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Abstract—We revisit the task of quantum state redistribution
in the one-shot setting, and design a protocol for this task
with communication cost in terms of a measure of distance
from quantum Markov chains. More precisely, the distance is
defined in terms of quantum max-relative entropy and quantum
hypothesis testing entropy.

Our result is the first to operationally connect one-shot quan-
tum state redistribution and quantum Markov chains, and can
be interpreted as an operational interpretation for a possible one-
shot analogue of quantum conditional mutual information. The
communication cost of our protocol is lower than all previously
known ones and asymptotically achieves the well-known rate of
quantum conditional mutual information. Thus, our work takes
a step towards the important open question of near-optimal
characterization of the one-shot quantum state redistribution.

A full version of this paper is accessible at: https://arxiv.
org/pdf/2104.08753.pdf

I. INTRODUCTION

The connection between conditional mutual information and
Markov chains has led to a rich body of results in classical
computer science and information theory. It is well known that
for any tripartite distribution PRBC ,

I(R : C |B)P = min
QRBC ∈ MCR−B−C

D
(
PRBC

∥∥QRBC) ,
where MCR−B−C is the set of Markov distributions Q, i.e.,
those that satisfy I(R : C |B)Q = 0. In fact, one can choose
a distribution Q achieving the minimum above with QRB =
PRB , QBC = PBC . In the quantum case, the above identity
fails drastically. For an example presented in Ref. [1] (see
also Ref. [2, Section VI]), the right-hand side is a constant,
whereas the left-hand side approaches zero as the system size
increases. Given this, it is natural to ask if there is an extension
of the classical identity to the quantum case. This is shown to
be true in a sense that for any tripartite quantum state ψRBC ,
it holds that

I(R : C|B)ψ =

min
σRBC∈QMCR−B−C

(
D
(
ψRBC‖σRBC

)
−D

(
ψBC‖σBC

))
(I.1)

where QMCR−B−C is the set of quantum states σ satisfying
I(R : C|B)σ = 0, ψRB = σRB . The proof of the above equa-
tion is implicit in Ref. [3, Lemma 1]. The difference between

the quantum and the classical expressions can now be under-
stood as follows. For the classical case, the closest Markov
chain Q to a distribution P (in relative entropy) satisfies the
aforementioned relations QRB = PRB and QBC = PBC .
Thus, the second relative entropy term vanishes in Eq. (I.1).
In quantum case, due to monogamy of entanglement we cannot
in general ensure that σBC = ψBC . Thus, the quantum relative
entropy distance to quantum Markov chains can be bounded
away from the quantum conditional mutual information.

In this work, we prove a one-shot analogue of Eq. (I.1).
This is achieved in an operational manner, by showing that
a one-shot analogue of the right-hand side in Eq. (I.1) is the
achievable communication cost in quantum state redistribution
of |ψ〉RABC , a purification of ψRBC . In the task of quantum
state redistribution, a pure quantum state |ψ〉RABC known to
two parties, Alice and Bob, is shared between Alice (who
has registers AC), Bob (who has B), and the referee (who
has R). Additionally, Alice and Bob may share an arbitrary
(pure) entangled state. The goal is to transmit the content of
register C to Bob using a communication protocol involving
only Alice and Bob, in such a way that all correlations,
including those with the referee, are approximately preserved.
(See Figure 1 for an illustration of state redistribution.) Given

|ψ〉RABC φRABC ≈ε |ψ〉RABC

R
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Fig. 1. An illustration of quantum state redistribution.

a quantum state φRBC , we identify a natural subset of Markov
extensions of φRB , which we denote by MEε,φR−B−C and define
formally in Section II-B. We establish the following result.

