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Abstract

Suppose we have many copies of an unknown n-qubit state ρ. We measure some
copies of ρ using a known two-outcome measurementE1, then other copies using
a measurement E2, and so on. At each stage t, we generate a current hypothesis
ωt about the state ρ, using the outcomes of the previous measurements. We show
that it is possible to do this in a way that guarantees that |Tr(Eiωt)− Tr(Eiρ)|,
the error in our prediction for the next measurement, is at least ε at most O

(
n/ε2

)

times. Even in the “non-realizable” setting—where there could be arbitrary noise
in the measurement outcomes—we show how to output hypothesis states that in-

cur at most O(
√
Tn ) excess loss over the best possible state on the first T mea-

surements. These results generalize a 2007 theorem by Aaronson on the PAC-
learnability of quantum states, to the online and regret-minimization settings. We
give three different ways to prove our results—using convex optimization, quan-
tum postselection, and sequential fat-shattering dimension—which have different
advantages in terms of parameters and portability.

1 Introduction

State tomography is a fundamental task in quantum computing of great practical and theoretical
importance. In a typical scenario, we have access to an apparatus that is capable of producing many
copies of a quantum state, and we wish to obtain a description of the state via suitable measurements.
Such a description would allow us, for example, to check the accuracy with which the apparatus
constructs a specific target state.

How many single-copy measurements are needed to “learn” an unknown n-qubit quantum state ρ?
Suppose we wish to reconstruct the full 2n × 2n density matrix, even approximately, to within ε
in trace distance. If we make no assumptions about ρ, then it is straightforward to show that the
number of measurements needed grows exponentially with n. In fact, even when we allow joint
measurement of multiple copies of the state, an exponential number of copies of ρ are required (see,
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e.g., O’Donnell and Wright [2016], Haah et al. [2017]). (A “joint measurement” of two or more
states on disjoint sequences of qubits is a single measurement of all the qubits together.)

Suppose, on the other hand, that there is some probability distribution D over possible yes/no mea-
surements, where we identify the measurements with 2n×2n Hermitian matricesE with eigenvalues
in [0, 1]. Further suppose we are only concerned about learning the state ρwell enough to predict the
outcomes of most measurements E drawn from D—where “predict” means approximately calculat-
ing the probability, Tr(Eρ), of a “yes” result. Then for how many (known) sample measurements
Ei, drawn independently from D, do we need to know the approximate value of Tr(Eiρ), before we
have enough data to achieve this?

Aaronson [2007] proved that the number of sample measurements needed, m, grows only lin-
early with the number of qubits n. What makes this surprising is that it represents an exponen-
tial reduction compared to full quantum state tomography. Furthermore, the prediction strategy
is extremely simple. Informally, we merely need to find any “hypothesis state” ω that satisfies
Tr(Eiω) ≈ Tr(Eiρ) for all the sample measurements E1, . . . , Em. Then with high probabil-
ity over the choice of sample measurements, that hypothesis ω necessarily “generalizes”, in the
sense that Tr(Eω) ≈ Tr(Eρ) for most additional E’s drawn from D. The learning theorem
led to followup work including a full characterization of quantum advice (Aaronson and Drucker
[2014]); efficient learning for stabilizer states (Rocchetto [2017]); the “shadow tomography” pro-
tocol (Aaronson [2018]); and recently, the first experimental demonstration of quantum state PAC-
learning (Rocchetto et al. [2017]).

A major drawback of the learning theorem due to Aaronson is the assumption that the sample mea-
surements are drawn independently from D—and moreover, that the same distribution D governs
both the training samples, and the measurements on which the learner’s performance is later tested.
It has long been understood, in computational learning theory, that these assumptions are often un-
realistic: they fail to account for adversarial environments, or environments that change over time.
This is precisely the state of affairs in current experimental implementations of quantum information
processing. Not all measurements of quantum states may be available or feasible in a specific imple-
mentation, which measurements are feasible is dictated by Nature, and as we develop more control
over the experimental set-up, more sophisticated measurements become available. The task of learn-
ing a state prepared in the laboratory thus takes the form of a game, with the theorist on one side,
and the experimentalist and Nature on the other: the theorist is repeatedly challenged to predict the
behaviour of the state with respect to the next measurement that Nature allows the experimentalist to
realize, with the opportunity to refine the hypothesis as more measurement data become available.

It is thus desirable to design learning algorithms that work in the more stringent online learning
model. Here the learner is presented a sequence of input points, say x1, x2, . . ., one at a time. Cru-
cially, there is no assumption whatsoever about the xt’s: the sequence could be chosen adversarially,
and even adaptively, which means that the choice of xt might depend on the learner’s behavior on
x1, . . . , xt−1. The learner is trying to learn some unknown function f(x), about which it initially
knows only that f belongs to some hypothesis class H—or perhaps not even that; we also consider
the scenario where the learner simply tries to compete with the best predictor in H, which might
or might not be a good predictor. The learning proceeds as follows: for each t, the learner first
guesses a value yt for f(xt), and is then told the true value f(xt), or perhaps only an approximation
of this value. Our goal is to design a learning algorithm with the following guarantee: regardless of
the sequence of xt’s, the learner’s guess, yt, will be far from the true value f(xt) at most k times
(where k, of course, is as small as possible). The xt’s on which the learner errs could be spaced
arbitrarily; all we require is that they be bounded in number.

This leads to the following question: can the learning theorem established by Aaronson [2007]
be generalized to the online learning setting? In other words: is it true that, given a sequence
E1, E2, . . . of yes/no measurements, where each Et is followed shortly afterward by an approxima-
tion of Tr(Etρ), there is a way to anticipate the Tr(Etρ) values by guesses yt ∈ [0, 1], in such a way
that |yt − Tr(Etρ)| > ε at most, say, O(n) times (where ε > 0 is some constant, and n again is the
number of qubits)? The purpose of this paper is to provide an affirmative answer.

Throughout the paper, we consider only two-outcome measurements of an n qubit mixed state ρ,
and we specify such a measurement by a 2n× 2n Hermitian matrix E with eigenvalues in [0, 1]. We
say that E “accepts” ρ with probability Tr(Eρ) and “rejects” ρ with probability 1 − Tr(Eρ). We
prove that:
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Theorem 1. Let ρ be an n-qubit mixed state, and let E1, E2, . . . be a sequence of 2-outcome mea-
surements that are revealed to the learner one by one, each followed by a value bt ∈ [0, 1] such that
|Tr(Etρ)− bt| ≤ ε/3. Then there is an explicit strategy for outputting hypothesis states ω1, ω2, . . .
such that |Tr(Etωt)− Tr(Etρ)| > ε for at most O

(
n
ε2

)
values of t.

We also prove a theorem for the so-called regret minimization model (i.e., the “non-realizable case”),
where we make no assumption about the input data arising from an actual quantum state, and our
goal is simply to do not much worse than the best hypothesis state that could be found with perfect
foresight. In this model, the measurements E1, E2, . . . are presented to a learner one-by-one. In
iteration t, after seeing Et, the learner is challenged to output a hypothesis state ωt, and then suffers
a “loss” equal to ℓt(Tr(Etωt)) where ℓt is a real function that is revealed to the learner. Important

examples of loss functions areL1 loss, when ℓt(z) := |z − bt|, andL2 loss, when ℓt(z) := (z − bt)
2
,

where bt ∈ [0, 1]. The number bt may be an approximation of Tr(Etρ) for some fixed but unknown
quantum state ρ, but is allowed to be arbitrary in general. In particular, the pairs (Et, bt) may not
be consistent with any quantum state. Define the regret RT , after T iterations, to be the amount by
which the actual loss of the learner exceeds the loss of the best single hypothesis:

RT :=
T∑

t=1

ℓt(Tr(Etωt))−min
ϕ

T∑

t=1

ℓt(Tr(Etϕ)) .

