace of the 2n-dimension total space.

1.2.1 Example: 7-qubit code, t=1, n=7

Note that t is the number of errors our code corrects. Here we have |E| = 1 +
(
7
1

)
· 3 = 22, where the 1

handles the case of no error or the identity being applied,
(
7
1

)
tells us which of the 7 qubits the error affected,

and 3 indicates which error occured. We thus have

27 ≥ 2k · 22 (42)
7− k ≥ log(22) (apply log to both sides) (43)

k ≤ 7− log(22) (44)
k ≤ 2.54 (45)

Therefore our code can encode up to 2 qubits worth of data.

1.2.2 Example: 5-qubit code, t=1, n=5

We have |E| = 1 +
(
5
1

)
· 3 = 16 this time. Thus,

25 ≥ 2k · 16 (46)
5− k ≥ log(16) (apply log to both sides) (47)

k ≤ 5− log(16) (48)
k ≤ 1 (49)

In this case, we can encode 1 qubit of data. Note that we can achieve equality in the bound this time (i.e. no
decimal portion in the right hand side), meaning the 5-qubit code saturates the Hamming Bound. In such
a case, we call the code perfect.

1.3 Quantum Singleton Bound for [n,k,d] Code

Suppose we have an n-qubit code. If we could correct≥ n
2 erasure errors with it, then we could clone states,

violating the No-Cloning Theorem.

To see this, imagine that we have an initial encoded state of length n, |ψ〉. Take the first n
2 qubits. Since we

can correct for ≥ n
2 erasure errors, we can recover the last n

2 qubits that have ”been erased”, and hence we
can recover the entire state. We can then repeat the procedure with the last n

2 qubits of our initial state, |ψ〉,
obtaining a second copy of |ψ〉. Thus, we now have two copies of |ψ〉 in our possession, contradicting the
No-Cloning Theorem.

Along similar directions, and following a more careful proof, (see Gottesman’s lecture notes in CO639, year
2004) we can derive the Quantum Singleton Bound, which states that

n− k ≥ 2(d− 1) (50)

5

1.4 Stabilizer Codes

1.4.1 Definitions and Properties

Let Pn denote the n-qubit Pauli group. This is defined as the n-fold tensor product of all the Pauli matrices
(I , X , Y , Z). Note that in our analysis, we often omit the phase factors ±1 and ±i.

Definition 1 Let G be a subgroup of Pn s.t. G = {Si}n−k
i=1 , Si ∈ Pn, and S =< G > is the subgroup generated

(multiplicatively) by G, with the following two conditions:

1. [Si, Sj] = 0 if i 6= j (elements of S commute).

2. −I is not an element of S

Then S =< G > is called the stabilizer of a non-trivial vector space, VS . This vector space VS is precisely the
intersection of the vector spaces stabilized by each of the elements of G, or equivalently, the intersection of the +1
eigenspaces of each of the elements of S (remember that the +1 eigenspace of element Si is the set of vectors |ψi〉 s.t.
Si|ψi〉 = |ψi〉, which is exactly what we want from a stabilizer).

Properties:

1. Representation: Multiplying one Si ∈ G by another Sj ∈ G does not change S This follows from the
fact that G generates S.

2. Unitary Transformation: ∀U ∈ U(2n), ∀|ψ〉 ∈ CL, ∀i,

U |ψ〉 = USi|ψ〉 = (USiU
†)U |ψ〉, (51)

since U†U = I . Therefore U |ψ〉 is stabilized by USiU
†. Thus, the new stabilizer is USU†.

3. Measurements of some P ∈ Pn:

• Case 1: P ∈ S. In this case, we have already been promised that any state |ψ〉 ∈ CL is in the +1
eigenstate of each element in S. Thus, we will always get the outcome corresponding to the +1
eigenvalue (otherwise |ψ〉 is not in the code), the state of the system will remain unaltered, and
so our stabilizer also remains unaltered.

• Case 2: P 6∈ S. We will deal with this case later.

4. Definition 2 Assume we have a subgroup S of Gn, −I 6∈ S, and S =< g1, ..., gn−k >, where g1, ..., gn−k are
independent and commuting generators. Then the vector space VS stabilized by S is called an [n,k] stabilizer
code, and is denoted C(S).

Now, let ∆ ∈ Pn be an error corrupting our stabilizer code C(S). We then have three possibilities
regarding ∆:

• ∆ ∈ S: In this case, ∆ actually stabilizes our encoded state, hence leaving it unaltered. This
means there’s no ”error” to correct.

• ∆ anti-commutes with an element of S: ∆ then maps C(S) to an orthogonal subspace, so we can
apply the appropriate projective measurement to detect the error.

