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Abstract 

We consider the possibility of encoding m classical bits into 
much fewer n quantum bits so that an arbitrary bit from 
the original m bits can be recovered with a good probabil- 
ity, and we show that non-trivial quantum encodings exist 
that have no classical counterparts. On the other hand, we 
show that quantum encodings cannot be much more succint 
as compared to classical encodings, and we provide a lower 
bound on such quantum encodings. Finally, using this lower 
bound, we prove an exponential lower bound an the size of 
l-way quantum linite automata for a family of languages 
accepted by linear sized deterministic linite automata. 

1 Introduction 

The tremendous information processing capabilities of quan- 
turn mechanical systems may be attributed to the fact that 
the state of an n quantum bit (qubit) system is given by a 
unit vector in a 2” dimensional complex vector space. Can 
this fact - that 2” - 1 complex numbers are necessary to 
completely specify the state of n quantum bits- be used to 
encode and transmit classical information with exponentially 
fewer qubits. A fundamental result in quantum information 
theory-H&w’s theorem [9]--states that no more than n 
classical bits of information can be transmitted by transfer- 
ring n quantum bits from one party to another. In view of 
this result, it is tempting to conclude that the exponentially 
many degrees of freedom latent in the description of a quar- 
turn system must necessarily stay hidden or inaccessible. 

However, the situation is more subtle since in quantum me- 
chanics, the recipient of the n qubits has a choice of measure 
mats he can make to extract information about their state. 
In general, these measurements da not commute. Thus ma!+ 
ing a particular measurement will, in general, disturb the 
system, thereby destroying some or all the information that 
would have been revealed by another possible measurement. 
This opens up the possibility of quantum random access en- 
codings. Say we wish to encode m classical bits bl b, 
into n quantum bits (m > n). Then a quantum random ac- 
cea~ encoding with parameters m, n,p (or simply a0 m A n 
encoding) consists of an encoding map from {0, 1)“’ to CL!‘“, 
together with a sequence of m possible measurements for 
the recipient. The encoding has a success probability p if 
for any i, if the recipient chooses the ith measurement and 
applies it to the encoding of b = bl b,, the result of the 
measurement is b; with probability at least p. 

Definition 1.1 A n +$ n random access encoding is a 
Junction J : {0, l}m x R H C2^ such that for euery 1 < 
i < m, there is a measurement 6i that returns 0 or 1 and 
has the property that 

Vb E {0, I}“’ : Prob( 0i If@, r)) = bi ) 2 p. 

We coil J the encoding function, and 0; the decoding func- 
tions. 

Notice that random access encodings with m > n and 
p > l/2 does not necessarily violate H&w’s bound, since 
them possible measurements may be non-commuting. Thus, 
the recipient cannot make all of them to recover all the en- 
coded bits, Indeed, there is no a priori reason to rule out the 
existence of a c” 4 ” encoding for ccmstants c > 1, p > l/2. 
In fact, even though Gk can accommodate onQ k mutually 
orthogonal unit vectors, it can accommodate c almost mu- 
tually orthogonal wit vectors (i.e. vectors such that the dot 
product of any two has absolute value less than l/10, say). 
This might lead one to believe that such encodings exist. 
If such quantum random access encodings were possible, it 
would be possible to, far instance, encode the contents of an 
entire telephone directory in a few quantum bits such that 
the recipient of these qubits could, via a suitably chosen 
measurement, look up any single telephone number of his 
choice. Also, this would have implied IP C QuantumNP 
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since one could encode an exponential size proof into a poly- 2. L, is recognized by some I-way quantum finite automa- 
nomial number of qubits. ton, and, 

The main question that we consider in this paper is: for 
what values of m, n and p do m 4 n encodings exist? For 
classical encodings, where we encode m classical bits into n 
classical bits, we know the answer. Let, forp E [0, 11, H(p) = 
-plogp-(1-p)log(l-p) denote the binary entropy Junction. 
We show: 

3. Any I-way quantum automaton recognizing L, with 
some constant probabilitygreoter than i has 2n(n/‘oa “) 
states. 

Theorem 1.1 For anyp > l/2, there ezistm 4 n classical 

encodings with n = (l-H@))m+O(logm), ondanym 4 n 
classical encoding has n > (1 - H(p))m. 

