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Abstract. We study the problem of simulating protocols in a quantum communication setting
over noisy channels. This problem falls at the intersection of quantum information theory and
quantum communication complexity, and it will be of importance for eventual real-world applications
of interactive quantum protocols, which can be proved to have exponentially lower communication
costs than their classical counterparts for some problems. These are the first results concerning the
quantum version of this problem, originally studied by Schulman in a classical setting (FOCS ’92,
STOC ’93). We simulate a length N quantum communication protocol by a length O(N) protocol
with arbitrarily small error. Under adversarial noise, our strategy can withstand, for arbitrarily small
ε > 0, error rates as high as 1/2 − ε when parties pre-share perfect entanglement, but the classical
channel is noisy. We show that this is optimal. We provide extension of these results in several
other models of communication, including when also the entanglement is noisy, and when there is
no pre-shared entanglement but communication is quantum and noisy. We also study the case of
random noise, for which we provide simulation protocols with positive communication rates and no
pre-shared entanglement over some quantum channels with quantum capacity CQ = 0, proving
that CQ is in general not the right characterization of a channel’s capacity for interactive quantum
communication. Our results are stated for a general quantum communication protocol in which Alice
and Bob collaborate, and these results hold in particular in the quantum communication complexity
settings of the Yao and Cleve–Buhrman models.
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1. Introduction. Quantum information theory is well developed for informa-
tion transmission over noisy quantum channels, dating back to the work of Holevo
in the 1970’s [30, 31] for the transmission of classical information [32, 48] and quan-
tum information [39, 50, 22], and even for cases allowing pre-shared entanglement
between sender and receiver [7, 8]. It describes the ultimate limits for (unidirectional)
data transmission over noisy quantum channels without concern for explicit, efficient
construction of codes. Closely related is the area of quantum coding theory, which
takes a more practical approach toward the construction of quantum error correcting
codes [49, 51] by providing explicit and efficient constructions [17, 51, 28, 16] and by
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providing bounds on their existence [16, 24, 43].
Quantum communication complexity has also been studied in depth since Yao’s

paper introduced the field in 1993 [56]. It is an idealized setting in which local com-
putation is deemed free and communication is noiseless but expensive. Two parties
want to compute a classical function of their joint input while minimizing the num-
ber of qubits they have to exchange. Exponential separations have been shown for
some promise problems between their classical and quantum communication complex-
ity [15]—even in cases allowing bounded error [44]. Moreover, for both classical and
quantum communication complexity, interaction has been proved to be a powerful
resource: exponential separations in the communication complexity of some functions
have also been established between protocols restricted to k messages, and protocols
with k+ 1 messages [42, 33]. In 1997, Cleve and Buhrman [18] defined an alternative
model for communication complexity in a quantum setting, in which the players are
allowed to pre-share an arbitrary entangled state but transmit classical rather than
quantum bits. They proved the first separation between such a quantum model and
the classical model of communication complexity (for a three party task). This model
is at least as powerful as Yao’s (up to a factor of 2), since entanglement can be used
to teleport [3] the message qubits with twice as many classical bits. It is still open
whether the two models are essentially equivalent, since no good bound on the amount
of entanglement required in the Cleve–Buhrman model is known.

With the ubiquity of distributed computing nowadays, it has become increasingly
important to develop an information and coding theory for interactive protocols. In
the realm of classical communication, Schulman initiated the field with his pioneering
works [45, 46, 47], showing that it is possible to simulate any protocol defined over a
noiseless channel with a noisy channel with exponentially small probability of error
while only dilating the protocol by a constant factor. This multiplicative dilation
factor, in the case of a binary symmetric channel, is proportional to the inverse of
the capacity, as in the data transmission case. However, the hidden constant of
proportionality does not go to 1 asymptotically. For adversarial errors, Schulman also
shows how to withstand corruption up to a rate of 1

240 . Recent work by Braverman
and Rao [14] shows how to withstand error rates of 1

4 − ε in the case of an adversarial
channel, and they also show that this is optimal in their model of noisy communication.
Even more recently, Franklin, Gelles, Ostrovsky, and Schulman [25] were able to show
that in an alternative model in which Alice and Bob are allowed to share a secret key
unknown to the adversary Eve, they can withstand error rates up to 1

2 − ε, which is
also shown to be optimal in this model.

