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1 General Measurements

Consider the following scenario:

|0〉
E

U
|ψ〉

S

We fix the input state for the environment E to be |0〉 while the input state |ψ〉 for the system S is unknown.
We are interested in figuring out how the system evolves given that it may interact with the environment.
This may be modelled by a unitary U performed on the starting states. Here we shall make the assumption
that the environment and the system start off in a product state of dimension d× s. Since we fix the starting
state for the environment to |0〉, the unitary operation may be modelled by an isometry on S given by

U |0〉E |ψ〉S =
∑

k

|k〉E ⊗ [U0k |ψ〉]S

∑

k

U
†
0kU0k = IS

Now, if we measure E in computational basis, then the outcome is k with probability

Pr(k) = ‖U0k |ψ〉 ‖
2 = Tr[U †

0kU0k |ψ〉〈ψ|]

The state after the measurement is given by

Post measurement state × Pr(k) = U0k |ψ〉〈ψ|U
†
0k

1.1 POVM Formalism

The POVM (Positive Operator Valued Measure) formalism is used when we do not care about or discard
the state of the system after a measurement has been carried out. Now, the probability of obtaining outcome
k is given by

Pr(k) = Tr(Mkρ)

where we have Mk = U
†
0kU0k ≥ 0 (i.e. the Mk are positive operators) and

∑

k Mk = IS . The operators Mk

are referred to as the elements of a POVM. The state after measurement conditioned on obtaining ouput k
is given by

√

Mkρ
√

Mk

2 Quantum Operations

The unitary evolution and measurement process that we have already seen may all be thought of as quan-
tum operations. The above formulations assumed that we had access to the environment and were able
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to carry out measurements on it to obtain the output k. However, this may not always be possible. Here
we shall give a few equivalent formulations of quantum operations. The one we choose to use in a specific
scenario depends on the task at hand. In general we want to capture the following process

ρ→ E(ρ)

The mapping E(ρ) in the above process is referred to as a quantum operation.

Definition 1 The mapping E is called positive if it maps positive input to positive output.

Definition 2 The mapping E is called completely positive if E is positive and (I ⊗ E) is also positive.

Claim 3 E is completely positive on a d dimensional space if and only if (I ⊗ E) is positive for I acting on a d
dimensional space.

2.1 Operator-sum / Kraus Representation

The Kraus representation may be stated as

E(ρ) =
∑

k

AkρA
†
k

with
∑

k A
†
kAk = I (note the change of notation U0k → Ak). Here the operators {Ak} are referred to as the

Kraus operators.

Question 4 Let E(ρ) =
∑

k AkρA
†
k =

∑

l BlρB
†
l , where

∑

k A
†
kAk =

∑

lB
†
lBl = I.

How are Ak and Bl related? Furthermore, given that the dimension of the system is dS , what upper bound can we
obtain on the dimension of the environment dE?

2.2 Jamiolkowski-Choi Isomorphism

If E is

1. Completely Positive

2. Linear

3. taking d× d matrices to d′ × d′ matrices

then, the mapping has the form

E(ρ) =
∑

k

AkρA
†
k

In other words, all maps satisfying the three stated properties is of the Kraus form.

Also, the mapping has a unique representation in the following form, the so called “Jamiolkowski-Choi
matrix,

IA ⊗ EB(Φ).

Here Φ is a maximally entangled state on a d⊗ d system, i.e.

Φ =
1

d

(
∑

i

|i〉A |i〉B

)


∑

j

〈j|B 〈j|B





The analysis for obtaining the Ak’s is done in quant-ph/0201119.
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2.3 Other Representations

Nielsen and Chuang define the χ-representation in quant-ph/9610001. Let {Bl} be a basis for d′ × d matrices
over C. For any

E(ρ) =
∑

k

AkρA
†
k

Let Ak =
∑

l

clkBl

Then, the mapping is given by

E(ρ) =
∑

ll′

∑

k

clkc
∗
l′k

︸ ︷︷ ︸

χ
ll′

BlρB
†
l′ .

When d = d′, a convenient set of {Bl} is the set of all (generalized) Pauli operators.

Question: what are the general properties of χ?
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