Theorem I.1. For any pure quantum state |ψ〉RABC , the
quantum communication cost of redistributing the register C
from Alice (who initially holds AC) to Bob (who initially holds
B) with error 10

√
ε is at most
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1

2
min

ψ′∈Bε(ψRBC)
min

σRBC∈ME
ε2/4,ψ′
R−B−C

[
Dmax

(
ψ′RBC‖σRBC

)
− Dε

H

(
ψ′BC‖σBC

)]
+ O

(
log

1

ε

)
. (I.2)

The difference between minimizing over the set ME
ε2/4,ψ′

R−B−C
versus QMCR−B−C appears to be minor, and is best under-
stood from the definitions in Section II-A. We believe the
above result can be stated in terms of a minimization over all
of QMCR−B−C . As far as we know, this result is the first that
operationally connects the cost of quantum state redistribution
to Markov chains (even in the asymptotic i.i.d. setting).
Among the previous works [4]–[6], the best previously known
achievable one-shot bound for the communication cost of state
redistribution, namely,

1

2
inf
σC

inf
ψ′∈Bε(ψRBC)

(
Dmax

(
ψ′RBC‖ψ′RB ⊗ σC

)
−Dε2

H

(
ψ′BC‖ψ′B ⊗ σC

))
+ log

1

ε2
, (I.3)

when the state |ψ〉RABC is redistributed with error O(ε) was
due to Anshu, Jain, and Warsi [6]. Note that σC := ψ′C is a
nearly optimal solution for Eq. (I.3) as discussed in Ref. [7],
and the product state ψ′RB ⊗ ψ′C is a Markov state in the
set ME

ε2/4,ψ′

R−B−C . So, the bound in Theorem I.1 is smaller than
Eq. (I.3) in the sense that the minimization is over a larger set.
In the special case where ψRBC is a quantum Markov chain,
our protocol has near-zero communication. This feature is not
present in other protocols and their communication may be as
large as (1/2) log |C|.

Techniques

The protocol we design is most easily understood by con-
sidering a folklore protocol for redistributing quantum Markov
states. In the case that ψRBC is a Markov state, its purifi-
cation |ψ〉RABC can be transformed through local isometry
operators VA : A → ARJ ′AC and VB : B → BRJBC into
the following:

VA ⊗ VB |ψ〉RABC =∑
j

√
p(j) |ψj〉RA

RBR ⊗ |jj〉JJ
′
⊗ |ψj〉A

CBCC
. (I.4)

The existence of isometries VA and VB is a consequence
of the special structure of quantum Markov states proved
by Hayden, Josza, Petz, and Winter [8]. Note that after the
above transformation, conditioned on registers J and J ′, sys-
tems RARBR are decoupled from systems ACCBC . So using
the embezzling technique due to van Dam and Hayden [9],
conditioned on J and J ′, Alice and Bob can first embezzle-
out systems ACCBC and then embezzle-in the same systems
such that at the end the global state is close to the state in
Eq. (I.4) and system C is with Bob. This protocol incurs no
communication; see Fig. 2 for an illustration.

The protocol we design is a more sophisticated version of
the above. The key technique is a reduction procedure using
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Fig. 2. An illustration of the zero-cost protocol for redistributing Markov
states. Left: RegistersRARBRJJ ′ACCBC are in the state given in Eq. (I.4)
and registers E and E′ contain Alice and Bob’s share of an embezzling
state, respectively. Middle: Using embezzling registers, Alice and Bob jointly
embezzled out registers ACCBC via local unitary operations. Right: Using
embezzling registers, conditioned on J and J ′, Alice and Bob embezzled
in |ψj〉A

CCBC such that registers C and BC are with Bob and register AC

is with Alice. This step also only contains local unitary operations and no
communication.

embezzling quantum states, that allows us to use a protocol
due to Anshu, Jain, and Warsi [6] as a subroutine.

II. PRELIMINARIES

A. Mathematical notation and background

For a thorough introduction to basics of quantum informa-
tion, we refer the reader to the book by Watrous [10]. In this
section, we briefly review the notation and some results that
we use in this article.