• ∆ commutes with all elements of S, but ∆ 6∈ S: This implies that ∆ ∈ N(S) − S, where N(S) is
what is known as the normalizer of the stabilizer S, s.t. N(S) = {M ∈ Pn : MSM† ⊆ S},
where we can replace ⊆ by = because conjugation is reversible. Here N(S) contains 2k gener-
ators. ∆’s like this correspond to non-trivial logical operators, which will prove important later
for fault tolerance.

Theorem 3 :

6

1. Let E = {Ei} be our set of errors, with Ei ∈ Pn, Pn the Pauli group on n qubits. If ∀i, j E†
iEj ∈ S ∪N(S),

then QECC condition 1 is satisfied. Here, N(S) is the complement of the normalizer of S.

2. The code is degenerate ⇔ ∃i 6= j s.t. E†
iEj ∈ S,

E†
i and Ej non-trivial. [DL:(20) This follows from i 6= j, and is not an independent condition. Also, we only

need one of them nontrivial, and other Ei Ej both nontrivial can be obtained from the group structure.][SG:(2)
I am unsure as to why this comment was made? Is there a better way to state what I had written perhaps? I
used ∃ for the i 6= j, so the entire statement I made doesn’t have to hold ∀i, j, right? Did you intend for me to
clarify that the RHS doesn’t have to have all Ei and Ej non-trivial if i 6= j?]

Proof :

Aside:
PSi = SiP = P (52)

where P is a projector onto our code space, and Si is an element in our stabilizer. This follows from the fact
that Si stabilizes the vector space P projects onto.

Let us begin by assuming statement 1 in the theorem above, i.e. we have E†
iEj ∈ S ∪N(S).

Case 1: If E†
iEj ∈ S, then PE†

iEjP = PP = P (by (52)), so cij = 1.

Case 2: If we’re not in Case 1, we must be in Case 2 by our assumption, i.e. E†
iEj 6∈ N(S). By Property 4 of

stabilizers earlier, E†
iEj must therefore anti-commute with an element of S. So ∃Sk s.t. {Sk, E

†
iEj} = 0. We

can therefore write

PE†
iEjP = PE†

iEjSkP (by (52)) (53)

= −PSkE
†
iEjP (Sk and E†

iEj anticommute) (54)

= −PE†
iEjP (by (52)) (55)

= 0 (x = −x⇒ x = 0) (56)
= 0 · P (57)

⇒ cij = 0 (58)

So to summarize, we have:

cij = 1 if E†
iEj ∈ S

cij = 0 if E†
iEj ∈ N(S)

It remains to show C ≥ 0. For this, we have that if E†
iEj ∈ S and E†

jEk ∈ S, then E†
iEk ∈ S. This follows

from the fact that, for some state |ψ〉 ∈ CL,

|ψ〉 = E†
iEj |ψ〉 (E†

iEj ∈ S) (59)

= E†
iEj(E

†
jEk)|ψ〉 (E†

jEk ∈ S) (60)

= E†
iEk|ψ〉 (Ej ∈ Pn unitary) (61)

(62)

In this case, since cij = 1 and cjk = 1, we have cik = 1. Thus, C ≥ 0 as claimed.[SG:(3) Why did we want to
remove the rest of this section?]

7

Let us now prove statement 2 in our theorem. Assume the code is degenerate, i.e. there are at least two
non-trivial errors Ei and Ej , i 6= j, giving rise to the same error syndrome. Then if P is the projector onto
the code space, we have

EiPE
†
i = EjPE

†
j (63)

E†
jEiPE

†
iEj = P (Ej unitary and hence invertible) (64)

⇒ E†
jEi ∈ S (by (52)) (65)

Now assume the opposite, that ∃E†
iEj ∈ S, i 6= j, E†

i and Ej non-trivial. Then for |ψ〉 ∈ CL,

E†
iEj |ψ〉 = |ψ〉 (E†

iEj ∈ S) (66)
Ej |ψ〉 = Ei|ψ〉, (Ei unitary and hence invertible) (67)

which means that Ei and Ej map an encoded state to the same error state, implying that both Ei and Ej

will have the same error syndrome, as required for degeneracy.
2

1.4.2 Examples of Stabilizer Codes

The 5-Qubit Code
The 5-qubit stabilizer code is the smallest code that can detect and correct an error on a single qubit. Its
stabilizer generators are:

S1 = XZZXI (68)
S2 = IXZZX (69)
S3 = XIXZZ (70)
S4 = ZXIXZ (71)

where XZZXI is shorthand for X ⊗ Z ⊗ Z ⊗ X ⊗ I . Thus, any element in the group generated by these
operators stabilizes any state in our code space. Notice that if we take any 5-qubit operator of weight at
most 2 and composed of the Pauli matrices, it will anti-commute with at least one of the generators above
(remembering that weight is defined as the number of non-identity terms in the 5-fold tensor product that
makes up the operator). For example, take IIIXI , which has weight 1. This anti-commutes with S2 since

(IXZZX)(IIIXI) + (IIIXI)(IXZZX) = (iIXZY X)(−iIXZY X) = 0 (72)

An example of weight 2 is IIIY Z, which anti-commutes with S1. Therefore if we measure our error state
using our generators as observables, we will be able to detect the error (as stated earlier under properties
of the stabilizer).

Note that the logical X and Z, denoted X = XXXXX and Z = ZZZZZ, respectively, commute with
every generator above, but are not in the stabilizer itself. They are hence in the normalizer of S.

The 9-Qubit Shor Code

8

The 9-bit stabilizer code has generators:

S1 = XXX XXX III (73)
S2 = III XXX XXX (74)
S3 = ZZI III III (75)
S4 = IZZ III III (76)
S5 = III ZZI III (77)
S6 = III IZZ III (78)
S7 = III III ZZI (79)
S8 = III III IZZ (80)

This code is capable of correcting any arbitraty single qubit error (similar argument as above for the 5-qubit
code). It is, however, de-generate. To see this, note that for distinct errors ZIIIIIIII and IZIIIIIII , we
will get the same error syndrome when measuring with the generator S3 = ZZIIIIIII . This implies that
both errors can be corrected with the same recovery operation.

9

2 Degenerate Codes

Graeme Smith, September 29, 2006

From last time, for a set of errors ε, the Quantum Hamming Bound states that

k ≤ n− log|ε| (81)

for any [n, k] non-degenerate code, k denotes the number of encoded qubits, and n denotes the block length.

So what’s a non-degenerate code? Simply a code in which each error E ∈ ε gets its own error syndrome.
A degenerate code is then the opposite, where many E ∈ ε can have the same error syndrome. In the case
where there is ”a lot” of such duplicate mapping, the code is sometimes called ”grossly degenerate”.

Idea: Try to beat the Hamming Bound using degenerate codes (i.e. try to encode more qubits than the
bound allows for non-degenerate codes).

2.1 The Depolarizing Channel

The depolarizing channel acts on a given input state ρ as follows:

Np(ρ) = (1− p)ρ+
p

3
XρX +

p

3
Y ρY +

p

3
ZρZ (82)

i.e. with probability 1−p, the state remains unaltered, and with probability p
3 we apply X , Y , or Z. Extend-

ing this to an n-qubit state ρn gives:

N⊗n
p (ρn) =

∑
~u,~v

p~u~vX
~uZ~vρnZ

~vX~u (83)

w.h.p., #I ∼ (1− p)n (84)

#X ∼ p

3
n (85)

#Y ∼ p

3
n (86)

#Z ∼ p

3
n (87)

(88)

We are therefore going to try and correct errors of the form:

ε ≈ {X~uZ~v| s.t. nI , nX , nY , nZ ∼ ((1− p),
p

3
,
p

3
,
p

3
)} (89)

where nI , nX , nY , and nZ are the number of I , X , Y , and Z errors, respectively. We then have

|ε| ≈
(
n

pn

)
3pn = 2n(H(p)+p log2 3), (90)

where the
(

n
pn

)
accounts for the number of different places to put the error, the 3pn denotes which error

occurred, and the second inequality comes from Sterling’s Approximation, which states that
(

n
np

)
≈ 2nH(p).

The Hamming Bound tells us that R ≤ 1−H(p)− p log2 3.

10

2.1.1 CSS-Hashing

We are going to go off topic briefly to discuss a trick in information theory for picking a random code called
CSS-Hashing which we will later need.

Idea: First correct all the amplitude errors (X), then correct the phase errors (Z).

We start with {Z~al}n−k
l=1 , which are the syndromes we’ve measured, with ~al ∈R {0, 1}n being random

strings. Note that the syndromes will be ω(X~u, Z~al) = ~u · ~al. The typical number of amplitude errors
(i.e. the number of appearances of X in the error string) will be about 2p

3 . So, after doing our parity check,
what’s the probability of incorrectly identifying our error?