The learner’s objective is to minimize regret. We show that:

Theorem 2. Let E1, E2, . . . be a sequence of two-outcome measurements on an n-qubit state pre-
sented to the learner, and ℓ1, ℓ2, . . . be the corresponding loss functions revealed in successive
iterations in the regret minimization model. Suppose ℓt is convex and L-Lipschitz; in particular,
for every x ∈ R, there is a sub-derivative ℓ′t(x) such that |ℓ′t(x)| ≤ L. Then there is an explicit

learning strategy that guarantees regret RT = O(L
√
Tn ) for all T . This is so even assuming the

measurement Et and loss function ℓt are chosen adaptively, in response to the learner’s previous
behavior.

Specifically, the algorithm applies to L1 loss and L2 loss, and achieves regret O(
√
Tn ) for both.

The online strategies we present enjoy several advantages over full state tomography, and even over
“state certification”, in which we wish to test whether a given quantum state is close to a desired state
or far from it. Optimal algorithms for state tomography (O’Donnell and Wright [2016], Haah et al.
[2017]) or certification (Bădescu et al. [2017]) require joint measurements of an exponential number
of copies of the quantum state, and assume the ability to perform noiseless, universal quantum
computation. On the other hand, the algorithms implicit in Theorems 1 and 2 involve only single-
copy measurements, allow for noisy measurements, and capture ground reality more closely. They
produce a hypothesis state that mimics the unknown state with respect to measurements that can
be performed in a given experimental set-up, and the accuracy of prediction improves as the set of
available measurements grows. For example, in the realizable case, i.e., when the data arise from

an actual quantum state, the average L1 loss per iteration is O(
√
n/T ). This tends to zero, as the

number of measurements becomes large. Note that L1 loss may be as large as 1/2 per iteration

in the worst case, but this occurs at most O(
√
nT ) times. Finally, the algorithms have run time

exponential in the number of qubits in each iteration, but are entirely classical. Exponential run
time is unavoidable, as the measurements are presented explicitly as 2n × 2n matrices, where n is
the number of qubits. If we were required to output the hypothesis states, the length of the output—
also exponential in the number of qubits—would again entail exponential run time.

It is natural to wonder whether Theorems 1 and 2 leave any room for improvement. Theorem 1 is
asymptotically optimal in its mistake bound of O(n/ε2); this follows from the property that n-qubit
quantum states, considered as a hypothesis class, have ε-fat-shattering dimension Θ(n/ε2) (see, for
example, Aaronson [2007]). On the other hand, there is room to improve Theorem 2. The bounds

of which we are aware are Ω(
√
Tn ) for the L1 loss (see, e.g., [Arora et al., 2012, Theorem 4.1]) in

the non-realizable case and Ω(n) for the L2 loss in the realizable case, when the feedback consists

of the measurement outcomes. (The latter bound, as well as an Ω(
√
Tn ) bound for L1 loss in the

same setting, come from considering quantum mixed states that consist of n independent classical
coins, each of which could land heads with probability either 1/2 or 1/2+ ε. The paramater ε is set

to
√
n/T .)
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We mention an application of Theorem 1, that appears in simultaneous work. Aaronson [2018]
has given an algorithm for the so-called shadow tomography problem. Here we have an unknown
D-dimensional pure state ρ, as well as known two-outcome measurements E1, . . . , Em. Our goal
is to approximate Tr(Eiρ), for every i, to within additive error ε. We would like to do this by

measuring ρ⊗k, where k is as small as possible. Surprisingly, Aaronson [2018] showed that this

can be achieved with k = Õ((logM)4(logD)/ε5), that is, a number of copies of ρ that is only
polylogarithmic in both D and M . One component of his algorithm is essentially tantamount to

online learning with Õ(n/ε3) mistakes—i.e., the learning algorithm we present in Section 4 of this
paper. However, by using Theorem 1 from this paper in a black-box manner, we can improve the

sample complexity of shadow tomography to Õ((logM)4(logD)/ε4). Details appear in (Aaronson
[2018]).

To maximize insight, in this paper we give three very different approaches to proving Theorems
1 and 2 (although we do not prove every statement with all three approaches). Our first approach
is to adapt techniques from online convex optimization to the setting of density matrices, which
in general may be over a complex Hilbert space. This requires extending standard techniques to
cope with convexity and Taylor approximations, which are widely used for functions over the real
domain, but not over the complex domain. We also give an efficient iterative algorithm to produce
predictions. This approach connects our problem to the modern mainstream of online learning
algorithms, and achieves the best parameters (as stated in Theorems 1 and 2).

Our second approach is via a postselection-based learning procedure, which starts with the max-
imally mixed state as a hypothesis and then repeatedly refines it by simulating postselected mea-
surements. This approach builds on earlier work due to Aaronson [2005], specifically the proof of
BQP/qpoly ⊆ PP/poly. The advantage is that it is almost entirely self-contained, requiring no
“power tools” from convex optimization or learning theory. On the other hand, the approach does
not give optimal parameters, and we do not know how to prove Theorem 2 with it.

Our third approach is via an upper-bound on the so-called sequential fat-shattering dimension of
quantum states, considered as a hypothesis class (see, e.g., Rakhlin et al. [2015]). In the original
quantum PAC-learning theorem by Aaronson, the key step was to upper-bound the so-called ε-fat-
shattering dimension of quantum states considered as a hypothesis class. Fat-shattering dimension
is a real-valued generalization of VC dimension. One can then appeal to known results to get
a sample-efficient learning algorithm. For online learning, however, bounding the fat-shattering
dimension no longer suffices; one instead needs to consider a possibly-larger quantity called se-
quential fat-shattering dimension. However, by appealing to a lower bound due to Nayak [1999],
Ambainis et al. [2002] for a variant of quantum random access codes, we are able to upper-bound the
sequential fat-shattering dimension of quantum states. Using known results—in particular, those
due to Rakhlin et al. [2015]—this implies the regret bound in Theorem 2, up to a multiplicative

factor of log3/2 T . The statement that the hypothesis class of n-qubit states has ε-sequential fat-
shattering dimension O(n/ε2) might be of independent interest: among other things, it implies that
any online learning algorithm that works given bounded sequential fat-shattering dimension, will
work for online learning of quantum states. We also give an alternative proof for the lower bound
due to Nayak for quantum random access codes, and extend it to codes that are decoded by what we
call measurement decision trees. We expect these also to be of independent interest.

1.1 Structure of the paper

We start by describing background and the technical learning setting as well as notations used
throughout (Section 2). In Section 3 we give the algorithms and main theorems derived using con-
vexity arguments and online convex optimization. In Section 4 we state the main theorem using
a postselection algorithm. In Section 5 we give a sequential fat-shattering dimension bound for
quantum states and its implication for online learning of quantum states. Proofs of the theorems and
related claims are presented in the appendices.

2 Preliminaries and definitions

We define the trace norm of a matrixM as ‖M‖Tr := Tr
√
MM †, whereM † is the adjoint ofM . We

denote the ith eigenvalue of a Hermitian matrix X by λi(X), its minimum eigenvalue by λmin(X),
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and its maximum eigenvalue by λmax(X). We sometimes use the notationX •Y to denote the trace

inner-productTr(X†Y ) between two complex matrices of the same dimensions. By ‘log’ we denote
the natural logarithm, unless the base is explicitly mentioned.