For the sake of brevity, we denote the set {1, 2, . . . , k}
by [k]. We denote physical quantum systems (“registers”) with
capital letters, like A, B and C. The state space corresponding
to a register is a finite-dimensional Hilbert space. We denote
(finite dimensional) Hilbert spaces by capital script letters
like H and K, and the Hilbert space corresponding to a regis-
ter A by HA. We sometimes refer to the space corresponding
to the register A by the name of the register.

We use the Dirac notation, i.e., “ket” and “bra”, for unit
vectors and their adjoints, respectively. We denote the set
of all unitary operators by U(H), and the set of all quantum
states (or “density operators”) over H by D(H). The identity
operator on space H or register A, is denoted by 1H or 1A,
respectively. Similarly, we use superscripts to indicate the
registers on which an operator acts.

We denote quantum states by lowercase Greek letters
like ρ, σ. We use the notation ρA to indicate that register A is
in quantum state ρ. We denote the partial trace over register A
by TrA. We say ρAB is an extension of σA if TrB(ρAB) = σA.
A purification of a quantum state ρ is an extension of ρ
with rank one. For the Hilbert space CS for some set S,
we refer to the basis {|x〉 : x ∈ S} as the canonical basis for
the space. We say the register X is classical in a quantum
state ρXB if ρXB is block-diagonal in the canonical basis
of X , i.e., ρXB =

∑
x p(x)|x〉〈x|X ⊗ρBx for some probability

distribution p on X . For a non-trivial register B, we say ρXB

is a classical-quantum state if X is classical in ρXB . We
say a unitary operator UAB ∈ U(HA ⊗HB) is read-only on
register A if it is block-diagonal in the canonical basis of A,



i.e., UAB =
∑
a |a〉〈a|A ⊗ UBa where each UBa is a unitary

operator.
The fidelity between two quantum states ρ and σ is defined

as
F(ρ, σ) := Tr

√√
ρ σ
√
ρ .

Fidelity can be used to define a useful metric called the purified
distance [11], [12] between quantum states:

P(ρ, σ) :=
√

1− F(ρ, σ)2 .

This metric is also known as sine distance in literature [13]–
[15]. For a quantum state ρ ∈ D(H) and ε ∈ [0, 1], we define

Bε(ρ) := {ρ̃ ∈ D(H) : P(ρ, ρ̃) ≤ ε}

as the ball of quantum states that are within purified distance ε
of ρ. Note that in some works, the states in the set Bε(ρ) are
allowed to be sub-normalized. But here, we require the states
in the ball to have trace equal to one.

Theorem II.1 (Uhlmann [16]). Consider quantum
states ρA, σA ∈ D(HA). Suppose |ξ〉AB , |θ〉AB ∈
D(HA ⊗ HB) are arbitrary purifications of ρA

and σA, respectively. Then, there exists some unitary
operator V B ∈ U(HB) such that

P
(
|ξ〉AB ,

(
1⊗ V B

)
|θ〉AB

)
= P(ρA, σA) .

Let ρ ∈ D(H) be a quantum state over the Hilbert space H.
The von Neumann entropy of ρ is defined as

S(ρ) := −Tr (ρ log ρ) .

This coincides with Shannon entropy for a classical state. The
relative entropy of two quantum states ρ, σ ∈ D(H) is defined
as

D(ρ‖σ) := Tr (ρ (log ρ− log σ)) ,

when supp(ρ) ⊆ supp(σ), and is ∞ otherwise. The max-
relative entropy [17] of ρ with respect to σ is defined as

Dmax(ρ‖σ) := min{λ : ρ ≤ 2λσ} ,

when supp(ρ) ⊆ supp(σ), and is∞ otherwise. For ε ∈ [0, 1],
the ε-smooth max-relative entropy [17] of ρ with respect to σ
is defined as

Dε
max(ρ‖σ) := min

ρ′∈Bε(ρ)
Dmax(ρ′‖σ) .

