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Abstract—We study the problem of simulating protocols in
a quantum communication setting over noisy channels. This
problem falls at the intersection of quantum information theory
and quantum communication complexity, and will be of impor-
tance for eventual real-world applications of interactive quantum
protocols, which can be proved to have exponentially lower
communication costs than their classical counterparts for some
problems. These are the first results concerning the quantum
version of this problem, originally studied by Schulman in a
classical setting (FOCS ’92, STOC ’93). We simulate a length N
quantum communication protocol by a length O(N) protocol
with arbitrarily small error. Our simulation strategy has a
far higher communication rate than a naive one that encodes
separately each particular round of communication to achieve
comparable success. Such a strategy would have a communication
rate going to 0 in the worst interaction case as the length of
the protocols increases, in contrast to our strategy, which has a
communication rate proportional to the capacity of the channel
used. Under adversarial noise, our strategy can withstand, for
arbitrarily small ε > 0, error rates as high as 1/2 − ε when
parties preshare perfect entanglement, but the classical channel
is noisy. We show that this is optimal. Note that in this model,
the naive strategy would not work for any constant fraction of
errors. We provide extension of these results in several other
models of communication, including when also the entanglement
is noisy, and when there is no pre-shared entanglement but
communication is quantum and noisy. We also study the case
of random noise, for which we provide simulation protocols with
positive communication rates and no pre-shared entanglement
over some quantum channels with quantum capacity Q = 0,
proving that Q is in general not the right characterization of a
channel’s capacity for interactive quantum communication. Our
results are stated for a general quantum communication protocol
in which Alice and Bob collaborate, and hold in particular in
the quantum communication complexity settings of the Yao and
Cleve-Buhrman models.

Keywords—Coding Theory; Communication Complexity; Quan-
tum Computation and Information;

I. INTRODUCTION

Quantum information theory is well developed for in-
formation transmission over noisy quantum channels, dating
back to the work of Holevo in the 70’s [21], [22], for the

transmission of classical information [23], [32], quantum in-
formation [25], [34], [14], and even if we allow for pre-shared
entanglement between sender and receiver [4], [5]. It describes
the ultimate limits for (unidirectional) data transmission over
noisy quantum channels without concern for explicit, efficient
construction of codes. Closely related is the area of quantum
coding theory, which takes a more practical approach toward
the construction of quantum error correcting codes [33], [35]
by providing explicit and efficient constructions [12], [35],
[19], [11], and by providing bounds on their existence [11],
[16], [28].

Quantum communication complexity has also been studied
in depth since Yao’s seminal paper introduced the field in
1993 [41]. It is an idealized setting in which local computation
is deemed free and communication noiseless but expensive.
Two parties want to compute a classical function of their
joint input while minimizing the number of qubits they have
to exchange. Exponential separations have been shown for
some promise problems between their classical and quantum
communication complexity [10], even if we allow bounded
error [36]. Moreover, for both classical and quantum com-
munication complexity, interaction has been proved to be a
powerful resource: exponential separations in the communica-
tion complexity of some functions have also been established
between protocols restricted to k messages, and protocols with
k + 1 messages [27], [20]. In 1997, Cleve and Buhrman [13]
defined an alternative model for communication complexity
in a quantum setting, in which the players are allowed to
pre-share an arbitrary entangled state but transmit classical
rather than quantum bits. This model is at least as powerful
as Yao’s (up to a factor of 2), since entanglement can be
used to teleport [2] the message qubits with twice as many
classical bits. It is still open whether the two models are
essentially equivalent, since no good bound on the amount of
entanglement required in the Cleve-Buhrman model is known.

Quantum communication, even more so than classical
communication, is prone to transmission errors in the real
world. With the ubiquity of distributed computing nowadays, it
has become increasingly important to develop an information
and coding theory for interactive protocols. In the realm of



classical communication, Schulman initiated the field with his
pioneering works [29], [30], [31], showing that it is possible
to simulate any protocol defined over a noiseless channel with
a noisy channel with exponentially small probability of error
while only dilating the protocol by a constant factor. This
multiplicative dilation factor, in the case of a binary symmetric
channel, is proportional to the inverse of the capacity, as in
the data transmission case. However, the hidden constant of
proportionality does not go to 1 asymptotically. For adversarial
errors, Schulman also shows how to withstand corruption up
to a rate of 1

240 . Recent work by Braverman and Rao [9]
shows how to withstand error rates of 1

4 − ε in the case of an
adversarial channel, and they also show this is optimal in their
model of noisy communication. Even more recently, Franklin,
Gelles, Ostrovsky and Schulman [17] were able to show that
in an alternative model in which Alice and Bob are allowed
to share a secret key unknown to the adversary Eve, they can
withstand error rates up to 1

2 − ε, which is also shown to be
optimal in their model. All of the above simulations use tree
codes, which were introduced by Schulman. Tree codes exist
for various parameters, but no efficient construction is known.
A relaxation of the tree code condition still strong enough
for most applications in interactive coding was proposed by
Gelles, Moitra and Sahai [18], and they provided an efficient
randomized construction for these so-called potent tree codes.
Using these in a random error model leads to efficient decoding
on the average, hence to efficient simulation protocols (of
course, given black-box access to the original protocol, which
might be inefficient in itself). In a worst-case adversarial
scenario, the decoding might still take exponential time with
potent tree codes. It was only recently that an alternative
coding strategy developed by Brakerski and Kalai [6] was
able to address the adversarial error case efficiently. Their
strategy is to cleverly split the communication into blocks of
logarithmic length in which tree encoding is used. In addition,
they send, in between the blocks, some history information
that enables efficient decoding. This construction was further
improved by Brakerski and Naor [7]. A survey article by
Braverman [8] provides a good overview of results and open
questions in the area of classical interactive communication
circa 2011, though some of the important questions raised
there have been addressed since. In particular, the question of
interactive capacity of binary symmetric channels was recently
investigated by Kol and Raz [24]. For this channel they find
that indeed, in the low noise regime, the communication
capacity behaves differently in the asymptotic limit of long
interactive protocols than in the data transmission case.