An n-qubit quantum state ρ is an element of Cn, where Cn is the set of all trace-1 positive semi-
definite (PSD) complex matrices of dimension 2n:

Cn = {M ∈ C
2n×2n , M =M † , M � 0 , Tr(M) = 1} .

Note thatCn is a convex set. A two-outcome measurement of an n-qubit state is defined by a 2n×2n

Hermitian matrix E with eigenvalues in [0, 1]. The measurement E “accepts” ρ with probability
Tr(Eρ), and “rejects” with probability 1 − Tr(Eρ). For the algorithms we present in this article,
we assume that a two-outcome measurement is specified via a classical description of its defining
matrix E. In the rest of the article, unless mentioned otherwise, a “measurement” refers to a “two-
outcome measurement”. We refer the reader to the book by Watrous [2018] for a more thorough
introduction to the relevant concepts from quantum information.

Online learning and regret. In online learning of quantum states, we have a sequence of itera-
tions t = 1, 2, 3, . . . of the following form. First, the learner constructs a state ωt ∈ Cn; we say
that the learner “predicts” ωt. It then suffers a “loss” ℓt(Tr(Etωt)) that depends on a measurement
Et, both of which are presented by an adversary. Commonly used loss functions are L2 loss (also
called “mean square error”), given by

ℓt(z) := (z − bt)
2 ,

and L1 loss (also called “absolute loss”), given by

ℓt(z) := |z − bt| ,

where bt ∈ [0, 1]. The parameter bt may be an approximation of Tr(Etρ) for some fixed quantum
state ρ not known to the learner, obtained by measuring multiple copies of ρ. However, in general,
the parameter is allowed to be arbitrary.

The learner then “observes” feedback from the measurement Et; the feedback is also provided by
the adversary. The simplest feedback is the realization of a binary random variable Yt such that

Yt =

{
1 with probability Tr(Etρ) , and

0 with probability 1− Tr(Etρ) .

Another common feedback is a number bt as described above, especially in case that the learner
suffers L1 or L2 loss.

We would like to design a strategy for updating ωt based on the loss, measurements, and feedback
in all the iterations so far, so that the learner’s total loss is minimized in the following sense. We
would like that over T iterations (for a number T known in advance), the learner’s total loss is not
much more than that of the hypothetical strategy of outputting the same quantum state ϕ at every
time step, where ϕ minimizes the total loss with perfect hindsight. Formally this is captured by the
notion of regret RT , defined as

RT :=

T∑

t=1

ℓt(Tr(Etωt))− min
ϕ∈Cn

T∑

t=1

ℓt(Tr(Etϕ)) .

The sequence of measurementsEt can be arbitrary, even adversarial, based on the learner’s previous
actions. Note that if the loss function is given by a fixed state ρ (as in the case of mean square error),
the minimum total loss would be 0. This is called the “realizable” case. However, in general, the loss
function presented by the adversary need not be consistent with any quantum state. This is called
the “non-realizable” case.

A special case of the online learning setting is called agnostic learning; here the measurements Et

are drawn from a fixed and unknown distributionD. The setting is called “agnostic” because we still
do not assume that the losses correspond to any actual state ρ (i.e., the setting may be non-realizable).
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Online mistake bounds. In some online learning scenarios the quantity of interest is not the mean
square error, or some other convex loss, but rather simply the total number of “mistakes” made.
For example, we may be interested in the number of iterations in which the predicted probability of
acceptance Tr(Etωt) is more than ε-far from the actual value Tr(Etρ), where ρ is again a fixed state
not known to the learner. More formally, let

ℓt(Tr(Etωt)) := |Tr(Etωt)− Tr(Etρ)|
be the absolute loss function. Then the goal is to bound the number of iterations in which
ℓt(Tr(Etωt)) > ε, regardless of the sequence of measurements Et presented by the adversary.
We assume that in this setting,the adversary provides as feedback an approximation bt ∈ [0, 1] that
satisfies |Tr(Etρ)− bt| ≤ ε

3 .

3 Online learning of quantum states

In this section, we use techniques from online convex optimization to minimize regret. The same
algorithms may be adapted to also minimize the number of mistakes made.

3.1 Regularized Follow-the-Leader

We first follow the template of the Regularized Follow-the-Leader algorithm (RFTL; see, for exam-
ple, [Hazan, 2015, Chapter 5]). The algorithm below makes use of von Neumann entropy, which
relates to the Matrix Exponentiated Gradient algorithm (Tsuda et al. [2005]).

Algorithm 1 RFTL for Quantum Tomography

1: Input: T , K := Cn, η < 1
2

2: Set ω1 := 2−nI.
3: for t = 1, . . . , T do
4: Predict ωt. Consider the convex and L-Lipschitz loss function ℓt : R → R given by measure-

ment Et : ℓt(Tr(Etϕ)). Let ℓ′t(x) be a sub-derivative of ℓt with respect to x. Define

∇t := ℓ′t(Tr(Etωt))Et .

5: Update decision according to the RFTL rule with von Neumann entropy:

ωt+1 := argmin
ϕ∈K

{
η

t∑

s=1

Tr(∇sϕ) +

2n∑

i=1

λi(ϕ) logλi(ϕ)

}
. (1)

6: end for

Remark 1: The mathematical program in Eq. (1) is convex, and thus can be solved in polynomial
time in the dimension, which is 2n.

Theorem 3. Setting η =
√

(log 2)n
2TL2 , the regret of Algorithm 1 is bounded by 2L

√
(2 log 2)Tn .

Remark 2: In the case where the feedback is an independent random variable Yt, where Yt = 0
with probability 1− Tr(Etρ) and Yt = 1 with probability Tr(Etρ) for a fixed but unknown state ρ,
we define ∇t in Algorithm 1 as ∇t := 2(Tr(Etωt) − Yt)Et. Then E[∇t] is the gradient of the L2

loss function where we receive precise feedback Tr(Etρ) instead of Yt. It follows from the proof of
Theorem 3 that the expected L2 regret of Algorithm 1, namely

E

[
T∑

t=1

(Tr(Etωt)− Tr(Etρ))
2

]
,

is bounded by O(
√
Tn ).

The proof of Theorem 3 appears in Appendix B. The proof is along the lines of [Hazan, 2015,
Theorem 5.2], except that the loss function does not take a raw state as input, and our domain for
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optimization is complex. Therefore, the mean value theorem does not hold, which means we need
to approximate the Bregman divergence instead of replacing it by a norm as in the original proof.
Another subtlety is that convexity needs to be carefully defined with respect to the complex domain.

3.2 Matrix Multiplicative Weights

The Matrix Multiplicative Weights (MMW) algorithm [Arora and Kale, 2016] provides an alterna-
tive means of proving Theorem 2. The algorithm follows the template of Algorithm 1 with step 5
replaced by the following update rule:

ωt+1 :=
exp(− η

L

∑t
τ=1 ∇τ )

Tr(exp(− η
L

∑t
τ=1 ∇τ ))

. (2)

In the notation of Arora and Kale [2016], this algorithm is derived using the loss matrices Mt =
1
L∇t = 1

Lℓ
′
t(Tr(Etωt))Et. Since ‖Et‖ ≤ 1 and |ℓ′t(Tr(Etωt))| ≤ L, we have ‖Mt‖ ≤ 1, as

requred in the analysis of the Matrix Multiplicative Weights algorithm. We have the following
regret bound for the algorithm (proved in Appendix C):

Theorem 4. Setting η =
√

(log 2)n
4T , the regret of the algorithm based on the update rule (2) is

bounded by 2L
√
(log 2)Tn.