For ε ∈ [0, 1], the ε-hypothesis testing relative entropy [18]–
[20] of ρ with respect to σ is defined as

Dε
H (ρ‖σ) := sup

0�Π�1,Tr(Πρ)≥1−ε
log

(
1

Tr(Πσ)

)
.

Suppose that ρAB ∈ D(HA ⊗ HB) is the joint state of
registers A and B, then the mutual information of A and B
is denoted by

I(A : B)ρ := D
(
ρAB‖ ρA ⊗ ρB

)
.

When the state is clear from the context, the subscript ρ may be
omitted. Let ρRBC ∈ D(HRBC) be a tripartite quantum state.

The conditional mutual information of R and C given B is
defined as

I(R : C |B) := I(RB : C)− I(B : C) .

B. Quantum Markov states

A tripartite quantum state σRBC ∈ D(HRBC) is called a
quantum Markov state if there exists a quantum operation Λ :
L
(
HB
)
→ L

(
HBC

)
such that (1⊗Λ)(σRB) = σRBC , equiv-

alently, if I(R : C |B) = 0. This is the quantum analogue of
the notion of Markov chains for classical registers. Classical
registers Y XM form a Markov chain in this order (denoted
as Y−X−M ) if registers Y and M are independent given X .
Hayden, Josza, Petz, and Winter [8] showed that an analogous
property holds for quantum Markov states. In particular, they
showed that a state σRBC ∈ D(HR⊗HB⊗HC) is a Markov
state if and only if there is a decomposition of the space HB
into a direct sum of tensor products as

HB =
⊕
j

HB
R
j ⊗HB

C
j , (II.1)

such that

σRBC =
⊕
j

p(j)σ
RBRj
j ⊗ σB

C
j C

j , (II.2)

where σ
RBRj
j ∈ D

(
HR ⊗HB

R
j

)
, σ

BCj C

j ∈ D
(
HB

C
j ⊗HC

)
and p is a probability distribution.

For a state ψRBC , we say that σRBC is a Markov ex-
tension of ψRB if σRB = ψRB and σRBC is a Markov
state. We denote the set of all Markov extensions of ψRB

by QMCψR−B−C . Note that QMCψR−B−C is non-empty, as we
may take σRBC := ψRB ⊗ ψC .

For a Markov extension σ ∈ QMCψR−B−C , let Πσ
j be the

orthogonal projection operator onto the j-th subspace of the
register B given by the decomposition corresponding to the
Markov state σ as described above. In other words, Πσ

j is the
projection onto the Hilbert space HB

R
j ⊗ HB

C
j in Eq. (II.1).

For a quantum state ψRBC , we define

MEε,ψR−B−C :=
{
σ ∈ QMCψR−B−C

∣∣∣ for all j,

σ
BCj C

j ∈ Bε
(

TrBRj

[
(Πσ

j ⊗ 1)ψBC(Πσ
j ⊗ 1)

])}
. (II.3)

Informally, this is the subset of Markov extensions σ of ψ
such that the restrictions of σ and ψ to the j-th subspace
in the decomposition of σ agree well on the registers BCj C.
Again, the state σRBC := ψRB ⊗ ψC belongs to MEε,ψR−B−C
for every ε ≥ 0, so the set is non-empty.

C. Quantum state redistribution

Consider a pure state |ψ〉RABC shared between the referee
(R), Alice (AC) and Bob (B). In an ε-error quantum state
redistribution protocol, Alice and Bob share an entangled
state |θ〉EAEB , register EA with Alice and register EB with
Bob. Alice applies an encoding operation E : L(HACEA) →
L(HAQ), and sends the register Q to Bob. Then, Bob applies



a decoding operation D : L(HQBEB ) → L(HBC). The
output of the protocol is the state φRABC with the property
that P(ψRABC , φRABC) ≤ ε, and the communication cost of
the protocol is log |Q|.