We then show that quantum encodings are more powerful 
than classical encodings. On the one hand, we show that 
no classical encoding can encode two bits into one bit with 
decoding success probability greater than 0.5, and on the 

other hand, we exhibit a 2 “I 1 quantum encoding. In 
fact, as Ike Chuang [5] has shown, it is possible to encode 3 
bits into 1 qubit with success probability z 0.79 by taking 
advantage of the fact that the amplitudes in quantum states 
can be complex numbers. The 2-i ntc-1 quantun 1 encoding 

and the 3-into 1 encoding easily generalize to a 2n “3 n and 

a Jrl +P n encaomg, respeccwe1y. nowev a 3n 9?” n encoding, respectively. However, the question as 
to whether quantum encodings can asym to whether quantum encodings can asymptotically beat the 
classical lower bound of Theorem 1.1 is le classical lower bound of Theorem 1.1 is left open. Our main 
result about quantum encodings is that th result about quantum encodings is that they cannot be much 
smaller than the 8 ’ ’ smaller than the encoded strings. 

The lower bound an quantum random access codes plays 
the following role in this context: For this language, a quan- 
turn automaton has to remember every bit of the input be- 
cause of the reversibility requirement. If exponentially dense 
quantum random access cadings were possible, then the 
QFA might be able to stare this information space-efficiently, 
Thus, the lower bound on quantum random access cadings 
plays a crucial role in the lower bound on QFAs. 

2 The classical bounds 

We first prove a lower bound on the number of bits required 
for a clossicol random access encoding, and then show that 
there are classical encodings that nearly achieve this bound. 
Together, these yield Theorem 1.1 of the previous section. 

The proof of the lower bound involves the concepts of the 
Shannon entropy S(X) of a random variable X, the Shari-- 
non entropy S(XIY) of a random variable X conditioned 
on another random variable Y, and the mutual informa- 
tion 1(X : Y) of a pair of random variables X, Y. For defi- 
nitions and basic facts involving these concepts, we refer the 
reader to a standard text (such as [7j) on information theory. 

Theorem 1.2 1J a m A n quantum encoding ezists 
with p > i a constant, then n 2 Q(G). 

Theorem 2.1 Let l/2 < p 5 1. For any classical m A n 
encoding, n 2 (1 - H(p))m. 

Thus, even though quantum random access encodings can 
beat classical encodings, they cannot be much more succinct. 

We finish the paper with a novel application of our lower 
bound on quantum random access codes to showing a lower 
bound an the size of l-way quantum finite automata (QFAs). 
(See Section 5.1 far a precise definition of l-way QFAs.) 
In [IO] it was shown that not every language recognized by 
a (classical) deterministic finite automaton (DFA) can be 
recognized by a l-way QFA. On the other hand, there are 
languages that can be recognized by l-way QFAs with size 
exponentially smaller than that of corresponding classical 
automata [2]. It remained open whether, for any language 
that can be recognized by a I-way Enite automaton both 
classically and quantum-mechanically, we can efficiently sim- 
ulate the classical automaton by a l-way QFA. Our result 
answers this question in the negative, and demonstrates that 

Proof: Suppose there is such a (possibly probabilistic) 
encoding J. Let X = X1 X, be chosen uniformly at 
random from {O, l)“‘, and let Y = J(X) E {O,l}” be the 
corresponding encoding. Let Z be the random variable with 
values in {0, 1)“’ obtained by generating the bits Z1 ‘Z, 
from Y using the m decoding functions. 

The mutual information of X and Y is clearly bounded by 
the number of bits in Y, i.e. n: 

Z(X : Y) 5 S(Y) 5 n. 

We show below that it is, in fact, lower bounded by (1 - 
H(p))m, thus getting our lower bound. 

NOW, 

1(X : Y) = S(X) - S(XlY) = m - S(XIY). 
while in some cases one is able to exploit quantum phenom- 
ena to construct highly space-efficient l-way QFAs, in others, But, using standard properties of the entropy function, we 

as it will become apparent, the requirement of the uniter- have 
ity (or, in other words, reversibility) of evolution seriously m m 
limits their efficiency. S(XIY) < S(XlZ) 5 ~S(X.lZ) 5 CS(X,IZi). 

,=I ,=1 

Theorem 1.3 Let {L.},,>I be o Jarnil; y of languages de- 
fined by L, = {wa I w E {a:b}‘, IP..’ ’ -’ w, > r.,. Then, It is not difficult to see that S(X;lZ;) 5 H(p). It follows 

that S(XlY) < H(p)m, and that Z(X : Y) 2 (1 - H(p))m, 

1. L, is recognized by o I-way deterministic automaton of as we intended to show. . 

size O(n), We now give an almost matching upper bound: 
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Theorem 2.2 There is a classical m A n encoding 
with n = (1 - H(p))m+ O(lagm) for myp > ;. 

Proof: The encoding is trivial forp > 1 - A. We describe 
the encoding for p 5 1 - & below. 

