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1. Error-correction

Digital data stored in computers or transmitted over computer networks are constantly subject to
error due to the physical medium in which they are stored (such as magnetic disks) or the process
by which they are transmitted (such as electrical signals). Error-correction codes are a means of
introducing redundancy in the data so that even if part of it is corrupted or completely lost, the
original data can be recovered.

We will study a particular kind of error-correction code, the Reed-Solomon code, which is con-
structed by using polynomials over finite fields. We will begin by studying a simple code, the
repetition code, to illustrate some of the concepts involved in error-correction.

Data on computers are stored in the form of bit-sequences. Such data can be thought of as a
sequence of numbers in the 2-element field Z2. More generally, we may represent data (or messages)
as sequences of numbers from the field Zq, where q is a prime. In the following, we will assume that
our message sequence has length n.

We will restrict our attention to a particular kind of error, in which any number may be mapped
arbitrarily to another number in Zq. For the bit case q = 2, this kind of error corresponds to a
bit-flip, where a 0 is mapped to a 1 and vice-versa.

If a message (a bit-sequence) is transmitted as-is, even a single error (i.e., a bit flip in a single
coordinate) would result in transforming the message into a different message. In the simplest case,
when a single bit is transmitted, and a 0 is received, we cannot be sure if a zero was sent and no
error occurred, or if a 1 was sent and it got flipped.

The reason that raw messages are so vulnerable to error is that different messages can be very
close to each other: that the numbers in a few of the coordinates can be changed to change one
message to another. If however, we could ensure, by introducing redundancy in our messages, that
the transmitted (encoded) messages were different in many coordinates, they would be immune to
a small number of errors.

Definition 1 (Hamming distance). The Hamming distance between two sequences x, y ∈ Zn
q is

defined as the number of coordinates i such that xi 6= yi. This distance is denoted by d(x, y).

For example, the (Hamming) distance between the bit strings 01101 and 10111 in Z5
2
is 3, and the

distance between the sequences (2, 5, 3, 3, 1, 0) and (3, 6, 3, 4, 2, 1) in Z6
7
is 5.

It is straightforward to verify that this measure has all the properties required of a distance metric:

(1) d(x, y) ≥ 0, and d(x, y) = 0 iff x = y,
(2) It is symmetric d(x, y) = d(y, x), and
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(3) It satisfies the triangle inequality d(x, y) ≤ d(x, z) + d(z, y).

Definition 2. An (m,n,d)-error-correction code is a subset C ⊆ Zm
q of size qn such that d(x, y) ≥ d

for every pair of distinct elements x, y ∈ C. The parameter d is called the minimum distance of the
code, and elements of C are called codewords.

Proposition 1. A code C ⊆ Zm
q with minimum distance d can correct b(d− 1)/2c errors.

Proof. Suppose that a codeword from C is transmitted, and b(d − 1)/2c of the coordinates are
corrupted. The original message can be recovered uniquely by choosing the codeword in C that
is closest to the received sequence: There is only one codeword x at distance at most b(d − 1)/2c
from received sequence z. If not, suppose there is another such codeword y. Then d(x, y) ≤
d(x, z) + d(z, y) ≤ (d− 1)/2+ (d− 1)/2 < d, which contradicts the fact that the minimum distance
is d. ¤

2. Hamming code

We now give a simple example of an error-correction code: a Hamming or repetition code. In this
example, redundancy is introduced directly into a message by repeating each bit (or number in Zq)
three times.

For example, consider messages which are 3-bit strings, so n = 3. Each bit in the string is repeated
three times, so the resulting message length is m = 9.

Message Codeword

000 000000000
001 000000111
010 000111000
011 000111111
100 111000000
101 111000111
110 111111000
111 111111111

Note that the minimum distance between the messages may be 1, but the minimum distance of the
repetition code is 3. This means that any 1 bit error in the codewords may be corrected. Indeed,
if we look at the three blocks of three bits each in a received message, we can recover the original
bit by taking the most common bit among the three. If no error has occurred, the three bits would
be 000 or 111, and if a single bit flip has occurred, the bits would be 100, 010, or 001 in case a zero
was encoded, and 011, 101, or 110 if a one was encoded. In either case, the most common bit gives
us the correct answer.
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The repetition code is not very efficient in that if we expect a large number t of errors to occur,
then we would have to repeat each bit (or number) in the message 2t + 1 times. In particular, if
we expected a constant fraction of the coordinates to get corrupted, then t = δm, where δ ∈ (0, 1)
is a constant, and we would have m = (2t + 1)n = (2δm + 1)n. Since m ≥ n, this would only be
possible for n ≤ 1/(2δ). In other words, we’d only be able to send constant size messages. The
Reed-Solomon codes we will look at next overcomes this inefficiency.

3. Reed-Solomon codes

In the construction of the Reed-Solomon code, we assume that messages are erpresented as sequences
of length n of numbers in Zq, where q is a prime. We will encode each of these n-sequences into a
code of length m as follows.

With each sequence a = (an−1, an−2, . . . , a1, a0) ∈ Zn
q , we associate a degree n − 1 polynomial fa

defined as follows:

fa(x) = an−1x
n−1 + an−2x

n−2 + . . .+ a1x+ a0.

The message sequence of values of fa at m distinct points in Zq, say the points m−1,m−2, . . . , 1, 0:

â = (fa(m− 1), fa(m− 2), . . . , fa(1), fa(0)).

Thus in our construction, we need that q ≥ m. The choice and order of the m points is completely
arbitrary, but should be the same for every message encoded in this manner.

For example, consider messages of length 2 over Z7, i.e., n = 2, and q = 7. There are 49 such
possible messages. Suppose that we encode these into sequences of length m = 6. The poly-
nomials and codewords corresponding to the three messages (1, 6), (4, 3), (4, 6) would be (for the
points 6, 5, . . . , 1):

Message a Polynomial fa Codeword â

(1, 6) x+ 6 (5, 4, 3, 2, 1, 0)
(4, 3) 4x+ 3 (6, 2, 5, 1, 4, 0)
(4, 6) 4x+ 6 (2, 5, 1, 4, 0, 3)

Note that the distance between the codewords is at least 5. This is not a coincidence, because each
of the codewords corresponds to a line, and two distinct lines are either parallel (as in the last two
cases) or they intersect in at most one point (as in the first two cases).

More generally, we can prove the following.

Proposition 2. The minimum distance of the Reed-Solomon code over Zq which maps length n
messages to length m codewords is at least d = m− n+ 1.
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Proof. Consider two messages a 6= b ∈ Zn
q . They correspond to two distinct polynomials fa(x)

and fb(x). Now, each coordinate where the codewords â, b̂ are the same corresponds to a point x0

where fa(x0) = fb(x0). In other words, the point x0 is a root of the polynomial f(x) = fa(x)−fb(x).
Since the two polynomials are distinct, f(x) is not identically 0. Therefore, since it has degree at

most n− 1, f(x) has at most n− 1 roots in Zq. Thus, the number of coordinates where â, b̂ differ
is at least m− (n− 1), i.e., the minimum distance is at least m− n+ 1. ¤

Reed-Solomon codes are very efficient, in that they allow a constant fraction of errors to occur in
the codewords while still being only a cosntant factor longer than the messages: suppose that we
need to be able to recover from t = δm errors, we need

d = 2δm+ 1

⇔ m− n+ 1 = 2δm+ 1

⇔ m =
n

1− 2δ
.