All of the above simulations use tree codes, which were introduced by Schulman.
Tree codes exist for various parameters, but no efficient construction is known. A
relaxation of the tree code condition still strong enough for most applications in in-
teractive coding was proposed by Gelles, Moitra and Sahai [26], and they provided an
efficient randomized construction for these so-called potent tree codes. Using these in
a random error model leads to efficient decoding on average hence to efficient simula-
tion protocols (of course when given black-box access to the original protocol, which
might be inefficient in itself). In a worst-case adversarial scenario, the decoding might
still take exponential time with potent tree codes. It was only recently that an alter-
native coding strategy, developed by Brakerski and Kalai [10], was able to address the
adversarial error case efficiently. Their strategy is to cleverly split the communication
into blocks of logarithmic length in which tree encoding is used. In addition, they
send, in between the blocks, some history information that enables efficient decoding.
This construction was further improved by Brakerski and Naor [11]. A survey article
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by Braverman [13] provides a good overview of results and open questions in the area
of classical interactive communication circa 2011, though some of the important ques-
tions raised there have been addressed since. In particular, the question of interactive
capacity of binary symmetric channels was recently investigated by Kol and Raz [34].
For this channel they find that indeed, in the low noise regime, the communication
capacity behaves differently in the asymptotic limit of long interactive protocols than
in the data transmission case.

Quantum communication, even more so than classical communication, is prone
to transmission errors in the real world. The approach taken in all of the above is
inherently classical and does not generalize well to the quantum setting. In particular,
the fact that classical information can be copied and resent multiple times is implicitly
used, and therefore the fact that the information in the communication register can be
destroyed by noise is inconsequential. In contrast, the no-cloning theorem of quantum
theory [23, 55] rules out copying of quantum messages. As a result, if the information
in some communication register is destroyed, it cannot be resent. A naive strategy,
which applies in the quantum as well as the classical case, would be to encode each
round separately. However, in a random error model, a constant dilation of each
round would not be sufficient to achieve constant fidelity in the worst case of one-
qubit transmission per round, and a super-constant dilation leads to a communication
rate of zero asymptotically. Moreover, in the case of adversarial errors, no constant
rate of error can be withstood with such a strategy unless the number of rounds is
constant: the adversary can always disrupt a whole block.

The properties of classical information made it possible for Schulman and his
successors to design clever classical simulation protocols that can withstand constant
error rates at constant communication rates and that can succeed in simulating clas-
sical protocols designed for noiseless channels over noisy channels by reproducing the
whole transcript of the noiseless protocol. However, it was not immediately obvious
that it is possible, given an arbitrary protocol designed for a noiseless bidirectional
quantum channel, to simulate it over noisy quantum channels with constant error
rate at a constant communication rate. Even for protocols in the Cleve–Buhrman
model, in which the communication is classical, it is not clear whether we can achieve
results similar to those for classical protocols. Indeed, a quantum measurement is
in general irreversible. If such a measurement is performed on the shared entangled
state and the players later realize that the measurement was based on wrong classical
information, the naive adaptation of the classical simulation to the Cleve–Buhrman
model fails.

2. Overview of Results. We show that despite the above obstacles, it is in-
deed possible to simulate arbitrary quantum protocols over noisy quantum channels
with good communication rates. We consider two models for interaction over noisy
channels. One is analogous to Yao’s model, and all communication in it is over noisy
quantum channels, but the parties do not pre-share entanglement. The other is analo-
gous to the Cleve–Buhrman model, and all communication in it is over noisy classical
channels and parties are allowed to pre-share noiseless entanglement. We call these
models the quantum and shared entanglement models, respectively. We also consider
a further variation on the shared entanglement model in which entanglement is also
noisy.

Our main focus is on the model with perfect shared entanglement but adversar-
ial noise on the classical communication. In such a context, the number of errors
is defined to be the Hamming distance between the transcript of sent messages and
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the transcript of possibly corrupted received messages. Messages are over a constant
size alphabet, and the error rate is the ratio between the number of errors introduced
by the adversary in the worst case and the number of such messages sent, i.e. the
transcript length. Note that in this model, it is possible for the honest parties to
generate a secret key unknown to the adversary by measuring their shared entangle-
ment. Details about the other models of communication appear in section 6. Most of
our technical contributions involve showing the following result, which is stated more
formally as Theorem 12 later.