The approach taken in all of the above is inherently
classical and does not generalize well to the quantum setting.
In particular, the fact that classical information can be copied
and resent multiple times is implicitly used, and therefore the
fact that the information in the communication register can
be destroyed by noise is inconsequential. In contrast, the no-
cloning theorem of quantum theory [15], [40] rules out copying
of quantum messages. As a result, if the information in some
communication register is destroyed, it cannot be resent. A
naive strategy, which applies in the quantum as well as in the
classical case, would be to encode each round separately. How-
ever, in a random error model, a constant dilation of each round
would not be sufficient to achieve constant fidelity in the worst
case of one-qubit transmission per round, and a super-constant

dilation leads to a communication rate of zero asymptotically.
Moreover, in the case of adversarial errors, no constant rate of
error can be withstood with such a strategy unless the number
of rounds is constant: the adversary can always disrupt a whole
block. The properties of classical information made it possible
for Schulman and his successors to design clever classical
simulation protocols that can withstand constant error rates
at constant communication rates, and succeed in simulating
classical protocols designed for noiseless channels over noisy
channels by reproducing the whole transcript of the noiseless
protocol. However, it was not obvious that it is possible, given
an arbitrary protocol designed for a noiseless bidirectional
quantum channel, to simulate it over noisy quantum channels
with constant error rate at a constant communication rate.
Even for protocols in the Cleve-Buhrman model, in which
the communication is classical, it is not clear that we can
achieve results similar to those for classical protocols. Indeed,
a quantum measurement is in general irreversible. If such
a measurement is performed on the shared entangled state
and the players later realize that the measurement was based
on wrong classical information, the naive adaptation of the
classical simulation to the Cleve-Buhrman model fails.

II. OVERVIEW OF RESULTS

We show that despite the above obstacles, it is indeed
possible to simulate arbitrary quantum protocols over noisy
quantum channels with good communication rates. We con-
sider two models for interaction over noisy channels. One is
analogous to Yao’s model, and all communication in it is over
noisy quantum channels, but the parties do not pre-share entan-
glement. The other is analogous to the Cleve-Buhrman model,
and all communication in it is over noisy classical channels
and parties are allowed to pre-share noiseless entanglement.
We call these models the quantum and shared entanglement
models, respectively. We also consider a further variation on
the shared entanglement model in which entanglement is also
noisy.

This extended abstract focuses on the model with perfect
shared entanglement but adversarial noise on the classical
communication. In such a context, the number of errors is
defined to be the Hamming distance between the transcript of
sent messages and the transcript of possibly corrupted received
messages. Messages are over a constant size alphabet, and
the error rate is the worst-case ratio between the number of
errors and the number of such messages sent, i.e. the transcript
length. Note that in this model, it is possible for the honest
parties to generate a secret key unknown to the adversary
by measuring their shared entanglement. Details about the
other models of communication appear in Ref. [3]. Most of
our technical contribution goes into showing that a constant
dilation factor on the communication suffices to withstand an
adversarial error rate of 1

2 − ε in the shared entanglement
model, for arbitrarily small ε > 0. This is optimal, and matches
the highest tolerable error rate in the analogous shared secret
key model for classical interactive communication [17]. There
are two main components going into establishing this result.

First, we need to establish a framework for simulating
quantum protocols over noisy channels. To avoid losing quan-
tum information, the approach we take is to teleport [2] the
quantum communication register back and forth. When the



register is in some party’s possession, this party tries to evolve
the simulation by applying one of his unitaries in the noiseless
protocol, or one of its inverses if he realizes at some point
he applied it wrongly before. The important point is that
all operations on the quantum registers are reversible, being
a sequence of noiseless protocol unitaries and random (but
known) Pauli operators. Of particular importance to our work
is the notion of tree codes as introduced by Schulman, which
the players use to transmit classical information.

As described in a recent paper on efficient interactive
coding [7], the high-level logic of all solutions proposed until
now for classical protocol simulation can be summarized as
follows: the parties try to evolve the protocol, and if they later
realize there has been some error, they try to go back to the
point where they last agreed (in a protocol tree representation,
this would be their least common ancestor). In our approach
for quantum protocols, the parties try to follow roughly the
same idea, but for two reasons are not able to do this passively.
First, there is no underlying transcript (or protocol tree) that
the parties try to synchronize, except that they wish to evolve
the correct sequence of unitaries. By the no-cloning theorem
[15], [40], the parties cannot restart with a copy of the
quantum information received up to some earlier point. Instead
they have to actively rewind previous unitaries and wrong
teleportation decodings until a suitable point in the protocol.
Second, when they try to synchronize in this manner, they
actively teleport, potentially leading to more errors on the joint
quantum register.

An important ingredient in our simulation is the represen-
tation for noisy quantum protocols that we develop. As said
before, in quantum protocols there is no direct analogue of
a protocol tree representation that enables one to keep track
exactly and explicitly of the evolution of the noiseless protocol
simulation. The cleaned-up form (2) of our representation
provides in some sense a quantum analogue of a protocol tree
representation. As the classical representation, it enables an
exact and explicit assessment of the evolution of the noiseless
protocol simulation, as well as that of the departure from it
due to noise.

At this point, it might look like we have reduced our
problem to the classical case, since the parties only trans-
mit classical information—the teleportation measurement out-
comes. This enables us to reuse tools from classical interactive
coding, most notably tree codes, but the design of the quantum
simulation protocol needs extra care. Unlike the classical case,
agreement by the two parties on a common classical transcript
is not sufficient. This transcript consists mostly of random
teleportation measurement outcomes and is useless by itself.
We additionally need to maintain a joint quantum state that
eventually evolves according to the original protocol.

Once we realize the importance of teleportation in the
context of noisy communication, and carefully design the
simulation protocol, it may not come as a surprise that the
simulation incurs only a constant factor overhead. The need
for backtracking in the quantum simulation, however, seems
to impose serious constraints on the tolerable error rate. A
priori it is entirely unclear that we could hope to circumvent
the low error tolerance seen in simulations with backtracking.
The second part of our main contribution is to develop the
necessary techniques to prove that we can tolerate an error

rate as high as 1
2 − ε. These techniques are indeed novel, and

will be used in a forthcoming article to improve on previously
known classical results; more on this later.