3.3 Proof of Theorem 1

Consider either the RFTL or MMW based online learning algorithm described in the previous sub-
sections, with the 1-Lipschitz convex absolute loss function ℓt(x) = |x− bt|. We run the algorithm
in a sub-sequence of the iterations, using only the measurements presented in those iterations. The
subsequence of iterations is determined as follows. Let ωt denote the hypothesis maintained by
the algorithm in iteration t. We run the algorithm in iteration t if ℓt(Tr(Etωt)) >

2ε
3 . Note that

whenever |Tr(Etωt) − Tr(Etρ)| > ε, we have ℓt(Tr(Etωt)) >
2ε
3 , so we update the hypothesis

according to the RFTL/MMW rule in that iteration.

As we explain next, the algorithm makes at most O( n
ε2 ) updates regardless of the number of

measurements presented (i.e., regardless of the number of iterations), giving the required mistake
bound. For the true quantum state ρ, we have ℓt(Tr(Etρ)) <

ε
3 for all t. Thus if the algorithm

makes T updates (i.e., we run the algorithm in T of the iterations), the regret bound implies that
2ε
3 T ≤ ε

3T +O(
√
Tn ). Simplifying, we get the bound T = O( n

ε2 ), as required.

4 Learning Using Postselection

In this section, we give a direct route to proving a slightly weaker version of Theorem 1: one that
does not need the tools of convex optimization, but only tools intrinsic to quantum information.

In the following, by a “register” we mean a designated sequence of qubits. Given a two-outcome
measurementE on n-qubits states, we define an operator M that “postselects” on acceptance by E.
(While a measurement results in a random outcome distributed according to the probability of accep-
tance or rejection, postselection is a hypothetical operation that produces an outcome of one’s choice
with certainty.) Let U be any unitary operation on n + 1 qubits that maps states of the form |ψ〉|0〉
to

√
E |ψ〉|0〉 +

√I− E |ψ〉|1〉. Such a unitary operation always exists (see, e.g., [Watrous, 2018,
Theorem 2.42]). Denote the (n + 1)th qubit by register B. Let Π := I ⊗ |0〉〈0| be the orthogonal
projection onto states that equal |0〉 in register B. Then we define the operator M as

M(ϕ) :=
1

Tr(Eϕ)
TrB

(
U−1ΠU (ϕ⊗ |0〉〈0|)U−1ΠU

)
, (3)

if Tr(Eϕ) 6= 0, and M(ϕ) := 0 otherwise. Here, TrB is the partial trace operator over
qubit B [Watrous, 2018, Section 1.1]. This operator M has the effect of mapping the quantum
state ϕ to the (normalized) post-measurement state when we perform the measurement E and get
outcome “yes” (i.e., the measurement “accepts”). We emphasize that we use a fresh ancilla qubit
initialized to state |0〉 as register B in every application of the operator M. We say that the postse-
lection succeeds with probability Tr(Eϕ).
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We need a slight variant of a well-known result, which Aaronson called the “Quantum Union Bound”
(see, for example, Aaronson [2006, 2016], Wilde [2013]).

Theorem 5 (variant of Quantum Union Bound; Gao [2015]). Suppose we have a sequence
of two-outcome measurements E1, . . . , Ek, such that each Ei accepts a certain mixed state ϕ
with probability at least 1 − ε. Consider the corresponding operators M1,M2, . . . ,Mk that
postselect on acceptance by the respective measurements E1, E2, . . . , Ek. Let ϕ̃ denote the
state (MkMk−1 · · ·M1)(ϕ) obtained by applying each of the k postselection operations in suc-
cession. Then the probability that all the postselection operations succeed, i.e., the k measurements

all accept ϕ, is at least 1− 2
√
kε. Moreover, ‖ϕ̃− ϕ‖Tr ≤ 4

√
kε.

We may infer the above theorem by applying Theorem 1 from (Gao [2015]) to the state ϕ augmented
with k ancillary qubits B1, B2, . . . , Bk initialized to 0, and considering k orthogonal projection

operators U−1
i ΠiUi, where the unitary operator Ui and the projection operator Πi are as defined for

the postselection operation Mi for Ei. The ith projection operator U−1
i ΠiUi acts on the registers

holding ϕ and the ith ancillary qubit Bi.

We prove the main result of this section using suitably defined postselection operators in an online
learning algorithm (proof in Appendix D):

Theorem 6. Let ρ be an unknown n-qubit mixed state, let E1, E2, . . . be a sequence of two-outcome
measurements, and let ε > 0. There exists a strategy for outputting hypothesis states ω0, ω1, . . .,
where ωt depends only on E1, . . . , Et and real numbers b1, . . . , bt in [0, 1], such that as long as
|bt − Tr(Etρ)| ≤ ε/3 for every t, we have

|Tr(Et+1ωt)− Tr(Et+1ρ)| > ε

for at most O
(

n
ε3 log

n
ε

)
values of t. Here the Et’s and bt’s can otherwise be chosen adversarially.

5 Learning Using Sequential Fat-Shattering Dimension

In this section, we prove regret bounds using the notion of sequential fat-shattering dimension. Let
S be a set of functions f : U → [0, 1], and ε > 0. Then, following Rakhlin et al. [2015], let the
ε-sequential fat-shattering dimension of S, or sfatε(S), be the largest k for which we can construct
a complete binary tree T of depth k, such that

• each internal vertex v ∈ T has associated with it a point xv ∈ U and a real av ∈ [0, 1], and

• for each leaf vertex v ∈ T there exists an f ∈ S that causes us to reach v if we traverse T
from the root such that at any internal nodew we traverse the left subtree if f(xw) ≤ aw−ε
and the right subtree if f(xw) ≥ aw+ε. If we view the leaf v as a k-bit string, the function f
is such that for all ancestors u of v, we have f(xu) ≤ au−ε if vi = 0, and f(xu) ≥ au+ε
if vi = 1, when u is at depth i− 1 from the root.

An n-qubit state ρ induces a function f on the set of two-outcome measurements E defined
as f(E) := Tr(Eρ). With this correspondence in mind, we establish a bound on the sequential fat-
shattering dimension of the set of n-qubit quantum states. The bound is based on a generalization of
“random access coding” (Nayak [1999], Ambainis et al. [2002]) called “serial encoding”. We derive
the following bound on the length of serial encoding. Let H(x) := −x log2 x− (1− x) log2(1− x)
be the binary entropy function.

Corollary 7. Let k and n be positive integers. For each k-bit string y := y1 · · · yk, let ρy be an n-
qubit mixed state such that for each i ∈ {1, 2, . . . , k}, there is a two-outcome measurement E′ that
depends only on i and the prefix v := y1y2 · · · yi−1, and has the following properties

(iii) if yi = 0 then Tr(E′ρy) ≤ av − ε, and

(iv) if yi = 1 then Tr(E′ρy) ≥ av + ε,

where ε ∈ (0, 1/2] and av ∈ [0, 1] is a “pivot point” associated with the prefix v. Then

n ≥
(
1−H

(
1− ε

2

))
k .

In particular, k = O
(
n/ε2

)
.
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(The proof is presented in Appendix E).