Theorem 1. A constant dilation factor on the communication suffices to with-
stand an adversarial error rate of 1

2 − ε in the shared entanglement model, for arbi-
trarily small ε > 0.

This is optimal and matches the highest tolerable error rate in the analogous shared
secret key model for classical interactive communication [25].

The results in the other models are consequences of this main theorem. For
the quantum communication model in which parties do not pre-share entanglement,
but have access to a noisy quantum channel, we first distribute a linear amount of
entanglement using standard quantum information and coding theory techniques. We
can tolerate any adversarial error rate less than 1

6 in that case (Theorem 20), close to
the best achievable for quantum data transmission with zero error at 1

4 . This is better
than the factor of two drop that might be expected if we compare classical interactive
coding to unidirectional coding. We can also adapt our techniques for an adversarial
error model to the case of a random error model. Then, dilation factors proportional
to 1

CQ
for a depolarizing channel of quantum capacity CQ in the quantum model

(Theorem 21), and proportional to 1
C for a binary symmetric channel of capacity

C in the shared entanglement model (Theorem 18), are sufficient. We also show
that the result in the shared entanglement model is asymptotically optimal: there
exists a family of binary functions for which a dilation factor proportional to 1

C is
necessary (Theorem 19). We further extend the study in the shared entanglement
model to consider noisy entanglement in the form of noisy Einstein-Podolsky-Rosen
(EPR) pairs in the so-called Werner states. For any non-separable Werner state, we
give simulation protocols with linear noisy classical communication and noisy EPR
pair consumption. Perhaps surprisingly, similar techniques can be used to show that
the use of depolarizing channels in both directions enables the simulation to succeed
whenever the quantum capacity with two-way classical communication, C2

Q, is strictly
positive (Theorem 23). For some range of the depolarizing parameter, CQ = 0 but
C2
Q > 0, so this proves that CQ does not characterize a quantum channel’s capacity

for interactive quantum communication.
Due to the use of tree codes, the protocols presented in this paper are not com-

putationally efficient. However, it is possible to extend classical results on efficient
interactive coding tolerating maximum error to noisy quantum communication. The
representation of noisy protocols mentioned above is quite powerful and could be used
to adapt classical results on computationally efficient interactive computation over ad-
versarial channels [10] and on the interactive capacity of random noise channels [34]
to the quantum regime.

There are two main components that establish our main result.

2.1. First Component: Teleportation and Active Rewinding. First, we
need to establish a framework for simulating quantum protocols over noisy channels.
To avoid losing quantum information, the approach we take is to teleport [3] the
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quantum communication register back and forth. When the register is in some party’s
possession, this party tries to evolve the simulation by applying one of his unitary
operations in the noiseless protocol, or one of its inverses if he realizes at some point he
applied it wrongly before. The important point is that all operations on the quantum
registers are reversible, being a sequence of noiseless protocol unitary operators and
random (but known) Pauli operators. Of particular importance to our work is the
notion of tree codes as introduced by Schulman, which the players use to transmit
classical information.

As described in a recent paper on efficient interactive coding [11], the high-level
logic of all solutions proposed until now for classical protocol simulation can be sum-
marized as follows: the parties try to evolve the protocol, and if they later realize
there has been some error, they try to go back to the point where they last agreed (in
a protocol tree representation, this would be their least common ancestor). In our ap-
proach for quantum protocols, the parties try to follow roughly the same idea, but for
two reasons are not able to do this passively. First, there is no underlying transcript
(or protocol tree) that the parties try to synchronize, except for their wish to evolve
the correct sequence of unitary operations. By the no-cloning theorem [23, 55], the
parties cannot restart with a copy of the quantum information received up to some
earlier point. Instead they have to actively rewind previous unitary operators and
wrong teleportation decodings until a suitable point in the protocol. Second, when
they try to synchronize in this manner, they actively teleport, potentially leading to
more errors on the joint quantum register.

An important ingredient in our simulation is the representation for noisy quantum
protocols that we develop. As said before, in quantum protocols there is no direct
analogue of a protocol tree representation that enables one to keep track exactly and
explicitly of the evolution of the noiseless protocol simulation. The cleaned-up form
(5) of our representation provides in some sense a quantum analogue of a protocol
tree representation. As the classical representation, it enables an exact and explicit
assessment of the evolution of the noiseless protocol simulation, as well as such an
assessment of the departure from it due to noise.