We use a code S C {0, l}m such that, for every I E {0, I}“‘, 
there is a y E {0, 0”’ within Hamming distance (l-p- &)m. 
It is known (see, e.g., [6]) that there is such a code S of size 

Let S(z) denote the codeword closest to z. One possibility is 
to encode a string z by S(z). This would give us an encoding 
of the right size. Further, for every z, at least (p+h)m out of 
them bits would be correct. This means that the probability 
(over all bits ;) that zi = S(z)i is at least p+l/m. However, 
for OUT encoding we need this probability to be at least p for 
every bit, not just on average over all bits. This can be 
achieved with the following modification. 

Let r be an m-bit string, and r be a permutation 
of {l,, , m}. For a string z E {0, I}“‘, let n(z) denote 
the string z,+)‘+) ~a(,,,). 

We consider encodings S,,, defined by S,,,(z) = 
V’(S(?r(x + r)) + 1‘. We show that if n and r are cbo- 
sen uniformly at random, then for any 5 and any index i, 
the probability that the ith bit in the encoding is different 
from 2; is at most 1 - p - l/m. First, note that if i is also 
chosen uniformly at random, then this probability is clearly 
bounded by 1 - p - l/m. So all we need to do is to show 
that this probability is independent of i. 

If r and r are uniformly random, then r(z + r) is uniformly 
random as well. Furthermore, for a fixed y = rr(z+r), there 
is exactly one r corresponding to any permutation x that 
gives y = r(z + r). Hence, if we condition an y = ?r(z + r), 
all T (and, hence, alI r-l(i)) are equally likely. This means 
that the probability that z; # S,,,,(z); (or, equivalently, 
that ~++r.)~-,(;) # (S(++r)),-I(;,) for random li and r 
is just the probability of yj # S(y)j for random y and j. This 
is clearly independent of i (and z). 

Finally, we show that there is a small set of permutation- 
string pairs such that the desired property continues to hold 
if we choose r, 1‘ uniformly at random from this set, rather 
than the entire space of permutations and strings. We em- 
ploy the probabilistic method to prove the existence of such 
a small set of permutation-string pairs. 

Let e = m3, and let the strings r~,. , r< E {O,l}* and 
permutations =I, , =I be chosen independently and ti- 
formly at random. Fix z E {0, l}m and i E [l..m]. Let X, 
be 1 if z; # S,,,,j(z); and 0 otherwise. Then ‘& X; is a 
sum of 1 independent BernouJi random variables, the mean 
of which is at most (1 - p - l/m)!. Note that 5 xi=, X, 
is the probability of encoding the ith bit of z erroneously 
when the permutation-string pair is chosen uniformly at 
random from the set {(XI, PI), (rt, rt)}. By the Cher- 
noff bound, the probability that the sum c=, Xj is at 

least (1 - p - l/m)e + m* (i.e., that the error probabil- 
ity $ Et=, Xj mentioned above is at least 1 -p) is bounded 
by e-l”‘lt = e-2m Now, the union bound implies that 
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Figure 1: A Z-into-l quantum encoding with probability of 
SUCCESS z 0.85. 

the probability that the ith bit of I is encoded erroneously 
with probability more than 1 - p for any z or i is at 
most mZ”‘e-‘“’ < 1. Thus! there is a combination of 
strings r,, , r( and permutatmns I?, , , lit with the prop- 
erty we seek. We fix such a set of e strings and permutations. 

We can now define OUT random access code as follows. To 
encode z, we select j E { 1,. , L} uniformly at random and 
compute y = S,,,v;(z). This is the encoding of z. To de- 
code the ith bit, we just take y;. For this scheme, we need 
log(!lSI) = loge+logISI = (l-,!f(p))m+71ogm bits. This 
completes the proof of the theorem. n 

3 A gap between quantum and classical encodings 

In this section, we construct a quantum encoding that has 
no classical counterpart. 

Lemma 3.1 There is a 2 “3 1 quantum encoding. 

Proof: Let uo = IO), UI = II), and uo = &5(/l) + IO)), 

v, = +(ll) - IO)). Define f(zl,zz), the encoding of the 

string ~1~2 to be ur, + vr., normalized (See Figure 1). The 
decoding functions are defined as fallows: for the tist bit 21, 
we measure the message qubit according to the u basis and 
associate uo with ZI = 0 and “1 with Z‘I = 1. Similarly, 
for the second bit, we measure according to the u basis, and 
associate vo with za = 0 and VI with zz = 1. 

It is easy to verify that for all four codewords, and for any i = 
1,2, the angle between the codeword and the right subspace 
is n/8. Hence the success probability is cos’(rr/S) zz 0.853. 
w 

Lemma 3.2 No 2 & 1 classical encoding mists for any 
p> $. 

