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Quantum walk. An optimal query algorithm for Element Distinctness was discovered by Ambainis [2],
and it is based on quantum walk. Szegedy [22] designed a search algorithm for symmetric Markov chains,
and established quadratic speed-up over classical hitting time. The search framework for reversible Markov
chains is due to Magniez, Nayak, Roland, and Santha [15]. See the survey [16] for a more detailed history
of discrete-time quantum walk.

Span programs and learning graphs. The use of span programs in the design of quantum algorithms
arose from a sequence of works on algorithms for NAND formulae [9, 3]. The connection between span
programs and query algorithms was discovered by Reichardt and Špalek [18]. Subsequently, Reichardt
proved that an optimal canonical span program corresponds to an almost optimal query algorithm [17].
Remarkably, these algorithms were developed using continuous-time quantum walk. Lee, Mittal, Reichardt,
Špalek, and Szegedy [14] present the most general version of the algorithm, along with a simplified analysis.
We use the term “span program” to mean “canonical span program”, which is readily seen to be equivalent
to the dual of the SDP for the adversary bound.

Learning graphs were introduced by Belovs [4] and used to design more efficient quantum algorithms, such
as that for Triangle Finding. The efficient algorithm derived from learning graphs is also due to him [5, 6].

The adversary bound. The quantum adversary method was developed by Ambainis [1], and refined
by him and others. The strongest version of the bound is due to Høyer, Lee and Špalek [11], and the term
“adversary bound” is now used for this version. See Ref. [11] for the historical development of the bound.
The bound was shown to be optimal, with the discovery of span programs (see, e.g., Ref. [14]) for the
details).

Fourier Sampling. The basics of representations of finite groups may be found in the book [19]. The
discovery of the Simon and Shor algorithms [21, 20] led to the formulation of the Hidden Subgroup Problem.
Phase Estimation was developed by Kitaev [12, 13], and used to design efficient algorithms for, among other
things, the Fourier transform over Zn. More efficient phase estimation was discovered by Cleve, Ekert,
Macchiavello, and Mosca [8]. This algorithm uses the Fourier transform over Z2k , for which they presented
an efficient exact quantum circuit. Hales and Hallgren [10] explain why we are able to solve HSP over Z.
The survey [7] describes further developments on the topic, including the representation theoretic analysis
of the Fourier sampling algorithm.

Quantum Merlin Arthur games. The computational complexity class QMA was studied by Kitaev
under the name BQNP [13], and the QMA-completeness of the 5-Local Hamiltonian Problem is due to him.
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The QMA protocol for Group Non-Membership is due to Watrous [23]. The Local Hamiltonian Problem
has been studied extensively since then.
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