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DRAFT

In this lecture we show the security of the BB84 Quantum Key Distribution Protocol. The proof is done by
modifying the Lo Chau protocol to the BB84 protocol and appealing to the security of the Lo Chau Protocol

Recall the Lo Chau kind of protocol where the operations of Alice are
1.Measure check bits in the computatoinal basis.
2.Measure the syndrome in the code qubits.
3.Decode the residual state to get the key k.

Now these operations can be performed immediately after EPR pairs are prepared. So effectively

1. Alice may simply choose a uniform random state |0〉 and |1〉 and instead of preparing EPR pairs for
their check bits

Recall that a quantum CSS code on n qubits is given by 2 binary code C1 and C2 such that C2 is a sub-
space of C1

Fact: The n− qubit Hilbert space decomposes as
(C2)⊗n = ⊕x∈Zn

2 /C1,z∈Zn
2 /C⊥2

Qx,z

where Qx,z is the subspace spanned by {|ξx,z(v)〉}v2∈C1/C2 and |ξx,z(v)〉 = 1√
|C2|

∑
w∈C2

(−1)w.z|w + v + x〉
Now these are orthogonal for x emerging from distinct cosets of C1 on Zn

2 and for z from distinct cosets of
C⊥

2 in Zn
2 .

We have the dimension of Qx,z equal to |C1|
|C2| and the number of distinct cosets of C1 equal to 2n

|C1| and the
number of cosets of C⊥

2 equal to 2n

|C⊥2 | = |C2|. And for a fixed x, v we have

〈ξx,z(v)|ξx,z(v)〉 = 1
|C2|

∑
w1,w2∈C2

(−1)w1z1+w2z2〈w1 + v + x|w2 + v + x〉. The inner products are non-zero
when w1 = w2, which gives 〈ξx,z(v)|ξx,z(v)〉 = 1

|C2|
∑

w∈C2
(−1)wz1+wz2 = 1 if z1 +z2 ∈ C⊥

2 and 0 otherwise.

2.Since x, z, k are uniformly distributed over Zn
2 /C1, z ,Zn

2 /C⊥
2 and C1/C2, Alice may pick these uniformly

at random from the subspaces and encode k in the subspace Qx,z to generate Bob’s code qubits.

Note that since |ξx1,z1(v)〉 = |ξx2,z2(v)〉 IFF x1 + x2 ∈ C1 and z1 + z2 ∈ C⊥
2 Alice may pick x, z uniformly at

random from Zn
2 .

This leads us to protocol 2, the CSS code protocol due to Shor Preskill.

1. A creates n random check bits and m key bits k (where m = dim(C1) − dim(C2)), and a random 2n bit
string k.
2. A chooses x, z, which are n bit strings uniformly at random.
3. A encodes k in the CSS code Qx,z .
4. A chooses n out of 2n positions to be the check qubits and the places the check and code qubits appro-
priately.
5. Applies a H on every qubit given by bi = 1.
6. A sends all qubits to B, who acknowledges.
7. Alice announces b, the positions and values of the check bits x, z.
8. B applies H on qubits specified by the bit string b.
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9. B measures them in the computational basis and they abort if there are too many errors.
10. Bob decodes code qubits to Qx,z and gets the key k.

We show a relation between the CSS codes protocol(2nd protocol in paper) to the BB84 protocol(3rd in pa-
per). The steps that we need to recall are the following
Alice does the following 1. Picks n random test bits and m random key bits.
2. Picks n random bit strings x, z for the shifted CSS codes and encodes k in Qk,z

After the test phase passes Bob decodes the key from its encoding in Qx,z i.e he performs the bit and phase
error correction. Bob needs x for bit error and z for phase error correction.

Now we observe that phase correction is unnecessary in the Lo-Chau protocol and hence the CSS codes
protocol. Hence Alice need not send the bit string z which is required for phase error correction.

Now we have the following
|k〉 −→ 1√

|C2|

∑
w∈C2

(−1)w.z|vk + w + x〉 = |ξx,z(v)〉.
Now z is now available to B his state is described by a mixed density matrix ρB given by
1
2n

∑
z |ξx,z(v)〉〈ξx,z(v)|

which is equal to 1
2n|C2|

∑
z

∑
w1,w2∈C2

(−1)(w1+w2)·z|vk + w1 + x〉〈vk + w2 + x|.
We need that w1 = w2 which gives
ρB = 1

|C2|
∑

w∈C2
|vk + w + x〉〈vk + w + x|.

From this expression we can conclude that instead of encoding in the CSS code she may have equivalently
encoded it as a mixture of a classical code words in a coset or C2 in Zn

2 . Hence Alice can do the following
1 Pick up x uniformly at random from Zn

2

2. Pick a random w ∈ C2 and send |vk + w + x〉.

When these modifications are made Bob changes his error correction and decodong step as
1. Receive x from Alice and correct errors according to the coset x+C1 i.e his string looks like vk +w+x+eb

which is sometimes called the sifted key where eb is the error introduced by the eavesdropping channel.
He adds the string x to the sifted key , and gets vk + w + eb. Since vk + w ∈ C1 he corrects bit errors eb.

Now he can compute the coset representative vk of this string vk + w in C1.
Including these changes in CSS code protocol we get the BB84 protocol which we now write down.

1. Alice picks 2n random bits (n test bits and n code bits). Note here that vk + x + w is uniformly at
random since k, w, x were chosen at random.(x is uniformly at random). So we can pick a value for this and
then pick w and vk from the appropriate conditional distributions.
2. picks a 2n bit random string b and rotates all the bits in position i by H where bi = 1.
3. Send these to Bob
4.Bob acknowledges receipt
5.Alice announces b.

6.B undoes the H operation on positions i where bi = 1. Announces the positions of check bits, both mea-
sure these in computational basis. Abort if there are too many positions in which they disagree.
(error correction and privacy amplification)
7-10. At this time they both share the sifted key. (Bob’s key may have errors due to eavesdropping). So they
both extract the key as before

Now we observe that at step 4 Bob has to store the qubits which can be eliminated. This is done as follows
by modifying the number of selections in the previous protocol
1.A picks up (4 + δ)n random bits
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2,3.A picks up (4 + δ)n bit string b.
4. Bob acknowledges , after measuring each qubit in a random basis , computational basis or the Hadamard
basis.
5.(no change)
6.B discards all qubits measured in the wrong basis. Now with high probability they both have 2n bits and
continue as before.

Final Remarks
1. There are code pairs C1, C2 required for CSS coding with rate that go by 1 − 2H2(2δ) where H is the
entropy and C1, C2 can correct δn bit and flip errors. So starting with (4 + δ)n qubits sent in 1st step we get
(1− 2H2(2δ)) bits of key
2. Security of the proof relies on
(a) Ability to prepare single qubit states. Laser which is used to prepare quantum states have a property
that emit multible qubits that are entangled and the eavesdropper may split the beam and keep some info-
mation (b) Measurement appratus accurate
However we can generalize this proof to handle some of these imperfections.

3