Corollary 7 immediately implies the following theorem:

Theorem 8. Let U be the set of two-outcome measurements E on an n-qubit state, and let S be the
set of all functions f : U → [0, 1] that have the form f(E) := Tr(Eρ) for some ρ. Then for all

ε > 0, we have sfatε(S) = O
(
n/ε2

)
.

Theorem 8 strengthens an earlier result due to Aaronson [2007], which proved the same upper
bound for the “ordinary” (non-sequential) fat-shattering dimension of quantum states considered
as a hypothesis class.

Now we may use existing results from the literature, which relate sequential fat-shattering dimension
to online learnability. In particular, in the non-realizable case, Rakhlin et al. [2015] recently showed
the following:

Theorem 9 (Rakhlin et al. [2015]). Let S be a set of functions f : U → [0, 1] and for every inte-
ger t ≥ 1, let ℓt : [0, 1] → R be a convex, L-Lipschitz loss function. Suppose we are sequentially
presented elements x1, x2, . . . ∈ U , with each xt followed by the loss function ℓt. Then there exists
a learning strategy that lets us output a sequence of hypotheses f1, f2, . . . ∈ S, such that the regret
is upper-bounded as:

T∑

t=1

ℓt (ft(xt)) ≤ min
f∈S

T∑

t=1

ℓt (f(xt)) + 2LT inf
α

{
4α+

12√
T

∫ 1

α

√

sfatβ(S) log

(
2eT

β

)
dβ

}
.

This follows from Theorem 8 in (Rakhlin et al. [2015]) as in the proof of Proposition 9 in the same
article.

Combining Theorem 8 with Theorem 9 gives us the following:

Corollary 10. Suppose we are presented with a sequence of two-outcome measurementsE1, E2, . . .
of an n-qubit state, with each Et followed by a loss function ℓt as in Theorem 9. Then there exists a
learning strategy that lets us output a sequence of hypothesis states ω1, ω2, . . . such that the regret
after the first T iterations is upper-bounded as:

T∑

t=1

ℓt (Tr(Etωt)) ≤ min
ω∈Cn

T∑

t=1

ℓt (Tr(Etω)) + O
(
L
√
nT log3/2 T

)
.

Note that the result due to Rakhlin et al. [2015] is non-explicit. In other words, by following this
approach, we do not derive any specific online learning algorithm for quantum states that has the
stated upper bound on regret; we only prove non-constructively that such an algorithm exists.

We expect that the approach in this section, based on sequential fat-shattering dimension, could also
be used to prove a mistake bound for the realizable case, but we leave that to future work.

6 Open Problems

We conclude with some questions arising from this work. The regret bound established in Theorem
2 for L1 loss is tight. Can we similarly achieve optimal regret for other loss functions of interest, for
example for L2-loss? It would also be interesting to obtain regret bounds in terms of the loss of the
best quantum state in hindsight, as opposed to T (the number of iterations), using the techniques in
this article. Such a bound has been shown by [Tsuda et al., 2005, Lemma 3.2] for L2-loss using the
Matrix Exponentiated Gradient method.

In what cases can one do online learning of quantum states, not only with few samples, but also
with a polynomial amount of computation? What is the tight generalization of our results to mea-
surements with d outcomes? Is it the case, in online learning of quantum states, that any algorithm
works, so long as it produces hypothesis states that are approximately consistent with all the data
seen so far? Note that none of our three proof techniques seem to imply this general conclusion.
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A Auxiliary Lemmas

The following lemma is from (Tsuda et al. [2005]), given here for completeness.

Lemma 11. For Hermitian matricesA,B and Hermitian PSD matrixX , ifA � B, then Tr(AX) ≥
Tr(BX).

Proof. Let C := A − B. By definition, C � 0. It suffices to show that Tr(CX) ≥ 0. Let

V QV † be the eigen-decomposition of X , and let C = V PV †, where P := V †CV � 0. Then
Tr(CX) = Tr(V PQV †) = Tr(PQ) =

∑n
i=1 PiiQii. Since P � 0 and all the eigenvalues of X

are nonnegative, Pii ≥ 0, Qii ≥ 0. Therefore Tr(CX) ≥ 0.

Lemma 12. If A,B are Hermitian matrices, then Tr(AB) ∈ R.

Proof. The proof is similar to Lemma 11. Let V QV † be the eigendecomposition of A. Then Q is
a real diagonal matrix. We have B = V PV †, where P := V †BV . Note that P † = V †B†V = P ,
so P has a real diagonal. Then Tr(AB) = Tr(V QV †V PV †) = Tr(V QPV †) = Tr(QP ) =∑n

i=1QiiPii. Since Qii, Pii ∈ R for all i, Tr(AB) ∈ R.

B Proof of Theorem 3

Proof of Theorem 3. Since ℓt is convex, for all ϕ ∈ K,

ℓt(Tr(Etωt))− ℓt(Tr(Etϕ)) ≤ ℓ′t(Tr(Etωt)) [Tr(Etωt)− Tr(Etϕ)] = ∇t • (ωt − ϕ) .

(Recall that ‘•’ denotes the trace inner-product between complex matrices of the same dimensions.)
Summing over t,

T∑

t=1

[ℓt(Tr(Etωt))− ℓt(Tr(Etϕ))] ≤
T∑

t=1

[Tr(∇tωt)− Tr(∇tϕ)] .

Define gt(X) = ∇t •X , and g0(X) = 1
ηR(X), where R(X) is the negative von Neumann Entropy

of X (in nats). Denote D2
R := maxϕ,ϕ′∈K{R(ϕ)−R(ϕ′)}. By [Hazan, 2015, Lemma 5.2], for any

ϕ ∈ K, we have
T∑

t=1

[gt(ωt)− gt(ϕ)] ≤
T∑

t=1

∇t • (ωt − ωt+1) +
1

η
D2

R . (4)

Define Φt(X) = {η∑t
s=1 ∇s •X+R(X)}, then the convex program in line 5 of Algorithm 1 finds

the minimizer of Φt(X) in K. The following claim shows that that the minimizer is always positive
definite (proof provided later in this section):

Claim 13. For all t ∈ {1, 2, ..., T }, we have ωt ≻ 0.

For X ≻ 0, we can write R(X) = Tr(X logX), and define

∇Φt(X) := η

t∑

s=1

∇s + I+ logX .

The definition of ∇Φt(X) is analogous to the gradient of Φt(X) if the function is defined over real
symmetric matrices. Moreover, the following condition, similar to the optimality condition over a
real domain, is satisfied (proof provided later in this section).
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Claim 14. For all t ∈ {1, 2, . . . , T − 1},

∇Φt(ωt+1) • (ωt − ωt+1) ≥ 0 . (5)

Denote

BΦt
(ωt‖ωt+1) := Φt(ωt)− Φt(ωt+1)−∇Φt(ωt+1) • (ωt − ωt+1) .

Then by the Pinsker inequality (see, for example, Carlen and Lieb [2014] and the references therein),

1

2
‖ωt − ωt+1‖2Tr ≤ Tr(ωt logωt)− Tr(ωt logωt+1) = BΦt

(ωt‖ωt+1) .