At this point, it might look like we have reduced our problem to the classical case,
since the parties only transmit classical information—the teleportation measurement
outcomes. This enables us to reuse tools from classical interactive coding, most no-
tably tree codes, but the design of the quantum simulation protocol needs extra care.
Unlike in the classical case, agreement by the two parties on a common classical
transcript is not sufficient. This transcript consists mostly of random teleportation
measurement outcomes and is useless by itself. Additionally, we need to maintain a
joint quantum state that eventually evolves according to the original protocol.

Once we realize the importance of teleportation in the context of noisy commu-
nication, and carefully design the simulation protocol, it may not come as a surprise
that the simulation incurs only a constant factor overhead. The need for backtracking
in the quantum simulation, however, seems to impose serious constraints on the tol-
erable error rate. A priori it is entirely unclear whether we could hope to circumvent
the low error tolerance seen in simulations with backtracking.

2.2. Second Component: Simulation via Blueberry Codes. The second
part of our main contribution is to develop the necessary techniques to prove that we
can tolerate an error rate as high as 1

2 − ε. These techniques are indeed novel, and
could be used to improve on previously known classical results.

Indeed, all recent classical schemes tolerating high error rates have the property
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that the parties always go forward with the communication by using the tree structure
of classical protocols. In comparison, in the original Schulman scheme based on tree
codes there is some form of backtracking, due to which the scheme could only tolerate
a much lower adversarial error rate of 1

240 . This is due to the fact that in a protocol
with backtracking [47], fort he simulation to succeed the fraction of good rounds, in
which both players correctly decode the tree code transmission, must be higher than
in a protocol that always goes forward by transmitting edges of a pointer jumping
problem [14, 25]. There also is some form of backtracking in the outer level of the
computationally efficient protocol of Ref. [10], thus limiting the overall error rate that
can be tolerated to a fourth of that of the inefficient protocol used at the inner level.
Hence, computationally efficient protocols in the shared secret key communication
model prior to this work could only tolerate error rates less than 1

8 [25]. In light of
these results, it is clear that previously used techniques would not suffice to tolerate
error rates as high as 1

2 − ε for our protocol, which requires backtracking. The new
techniques we develop are thus necessary.

To achieve higher error tolerance, we follow Ref. [25] and use a blueberry code to
effectively turn most adversarial errors into erasures. Concatenating such a code on
top of a tree code yields a tree code with an erasure symbol. Since general transmission
errors are twice as harmful as erasures for the tree code condition, which is stated
in terms of Hamming distance, it was shown in Ref. [25] that if the error rate is
below 1

2 − ε, then the large number of rounds in which both parties correctly decode
a long enough prefix is sufficient to imply success of the simulation. Once again
due to backtracking, this condition is not sufficient for our purpose and in particular
blueberry codes by themselves are not sufficient to improve error tolerance up to 1

2
here. For us, the number of rounds in which both parties correctly decode even the
whole string could be high, but if these rounds alternate with rounds in which at
least one of the parties makes a decoding error, then the protocol could stall, and
simulation would fail. To circumvent this possibility, we need to bound the number
of rounds with bad tree code decoding. Previously known bounds on this [47] can be
used to show the success of our simulation but are far from enabling us to tolerate error
rates up to 1

2 . We develop a new bound on tree codes with an erasure symbol, (see
Lemma 16), which might be of independent interest for classical interactive coding.
This bound enables us to tightly control the number of rounds with bad decoding.
Once we control this quantity, it is also important to ensure that even when there
is corruption detected as an erasure in a round, as long as there is no bad decoding,
the protocol will not need to spend a good round to correct for this previous erasure
round.

In fact, the techniques that we develop are not just powerful enough to prove that
our quantum protocol can tolerate the maximum error rate of 1

2 − ε. Lemma 16 can
be used to obtain a strengthening of the theorem of Ref. [25] in the classical shared
secret key model, and then our techniques can be applied with this strengthened
theorem and the techniques of Ref. [10] to obtain computationally efficient simulation
protocols in this model that can also tolerate any error rate less than 1

2 [21]. This
demonstrates the power of our techniques. However, this result has been superseded
by slightly adapting a result from Ref. [27], which uses different techniques; there the
authors obtain computationally efficient simulation protocols at a maximum error up
to 1

4 in the model without a shared secret key.

