CO 781 Topics in Quantum Information Instructor: Ashwin Nayak
Homework #3 Out: July 13, Due: August 3, 2004

Note: Please remember to mention all your sources of help (colleague, research article, etc.).

Q. 1. Proof of security of QKD.
Verify the following steps in the Lo-Chau type entanglement purification protocol due to Shor and
Preskill. (We follow the notation used in class.)

1. If in the testing (i.e., error rate estimation) part of the protocol, at most a fraction § — € of
errors are detected in the n test qubits (i.e., test EPR pairs), then the probability that the
error rate in the remaining n EPR pairs is more than 0 is exponentially small in n. Here,
0 < € < ¢ is a small constant, and § is the error correction threshold for the CSS code being
used.

2. When Alice and Bob both measure error syndromes for bit and phase errors on their halves
of n perfect shared EPR pairs, their state collapses to an entangled state over Q. ® Q...
where x, z are coset representatives that correspond to the observed error syndromes. This
state is the same as the one obtained if Alice and Bob both encode their parts of m perfect
shared EPR pairs using this code, where m is the number of information qubits in @, ..
Furthermore, if there are bit and phase errors (given by strings e, €,, respectively) in the n
EPR pairs, then the collapsed state is a similar entangled state over Q. . ® Qrge,,-@e, -

Q. 2. Properties of random walks.
Let P be a symmetric stochastic matrix corresponding to a Markov Chain M. Using only basic facts
from linear algebra (such as properties of real symmetric matrices), prove the following about P:

1. All the eigenvalues of P lie in the interval [—1, 1].
2. If M is irreducible, then Ay(P), the second largest eigenvalue of P, is strictly smaller than 1.

3. If —1 is an eigenvalue of P, then the graph underlying M has a bipartite component. In other
words, if M is aperiodic, the smallest eigenvalue is strictly larger than —1.

Therefore conclude that for an irreducible, aperiodic Markov Chain M defined by a symmetric
stochastic matrix P, there is a unique stationary distribution: P's tends to the uniform distribution
on the states as t tends to infinity, for every initial distribution s.

Q. 3. Quantum walk algorithms.

In the collision problem, we are given a function f : [n] — [n] as an oracle. We are promised that f
is either a permutation or is 2-to-1 (i.e., for every j € [n], |f~'(j)] is either 0 or 2). Describe and
analyse a quantum walk based algorithm to distinguish the two cases. Minimize the number of
oracle queries that your algorithm makes, and calculate the time and space complexity.



Q. 4. Query lower bounds.

Consider a Boolean function f : {0,1}" — {0,1} and the sets Ag = f7*(0), A, = f~'(1). Suppose
the string X = X, X,,..., X, chosen uniformly at random from the set A; (for any ¢ € {0,1}) is
k-wise independent. In other words, suppose that any set of & bits of X are uniformly distributed
over {0, 1}k. Using any method of your choice, prove a lower bound of [%k/2] for the bounded-error

quantum query complexity of f. Conclude that the query complexity of the parity function is [%w .