Indeed, all recent classical schemes tolerating high error
rates have the property that the parties always go forward
with the communication by using the tree structure of classical
protocols. In comparison, in the original Schulman tree code
based scheme there is some form of backtracking, due to
which the scheme could only tolerate a much lower adversarial
error rate of 1

240 . This is due to the fact that in a protocol
with backtracking [31], the fraction of good rounds, in which
both players correctly decode the tree code transmission, must
be higher for the simulation to succeed than in a protocol
that always goes forward by transmitting edges of a pointer
jumping problem [9], [17]. There also is some form of
backtracking in the outer level of the computationally efficient
protocol of Ref. [6], thus limiting the overall error rate that
can be tolerated to a fourth of that of the inefficient protocol
used at the inner level. Hence, known computationally efficient
protocols in the shared secret key communication model can
only tolerate error rate up to 1

8 [17]. In light of these results,
it is clear that previously used techniques would not suffice to
tolerate error rates as high as 1

2 − ε for our protocol, which
requires backtracking. The new techniques we develop are thus
unavoidable.

To achieve higher error tolerance, we follow Ref. [17] and
use a blueberry code to effectively turn most adversarial errors
into erasures. Concatenating such a code on top of a tree
code yields a tree code with an erasure symbol. Since general
transmission errors are twice as harmful as erasures for the
tree code condition, which is stated in terms of Hamming
distance, it was shown in Ref. [17] that if the error rate is below
1
2 − ε, then the large number of rounds in which both parties
correctly decode a long enough prefix is sufficient to imply
success of the simulation. Once again due to backtracking, this
condition is not sufficient for our purpose and in particular
blueberry codes by themselves are not sufficient to improve
error tolerance up to 1

2 here. For us, the number of rounds
in which both parties decode correctly even the whole string
could be high, but if these rounds alternate with rounds in
which at least one of the parties makes a decoding error,
then the protocol could stall, and simulation would fail. To
circumvent this possibility, we need to bound the number of
rounds with bad tree code decoding. Previously known bounds
on this [31] can be used to show success of our simulation,
but are far from enabling us to tolerate up to 1

2 error rate. We
develop a new bound on tree codes with an erasure symbol,
Lemma 2, which might be of independent interest for classical
interactive coding. This bound enables us to tightly control
this quantity. Once we control the number of rounds with bad
decoding, it is also important to insure that even when there
is a corruption detected as an erasure in a round, as long as
there is no bad decoding, the protocol will not need to spend
a good round to correct for this previous erasure round.

In fact, the techniques that we develop are not only power-
ful enough to prove that our quantum protocol can tolerate the
maximum error rate of 1

2 −ε, but they can be used to improve
on known classical results in the classical setting. Indeed, we
will show in upcoming works [37] how Lemma 2 can be
used to obtain a strengthening of the theorem of Ref. [17]



in the classical shared secret key model, and then how our
techniques can be applied with this strengthened theorem and
the techniques of Ref. [6] to obtain computationally efficient
simulation protocols in this model that can also tolerate error
rate up to 1

2 . To the best of our knowledge, this will provide
the first example of a computationally efficient protocol that
can tolerate maximum adversarial error rate in some classical
communication model, hence demonstrating the power of our
techniques.

We can adapt the techniques that we develop in the shared
entanglement model for the quantum communication model:
we first distribute a linear amount of entanglement using
standard quantum information and coding theory techniques.
This leads to a tolerable adversarial error rate of up to 1

6 in
the quantum model, close to the best achievable for perfect
quantum data transmission at 1

4 . This is better than the factor
of two drop that might be expected if we compare classical
interactive coding to unidirectional coding. We can also adapt
our techniques for an adversarial error model to the case of
a random error model. Then, dilation factors proportional to
1
Q for a depolarizing channel of quantum capacity Q in the
quantum model, and proportional to 1

C for a binary symmetric
channel of capacity C in the shared entanglement model, are
sufficient. We also show that the result in the shared entangle-
ment model is asymptotically optimal: there exists a family of
binary functions for which a dilation factor proportional to 1

C
is necessary. When considering noisy entanglement in the form
of noisy EPR pairs in a Werner state [38], we give, for any non-
separable Werner state, simulation protocols with linear noisy
classical communication and noisy EPR pair consumption. The
techniques developed in this case can be adapted to show that
the use of depolarizing channels in both directions enables the
simulation to succeed whenever the quantum capacity with
two-way classical communication, Q2, is strictly positive. For
some range of the depolarizing parameter, Q = 0 but Q2 > 0,
so this proves that Q does not characterize a quantum channel’s
capacity for interactive quantum communication.

Due to the use of tree codes, the protocols presented
in this paper are not computationally efficient. However, it
is possible to extend classical results on efficient interactive
coding tolerating maximum error to noisy quantum com-
munication. The representation of noisy protocols mentioned
above is quite powerful and will be used in forthcoming
papers to adapt classical results on computationally efficient
interactive computation over adversarial channels [6] and on
the interactive capacity of random noise channels [24] to the
quantum regime.

Organization: The paper is structured as follows: in sec-
tion III, we set up the notation and state the relevant definitions,
in particular for the different models of communication. In
section IV, we state and prove our main result for the ad-
versarial case in the shared entanglement model. Section V
shows how to adapt the result of the previous section to obtain
various other interesting results, in particular for the quantum
model, the noisy shared entanglement model, and in the case
of a random error model. We conclude with a discussion of
our results and further research directions. The full version
of this article will contain technical details; a draft is already
available [3].

III. PRELIMINARIES

A. Quantum Mechanics and Quantum Communication Com-
plexity

We briefly review some notions necessary for the remainder
of the paper. A more detailed preliminary section can be found
in Ref. [3]. We alternate between two standard formalisms
for quantum theory: the pure state formalism is used when
discussing noiseless quantum protocols, and the more general
density operator formalism is used when discussing noisy
quantum protocols. The notation used is quite standard and
mostly follows that of Refs [26], [39].

As a building block for our simulation protocols, we use
the standard teleportation protocol [2], in which the necessary
decoding at the receiver’s side is given by the Pauli operators
X and Z. We denote the evolution under the consecutive
action of unitaries Uj’s as

∏`
j=1 Uj |ψ〉 = U` · · ·U1 |ψ〉. We

measure the success of the simulation against some adversary
by comparing the induced noisy channel with the one induced
by the noiseless protocol. An appropriate measure of distance
between two channels N and M uses the diamond norm [1]:
‖N −M‖�.