We have

BΦt
(ωt‖ωt+1) = Φt(ωt)− Φt(ωt+1)−∇Φt(ωt+1) • (ωt − ωt+1)

≤ Φt(ωt)− Φt(ωt+1)

= Φt−1(ωt)− Φt−1(ωt+1) + η∇t • (ωt − ωt+1)

≤ η∇t • (ωt − ωt+1) , (6)

where the first inequality follows from Claim 14, and the second because Φt−1(ωt) ≤ Φt−1(ωt+1)
(ωt minimizes Φt−1(X)). Therefore

1

2
‖ωt − ωt+1‖2Tr ≤ η∇t • (ωt − ωt+1) . (7)

Let ‖M‖∗Tr denote the dual of the trace norm, i.e., the spectral norm of the matrixM . By Generalized
Cauchy-Schwartz [Bhatia, 1997, Exercise IV.1.14, page 90],

∇t • (ωt − ωt+1) ≤ ‖∇t‖∗Tr ‖ωt − ωt+1‖Tr
≤ ‖∇t‖∗Tr

√
2η∇t • (ωt − ωt+1) . by Eq. (7).

Rearranging,

∇t • (ωt − ωt+1) ≤ 2η‖∇t‖∗2Tr ≤ 2ηG2
R ,

where GR is an upper bound on ‖∇t‖∗Tr. Combining with Eq. (4), we arrive at the following bound

T∑

t=1

∇t • (ωt − ϕ) ≤
T∑

t=1

∇t • (ωt − ωt+1) +
1

η
D2

R ≤ 2ηTG2
R +

1

η
D2

R .

Taking η = DR

GR

√
2T

, we get
∑T

t=1 ∇t • (ωt − ϕ) ≤ 2DRGR

√
2T . Going back to the regret bound,

T∑

t=1

[ℓt(Tr(Etωt))− ℓt(Tr(Etϕ))] ≤
T∑

t=1

∇t • (ωt − ϕ) ≤ 2DRGR

√
2T .

We proceed to show that DR =
√
(log 2)n. Let ∆2n denote the set of probability distributions

over [2n]. By definition,

D2
R = max

ϕ,ϕ′∈K
{R(ϕ)−R(ϕ′)} = max

ϕ∈K
−R(ϕ) = max

λ∈△2n

2n∑

i=1

λi log
1

λi
= n log 2 .

Since the dual norm of the trace norm is the spectral norm, we have

‖∇t‖∗Tr = ‖ℓ′t(Tr(Etωt))Et‖ ≤ L‖Et‖ ≤ L .

Therefore
∑T

t=1[(ℓt(Tr(Etωt))− ℓt(Tr(Etϕ))] ≤ 2L
√
(2 log 2)nT .

Proof of Claim 13. Let P ∈ K be such that λmin(P ) = 0. Suppose P = V QV †, where Q is a
diagonal matrix with real values on the diagonal. Assume that Q1,1 = λmax(P ) and Q2n,2n =
λmin(P ) = 0. Let P ′ = V Q′V † such that Q′

1,1 = Q1,1 − ε, Q′
2n,2n = ε for ε < λmax(P ),

and Q′
ii = Qii for i ∈ {2, 3, ..., 2n − 1}, so P ′ ∈ K. We show that there exists ε > 0 such that
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Φt(P
′) ≤ Φt(P ). Expanding both sides of the inequality, we see that it is equivalent to showing

that for some ε,

η
t∑

s=1

∇s • (P ′ − P ) ≤ λ1(P ) logλ1(P )− λ1(P
′) logλ1(P

′)− ε log ε .

Let α = λ1(P ) = Q1,1, and A = η
∑t

s=1 ∇s. The inequality then becomes

A • (P ′ − P ) ≤ α logα− (α− ε) log(α− ε)− ε log ε .

Observe that ‖A‖ ≤ η
∑t

s=1 ‖∇s‖ = η
∑t

s=1 ‖ℓ′s(Tr(Esωs))Es‖ ≤ ηLt. So by the Generalized
Cauchy-Schwartz inequality,

A • (P ′ − P ) ≤ ηLt ‖P ′ − P‖Tr ≤ 2εηLt .

Since η, t, α, L are finite and − log ε → ∞ as ε → 0, there exists ε small such that 2ηLt ≤
logα− log ε. We have

2ηLtε ≤ ε logα− ε log ε

= α logα− (α− ε) logα− ε log ε

≤ α logα− (α− ε) log(α− ε)− ε log ε .

So there exists ε > 0 such that Φt(P
′) ≤ Φt(P ). If P has multiple eigenvalues that are 0, we can

repeat the proof and show that there exists a PD matrix P ′ such that Φt(P
′) ≤ Φt(P ). Since ωt is a

minimizer of Φt−1 and ω1 ≻ 0, we conclude that ωt ≻ 0 for all t.

Proof of Claim 14. Suppose ∇Φt(ωt+1) • (ωt −ωt+1) < 0. Let a ∈ (0, 1) and X̄ = (1− a)ωt+1 +
aωt, then X̄ is a density matrix and is positive definite. Define △ = X̄−ωt+1 = a(ωt−ωt+1). We
have

Φt(X̄)− Φt(ωt+1) = a∇Φt(ωt+1) • (ωt − ωt+1) +BΦt
(X̄‖ωt+1)

≤ a∇Φt(ωt+1) • (ωt − ωt+1) +
Tr(△2)

λmin(ωt+1)

= a∇Φt(ωt+1) • (ωt − ωt+1) +
a2 Tr((ωt − ωt+1)

2)

λmin(ωt+1)
.

The above inequality is due to [Audenaert and Eisert, 2005, Theorem 2]. Dividing by a on both
sides, we have

Φt(X̄)− Φt(ωt+1)

a
≤ ∇Φt(ωt+1) • (ωt − ωt+1) +

aTr((ωt − ωt+1)
2)

λmin(ωt+1)
.

So we can find a small enough such that the right hand side of the above inequality is negative.
However, we would have Φt(X̄)−Φt(ωt+1) < 0, which is a contradiction. So ∇Φt(ωt+1) • (ωt −
ωt+1) ≥ 0.

C Proof of Theorem 4

Proof of Theorem 4. Note that for any density matrix ϕ, we haveMt•ϕ = 1
Lℓ

′
t(Tr(Etωt))Tr(Etϕ).

Then, the regret bound for Matrix Multiplicative Weights [Arora and Kale, 2016, Theorem 3.1]
implies that for any density matrix ϕ, we have

T∑

t=1

ℓ′t(Tr(Etωt))Tr(Etωt) ≤
T∑

t=1

ℓ′t(Tr(Etωt))Tr(Etϕ) + ηLT +
L log(2n)

η
.

Here, we used the boundM2
t • ωt ≤ 1. Next, since ℓt is convex, we have

ℓ′t(Tr(Etωt))Tr(Etωt)− ℓ′t(Tr(Etωt))Tr(Etϕ) ≥ ℓt(Tr(Etωt))− ℓt(Tr(Etϕ)) .

Using this bound, and the stated value of η, we get the required regret bound.
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D Proof of Theorem 6

Proof of Theorem 6. Let ρ∗ := ρ⊗k be an amplified version of ρ, over a Hilbert space of dimension
D := 2kn, for some k to be set later. Throughout, we maintain a classical description of a D-
dimensional “amplified hypothesis state” ω∗

t , which we view as being the state of k registers with n
qubits each. We ensure that ω∗

t is always symmetric under permuting the k registers. Given ω∗
t , our

actual n-qubit hypothesis state ωt is then obtained by simply tracing out k − 1 of the registers.

Given an amplified hypothesis state ω∗, let E∗
t be a two-outcome measurement that acts on ω∗ as

follows: it applies the measurement Et to each of the k registers separately, and accepts if and only
if the fraction of measurements that accept equals bt, up to an additive error at most ε/2.