To derive the upper bound in Theorem I.1, we use an
existing protocol due to Anshu, Jain and Warsi [6] which we
call the AJW protocol in the sequel. The following theorem
states the communication cost and the error in the final state
of their protocol.

Theorem II.2 (Ref. [6], Theorem 1). Let ε ∈ (0, 1),
and |ψ〉RABC be a pure quantum state shared between the
referee (R), Alice (AC) and Bob (B). There exists an
entanglement-assisted one-way protocol operated by Alice
and Bob which starts in the state |ψ〉RABC , and outputs
a state φRABC ∈ B9ε(ψRABC), and the number of qubits
communicated by Alice and Bob is upper bounded by

1

2
inf
σC

inf
ψ′∈Bε(ψRBC)

(
Dmax

(
ψ′RBC‖ψ′RB ⊗ σC

)
− Dε2

H

(
ψ′BC‖ψ′B ⊗ σC

))
+ log

1

ε2
. (II.4)

III. OUR PROTOCOL

In this section, we explain a protocol for redistribut-
ing |ψ〉RABC with error 9

√
ε and cost at most

min
σRBC∈ME

ε2/4,ψ
R−B−C

[
Dmax

(
ψRBC‖σRBC

)
− Dε

H

(
ψBC‖σBC

)]
+ O

(
log

1

ε

)
, (III.1)

which is a non-smoothed version of Eq. (I.2). Then, Theo-
rem I.1 follows since for every |ψ′〉 ∈ Bε(|ψ〉RABC), Alice
and Bob can assume that the global state is |ψ′〉RABC , and run
the protocol for |ψ′〉. This protocol redistributes the state |ψ〉
with up to an ε additional error.

Let σRBC be a quantum Markov extension of ψRB . We
now describe a reduction procedure which allows us to use
the AJW protocol as a subroutine. This procedure is a method
which decouples C from RB when applied to σRBC , while
preserving ψRB when applied to ψRBC . This procedure is
similar to the conditional erasure task [21], [22] except that,
here, the decoupling and negligible disturbance properties are
desired for two possibly different quantum states.

A. The GHZ state example

To elaborate on the procedure, consider an example
where ψRBC is the GHZ state 1√

d

∑d
j=1 |j〉

R |j〉B |j〉C , and
the Markov extension σRBC of ψRB is

1
d

d∑
j=1

|j〉〈j|R ⊗ |j〉〈j|B ⊗ |j〉〈j|C . (III.2)

A naive way to decouple register C from registers RB
in σRBC is to coherently erase register C conditioned on
register B. However, the same operation applied to ψRBC

changes ψRB . To overcome this problem, first, we coherently

measure register B by adding an extra system T and making
another “copy” of |j〉B in system T using Heisenberg-Weyl
operators. This operation measures the register B in ψRBC ,
keeps σRBC unchanged, and leaves ΨT in tensor product with
registers RB in both ψ and σ. Then, conditioned on register B,
we can coherently erase register C in σRBC ; this operation
applied to ψ does not change the state ψRB . In particular, the
reduction is a two-step process as follows:

1) Coherent measurement of register B: Let T be a register
with |T | = d, and {|t〉}d−1

t=0 be a basis for HT . For a, b ∈
{0, . . . , d− 1}, let Pa,b ∈ U

(
HT
)

be the Heisenberg-Weyl
operator defined as Pa,b :=

∑
t exp

(
2πitb
d

)
|t + a〉〈t|T . Define

the unitary operator U1 ∈ U(HBT ) as U1 :=
∑
j |j〉〈j|B⊗PTj,1.