2.3. Organization. The paper is structured as follows: in section 3, we set up
the notation and state the relevant definitions, in particular for the different models
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of communication. In section 4, we state and prove a simpler version of our main
result for the adversarial case in the shared entanglement model. In section 5, we
state and prove our main result for the adversarial case in the shared entanglement
model. Section 6 shows how to adapt the result of the previous section to obtain
various interesting results, in particular for the quantum model, for the noisy shared
entanglement model, and in the case of a random error model. We conclude with a
discussion of our results and further research directions.

3. Preliminaries.

3.1. Quantum Mechanics. We briefly review the quantum formalism for finite
dimensional systems, mainly to set notation; for a more thorough treatment, we refer
the interested reader to the following good introductions in a quantum information
theory context [41, Chapter 2], [53, Chapter 2] [54, Chapters 3, 4, 5].

3.1.1. Quantum States and Quantum Evolution. To every quantum sys-
tem A we associate a finite dimensional Hilbert space, which by abuse of notation we
also denote by A. The state of quantum system A is represented by a density oper-
ator ρA, a positive semi-definite operator over the Hilbert space A with unit trace.
We denote by D(A) the set of all density operators representing states of system
A. Composite quantum systems are associated with the (Kronecker) tensor product
space of the underlying spaces, i.e., for systems A and B, the allowed states of the
composite system A⊗B are (represented by) the density operators in D(A⊗B). We
sometimes use the shorthand AB for A ⊗ B. The evolution of a quantum system
A is represented by a completely positive, trace preserving linear map (CPTP map)
NA such that if the state of the system is ρ ∈ D(A) before evolution through NA,
the state of the system is NA(ρ) ∈ D(A) after. If the system A is clear from the
context, we might drop the superscript. We refer to such maps as quantum channels,
and to the set of all channels acting on A as L(A). An important quantum channel
that we consider is the qubit depolarizing channel Tε with depolarizing parameter
0 ≤ ε ≤ 1: it takes as input a qubit ρ and outputs a qubit Tε(ρ) = (1− ε)ρ+ ε I

2 , i.e.,
with probability 1− ε it outputs ρ, and with complementary probability ε it outputs
a completely mixed state. We also consider quantum channels with different input
and output systems; the set of all quantum channels from a system A to a system
B is denoted L(A,B). An example of such a channel that we consider is the qubit
erasing channel Rε with erasing parameter 0 ≤ ε ≤ 1: it takes as input a qubit ρ and
outputs a qutrit Rε(ρ) = (1 − ε)ρ + ε|e〉〈e|, i.e., with probability 1 − ε it outputs ρ,
and with complementary probability ε it outputs an orthogonal erasure flag |e〉. An-
other important operation on a composite system A⊗B is the partial trace TrB(ρAB)
which effectively derives the reduced or marginal state of the A subsystem from the
quantum state ρAB . Fixing an orthonormal basis {|i〉} for B, the partial trace is
given by TrB(ρAB) =

∑
i(I ⊗ 〈i |)ρ(I ⊗ |i〉), and this is a valid quantum channel in

L(A⊗B,A). Note that the action of TrB is independent of the choice of basis chosen
to represent it, so we unambiguously write ρA = TrB(ρAB).

An important special case for quantum systems comprises pure states, whose den-
sity operators have a special form: rank-one projectors |ψ〉〈ψ|. In such a case, a more
convenient notation is provided by the pure state formalism: a state is represented by
the unit vector |ψ〉 (up to an irrelevant complex phase) upon which the density oper-
ator projects. We denote by H(A) the set of all such unit vectors (up to equivalence
of global phase) in system A.

Pure state evolution is represented by a unitary operator UA acting on |ψ〉A,
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denoted U |ψ〉A. Evolution of the B register of a state |ψ〉AB under the action of

a unitary operator UB is represented by (IA ⊗ UB) |ψ〉AB , for IA representing the

identity operator acting on the A system, and is denoted by the shorthand UB |ψ〉AB
for convenience. We occasionally drop the superscripts when the systems are clear
from the context. The evolution under consecutive action of unitary operators Uj ’s
is denoted by

(1)

∏̀
j=1

Uj

 |ψ〉 = U` . . . U1 |ψ〉 .