As discussed in the introduction, the two models for
quantum communication complexity that are most commonly
studied in the literature are the one due to Yao [41] and the
one due to Cleve and Buhrman [13]. To bring protocols in
these models into a form that fits the framework of section
III-B, we replace all irreversible operations by their coherent
version: measurements are replaced by pseudo-measurements,
classically controlled operations by quantumly controlled ones,
and then classical communication is replaced by quantum
communication. At this point, the main difference between the
two models is that one permits an arbitrary entangled initial
state and the other does not.

B. Quantum Communication Model

We give a succinct treatment of our communication models.
A noiseless protocol Π is defined by a sequence of unitaries
UAC1 , UBC2 · · · , UN+1. We need N + 1 unitaries in order to
have N messages since a first unitary is applied before the
first message is sent and a last one after the final message is
received. Such a protocol is run on an input state |ψinit〉ABCE ,
with the following registers: A is held by Alice, B is held by
Bob, C is the communication register exchanged back-and-
forth between Alice and Bob, and E is a reference register that
might be held by an adversary Eve. At the end of the protocol,
the output state is Π(|ψinit〉) = TrE(|ψfinal〉〈ψfinal|ABCE), for
|ψfinal〉 = UN+1 · · ·U1 |ψinit〉. We abuse notation and also de-
note the induced quantum channel by Π. We restrict ourselves
to the case of a single-qubit communication register C, which
is the worst case for noisy interactive communication. Every
protocol can be converted into such a form by increasing the
communication by a factor of at most two.

We later embed length N noiseless protocols into oth-
ers of larger length N ′ > N . To do so, we define some
dummy registers Ã, B̃, C̃ isomorphic to A,B,C, respectively.
Ã and C̃ are part of Alice’s registers and B̃ is part of
Bob’s registers. Then, for any isomorphic quantum registers
D, D̃, let SWAPD↔D̃ denote the quantum unitary that swaps



the D, D̃ registers. In a noiseless protocol embedding, for
i ∈ {1, 2, · · ·N − 1}, we leave Ui untouched. We replace UN
by SWAPB↔B̃UN and UN+1 by SWAPAC↔ÃC̃UN+1. Finally,
for i ∈ {N + 2, N + 3, · · ·N ′ + 1}, we define Ui = I , the
identity operator.

We refer later to the unidirectional model; in this noiseless
model, there is a unique communication of some large quantum
register, so a unidirectional protocol U is defined by two
quantum channels, M1 acting jointly on Alice’s side and on
the communication register, andM2 acting similarly on Bob’s
side after reception of the communication register. On input a
state |ψ〉, the output of U is the state of the ABC subsystems
of M2M1(|ψ〉), and is denoted U(|ψ〉). We abuse notation
and also denote by U the induced quantum channel.

For simplicity, we define below what we refer to as
alternating communication models, in which Alice and Bob
take turn in transmitting the communication register to each
other. The definitions easily extend to somewhat more general
communication models referred to as oblivious models, in
which Alice and Bob speak in a fixed order, but not necessarily
in alternation.

A simulation protocol Q in the quantum model
is defined by a sequence of quantum channels
MA′C′

1 ,MB′C′

2 , · · · ,MN ′+1, in which the A′ system
contains all of Alice’s local registers, B′ contains those
of Bob, and C ′ is the quantum communication register
exchanged back-and-forth between Alice and Bob by passing
through Eve’s hand. Similarly, an adversary EQ is modelled
by a sequence of quantum channels NE′C′

1 , · · · ,NE′C′

N ′ , with
E′ containing all of Eve’s local registers. When running the
simulation protocol Q with black-box access to a noiseless
protocol Π against adversary EQ on input |ψ〉, the output is
the ÃB̃C̃ subsystems (of the embedded noiseless protocol) of
QΠ(EQ(|ψ〉)) =MΠ

N ′+1NN ′ · · · N1MΠ
1 (|ψ〉), and we denote

the induced quantum channel by QΠ(EQ). We consider two
noise models. In a random error model (analogous to that
studied in quantum information theory, à la Shannon), Eve
is a non-malicious passive environment, and Ni = NQ for
some fixed quantum channel NQ. In an adversarial error
model (analogous to that studied in quantum coding theory,
à la Hamming), Eve is a malicious adversary who wants to
make the protocol fail, and we are interested in adversaries
with a bound δ on the fraction of communications of the C ′
register they corrupt. See Ref. [3] for a precise definition of
the error model.

A simulation protocol S and an adversary ES in the shared
entanglement model are defined analogously, with C ′ being
instead a classical communication register that passes through
Eve’s hand, and that can be copied perfectly without inducing
any error.

C. Classical Communication Protocols and Online Codes

Our simulation protocols have an important classical com-
ponent. To make them resilient to noise, we use two different
online classical codes that can perform encoding and decoding
round by round. Tree codes were introduced by Schulman [31]
for the purpose of interactive communication, and have a
self-healing property that enables them to correct errors if

sufficiently many error-free transmissions are received subse-
quently. They are parameterized by the message alphabet size
d > 1, the transmission alphabet size q, the number of rounds
of communication N and a distance parameter 0 < α < 1. The
larger α, the stronger the self-healing property. In each round,
a message from the message set [d] = {1, · · · , d} is encoded,
and a symbol from the transmission alphabet is sent. Schulman
proved that for any d and α, a constant size transmission
alphabet suffices to generate a family of tree codes of any
length N . We also use a randomized error detection code called
the blueberry code [17]. Alice and Bob need to share a secret
key unknown to Eve to use this code, and then each corruption
of Eve is detected as an erasure with probability β. For any
message set size and parameter 0 < β < 1, there exists a large
enough transmission alphabet size and corresponding secret
key size sufficient to obtain a blueberry code with erasure
parameter β. That is, for any transmitted symbol corrupted
by the channel, the probability of detection as an erasure by
the receiver is at least β in any round, independently of other
rounds.

IV. TOLERATING MAXIMAL ERROR RATES

A. Results

We focus on the shared entanglement model. Techniques
to distribute entanglement in both random [25], [34], [14] and
adversarial [11], [16], [28] error models are well-studied. We
can combine our findings with these entanglement distribution
techniques to translate results in the shared entanglement
model to the quantum model. We first focus on an adversarial
error model, and then adapt these results to a random error
model. Such extensions to other communication models are
explored in section V.