Here is the learning strategy. Our initial hypothesis, ω∗
0 := I/D, is the D-dimensional maximally

mixed state, corresponding to ω0 := I/2n. (The maximally mixed state corresponds to the notion
of a uniformly random quantum superposition.) For each t ≥ 1, we are given descriptions of the
measurements E1, . . . , Et, as well as real numbers b1, . . . , bt in [0, 1], such that |bi − Tr (Eiρ)| ≤
ε/3 for all i ∈ [t]. We would like to update our old hypothesis ω∗

t−1 to a new hypothesis ω∗
t , ideally

such that the difference |Tr (Et+1ωt)− Tr (Et+1ρ)| is small. We do so as follows:

• Given bt, as well classical descriptions of ω∗
t−1 and Et, decide whether Tr

(
E∗

t ω
∗
t−1

)
≥

1− ε
6 .

• If yes, then set ω∗
t := ω∗

t−1 (i.e., we do not change the hypothesis).

• Otherwise, let ω∗
t be the state obtained by applying E∗

t to ω∗
t−1 and postselecting on E∗

t
accepting. In other words, ω∗

t := M(ω∗
t−1), where M is the operator that postselects on

acceptance by E∗
t (as defined above).

We now analyze this strategy. Call t “good” if Tr
(
E∗

t ω
∗
t−1

)
≥ 1− ε

6 , and “bad” otherwise. Below,
we show that

(i) there are at most O
(

n
ε3 log

n
ε

)
bad t’s, and

(ii) for each good t, we have |Tr(Etωt−1)− Tr(Etρ)| ≤ ε.

We start with claim (i). Suppose there have been ℓ bad t’s, call them t(1) , . . . , t(ℓ), where ℓ ≤
(n/ε)

10
(we justify this last assumption later, with room to spare). Then there were ℓ events where

we postselected on E∗
t accepting ω∗

t−1. We conduct a thought experiment, in which the learning
strategy maintains a quantum register initially in the maximally mixed state I/D, and applies the
postselection operator corresponding to E∗

t to the quantum register whenever t is bad. Let p be the
probability that all ℓ of these postselection events succeed. Then by definition,

p = Tr
(
E∗

t(1)ω
∗
t(1)−1

)
· · ·Tr

(
E∗

t(ℓ)ω
∗
t(ℓ)−1

)
≤

(
1− ε

6

)ℓ

.

On the other hand, suppose counterfactually that we had started with the “true” hypothesis, ω∗
0 :=

ρ∗ = ρ⊗k. In that case, we would have

Tr
(
E∗

t(i)ρ
∗
)
= Pr

[
Et(i) accepts ρ between

(
bt(i) −

ε

2

)
k and

(
bt(i) +

ε

2

)
k times

]

≥ 1− 2 e−2k(ε/6)2

for all i. Here the second line follows from the condition that
∣∣Tr

(
Et(i)ρ

)
− bt(i)

∣∣ ≤ ε/6, together
with the Hoeffding bound.

We now make the choice k := C
ε2 log

n
ε , for some constant C large enough that

Tr
(
E∗

t(i)ρ
∗
)
≥ 1− ε10

400n10

for all i. So by Theorem 5, all ℓ postselection events would succeed with probability at least

1− 2

√
ℓ

ε10

400n10
≥ 0.9 .

14



We may write the maximally mixed state, I/D, as

1

D
ρ∗ +

(
1− 1

D

)
ξ ,

for some other mixed state ξ. For this reason, even when we start with initial hypothesis ω∗
0 = I/D,

all ℓ postselection events still succeed with probability

p ≥ 0.9

D
.

Combining our upper and lower bounds on p now yields

0.9

2kn
≤

(
1− ε

6

)ℓ

or

ℓ = O

(
kn

ε

)
= O

( n
ε3

log
n

ε

)
,

which incidentally justifies our earlier assumption that ℓ ≤ (n/ε)
10

.

It remains only to prove claim (ii). Suppose that

Tr
(
E∗

t ω
∗
t−1

)
≥ 1− ε

6
. (8)

Imagine measuring k quantum registers prepared in the joint state ω∗
t−1, by applyingEt to each regis-

ter. Since the state ω∗
t−1 is symmetric under permutation of the k registers, we have that Tr(Etωt−1),

the probability thatEt accepts the first register, equals the expected fraction of the k registers thatEt

accepts. The bound in Eq. (8) means that, with probability at least 1 − ε
6 over the measurement

outcomes, the fraction of registers which Et accepts is within ±ε/2 of bt. The k measurement
outcomes are not necessarily independent, but the fraction of registers accepted never differs from
bt by more than 1. So by the union bound, we have

|Tr(Etωt−1)− bt| ≤
ε

2
+
ε

6
=

2ε

3
.

Hence by the triangle inequality,

|Tr(Etωt−1)− Tr(Etρ)| ≤
2ε

3
+ |bt − Tr(Etρ)| ≤ ε ,

as claimed.

E Proof of Corollary 7

We begin with a bound for a generalization of “random access coding” (Nayak [1999],
Ambainis et al. [2002]) or what is also known as the Index function problem in communication
complexity. The generalization was called “serial encoding” by Nayak [1999] and arose in the con-
text of quantum finite automata. The serial encoding problem is also called Augmented Index in
the literature on streaming algorithms.

The following theorem places a bound on how few qubits serial encoding may use. In other words,
it bounds the number of bits we may encode in an n-qubit quantum state when an arbitrary bit out
of the n may be recovered well via a two-outcome measurement. The bound holds even when the
measurement for recovering yi may depend adaptively on the previous bits y1y2 · · · yi−1 of y, which
we need not know.

Theorem 15 (Nayak [1999]). Let k and n be positive integers. For each k-bit string y := y1 · · · yk,
let ρy be an n-qubit mixed state such that for each i ∈ {1, 2, . . . , k}, there is a two-outcome mea-
surement E that depends only on i and the prefix y1y2 · · · yi−1, and has the following properties

(i) if yi = 0 then Tr(Eρy) ≤ p, and

(ii) if yi = 1 then Tr(Eρy) ≥ 1− p,
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where p ∈ [0, 1/2] is the error in predicting the bit yi at vertex v. (We say ρy “serially encodes” y.)
Then n ≥ (1−H(p))k.

In Appendix F, we present a strengthening of this bound when the bits of y may be only be recovered
in an adaptive order that is a priori unknown. The stronger bound may be of independent interest.

In the context of online learning, the measurements used in recovering bits from a serial encoding are
required to predict the bits with probability bounded away from given “pivot points”. Theorem 15
may be specialized to this case as in Corollary 7, which we prove below.

Proof of Corollary 7. This is a consequence of Theorem 15, when combined with the following
observation. Given the measurement operatorE′, parameter ε, and pivot point av as in the statement
of the corollary, we define a new two-outcome measurementE to be associated with vertex v:

E :=





E′

2av
if av ≥ 1

2 , and

1
2(1−av)

(E′ + (1− 2av)I) if av <
1
2 .

The measurement E may be interpreted as producing a fixed outcome 0 or 1 with some probability
depending on av, and applying the given measurement E′ with the remaining probability, so as to
translate the pivot point av to 1/2.

We may verify that the operator E satisfies the requirements (i) and (ii) of Theorem 15 with p :=
(1 − ε)/2. We therefore conclude that n ≥ (1 − H((1 − ε)/2)k. Since H(1/2 − δ) ≤ 1 − 2δ2,

for δ ∈ [0, 1/2], we get k = O
(
n/ε2

)
.

