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Semi-definite programming in quantum information
Lecturer: Ashwin Nayak
Homework 1

Question 1. Let H, K, K1, K2 be finite dimensional complex Hilbert spaces, C' € L(H),B € L(K),B; €
L(K;), i = 1,2 be Hermitian, and let ® : L(H) — L(K), ®; : L(H) — L(K;), i = 1,2, be linear operators.

Prove that the following three forms of SDP are equivalent, by recasting each in the other forms. Note
that the matrices in the first two may be complex, whereas those in the third are all real.

inf (C,X)
subject to:
®(X) =B (P1)
X =0, XeL(H)

The second form has both equality and inequality constraints:

sup (C,X)
subject to:
d1(X) = B (P2)
Dy(X) X By

X =0, XeL(H)

The following is the standard form of SDP studied in the literature. Let C’ € L(R™),b € R™ and let ¢’ :
L(R™) — R™ be linear.
sup  (C', X)
subject to:
(X)) =b (P3)
X >0, XeL®R"

Using the dual defined for the program P1, derive the duals to the other two in the simplest form you can
(with the fewest variables).

Question 2. Recall that the SDP formulation of the maximum acceptance probability of a verifier in a
quantum interactive proof has the following form:

sup  (Ip @ 111, pp)
subject to:
Trpq (Vi p1Var) = [0X0)
TrM(VinVm) =Trpm(piz1), fori=2,....m
pi=0, peLM®YV), fori=1,....m

Derive its dual. Explain how you may modify the primal without changing its objective function value, so
that the feasible region is well-bounded.



Question 3. Consider an XOR non-local game G specified by a distribution 7 on S x T', and function f.
Let the strategy of the two players be given by the joint state |1), and observables (As), (B:), respectively.
Prove that the bias of the strategy is

(=1, ) (](As © By)l9) -

s,t

Let @ denote the matrix [0)(1]| ® (3P) + |1X0| ® (3PT), where P is the cost matrix of the game. Recall
that the dual SDP for the best strategy is given by

inf  {((u,v),1)
subject to:
Au,v) = Q
weR®, wveRT

Find a Slater point for this SDP.

Question 4. Let M = [0X1|® N +|1)0|® N be a real symmetric matrix. Prove that |[M| < 1iff M <.