We describe a simulation protocol that tolerates up to 1
2−ε

error rate, for arbitrarily small ε > 0, in the shared entangle-
ment model. This is optimal: we also prove that no interactive
protocol can withstand an error rate of 1

2 in this model. Our
protocol achieves asymptotically positive communication rate
and entanglement consumption linear in the communication.
This provides an interactive analogue of a family of good
quantum codes tolerating maximal error. Formal statements
along with a detailed description of the protocol and proofs
can be found in Ref. [3].

Theorem 1: Given any two-party quantum protocol of
length N in the noiseless model, no simulation protocol in the
shared entanglement model can tolerate an error rate of 1

2 and
succeed in simulating the noiseless protocol with lower worst-
case error than the best unidirectional protocol. This result
holds in the oblivious as well as the alternating communication
models.

Theorem 2: Given an adversarial channel in the shared
entanglement model with error rate strictly smaller than 1

2 ,
we can simulate any noiseless protocol of length N with
negligible error over this channel using a number of constant-
size transmissions linear in N , and consuming a linear number
of EPR pairs.

To prove Th. 1, the argument of Ref. [17] in the classical
case applies here as well: we only need to notice that if the
error rate is 1

2 with oblivious communication in the shared



entanglement model, then an adversary can completely corrupt
all of the transmissions of either Alice or Bob, whoever talks
at most half the time.

Theorem 2 is proven below.

B. Proof of Achievability

1) Description of the Simulation: Let us first give some
intuition on how to succeed in simulating a noiseless quantum
protocol over a noisy channel. The strategy to avoid losing the
quantum information in the communication register over the
noisy channel is to teleport the C register of the noiseless
protocol back and forth, creating a virtual C register that
is either in Alice’s or in Bob’s hand. They use their shared
entanglement to do so, as well as the provided noisy classical
channels to transmit their teleportation measurement outcomes.
Whenever Alice possesses the virtual C register she can try to
evolve the simulation of the noiseless protocol by applying
one of her noiseless protocol unitaries on the virtual AC
register, and similarly for Bob on the virtual BC register.
If they later realize that there has been some error in the
teleportation decoding, they might have to apply inverses of
these operations, but overall, all operations on the virtual ABC
quantum register can be described as an intertwined sequence
of Pauli operators acting on the C register and noiseless
protocol unitaries (and their inverses) acting on the AC and
the BC registers. There are two important things to notice
here. First, the sequence of operations acting on the joint
register is a sequence of reversible unitaries. Hence, if the
parties keep track of the sequence of operations on the joint
register, at least one of the parties can reverse any of his
operations when he is in possession of the virtual C register.
Second, both parties know the order in which these operators
have been applied while only one knows exactly which one
was applied: for Pauli operators, both parties know ±XxZz

is applied at some point, but only one knows for sure the
value of xz ∈ {0, 1}2, and similarly both know UMj (with
U+1
j = Uj , U

−1
j = U†j , U

0
j = I) is applied at some point, but

only one knows for sure the values of j ∈ {1, · · · , N ′ + 1}
and M ∈ {−1, 0,+1}. This is the classical information they
try to transmit each other so that both can know exactly the
sequence of operations that have been applied to the joint
register. The tree codes of Schulman are particularly well
suited for protecting against noise in this interactive scenario.

More concretely, in each round the parties first need to
decode the teleportation before trying to evolve the simulation
of the quantum protocol and finally teleporting back the
communication register to the other party. The goal is that the
parties know exactly where they are in the simulation of the
protocol (i.e., the sequence of unitaries that have been applied
to the virtual protocol registers) when they are able to correctly
decode all the classical messages sent by the other party. To
enable a party to learn exactly what action was taken by the
other party in the earlier rounds, the message sent in each
round is in {0, 1}2 × {−1, 0,+1} × {0, 1}2, encoded with a
tree code. The first pair of bits corresponds to the teleportation
decoding operation done at the beginning of a party’s turn. The
trit is associated with the evolution in the noiseless protocol:
+1 stands for going forward with the protocol, a unitary of the
noiseless protocol was applied to the joint state of the party’s
local register and the communication register; −1 stands for

going backward with the protocol, the inverse of a unitary
of the noiseless protocol applied by that party to the joint
state was performed; 0 stands for holding the protocol idle,
no action is taken by that party to evolve the protocol in
that round. Note that the index j of the unitary UMj a party
applies can be computed solely from the sequence of trits
sent by that party. Finally, the last pair of bits corresponds
to the outcome of the measurement in the teleportation of the
communication register, to enable the other party to correctly
decode the teleportation.

For each party, we call his history at some point the
sequence of these triplets of messages he transmitted up to
that point. If a party succeeds in correctly decoding the history
of the other party, he then possesses all the information about
the operations that were applied on the joint quantum register,
and can choose his next move accordingly. Note that the
information about which Pauli operator was used to decode
the teleportation might appear to be redundant, but it is not
when there are decoding errors. This is a bit of a subtle and
important point, so let us explain in more detail what we
mean here. In the case of decoding errors, the wrong Pauli
operator might be applied to do the teleportation decoding.
Even though the party who applied the wrong Pauli operator
will later realize his mistake (when the self-healing property of
the tree code eventually enables him to decode this message
correctly), the other party still needs to be informed of this
previous error in decoding. Sending the information about
which Pauli operator was used to do the teleportation decoding
provides that information, and even enables the other party to
correct this wrong teleportation decoding by himself if need
be. It is indeed a property that we use in an essential way in
the simulation since, when there is a corruption detected as
an erasure, the teleportation decoding operation applied is the
trivial one, which is the wrong one three quarter of the time
on average. Note that another approach that would also work
would be to let the other party know what information was
received, and then let each party correct for their own previous
decoding error. The problem with this is that the tolerable error
rate would have to be much lower than 1

2 − ε: in the terms
used in the analysis, we would need a good round to recover
from an erasure round, which is undesirable.

Now, back to our simulation protocol. Since the parties
have access to shared entanglement, they do not need to
distribute it at the beginning of the protocol, and they can
also use it to generate a secret key unknown to the adversary
Eve. The secret key is used to generate a blueberry code with
erasure parameter β = 1 − (|Σ| − 1)/(|Γ| − 1), where Σ is
the tree code alphabet and Γ is the blueberry code alphabet.
Each of the tree code transmission alphabet symbols is then
reencoded with the blueberry code before transmission over
the noisy channel. A corruption caused by the adversary is
then detected as an erasure with probability β.