Let |Ψ〉TT
′

be the maximally entangled state over registers T
and T ′, and |κ1〉RABCTT

′
and τRBCT1 be the states after ap-

plying U1 to |ψ〉RABC⊗|Ψ〉TT
′

and σRBC⊗ΨT , respectively.
Since the set of Heisenberg-Weyl operators is closed under
multiplication (up to global phases) and each Pa,b is traceless
unless a = b = 0, the unitary operator U1 acts trivially on σ
while it coherently measures register B in ψRBC . In particular,

τRBCT1 = σRBC ⊗ 1T

d
, (III.3)

and

κRBC1 =
1

d

∑
j

|j〉〈j|R ⊗ |j〉〈j|B ⊗ |j〉〈j|C . (III.4)

2) Decoupling C from RB in σ: Let U2 ∈ U(HBC) be a
unitary operator that is read-only on B and maps |j〉C to |0〉C

if system B is in the state |j〉. Let |κ2〉RABCTT
′

and τRBCT2

be the states after applying U2 to |κ1〉RABCTT
′

and τRBCT1 ,
respectively. Eq. (III.3) implies that

τRBCT2 = ψRB ⊗ |0〉〈0|C ⊗ 1T

d

and κRB2 = ψRB since register B is classical in κRBC1 and U2

is read-only on B.
Therefore, the reduction procedure is essentially adding the

maximally mixed state ΨT and applying U2U1. Note that
running this procedure on both ψ and σ does not change the
max-relative entropy and the hypothesis testing entropy and
we have

Dmax

(
ψRBC‖σRBC

)
−Dε

H

(
ψBC‖σBC

)
= Dmax

(
κRBCT2 ‖τRBCT2

)
−Dε

H

(
κBCT2 ‖τBCT2

)
(III.5)

where τRBCT2 = κRB2 ⊗ |0〉〈0|C ⊗ 1T

d . Hence, if Alice and
Bob locally map |ψ〉 to |κ2〉, then they can run the AJW
protocol to transfer registers CT to Bob and finally get
back to |ψ〉 by applying U−1

1 U−1
2 . Note that the reduction

procedure cannot be used directly for the local transformation
of |ψ〉 to |κ2〉 since initially, register C is with Alice and
register B is with Bob. However, since ψRB = κRB2 , there
exists an isometry operator V : HAC → HACTT ′ which
maps |ψ〉RABC to |κ〉RABCTT

′
, guaranteed by the Uhlmann

theorem. Therefore, the protocol works as follows:



1) Alice applies the isometry V on her registers, and
transforms the global state to the state |κ2〉RABCTT

′

such that registers (ACTT ′), (B) and (R) are with
Alice, Bob and the referee, respectively.

2) Choosing σCT = |0〉〈0|C ⊗ 1T

d , Alice and Bob run
the AJW protocol to transfer registers CT to Bob with
error at most 9

√
ε. Let κ̂RABCTT

′

2 be the state over
registers RABCTT ′ at the end of this step.

3) Bob applies U−1
1 U−1

2 on his registers.
4) The final state is obtained in registers RABC.

By Theorem II.2 and Eq. (III.5), the cost of the above protocol
is at most

Dmax

(
ψRBC‖σRBC

)
−Dε

H

(
ψBC‖σBC

)
+ log

1

ε
,

and P(κRABCTT
′

2 , κ̂RABCTT
′

2 ) ≤ 9
√
ε. Let φRABC be the

final state in registers RABC. We have

P
(
ψRABC , φRABC

)
≤ P

(
ψRABC ⊗ΨTT ′ , φRABCTT

′
)

= P
(
κRABCTT

′

2 , κ̂RABCTT
′

2

)
≤ 9

√
ε .

B. General states

Now consider a general state |ψ〉RABC and a quantum
Markov extension σRBC of ψRB . Recall that σRBC can
be decomposed as in Eq. (II.2). Thus, for sufficiently large
systems BR and BC , there exists an isometry Ui : HB →
HBRJBC mapping σRBC to the following classical-quantum
state

σRB
RJBCC :=

∑
j

p(j) σRB
R

j ⊗ |j〉〈j|J ⊗ σB
CC

j .