We represent a classical random variable X with probability density function pX
by a density operator σX that is diagonal in a fixed (orthonormal) basis {|x〉}x∈X :
σX =

∑
x∈X pX(x)|x〉〈x|X . For a quantum system A classically correlated with a

random variable X, we represent the corresponding classical-quantum state by the
density operator ρXA =

∑
x∈X pX(x)|x〉〈x|X ⊗ ρAx , in which ρAx is the state of system

A conditioned on the random variable X taking value x ∈ X . The extraction of
classical information from a quantum system is represented by quantum instruments:
classical-quantum CPTP maps that take classical-quantum states on a composite
system X ⊗ A to classical-quantum states. Viewing classical random variables as a
special case of quantum systems, quantum instruments can be viewed as a special
case of quantum channels.

3.1.2. Pauli Operators. When considering a quantum system A of dimension
q, we fix an orthonormal basis {|i〉}i∈{0,1,...,q−1} for A and use the following general-
izations of Pauli operators: for j, k ∈ {0, 1, . . . , q − 1}, Xj |k〉 = |(k + j) mod q〉 and

Zj |k〉 = e
i2π

jk
q |k〉. The operators in the set {XjZk}j,k∈{0,1,q−1} are known as the

Heisenberg-Weyl operators and form a basis for the linear vector space of operators
on A, and the operators in

(2) Fq,N = {Xj1Zk1 ⊗ · · · ⊗XjNZkN }j`k`∈{0,1,...,q−1}2,`∈[N ]

form a basis for the space of operators on A⊗N . For E ∈ Fq,N , we denote by wt(E)
the weight of E, i.e., the number of A subsystems on which E acts non-trivially.
For δ ∈ [0, 1], the set

(3) Eδ,q,N = {E ∈ Fq,N : wt(E) ≤ δN}

is the subset of elements of Fq,N of weight less than or equal to δN .

3.1.3. Teleportation. Our simulation protocols make heavy use of the telepor-
tation protocol between Alice and Bob [3], which uses the following resource state

shared by Alice and Bob, called an EPR pair: |Φ+〉TATB = 1√
2
(|00〉+ |11〉), with

the qubit in the TA register held by Alice, and the qubit in the TB register held
by Bob. The teleportation protocol then uses one of these resource states to tele-
port one qubit either from Alice to Bob, or from Bob to Alice. If Alice wants to
teleport a qubit |ψ〉 in the register C to Bob, with whom she shares an EPR pair,
she applies a joint Bell measurement, which can perfectly distinguish the Bell states
{|Φxz〉 = 1√

2
(|0x〉+(−1)z |1x̄〉)}x,z∈{0,1}, to the registers CTA she holds, and obtains

uniformly random measurement outcomes xz ∈ {0, 1}2. After this measurement, the
state in the TB register is XxZz |ψ〉, for X and Z the Pauli operators corresponding to
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bit flip and phase flip in the computational (Z) basis, respectively. If Alice transmits
the two bits xz to Bob, he can then decode the state |ψ〉 on the TB register by apply-
ing (XxZz)−1 = ZzXx. Teleportation from Bob to Alice is performed similarly (EPR
pairs are symmetric).

3.1.4. Pseudo-Measurements. Another technique we use is that of making
classical operations coherent: measurements and classically controlled operations are
replaced by corresponding unitary operators (and ancilla register preparation). We
call the coherent version of a measurement a pseudo-measurement . Without loss
in generality, it suffices to consider the measurement of a single qubit in the stan-
dard basis {|0〉, |1〉}. This measurement corresponds to the instrument N defined
by N (ρ) = 〈0 | ρ |0〉 |0〉〈0| + 〈1 | ρ |1〉 |1〉〈1|. We replace this with the action of the
CNOT operation |0〉〈0| ⊗ I + |1〉〈1| ⊗ X on the qubit and a fresh ancillary qubit pre-
pared in state |0〉, i.e., with the CPTP map N ′ defined by N ′(ρ) = U(ρ ⊗ |0〉〈0|)U∗,
where U is the CNOT operation. The ancilla qubit may now be transmitted instead of
sending the classical outcome of the measurement N . Provided all further operations
on the two qubits are only controlled unitary operations (in which the two qubits
may only be control qubits), each separately behaves like the classical measurement
outcome. The advantage of this substitution is that unlike measurements, they are
reversible. If it is later realized that a qubit should not have been measured, the
pseudo-measurement can be undone.