The choice of tree code parameter α and the blueberry
code parameter β depends on the parameter ε of the tolerable
error rate 1/2 − ε. For concreteness, we fix them as follows:
εα = 1− α ≤ ε/20 and εβ = 1 − β ≤ ε/40. We take arity
d = 48 for the tree code, since the message set consists of
{0, 1}2 × {−1, 0,+1} × {0, 1}2 ∼= [4]× [3]× [4] ∼= [48]. The
length N ′ = `N of the simulation protocol depends on ε;
taking ` ≥ 2

ε (1 + 1
N ) is sufficient. From Schulman [31], we



know that there exists a q ∈ N independent of N ′ such that
an alphabet Σ of size q suffices to label the arcs of a distance
α, d-ary tree code of any depth N ′ ∈ N. Both parties agree
before the protocol begins on such a tree code of depth N ′

(each party uses a separate instance of the same tree code to
transmit her/his messages to the other party).

The convention we use for the variables describing the pro-
tocol is the following. On Alice’s side, in round i, xADi zADi ∈
{0, 1}2 correspond to the bits she uses for the teleporta-
tion decoding on the X and Z Pauli operators, respectively,
xAMi zAMi ∈ {0, 1}2 correspond to the bits of the teleportation
measurement on the corresponding Pauli operators, jAi ∈ Z
and MA

i ∈ {−1, 0,+1} correspond respectively to the index
of the unitary she uses in round i, and to whether she applies
U+1
jAi

= UjAi , its inverse U−1
jAi

= U†
jAi

, or simply the identity
channel U0

jAi
= I , on the AC quantum registers. On Bob’s

side, we use a similar set of variables, with superscripts B
instead of A. All Pauli operators are acting on the C register.
When discussing variables obtained from decoding in round i,
a superscript i is added to account for the fact that this
decoding might be wrong and could be corrected in later
rounds. Similarly, the superscript i is used when discussing
other variables that are round-dependent.

When an erasure is detected by either party in a round,
that party does not try to evolve the protocol in that particular
round, so the corresponding trit sent is 0, and the teleportation
decoding bits are 00. Otherwise, the actions Alice and Bob take
in round i are based on the following two representations for
the form of the state |ψi〉 of the joint register at the beginning
of round i (with |ψ1〉 = |ψinit〉) that can be classically
computed from the information in their two histories. The first
one can be directly computed from the information in Alice’s
and Bob’s histories, up to irrelevant operations of Eve on the
E register, as

|ψi〉ABCE =

i−1∏
`=1

(XxBM
` Zz

BM
` U

MB
`

jB`
Zz

BD
` XxBD

` (1)

×XxAM
` Zz

AM
` U

MA
`

jA`
Zz

AD
` XxAD

` ) |ψinit〉ABCE .

This first representation of the form of the state |ψi〉 is not
too informative in itself, but from it we can classically compute
a second one by recursively cleaning it up. The cleanup is
performed by collapsing together as many of the operators as
possible (Pauli operators together, U`’s with U−1

` ’s) to obtain
something in the form:

|ψi〉ABCE = σ̂i Ũ iti σ̃
i
ti Ũ

i
ti−1 σ̃

i
ti−1 · · · Ũ i2 σ̃i2 (2)

× Ũ i1 σ̃i1 Uri Uri−1 · · ·U2 U1 |ψinit〉ABCE

with σ̂i = ±X x̂i

Z ẑ
i

, σ̃i` = Xxi
`Zz

i
` for x̂iẑi, xi`z

i
` ∈ {0, 1}2,

and Ũ i` = U±1
`′ for some ri − 2ti ≤ `′ ≤ ri + 2ti. The

rules to be used recursively to perform the cleanup are the
following: in the case that σ̃i` = I , we require, if ` > 1, that
Ũ i` 6= (Ũ i`−1)−1, and if ` = 1, that Ũ i1 6= Uri+1. This last
rule is what determines the cut between Uri and the first error
Ũ i1σ̃

i
1. The parameter ri determines the number of noiseless

protocol unitaries the parties have been able to successfully
apply on the joint register before errors start to arise on it, and
the parameter ti determines the number of errors the parties

have to correct before being able to evolve the state as in
the noiseless protocol. This second representation is then a
powerful one, being the analogue in our setting of the protocol
tree representation of classical protocols, enabling to exactly
keep track of the evolution of the noiseless protocol simulation.
This is the reason why Alice and Bob will always base their
actions upon their best estimate of this representation.

To decide which action to take in round i, Alice starts
by decoding the tree code layer of the possibly corrupted
messages f ′1, · · · , f ′i−1 ∈ Σ ∪ {⊥} received from Bob (⊥ is a
special erasure symbol) up to this point to obtain her best guess
siB for his history sB . Along with her history sA, she uses it
to compute her best guess of the form (2) of the joint state.
If her decoding of Bob’s history is good (error-free), then she
has all the information she needs to compute the correct form
of the joint state |ψi〉. She can then choose the right actions to
take to evolve the simulation. She takes the following actions
based on the assumption that her decoding is good. If it is not,
errors might accumulate on the joint register ABC, which she
will later have to correct. Alice’s next move, after decoding
σ̂i, depends on whether (she thinks) ti = 0 or not: if it is the
case, she applies Uri+1 if she is the one to apply it, else she
corrects Ũ iti if she is the one who applied it. Bob takes similar
actions, considering the state

(XxAM
i Zz

AM
i U

MA
i

jAi
Zz

AD
i XxAD

i ) |ψi〉 (3)

after Alice’s communication. After these N ′/2 rounds, Alice
and Bob take the particular registers Ã, B̃ and C̃ specified
by the noiseless protocol embedding (see section III-B), and
use them as their respective outcomes for the protocol. If the
simulation is successful, the output quantum state corresponds
to the ABC subsystem of |ψfinal〉ABCE specified by the
original noiseless protocol.

2) Analysis: The analysis is carried conditionally on some
respective views of Alice and Bob of the transcript at each
round, averaging over the shared secret key used for the
blueberry code, and also conditionally on some classical state
z of the Z register of Eve. In particular, if the adversary has
an adaptive and probabilistic strategy, we condition on some
strategy consistent with the transcript already conditioned on.
The conclusion we seek holds for all such strategies and
transcripts.