F Lower bound on quantum random access codes

Here we present an alternative proof of the linear lower bound on quantum random access
codes Nayak [1999], Ambainis et al. [2002]. It goes via the Matrix Multiplicative Weights algo-
rithm, but gives us a slightly weaker dependence on decoding error. We also present an extension of
the original bound to more general codes. These may be of independent interest.

Theorem 16. Let k and n be positive integers with k > n. For all k-bit strings y = y1, y2, . . . , yk,
let ρy be the n-qubit quantum mixed state that encodes y. Let p ∈ [0, 1/2] be an error tolerance

parameter. Suppose that there exist measurements E1, E2, . . . , Ek such that for all y ∈ {0, 1}k and

all i ∈ [k], we have |Tr(Eiρy)− yi| ≤ p. Then n ≥ (1/2−p)2

4(log 2) k.

Proof. Run the MMW algorithm described in Section 3.2 with the absolute loss function ℓt(x) :=
|x−yt| for t = 1, 2, . . . , k iterations. In iteration t, provide as feedbackEt and the label yt ∈ {0, 1}
defined as follows:

yt =

{
0 if Tr(Etωt) >

1
2

1 if Tr(Etωt) ≤ 1
2 .

Let y ∈ {0, 1}k be the bit string formed at the end of the process. Then it is easy to check the
following two properties by the construction of the labels: for any t ∈ [k], we have

1. ℓt(ωt) = |Tr(Etωt)− yt| ≥ 1/2, and

2. ℓt(ρy)) = |Tr(Etρy)− yt| ≤ p.

By Theorem 4, the MMW algorithm with absolute loss has a regret bound of 2
√
(log 2)kn. So the

above bounds imply that k/2 ≤ pk + 2
√
(log 2)kn, which implies that n ≥ (1/2−p)2

4 log 2 k.

Note that in the above proof, we may allow the measurement in the ith iteration, i.e., the one used
to decode the ith bit, to depend on the previous bits y1, y2, . . . , yi−1. Thus, the lower bound also
applies to serial encoding.

Next we consider encoding of bit-strings y into quantum states ρy with a more relaxed notion of
decoding. The encoding is such that given the encoding for an unknown string y, some bit i1 of y
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can be decoded. Given the value yi1 of of this bit, a new bit i2 of y can be decoded, and the index i2
may depend on yi1 . More generally, given a sequence of bits yi1yi2 . . . yij that may be decoded in

this manner, a new bit ij+1 of y can be decoded, for any j ∈ {0, 1, . . . , k− 1}. Here, the index ij+1

and the measurement used to recover the corresponding bit of y may depend on the sequence of
bits yi1yi2 . . . yij . We show that even with this relaxed notion of decoding, we cannot encode more
than a linear number of bits into an n-qubit state.

We first formalize the above generalization of random access encoding. We view a complete binary

tree of depth d ≥ 0 as consisting of vertices v ∈ {0, 1}≤d
. The root of the tree is labeled by

the empty string ǫ and each internal vertex v of the tree has two children v0, v1. We specify an
adaptive sequence of measurements through a “measurement decision tree”. The tree specifies the
measurement to be applied next, given a prefix of such measurements along with the corresponding
outcomes.

Definition 1. Let k be a positive integer. A measurement decision tree of depth k is a complete
binary tree of depth k, each internal vertex v of which is labeled by a triple (S, i, E), where S ∈
{1, . . . , k}l is a sequence of length l := |v| of distinct indices, i ∈ {1, . . . , k} is an index that
does not occur in S, and E is a two-outcome measurement. The sequences associated with the
children v0, v1 of v (if defined) are both equal to (S, i).

For a k-bit string y, and sequence S := (i1, i2, . . . , il) with 0 ≤ l ≤ k and ij ∈ {1, 2, . . . , k}, let yS
denote the substring yi1yi2 · · · yil .
Theorem 17. Let k and n be positive integers. For each k-bit string y := y1 · · · yk, let ρy be an n-
qubit mixed state (we say ρy “encodes” y). Suppose there exists a measurement decision tree T of

depth k such that for each internal vertex v of T and all y ∈ {0, 1}k with yS = v, where (S, i, E)
is the triple associated with the vertex v, we have |Tr(Eρy)− yi| ≤ pv , where pv ∈ [0, 1/2] is the
error in predicting the bit yi at vertex v. Then n ≥ (1 − H(p))k, where H is the binary entropy

function, and p := 1
k

∑k
l=1

1
2l

∑
v∈{0,1}l pv is the average error.

Proof. Let Y be a uniformly random k-bit string. We define a random permutation Π of {1, . . . , k}
correlated with Y that is given by the sequence of measurements in the root to leaf path corre-
sponding to Y . More formally, let Π(1) := i, where i is the index associated with the root of the
measurement decision tree T . For l ∈ {2, . . . , k}, let Π(l) := j, where j is the index associated
with the vertex YΠ(1)YΠ(2) · · ·YΠ(l−1) of the tree T . Let Q be a quantum register such that the joint
state of Y Q is

1

2k

∑

y∈{0,1}k

|y〉〈y| ⊗ ρy .

The quantum mutual information between Y and Q is bounded as I(Y : Q) ≤ |Q| = n. Imagine
having performed the first l − 1 measurements given by the tree T on state Q and having obtained
the correct outcomes YΠ(1)YΠ(2) · · ·YΠ(l−1). These outcomes determine the index Π(l) of the next

bit that may be learned. By the Chain Rule, for any l ∈ {1, . . . , k − 1},

I
(
YΠ(l) · · ·YΠ(k) : Q | YΠ(1)YΠ(2) · · ·YΠ(l−1)

)

= I
(
YΠ(l) : Q | YΠ(1)YΠ(2) · · ·YΠ(l−1)

)
+ I

(
YΠ(l+1) · · ·YΠ(k) : Q | YΠ(1)YΠ(2) · · ·YΠ(l)

)
.

Let E be the operator associated with the vertex V := YΠ(1)YΠ(2) · · ·YΠ(l−1). By hypothesis,
the measurement E predicts the bit YΠ(l) with error at most pV . Using the Fano Inequality, and
averaging over the prefix V , we get

I
(
YΠ(l) : Q | YΠ(1)YΠ(2) · · ·YΠ(l−1)

)
≥ EV (1 −H(pV )) .

Applying this repeatedly for l ∈ {1, . . . , k − 1}, we get

I(Y : Q) = I
(
YΠ(1) : Q

)
+ I

(
YΠ(2) : Q | YΠ(1)

)
+ I

(
YΠ(3) : Q|YΠ(1)YΠ(2)

)

+ · · ·+ I
(
YΠ(k) : Q | YΠ(1)YΠ(2) · · ·YΠ(k−1)

)

≥
k∑

l=1

1

2l

∑

v∈{0,1}l

(1−H(pv))

≥ (1 −H(p))k ,

by concavity of the binary entropy function, and the definition of p.

17


	Introduction
	Structure of the paper

	Preliminaries and definitions
	Online learning of quantum states
	Regularized Follow-the-Leader
	Matrix Multiplicative Weights
	Proof of Theorem 1

	Learning Using Postselection
	Learning Using Sequential Fat-Shattering Dimension
	Open Problems
	Auxiliary Lemmas
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 6
	Proof of Corollary 7
	Lower bound on quantum random access codes