3.1.5. Distance Measures. To measure the success of the simulation, we use
the trace distance ‖ρ − σ‖A1 between two arbitrary states ρA and σA, in which

‖O‖A1 = Tr((O†O)
1
2 ) is the trace norm for operators on system A. We might drop the

A superscript if the system is clear from the context. The trace distance has the oper-
ational interpretation to be (four times) the best possible bias to distinguish between
the two states ρA and σA, given a single unknown copy of one of these two states [53,
Chapter 3]. To distinguish between quantum channels, we first consider the induced
norm for quantum channels N ∈ L(A,B): ‖N‖ = max {‖N (σ)‖B1 : σ ∈ D(A)}. Cor-
relations with another quantum system can help distinguish between quantum chan-
nels, so an appropriate norm to use to account for this is the completely bounded
trace norm [1]: ‖N‖� = ‖N ⊗ IR‖ for some reference system R of the same dimension
as the input system A [53, Chapter 3]. For two quantum channels N , M ∈ L(A,B),
‖N −M‖� has a useful operational interpretation: it is (four times) the best possible
bias with which we can identify a uniformly random (unknown) channel out of the
two, when we are allowed only one use of the channel.

3.2. Quantum Communication Model.

3.2.1. Noiseless Communication Model. In the noiseless quantum commu-
nication model that we want to simulate, there are five quantum registers: the A
register held by Alice; the B register held by Bob; the C register, which is the com-
munication register exchanged back and forth between Alice and Bob and initially
held by Alice, the E register held by a potential adversary Eve; and finally the R
register, a reference system which purifies the initial (and then also the final) state of

the ABCE registers. The initial state |ψinit〉ABCER ∈ H(A⊗B⊗C⊗E⊗R) is chosen
arbitrarily from the set of possible inputs and is fixed at the outset of the protocol, but
it is possibly unknown (totally or partially) to Alice and Bob. Note that to allow for
composition of quantum protocols in an arbitrary environment, we consider arbitrary
quantum states as input, which may be entangled with systems RE. A protocol Π is
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then defined by the sequence of unitary operations U1, U2, . . . , UN+1, with Ui for odd i
known at least to Alice (or given to her in a black box) and acting on registers AC,
and Ui for even i known at least to Bob (or given to him in a black box) and acting on
registers BC. For simplicity, we assume that N is even. We can modify any protocol
to satisfy this property, while increasing the total cost of communication by at most
one communication of the C register. The unitary operations of protocol Π can be as-
sumed to be public information and known to Eve. On a particular input state |ψinit〉,
the protocol generates the final state |ψfinal〉ABCER = UN+1 · · ·U1 |ψinit〉ABCER, for
which at the end of the protocol the A and C registers are held by Alice, the B reg-
ister is held by Bob, and the E register is held by Eve. The reference register R is
left untouched throughout the protocol. The output state of the protocol is the ABC
part, i.e., Π(|ψinit〉) = TrER(|ψfinal〉〈ψfinal|ABCER), and by a slight abuse of notation
we also represent the induced quantum channel from ABCE to ABC simply by Π.
This is depicted in Figure 1. Note that while the protocol only acts on ABC, we
wish to maintain correlations with the reference system R, while we simply disregard
what happens on the E system assumed to be in Eve’s hand. Since we consider local
computation to be free, the sizes of A and B can be arbitrarily large, but still of
finite size, say mA and mB qubits, respectively. We restrict ourselves to the case of
a single-qubit communication register C, which is the worst case for noisy interactive
communication. Every protocol can be converted into such a form by increasing the
communication by a factor of at most two but possibly at the expense of much more
interaction: if a party has to speak when it is not his turn, he sends a qubit in state |0〉.
Note that both the Yao and the Cleve–Buhrman models of quantum communication
complexity can be recast in this framework; see Section 3.3.