The total number of rounds is N ′

2 , with two transmissions
per rounds, for a total of N ′ transmissions. To analyse this
protocol, we define a function P (i) such that we know the
protocol succeeds whenever P (N

′

2 + 1) ≥ N + 1 at the end of
the simulation. We refer to the form of the state |ψi〉 on the
joint register ABCE at the beginning of round i rewritten as
in (2), and define P (i) = ri − 2ti. The factor of 2 in front of
ti is due to the fact that, in the worst case, all remaining Ũ i` ’s
are applied by the same party who applied Uri−1, and Ũ iti =

U−1
ri−1−2(ti−1). Then, if P (N

′

2 + 1) ≥ N + 1, any remaining
Ũ at the end of the simulation will be an identity operator as
defined by the noiseless protocol embedding, and the output
is correct.

We have three kinds of rounds: good rounds in which
both parties can decode correctly the other party’s history,
bad rounds in which at least one party makes a decoding



error, and erasure rounds, in which no party makes a decoding
error, but at least one of them decodes an erasure from the
blueberry code. (In an erasure round, the party detecting an
erasure applies the identity operator on the quantum register
before teleporting it back.) If we define, at the end of round i,
N i
g = |{j : j ≤ i, round j was good}|, and similarly N i

b and
N i
e for bad and erasure rounds, respectively, then we get the

following technical lemma and corollary.

Lemma 1: With the above definitions,

P (i+ 1) ≥ N i
g − 4N i

b .

Corollary 1: If P (N
′

2 + 1) ≥ N + 1, then the simulation
succeeds.

Note that it is important, in order to be able to tolerate
error rate 1

2 − ε, that N i
e does not appear in the lower bound

for P (i + 1). Then, to bound the fraction of bad rounds as
a function of the corruption rate, we need the corollary of
the following technical lemma, which derives a new bound on
tree codes with an erasure symbol. This result only talks about
the structure of such codes independently of our application,
and hence might have applications in a classical interactive
coding setting as well. In particular, it is part of the toolkit used
to prove the existence of a computationally efficient classical
simulation protocol tolerating maximum error of 1

2 − ε [37]
in the shared secret key model. We consider a tree code of
distance parameter α = 1−εα and a blueberry code of erasure
parameter β = 1− εβ .

Lemma 2: If there is a bound δ on the fraction of the
total number of transmissions N ′ that are corrupted and not
detected as erasures by the blueberry code, then the number
Nb of bad rounds in the whole simulation is bounded by
Nb ≤ (2δ + εα)N ′.

Corollary 2: If the corruption rate c satisfies 0 ≤ c < 1
2 ,

then except with probability smaller than 2−Ω(N ′) for N ′ the
length of the simulation protocol, the total number of bad
rounds in the simulation is bounded by Nb ≤ (2εβ + εα)N ′.

With the above results in hand, we show that if the
corruption rate is below 1

2 − ε and we take εα, εβ , ` as stated
in the description of the protocol, then except with negligible
probability, the simulation succeeds:

P (
N ′

2
+ 1) ≥ Ng − 4Nb

=
N ′

2
−Ne − 5Nb

≥ εN ′ − 5Nb

≥ εN ′ − 5(2εβ + εα)N ′

≥ N + 1.

The first inequality is from Lemma 1, the equality is by
definition of Ng, Nb, Ne, i.e. N

′

2 = Ng +Nb +Ne, the second
inequality is from the fact that the number of erasure rounds is
bounded by the number of corruptions, i.e. Ne ≤ ( 1

2 − ε)N
′,

the third inequality is from our bound on Nb due to Corol-
lary 2, which holds except with negligible probability, and the
last inequality is from our choice of parameters.

V. RESULTS IN OTHER MODELS

By adapting the results we have obtained in the shared
entanglement model for an adversarial error setting, we can
obtain several other interesting results. We first complete our
study of the shared entanglement model with results in a
random error setting. We show that in the regime where we
use binary symmetric channels of classical capacity close to 0,
it is not possible to do much better than what we achieve, up
to a multiplicative constant on top of the 1

C dilation factor. We
then consider the quantum model and obtain results for both
adversarial and random error settings. We also prove that the
standard forward quantum capacity of the quantum channels
used does not characterize their communication capacity in the
interactive communication scenario. We consider a variation
on the shared entanglement model in which, along with the
noisy classical communication, the shared entanglement is also
noisy. Formal statements, discussions about optimality and
proof ideas appear in Ref. [3].

Theorem 3: Given a two-party quantum protocol of length
N in the noiseless model and any C > 0, there exists a
simulation protocol in the shared entanglement model that
is of length O( 1

CN) and succeeds in simulating the original
protocol with negligible error over classical binary symmetric
channels of capacity C.

Theorem 4: There exists a sequence of two-party quantum
protocols of increasing length N in the noiseless model such
that for C > 0, any corresponding sequence of simulation
protocols of length o( 1

CN) in the shared entanglement model
with classical binary symmetric channels of capacity C fails
at outputting the final state with low error on some input.
Moreover, the family of quantum protocols can be chosen to
be one computing a distributed binary function.

Theorem 5: Given an adversarial channel in the quantum
model with error rate strictly smaller than 1

6 , we can simulate
with arbitrary small error any noiseless protocol of length
N over this channel using a linear number of constant-size
transmissions.

Theorem 6: Given a two-party quantum protocol of length
N in the noiseless model and any Q > 0, there exists a
simulation protocol in the quantum model that is of length
O( 1

QN) and succeeds in simulating the original protocol with
arbitrarily small error over quantum depolarizing channels of
quantum capacity Q.

Theorem 7: There exists a sequence of two-party quantum
protocols of increasing length N in the noiseless model such
that for QB > 0, any corresponding sequence of simulation
protocols of length o( 1

QB
N) in the quantum model with

quantum depolarizing channels of quantum capacity QB with
classical feedback fails at outputting the final state with low
error on some input. Moreover, the family of quantum proto-
cols can be chosen to be one computing a distributed binary
function.

Theorem 8: Given a two-party quantum protocol of length
N in the noiseless model, there exists a quantum depolarizing
channel of unassisted forward quantum capacity Q = 0 and a
simulation protocol in the quantum model with asymptotically
positive rate of communication that succeeds in simulating the



original protocol with arbitrarily small error over that quantum
channel.