Let |ψ〉RAB
RJBCC be the state after applying the same

operation on |ψ〉RABC . It is sufficient to design a protocol for
redistributing register C in |ψ〉RAB

RJBCC when initially AC
are with Alice, BRJBC are with Bob.

Notice that ψRB
RJBC = σRB

RJBC since ψRB = σRB , and
so ψRB

RJBC is a quantum Markov state with RBR−J−BC .
Therefore, Bob can send BC to Alice with zero communica-
tion using the protocol depicted in Fig. 2. Now registers BCC
are with Alice, and she wants to send them to Bob. To
achieve this goal, we design a procedure that decouples BCC
from RBRJ in σ while keeping ψRB

RJ intact when applied
to ψ. Then, Alice and Bob can combine this procedure with
the AJW protocol to send BCC to Bob with the desired cost
(as described in the previous section). So, it remains to explain
the decoupling procedure.

First, Bob coherently measures register J using Heisenberg-
Weyl operators to make sure that ψRB

RJ does not change
during the decoupling procedure. Notice that the coherent
measurement does not change σ since register J is classical
in σ. Then, one can decouple registers BCC from RBRJ
in σ using a unitary operator that conditioned on j, maps
all σB

CC
j to a fixed state. However, in general, such a unitary

operation may not exist since the spectrum of σB
CC

j are

not necessarily the same for all j ∈ [d]. To overcome this
problem, we first approximately flatten each σB

CC
j through a

unitary procedure. This task can be achieved via the technique
of coherent flattening via embezzlement due to Anshu and
Jain [23] such that the outcome is close to a flat state in the
max-relative entropy. After flattening, the dimension of the
support of systems BCC no more depends on j and so the
states in registers BCC can be all rotated to a flat state over a
fixed subspace. Hence, BCC gets decoupled from RBRJ in
the state σ.
Remark: As opposed to the GHZ example, the above men-
tioned decoupling procedure is not exact. Thus, in order to
bound the cost of our protocol by Eq. (III.1), we need to
choose σRBC from the subset ME

ε2/4,ψ
R−B−C of quantum Markov

extensions of ψRB and use the triangle inequality for max-
relative entropy in addition to the unitary invariance property
of max-relative entropy and hypothesis testing entropy. We
refer the reader to the full-version of this article for a detailed
proof.

IV. CONCLUSION AND OUTLOOK

In this article, we revisited the task of one-shot quantum
state redistribution, and introduced a new protocol achieving
this task with communication cost

1

2
inf

ψ′∈Bε(ψRBC)
inf

σRBC∈MEε,ψ
′

R−B−C

[
Dmax

(
ψ′RBC‖σRBC

)
− Dε

H

(
ψ′BC‖σBC

)]
+O(log

1

ε
) ,

with error parameter ε. This is the first result connecting the
communication cost of state redistribution with Markov chains
and it provides an operational interpretation for a one-shot
representation of quantum conditional mutual information as
explained in Sec I. In the special case where ψRBC is a
quantum Markov chain, our protocol leads to near-zero com-
munication which was not known for the previous protocols.
Moreover, the communication cost of our protocol is lower
than all previously known one-shot protocols and it achieves
the optimal cost of I(R : C |B) in the asymptotic i.i.d. setting.
Our protocol also achieves the near-optimal result of Ref. [24]
in the case when ψRBC is classical.

A question of interest is whether the communication cost
of our one-shot protocol can be bounded with I(R : C |B). In
the quantum communication complexity setting, such a bound
would imply the possibility of compressing the communication
of bounded-round quantum protocols to their information con-
tent which would lead to a direct-sum theorem for bounded-
round quantum communication complexity [25].

Another question that we have not addressed in this article
is whether our bound is near-optimal. There are several known
lower bounds in the literature for the communication cost
of entanglement-assisted quantum state redistribution, such as
in Ref. [4] and Ref. [26]. However, it is not clear if our
bound achieves any of them. Near-optimal bound for one-shot
quantum state redistribution is a major open question.
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