Proof: Suppose there is a classical 2 +$ 1 encoding for 
some p > $. Let f : {O,l}’ x R H {a, 1) be the correspond- 
ing probabilistic encoding function and V; : {0, 1) x R’ H 
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Figure 2: A geometric chameterization of the probabilistic 
decoding functions of Lemma 3.E 

{0, I} the probabilistic decoding functions. If we let yi be 
the random variable V,(& r), r’), then for any z E {0, I}‘, 
and any i E {I, Z}, Prob,,,(yi = z;) 2 p. 

We first give a geometric characterization of the decoding 
functions. Each V, clearly depends only on the encoding, 
which is either 0 or I. Define the point P’ (for j = 0,l) 

in the unit square [O,l]’ as P’ = (~:,a:), where a: = 
Prob,r( V;(j,r’) = I ). The point P” characterizes the 
decoding functions when the encoding is 0, and P’ char- 
acterizes the decoding functions when the encoding is 1. For 
example, P’ = (1,l) means that given the encoding 1, the 
decoding functions return yl = 1 and yz = 1 with certainty, 
and P0 = (0, l/4) means that given the encoding 0, the de- 
coding functions return ye = 0 and, with probability l/4, 
that yz = 1. 

Any string z = 1152 E (0, 1}2 is encoded as a 0 with some 
probability pz and as a 1 with some probability l-p,. If we 
let PZ = (ao”, q, where a: is the probability that y; = 1, 
then Pr = p,P + (1 -ps)P’. Thus, P” lies on the line 
connecting the two points Pa and P’. On the other hand, 
for the encoding to be a valid Z-into-l encoding, the point P” 
should lie strictly inside the quarter of the unit square [O, 11’ 
closest to (2,) x2). 

Now, the line connecting PO and P’ intersects the interiors 
of only three of the four quoters of the unit square [0, I]‘. 
For instance, if P” and P’ are as above, then the line con- 
necting them does not pass through the lower right quarter 
(see Figure 2). Thus, for the string zlzz which is favored by 
that quarter (e.g. the string z = 10 in the example above), 
either VI or Vz errs with probability at least a half-which 
is a contradiction. n 

4 The quantum lower bound 

We now prove Theorem 1.2. We first show that the success 
probability of the decoding process can be amplified at the 
cost of a small increase in the length of the random access 
code. 

Lemma 4.1 IJJor a constant p > i there is an m & n 

encoding, then there is also an m ‘C+’ O(nlag $) encoding 
for any e = c(m) > 0. 

Proof: Suppose there is an encoding J : {0, 1)“‘~ R H Czn 
with decoding algorithms (7; (i = I,. , m) with success 

probability p > l/2. We define a new encoding f”’ : 

(0, 1)“’ x R’ c) (6)’ as f(‘)(z,rl ,...I rt) = f(z,r,) ~3 
@ J(z,rt). I.e., it is the tensor product oft independent 

identical copies of the original code. The new decoding func- 
tions 0: consists of applying 0; to each of the t independent 
copies of the code, and answering according to the majority. 
The Chernoff bound shows that the error probability decays 
exponentially fast in the number of trials, and is therefore 
at most c when t is chosen to be O(log i). n 

By choosing c = l/q(m) for some polynomial 4, we achieve 
an encoding with error L at the cost of using an O(log m) 
factor more qubits for the encoding. Now the result of any 
measurement cannot perturb the state vector too much (i.e. 
by more than ,/Z), It might seem that this is sufficient to 
give us the lower bound, since we need to make only m 
measurements to recover all n encoded bits, and the error 
per measurement is only l/poly(m). However, the situation 
is more subtle, since the error on subsequent measurements 
must take into account both the encoding error, aa well as 
the error introduced by previous measurements. In fact, 
a straightforward analysis suggests that the error doubles 
with each measuement, thus making such a proof iofeasible. 
Instead, we prove that the errors grow linearly (rather than 
exponentially), by first invoking the principle of safe storage 
(see [4]) to defer all measurements to the end of a sequence 
of unitary operations, and then bounding the errors in the 
computation via a hybrid technique from [3] (which is made 
more explicit in [13]). 

Proof: We fist deal with deterministic quantum encod- 

ing, in which the encoding function J : {O,l}“’ H C2= 
maps inputs to pure states. Any such encoding has, for 
every i E [l..m], a decoding function which takes a code- 

word 14) and an ancilla IO’), applies a unitary transforma- 

tion K, and makes a measurement. Thus, it resolves @” 
into two subspaces W,! and (W,?)’ corresponding to the an- 

swers 0 and 1 (for the ith bit), respectively. Given 16, O’), 

we can thus decompose it as 144) + I&), where 14:) E W? 

and (4:) E (W:)L. 