Pr[amp. error] =
∑

~u=εtypical

p~uPr[∃~u′ ∈ εtyp, ~u
′ 6= ~u,~al · ~u′ = ~al · ~u for l = 1...n− k] (91)

(approximately) ≤ |εtyp|
2nH(2p

3)
Pr[∃~u′ ∈ εtyp, ~u

′ 6= ~u,~al · ~u′ = ~al · ~u for l = 1...n− k] (92)

=
|εtyp|

2nH(2p
3)

⋃
~u′∈(ε|~u)

{~al · ~u′ = ~al · ~u} (93)

≤ |εtyp|2

2nH(2p
3)
Pr[~al · (~u+ ~u′) = 0] (94)

[DL:(26) The middle line above, the union should be a sum over prob.] [SG:(4) Not sure what you mean by
this?] Here we have for ~a ∈R {0, 1}n and ~x 6= ~0, Pr[~a · ~x = 0] = 1

2 . Therefore, use this in the Pr[] expression
above to get:

≤ |εtyp| ·
1

2n−k
(|εtyp| = 2nH(2p

3)) (95)

≤ 2nH(2p
3)

2n−k
(96)

Now let k ≤ n(1−H(2p
3 − δ)). Therefore

Pr[amp. error] ≤ 1
2δ·n (97)

Now, given ~u, |ε~u
typ| ∼ 2nH(u|v), where ε~u

typ are the errors conditional on ~u, and H(u|v) is the conditional

entropy. So choose ~x~bl , l = 1...k − k2, and choose enough to distinguish between all elements of the typical
errors conditioned on ~u. This forces you to choose

k2 = k − kH(z|x) (98)
= (n− k)(1−H(z|x)) (99)
= n(1−H(p)− plog3) (100)

How does this mapping from typical phase errors to phase errors on the logical space go?

~v → ~vL (101)
Say ~v1, ~v2 → ~vL (102)

For now, let’s just worry about these vectors. Now, |L(ε~u
typ)| →≤ 2nH(z|x),

and L : {0, 1}n → {0, 1}k ≈ {0, 1}n\{A}, where the domain of L is n-bit phase errors,
and A = span(~al). We then have

L~v1 = L~v2 ⇔ Z ~v1⊕ ~v2 ∈< Z ~al >, (103)

11

where Z ~al are the parity checks, and < Z ~al > denotes the stabilizer (i.e. the group generated by the parity
checks). Note that we also have ~v1 + ~v2 ∈ span(~al). So, we’re trying to figure out the typical weight of
~v1 ⊕ ~v2 at p ≈ 0, 1893. Hence

2pn
3

− wt =
2p
3

(1− 2p
3

)n ∼ 1
8
n (104)

This gives us the following sketch of a curve, with bound 0.1893. We are interested in improving this bound.

R 1

0.1893

p

So far it has been shown, for example, that it can be improved to 0.1903 using degenerate codes.

Ok, now turning back from our slight digression... So let’s start by looking at a ”normal” ”non-random”
code. Let us look at a repetition [5, 1] code, with stabilizer generators Z1Z2, Z1Z3, Z1Z4, Z1Z5. Encoded
states are of the form α|0L〉⊗5 + β|1L〉⊗5, where |0L〉 and |1L〉 are the logical 0 and 1 states, respectively. We
also have that the logical zero X = XXXXX , and Z = ZIIII or IZIII . This code is good at correcting
amplification error, but bad with phase errors. Finally, for this code, we also have that

~S =


u1 ⊕ u3

u1 ⊕ u3

u1 ⊕ u4

u1 ⊕ u5

 (105)

Xu1Z(
⊕m

l=1 vl) (106)

Idea: Now let’s concatenate this code with a random code to get a 5n-qubit code to see what we get.

Again, we’re going to have a repetition code with blocks of 5. This time let’s also choose a random amp.
code.

Z
~al , ~al ∈R {0, 1}n (107)

So what’s the typical weight of ~al when chosen at random? The answer is n
2 (odds are about half our digits

will be 1’s), and so |~al| = n
2 . But wt(Z

~al) = n
2 as well, where Z

~al is now a 5n-bit operation. Therefore

wt(Z
~al) ∼ n

2
⇒ 1

10
∼ 1′s,

9
10

0′s (108)

[DL:(30) Seem’s that he’s done here, that wt(Z
~al) is close to the typical value for ~v1 ⊕ ~v2] [SG:(5) Are you

suggesting to take out the remainder of the section then?]

And since we’ve taken our 5-bit code and concatenated it with a random code, we get a typical weight
similar but a bit different than above in (104):

5(1− 2p
3

)(
2p
3

)n ∼ 5
8
n (109)

which is better than what we had in (104). It is important to note that we get a grossly degenerate code after
concatenating with the random code, and generally speaking, we need the code to be grossly degenerate to
improve the bound (i.e. just being degenerate won’t do us much good).

12

