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1 Fault Tolerance (FT) and Threshold Theorem (TT)

This section makes no use of quantum formalism—it is entirely classical in nature. We may talk of “quan-
tum gates” and “quantum circuits”, but everything said in this lecture applies equally well to classical
circuits and gates.

Definition 1 (Quantum Error Correcting Code (QECC)) An n-qubit quantum error correcting code (QECC)
is a subspace of a 2n-dimensional Hilbert space with the property that any error on no more than t qubits can be re-
versed (at least in an idealized information theoretic sense).

The following table compares assumptions on the noise model and the reliability of quantum operations
for each of several applications of QECC.

Application Assumptions on Noise Model Assumptions on En-
code/Decode Operations

Quantum Key Distribution
(QKD)

any error on t or fewer qubits can deal with some imperfec-
tions

Quantum Secret Sharing any error on t or fewer qubits perfect
Noisy Quantum Channel Cod-
ing

i.i.d. errors on each qubit perfect

Fault-Tolerant Quantum Com-
putation Threshold Theorem

ranges from i.i.d. to more general
noise

only require low probability of
error in each gate

1.1 Overview

The goal of fault-tolerant quantum computation (FTQC) is to use noisy components to reliably implement
quantum circuits of arbitrary size to any desired accuracy ε.

More specifically, suppose that p is the error rate of our quantum gates and suppose that we wish to im-
plement a given quantum circuit with precision ε. Is it necessary that p → 0 as ε → 0? If so then we are in
trouble because it seems unlikely that quantum gates can ever be constructed with arbitrarily small error
rates.

Alternatively, is it the case that there exists some universal constant pth > 0 such that if p < pth then the
error rate p is “good enough” to achieve arbitrary accuracy? This latter case is far more desirable—if true,
it would offer hope that arbitrarily accurate quantum computations can be performed even with faulty
quantum gates. The following theorem asserts that indeed this is the case.

Theorem 2 (Threshold Theorem (TT)) There exists a universal constant pth > 0 such that, if quantum gates can
be implemented with error rate p < pth then for any quantum circuit C and any accuracy parameter ε > 0 we have
that C can be implemented with accuracy ε using quantum gates with error rate p.

At the time of this writing, the quantity pth is known to be at least 1.94 × 10−4.
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Figure 1: Gates in each level are constructed using gates from lower levels

1.2 The Concatenation Approach to Fault-Tolerance and “Level-Reduction”

One approach to implementing fault-tolerant quantum computation under active research is the “level
reduction method” described as follows. Essentially, each level consists of implementations of quantum
gates in some universal set such that the error of the implementations decreases rapidly with the level
number.

More explicitly, suppose that we can implement our universal set of quantum gates with an error rate p.
Then level 0 is defined to be this set of universal gates and we say that the error of level 0 is p. In order to
construct level 1, we simulate each gate in our universal set using only gates from level 0 such that each
simulated gate has error at most O(pt) for some t > 1. Similarly, the universal set of gates at level k has

error O(ptk

) and we construct level k +1 by simulating each gate in our universal set using only gates from

level k such that the simulated gates in level k + 1 have error O(ptk+1

).

Of course, it is impossible to achieve such simulations without using some form of quantum error correcting
code. Such a code will typically encode one logical qubit or gate into several physical qubits or gates. Each
level treats the gates in lower levels as physical (or primitive) gates in the sense that they are used in a “black
box” manner, so that each level does not depend upon how gates in lower levels are constructed. See Figure
1.

For greater generality, let us assume that if p is the error of level k then the error of level k+1 is cpt for some
constants c and t > 1. Let us compute the error pk of level k:

p
level 07−→ cpt level 17−→ c

(

cpt
)t

= c1+tpt2 level 27−→ · · · level k7−→ c1+t+···+tk−1

ptk

= c
t
k
−1

t−1 ptk def
= pk.

If this fault-tolerance scheme is to be of any help then we certainly require that the error improve at each
level. In other words, we require that our base error rate p satisfy

p > cpt.

We can compute an upper bound pth for all such p in terms of c and t by solving

pth = cpt
th.

The solution to this equation is

pth = c−
1

t−1 .

Substituting this solution back into our expression for pk yields

pk = c
t
k
−1

t−1 ptk

= pth

(

c
1

t−1 p
)tk

= pth

(

p

pth

)tk

.
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In other words, the error pk at level k drops doubly exponentially in the number of levels k. This result may
seem encouraging, and indeed it is. But by the same token, it is easily seen that the amount of resources
required to implement each successive level increases exponentially with the number of levels k.

More specifically, suppose that a quantum circuit C is composed of size(C) quantum gates. Suppose further
that each gate in level k is sumulated with at most N gates from level k − 1 for each k. Then we have

size(C)
level 07−→ N size(C)

level 17−→ N2 size(C)
level 27−→ · · · level k7−→ Nk−1 size(C),

which grows only singly exponentially in k.

If C is to be implemented with accuracy ε then we must implement each gate in C with accuracy at least
ε/ size(C), since error is additive. Hence, under the level method it suffices to implement enough levels k
so that each gate in the kth level has error

pk <
ε

size(C)
.

That is,

pk = pth

(

p

pth

)tk

<
ε

size(C)
=⇒ tk <

log
(

ε
size(C)pth

)

log
(

p

pth

) =
log

(

size(C)pth

ε

)

log
(

pth

p

) .

This expression may be used to bound the number of gates appearing in the level k simulation:

Nk size(C) <





log
(

size(C)pth

ε

)

log
(

pth

p

)





log N

log t

size(C) = poly log

(

size(C), log

(

1

ε

))

where the final equality serves only to highlight the relevant fact—that the number of gates used in the level
k simulation of C requires no more than a number of gates that is polynomial in size(C) and log

(

1
ε

)

. The fact
that this scaling factor is only polynomial (as opposed to exponential or higher) tells us that fault-tolerance
can be implemented efficiently, provided that the original error p is smaller than pth.

2 Lecture Plan

During the next two lectures we will discuss the following:

• Proof sketch for the Threshold Theorem (apparently we just did that in Section 1).

• Universal set of quantum gates that is suitable for fault-tolerant quantum computation.

• Assumptions.

• Fault-tolerant implementations.

3 Universal Set of Quantum Gates

Any computation consists of:

1. State preparation (e.g. |0〉, |1〉, |+〉, |−〉, bell states, etc.)

2. Universal set of quantum gates

3. Measurements (e.g. in {|0〉, |1〉} basis or in {|+〉, |−〉} basis)
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Items 1 and 3 are fairly straightforward. It should be noted, however, that it only makes sense to assume
that we can prepare and measure states that can actually be prepared and measured relatively easily in the
lab. It is generally accepted that the states |0〉, |1〉, |+〉, and |−〉 have this property.

Let us discuss item 2. A set S of quantum gates is called universal if each gate in S acts upon no more
than k qubits for some fixed k and if any unitary operation on any number of qubits can be approximated
arbitrarily closely using only gates from S.

Universal sets, even finite universal sets, are known to exist. For example, the set {CNOT, H, P, Toffoli} is
universal, where

CNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, H =
1√
2

(

1 1
1 −1

)

,

P =

(

1 0
0 i

)

, Toffoli =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

























.

Another universal set of gates is
{

CNOT, H,
√

P
}

.
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