We now apply the principle of safe storage. Instead of ap- 
plying V; and measuring, we use unitary transformations L’, 
(i = I,... ,m) that work over the codeword IQ), the an- 

cilia IO’) and m output bits IO”), such that U; Idp,o) = 

I&,a) and (i. lr$i,o) = l&,a$e;), where ei is the vec- 

tor (0,. ,O, 1,0,. .O) having a 1 entry only in the ith place. 

The transformations I/i introduce some garbage at each step, 
and their composition UI iJ” is quite messy. To analyse 
their behavior, we first fix an input z, and imagine ideal oni- 
tary transformations r/i = U:(z) that have the property that 
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for the codeword 14.) of z, U: IQ,, a) = IQ,, o @ (zi e;)). 
Since for any 5 E {0, l}m and any i E [l..m], the transforma- 
tion U; correctly yield the ith bit of 1‘ with high probability, 
the reader can verify that 

I(ui(~,,0’,a)-Li:~~,,0’,a)((2 5 26. 0) 

We now claim that the result of applying the transforma- 
tions [/. does not differ much from that of applying the ideal 
transformations U:. 

Claim 4.1 

/I u, ” Ii, IQ,, O’,O”) - u; u; I$., 01, Om) 11 5 Zm& 

Proof: We use a hybrid argument: 

(~u,~~~u~i,~,,o’,o”)-u;...u:,~~,,o’,o”)~~~ 

~~u~~~~uI,-,u~~m,,o’,o-)-u,~~~ul,-,u:,~m,,o’,o-)/~+ 

Jj Ii1 ‘. u”dK,, Jm,, o’, O”y - Ul ‘. UL, u:, lb:, o’, Om) 1) + 

~~o,...u,,u:,~~,;o’:O~)-t:...u~~,u~~m.,o’,o-)~~ 

But, since the transformations U; are unitary, we have: 

11 NJ:+, ‘.’ u~~~,,o’,o-)-u~u:+,“.u~~~,,o’,o-)~)= 

11 rr, I&+1) - UL I&+1) 11, 

where I&+,) = U:,, . ..U. I&,O’,O”‘). By the def- 

inition of the transformations U(, lb:+,) = Idz,, O’, o) 
with (I = IO,. ,O, I,+L, ,s,). Hence, by equation (I), 
~o~s!r+4:+,) - U: I&+,) )I < 2&, and the claimed result fol- 

m 

Now we can extract .d the bits of z by camput- 
ing 14) = UI U, I&, O’, Om) and measuring the m answer 
bits a~, , o,,,. The following claim says that we succeed 
with high probability. 

Claim 4.2 Prob(a # z) 5 4m,,& 

Proof: Let 14’) = u: . ..lJ., IQ,,O’,O”) = )&,O’,z). 
From the claim above, we know that II I$) - 111’) I( 5 Zm& 
When we measure the answer bits of I$‘), we get z with 
probability I. Moreover, from the following fact, the prob- 
ability of observing 1: on measuring 14) cannot differ from 
this by very much. 

Fact 4.1 Suppose II 111,) - 1112) II 5 6. Let 0 be a mea- 
surement with possible results A, ond Vi the classical dis- 
tributions over A that result from applying 0 to 14;). Then 

II VI - % II1 2 Co~hpL(o) - Vz(a)I < 26. 

Hence, the probability that o # z is at most 4mJL . 

Therefore, we get z with probability at least 1 - 4m& 2 
1 - g = 4. It then follows from Holevo’s Theorem [9] 
that n 2 n(m). 

Now we deal with probabilistic quantum encoding, where we 
can encode a string z E {0, l}= as a probabilistic mixture of 
pure states. It is well known that we can always purify the 
system, i.e., we can adjoin ancilIa bits to the encoding, such 
that the result is a pore state. Now, as before, we may apply 
the decoding transformations U; and retrieve all the encoded 
bits: for every 2, there are ideal transformations UL = U,‘(z) 
that behave almost as U; (in the same sense as above) and 
the same argument again gives us the lower bound on n. 
. 

Combining the two lemmas above, we get Theorem 1.2. We 
remark that we may extend this lower bound to general p > 
l/2, by appropriately generalizing Lemma 4.1 above. 

4.1 Serial encodings 

We note that Theorem 1.2 holds even in a slightly more 
general scenario, when the decoding functions are allowed 
to depend on the string encoded. 