Theorem 9: Given noisy EPR pairs in a Werner state [38]
of fidelity F > 1

2 , there is a constant error rate δF > 0 such
that for any adversarial classical channel with error rate δF , we
can simulate any noiseless protocol of length N with negligible
error over this channel using a number of transmissions linear
in N , and consuming a linear number of noisy EPR pairs. Note
that Werner states of fidelity 1

2 are separable.

VI. CONCLUSION: DISCUSSION AND OPEN QUESTIONS

In this work, we proposed a simulation of interactive
quantum protocols intended for noiseless communication over
noisy channels. Our approach is to replace irreversible mea-
surements by reversible pseudo-measurements in the Cleve-
Buhrman model (with shared entanglement and classical com-
munication). Then, in the noisy version of the model, we
teleport back and forth the corresponding quantum commu-
nication register to avoid losing quantum information. We
develop a representation for such noisy quantum protocols that
gives an analogue of Schulman’s protocol tree representation
for classical protocols. We prove that with this approach, it
is possible to simulate the evolution of quantum protocols
designed for noiseless quantum channels over noisy channels
with only a linear dilation factor.

In the case of adversarial channel errors in which the parties
are allowed to pre-share a linear amount of entanglement, we
prove that the error rate of 1

2 − ε that our simulation tolerates
is optimal for oblivious protocols. To get the tolerable error
rate as high as 1

2 − ε, we develop new techniques along with
a new bound on tree codes with an erasure symbol, Lemma 2.
We will show in upcoming work that these new techniques are
powerful enough to improve on known classical results, and
in particular to develop a computationally efficient protocol
tolerating the maximum error rate possible in the shared
secret key model. To simplify the exposition, we chose not
to optimize different parameters, such as communication and
entanglement consumption rates and communication register
size.

We adapt our findings to a random error model in which
parties are allowed to share entanglement but communicate
over binary symmetric channels of capacity C > 0. We
obtain communication rates proportional to C. We show that,
up to a hidden constant, this is optimal for some family of
distributed binary functions, for example the inner product
functions IPn : {0, 1}n × {0, 1}n → {0, 1}, defined as
IPn(x, y) = ⊕ni=1xi · yi. Our findings can also be adapted
to obtain similar (though not optimal) results for the quantum
model (the noisy version of Yao’s model). Here, the simulation
protocols run in two phases. In the first, a preprocessing phase,
a linear amount of entanglement is distributed with standard
techniques from quantum Shannon theory for random noise
and from quantum coding theory for adversarial noise. This
is followed by a simulation phase in which the actions of the
parties parallel those in the shared entanglement model. In the
case of adversarial noise, we show that we can tolerate an error
rate of 1

6−ε in the quantum model. In the case of random noise
in which the parties communicate over depolarizing channels
of capacity Q > 0, we obtain rates proportional to Q. Perhaps

surprisingly, we show that the use of depolarizing channels in
both directions enables the simulation to succeed even for some
quantum channels of unassisted forward quantum capacity
Q = 0. This proves that Q does not characterize a quantum
channel’s capacity for interactive quantum communication. We
extend our ideas to perform simulation in an extension of the
shared entanglement model in which not only is the classical
communication noisy, but also the entanglement is noisy.

A direction of research that immediately falls out of this
work is characterizing the communication rates in all of the
models discussed. In particular, the precise interactive capacity
of the depolarizing channel with a specified noise parameter
remains open. The question of interactive capacity for the
binary symmetric channel was raised in the classical context
by Schulman [31] and brought back to attention recently
by Braverman in a survey article on the topic of interactive
coding [8]. Recent developments provide tight lower and upper
bounds for this quantity [24]. In the classical setting, a particu-
lar problem with worst case interaction of one bit transmissions
to which all classical interactive protocols can be mapped
was proposed for the study of such a quantity. Since every
interactive quantum protocol can be mapped onto our general
problem, it would be natural to study such a quantity in the
quantum domain. Would the interactive capacity of the binary
symmetric channel (with entanglement assistance) for quantum
protocols be the same as that for classical protocols [24], up
to a factor of two for teleportation? We show in upcoming
articles that for small bit flip probability ε, the lower bound of
1
2 −O(

√
H(ε)) holds, and even extends to a lower bound of

1 − O(
√
H(ε)) for depolarizing channels. Do the techniques

developed in Ref. [24] adapt to the quantum setting to obtain
matching upper bounds of 1

2−Ω(
√
H(ε)) and 1−Ω(

√
H(ε)),

respectively? What about other channels?

Another question that remains open is that of the highest
tolerable adversarial error rate that can be withstood in the
quantum model. To study this question, it is likely that a
fully quantum approach with new kinds of quantum codes
needs to be developed. In particular, ideas from fault-tolerant
quantum computation might be necessary. Furthermore, the
important question of integrating our results into a larger
fault-tolerant framework, in which the local operations are
also noisy, remains open. Yet another important question
for interactive quantum coding is what would happen in a
shared entanglement setting if along with the noisy classical
communication, the entanglement provided were also noisy;
we investigated this question for a depolarizing noise model for
the entanglement, but other models would also be interesting to
study. In particular, what about adversarial noise on the shared
EPR pairs above the unidirectional binary error rate limit? Note
that below that bound, we can adapt the techniques we use
here for distillation. Finally, the question of computationally
efficient simulation also remains open, and we will show in
upcoming works how to merge the techniques developed here
with those of Brakerski and Kalai [6] to efficiently process the
classical communication in our simulation protocols.

ACKNOWLEDGEMENTS

The authors are grateful to Louis Salvail, Benno Salwey
and Mark M. Wilde for useful discussions. G.B. is supported in
part by the Natural Sciences and Engineering Research Council



of Canada (NSERC), the Canada Research Chair program,
the Canadian Institute for Advanced Research (CIFAR) and
the Institute for Theoretical Studies of ETH Zurich. A.N.’s
research was conducted in part at Perimeter Institute and
supported in part by NSERC Canada, CIFAR, an ERA (On-
tario), QuantumWorks, MITACS, and ARO (USA). Research at
Perimeter Institute for Theoretical Physics is supported in part
by the Government of Canada through Industry Canada and
by the Province of Ontario through MRI. A.T. was supported
by NSERC and CIFAR. D.T. is supported by a Fonds de
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