Definition 4.1 f : (0, l}m x R H Cz^ serially encodes m 
classical bits into n pbits withp success, if for any i E [~..n] 
and bL;+,,,,] = b,+l b, E (0, l}“-‘, there is a measure- 
ment Cb[%,,,,] that returns 0 or 1 and has the property that 

Vb E {O, I)‘” : Prob( C&+>,+ If(b, r)) = bi ) 2 P. 

I.e., we allow the decoding functions to depend on the sti- 
fix b;+, b, of the string b for recovering the value of 
the ith bit b,. The lower bound for quantum random access 
codes of the previous section also holds for serial encodings. 

Theorem 4.1 Any quantum serial encoding of m bits 
into n qubits with constant successprobobilityp > i has n 2 

f%$d. 

PrOOfi On careful examination, we see that for the proof 
of Theorem 1.2 to work in this case as well, all we need to 
check is that for all i E [l..n], 

I/ ui IL, o’,oc) - u: Id., o’, Oi) II2 5 2% 

where o, = IO,. ,O, zi+, , _, z,). Although the transfor- 
mations f/; may now depend on the bits already decoded, the 
above bound is easily verified, since a; contains the required 
suffix of the encoded word 2. n 

5 The lower bound for l-way quantum finite au- 
tomata 

In this section, we give the details of the proof of Theo- 
rem 1.3. The first two parts of Theoreml.3 are easy. Fig- 
ure 3 shows a DFA with 2n + 3 states for the language L,. 
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Figure 3: A DFA that accepts the language L, = {wa 1 w E {a, b)‘, lwl 5 n} 

Also, since each L, is a Iinite language, there is a l-way 
reversible finite automaton (as defined in Section 5.1), and 
hence a l-way QFA that accepts it. What then remains to 
be shown is the lower bound on the size of a l-way QFA 
accepting the language. 

Intuitively, since a l-way QFA is allowed to read input sym- 
bols only once, a QFA for L, necessarily “records” the last 
symbol read in its state, and since it is required to be re- 
versible, it is forced to “remember” all the symbols read 
until it is clear whether the input is in the language or not. 
Thus, we expect the state of the automaton after n input 
symbols to be an encoding of the n symbols. It is not diffi- 
cult to see that in the case of a I-way reversible automaton 
that accepts the language L,, the encoding is such that all 
the n input symbols can be recovered with certainty. Thus, 
such an automaton has at least 2” states. However, for rea- 
sons stated below, it is not clear in the case of a general 
l-way QFA that the state encodes the input symbols in a 
“faithful” manner. 

l Firstly, a l-way QFA is allowed to make partial deci- 
sions (i.e., it is allowed to accept or reject an input 
with sane probability before reading aII its symbols). 
We show in Section 5.3 that partial decisions can be 
“deferred” far r steps at a cost of only an O(r) factor 
increase in the size of the automaton. We caIl the re- 
suiting automaton an r-restricted QFA. Since no input 
of length mm-e than n+ 1 belongs to L,, this means that 
partial decisions are not very useful in building “small” 
automata for the language, and that we can limit our 
study to that of n-restricted QFAs. 

. Secondly, and more seriously, the encoding defined by 
the automaton is such that each input symbol is ac- 
cessible via a measurement only when alI the symbols 
following it are known, and by trying to learn the later 
symbols we might destroy the encoding. 

This problem is exactly the one Theorem 4.1 solves. We 
can thus conclude that the number of qubits required 
to represent a state of the automaton is R(n/Iog n), 
which gives us the lower bound stated in Theorem 1.3. 

Before presenting the formal proof for the lower bound, we 
define l-way QFAs precisely in the next section. We then 
show how a restricted QFA far the language L, yields a 
serial encoding of n classical bits into a state of the automa- 
ton. Theorem 4.1 then immediately gives a size lower bound 

of 2n(n/‘op >) for restricted QFAs. We then extend this lower 
bound to general QFAs in Section 5.3. 

5.1 Technical preliminaries 

A l-way quantum fmite automaton (QFA) is a theoretical 
model for a quantum computer with finite memory. It has a 
finite set of basis states Q, which consists of three parts: ac- 
cepting states, rejecting states and non-halting states. The 
sets of accepting, rejecting and non-halting basis states are 
denoted by QaCC,Q,.j and Qna., respectively. One of the 
states, 40, is distinguished as the starting state. 

Inputs to a QFA are words over a Ii&e alphabet E. We shall 
also use the symbols ‘p and 9’ that do not belong to C to 
denote the left and the right end marker, respectively. The 
set r = C”{#, $,} denotes the working alphabet of the QFA. 
For each symbol c E I-, a l-way QFA has a carresponding 
unitary transformation U. on the space CB. A l-way QFA is 
thus defined by describing Q, QaCC, Q,.j, Qno., yo, C, and Uo 
for all d E r. We will often refer to l-way QFAs as simply 
QFAs, since we do not consider any other type of QFAs in 
this paper. 

At any time, the state of a QFA is a superposition of ba- 
sis states in Q. The computation starts in the superposi- 
tion 140). Then transformations corresponding to the left 
end marker ‘#,’ the letters of the input word z and the right 
end marker ‘$’ are applied in succession to the state of the 
automaton, unless a transformation results in acceptance or 
rejection of the input. A transformation corresponding to a 
symbol d E r consists of two steps: 

1. 

2, 

First, Us is applied to I$), the current state of the 
automaton, to obtain the new state I*‘). 

Then, I$‘) is measured with respect to the observ- 
able &cc @ Ercj a Em,, where Em = span{lq) I 9 E 
Q&cc}, &I = span{lg) I 4 E Qrej}, Emm = 
span(lq) I 9 E Qnon}. The probability of observing E; 
is equal to the squared norm of the projection of 14’) 
onto E,. On measurement, the state of the automaton 
“collapses” to the projection onto the space observed, 
i.e., becomes equal to the projection, suitably normal- 
ized to a unit superposition. 

If we observe E,,, (or E,.j), the input is accepted (or 
rejected). Otherwise, the computation continues, and 
the next transformation, if any, is applied. 
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We regard these two steps together as reading the symbol r. 

A QFA M is said to accept (or recognize) a language L with 
probability p > $ if it accepts every word in L with proba- 
bility at least p, and rejects every word not in L with prab- 
ability at least p. 

A reversible finite automaton (RFA) is a QFA such that, 
for any o E l- and q E Q, L’, In) = Iq’) for some g’ E 9. 
In other words, the operator lJo is a permutation over the 
basis states; it maps each basis state to a basis state, not to 
a superposition over several states. 

The size of a finite automaton is delined as the number of 
(basis) states in it. The “space used by the automaton” 
refers to the number of (qu)bits required to represent an 
arbitrary automaton state. 

5.2 The lower bound for restricted QFAs 

Define an r-restricted l-way QFA far a language Las a l-way 
QFA that recognizes the language with probability p > $, 
and which halts with non-zero probability before seeing the 
right end marker only after it has read r letters of the input. 
We tist show a lower bound on the size of n-restricted l-way 
QFAs that accept L,. 

Let M be any n-restricted l-way QFA accepting L, with 
constant probability p > i. The following claim formalizes 
the intuition that the state of M after n symbols of the input 
have been read is an encoding of the input string. 

Claim 5.1 There is (I serial encoding of n bits into CQ, and 
hence into [log IQ11 qubits, where Q is the set of basis states 
of the QFA M. 

Proof: Let Q be the set of basis states of the QFA M, 
and let Q.cc an d Qr.i be the set of accepting and rejecting 
states respectively. Also, let lJr be the unitary operator of M 
corresponding to the symbol o E {a, b, #> $). Let EaCC, E,.j 
and En., be delined as in Section 5.1. 

We deline an encoding f : {o,b}” + (cB of n-bit strings 
into unit superpositions over the basis states of the QFA M 
by letting 1 j(z)) be the state of the automaton M after the 
input string z E {o,b}” has been read. We assert that j is 
a serial encoding. 

To show that f is indeed such an encoding, we exhibit a 
suitable measurement for the ith bit of the input for ev- 
ery i E [l..n]. Let, for y E {a,b}“-‘, K(y) = Us&‘, 
where U, stands for the identity operator if y is the empty 
word, and for U.,_iUv”-,-, U.,, otherwise. The ith mea- 
surement then consists of frst applying the unitary trans. 
formation K(s~+I z”) to If(z)), and then measuring the 
resulting superposition with respect to E,,, f3 E,,j CB En,,. 
(Note that the measwement for the ith bit assumes the 
knowledge of all the successive bits =,+I,. ,z, of the in- 
put.) Since far words with length at most n, containment 
in L, is decided by the last letter, and because such words 
are accepted or rejected by the n-restricted QFA M with 
probability at least p only after the entire input has been 
read, the probability of observing E,,, if zi = a, or E,.; 
if zi = b, is at least p. Thus, f defines a serial encoding, as 
claimed. w 

Theorem 4.1 now immediately implies that [IoglQll = 

n(n/logn) and thus IQ/ = Zn(““oa”), where Q is a i; the 
claim above. 

5.3 Extension to general QFAs 

It only remains to show that the lower bound an the size of 
restricted QFAs obtained above implies a lower bound on the 
size of general QFAs accepting L,. We do this by showing 
that we can convert any l-way QFA to an r-restricted l-way 
QFA which is only O(r) times as large as the original QFA. 

It follows that the 2n(““og”) lower bound an number of 
states of n-restricted l-way QFAs recognizing L, continues 
to hold for general l-way QFAs for L,, exactly as stated in 
Theorem 1.3. 

The idea behind the construction of a restricted QFA, given 
a general QFA, is to carry the halting parts of the super- 
position of the original automaton as “distinguished” non- 
halting parts of the state of the new automaton till at least r 
more symbols of the input have been read since the halting 
part was generated or until the right end marker is encaun- 
tered, and then mapping them to accepting or rejecting sub- 
spaces appropriately. 

Lemma 5.1 Let M be LI l-way QFA with S states recog- 
niring n language L with probabilityp. Then there is an r- 
restricted l-way QFA M’ with O(rS) states that recognizes L 
with probabilityp. 

Proof: Let M be a l-way QFA with Q as the set of basis 
states, Qacc as the set of accepting states, Qr.i as the set of 
rejecting states, and 40 as the starting state. Let M’ be the 
automaton with basis state set 

Q U (Q.c< x {O, 1,. , I‘ + 1) x {xc, non}) U 

(Qrq x {O, 1,. ,r + 1) x {rej,non)). 

u (Q.m x {O, 1,. , r + 1) x {xc}) be its set of 
ki,“tg states, let Qraj U (QI.i x {0, 1, , r + 1) x {rej}) 
be the set of rejecting states, and let qo be the starting state. 
If, for a State q E Q, there is a transition 

in M on symbol r, then in M’, we have the following tran- 
sitions. On the ‘$’ symbol, we have the same transition, and 
on r # $, we have 

Id * c mq.r IP)) + c opt Id> 0, . ..) 

n’BQ.C.W,, P’EO.ccwrcj 

The transitions from the states not originally in M are given 
by the following rules. On the ‘$’ symbol, 

lq, i, am) if 9 E Qacc and i 5 r 

lq, i, non) * 
lq, i, rej) if q E Qr.i and i 5 r 
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and an a symbol d E {a, b}, 

1 

Iq,i+l,non) ifi<r 

Iq, i, non) u Iq, i + 1, xc) if q E Q&Cc and i = I‘ 

Is,i+l,rej) if q E Qr-.i and i = r 

The rest of the transitions may be defmed arbitrarily, subject 
to the condition of unitarity. 

It is not difficult to verify that M’ is an r-restricted l-way 
QFA (of size O(rS)) accepting the same language as M, and 
with the same probability. n 

5.4 Some remarks 

We observe that the size O(n) versus size n(2”) separation 
between DFAs and I-way QFAs is the worst possible if were- 
strict ourselves to languages that can be accepted by l-way 
QFAs with probability of correctness that is high enough 
(at least 7/9). Such languages include all finite regular lan- 
guages, since these can be accepted by I-way RFAs. This 
follows from the result of Ambainis and fieivalds [z] that any 
language accepted by a QFA with high enough probability 
can be accepted by a l-way RFA which is at most exponen- 
tially bigger than the minimal DFA accepting the language. 
However, it is not clear that this is also the largest sepa- 
ration in the case of languages that are accepted by l-way 
QFAs with smaller probability of correctness. 

Another open problem involves the blow up in size while 
simulating a l-way probabilistic li&e automata (PFA) by a 
I-way QFA. The only known way for doing this is by sim- 
ulating the PFA by a l-way DFA and then simulating the 
DFA by a QFA. Bath simulating a PFA by a DFA [I, 8, 121 
and simulating a DFA by a QFA (this paper) can involve 
exponential or nearly exponential increase in size. This 
means that the straightforward simulation of a probabilis- 
tic automaton by a QFA (described above) could result in a 
doubly-exponential increase in the size. However, we da not 
know of any examples where both transforming a PFA into 
a DFA and transforming a DFA into a QFA cause big in- 
creases of size. Better simulations of probabilistic automata 
by QFAs may well be possible. 

In general, it is not known how to simulate a probabilistic 
coin-flip by a purely quantum-mechanical algorithm if space 
is limited. For example, the only known simulation of S(n)- 
space probabilistic Turing machines by S(n)-space quantum 
Turing machines cm create quantum Turing machines rum 

ning in expected time of 22s’~1[14]. Finding better simula- 
tions or proving that they do not exist is another interesting 
direction to explore. 
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