We later embed length N protocols into others of larger length N ′ > N . To
perform such noiseless protocol embedding, we define some dummy registers Ã, B̃,
C̃ isomorphic to A, B, C, respectively. Ã and C̃ are part of Alice’s scratch register
and B̃ is part of Bob’s scratch register. Then, for any isomorphic quantum registers
D, D̃, let SWAPD↔D̃ denote the unitary operation that swaps the D, D̃ registers.
Recall that N is assumed to be even. In a noiseless protocol embedding, for i ∈
{1, 2, . . . , N − 1}, we leave Ui untouched. We replace UN by (SWAPB↔B̃UN ) and
UN+1 by (SWAPAC↔ÃC̃UN+1). Finally, for i ∈ {N + 2, N + 3, . . . , N ′+ 1}, we define
Ui = I, the identity operator. This embedding is important in the setting of interactive
quantum coding for the following reasons: first, adding these Ui for i > N makes the
protocol well defined for N ′+1 steps. Then, swapping the important registers into the
safe registers Ã, B̃, C̃ ensures that the important registers are never affected by noise
arising after the first N +1 steps have been applied. Hence, in our simulation, as long
as we succeed in implementing the first N+1 steps without errors, the simulation will
succeed since the Ã, B̃, C̃ registers will then contain the output of the simulation,
with no error acting on these registers.

We refer later to the unidirectional model, consisting of one-way protocols; in this
noiseless model, we allow for large local registers A′, B′ and for a large communication
register C ′ that is used only once, either from Alice to Bob or from Bob to Alice,
depending on the protocol. These registers can be further decomposed such that
when used for simulation, the A and C registers of the protocol to be simulated are
subsystems of A′, and B is one of B′. For concreteness we consider here the case of
communication from Alice to Bob; the other case is symmetric. A simulation protocol
U in the unidirectional model is defined by two quantum instrumentsMA′C′

1 ,MB′C′

2 ,
and the output of the protocol on input |ψ〉 ∈ H(A ⊗ B ⊗ C ⊗ E ⊗ R) is the state
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Fig. 1. Depiction of a quantum protocol in the noiseless communication model, adapted from
the long version of [52, Figure 1].

of the ABC subsystem of M2M1(|ψ〉) and is denoted U(|ψ〉). By abuse of notation,
the induced quantum channel from ABCE to ABC is also denoted U .

3.2.2. Noisy Communication Model. There are many possible models for
noisy communication. We consider two in particular: one analogous to the Yao
model with no shared entanglement but noisy quantum communication, which we
call the quantum model, and one analogous to the Cleve–Buhrman model with noise-
less pre-shared entanglement but noisy classical communication, which we call the
shared entanglement model. A further variation on the shared entanglement model in
which the entanglement is also noisy is considered in subsection 6.4. For simplicity,
we formally define in this section what we sometimes refer to as alternating commu-
nication models, in which Alice and Bob take turns transmitting the communication
register to each other, and this is the model in which most of our protocols are defined.
Our definitions easily adapt to somewhat more general models which we call oblivious
communication models, following Ref. [14]. In these models, Alice and Bob do not
necessarily transmit their messages in alternation, but nevertheless in a fixed order
and of fixed sizes known to all (Alice, Bob, and Eve) depending only on the round
and not on the particular input or the actions of Eve. Communication models with a
dependence on inputs or actions of Eve are called adaptive communication models.

Quantum Model. We give formal definitions for the quantum model in Appendix A.1.
Let us give an informal description here.

In the quantum model, Alice has workspace A′, Bob has workspace B′, adversary
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Eve has workspace E′, and there is some quantum communication register C ′ of some
fixed size q, exchanged back and forth between them N ′ times, passing through Eve’s
hand each time. Alice and Bob can perform arbitrary local processing between each
transmission, whereas Eve’s processing when the C ′ register passes through her hand
is limited by the noise model as described below. The input registers ABCE are
shared between Alice (AC), Bob (B) and Eve (E) and the output registers ÃB̃C̃ are
shared between Alice (ÃC̃) and Bob (B̃). The reference register R containing the
purification of the input is left untouched throughout. Alice and Bob also possess
registers CA and CB, respectively, acting as virtual communication register C from
the original protocol Π of length N to be simulated. The communication rate of the
simulation is given by the ratio N

N ′ log q .
We are interested in two models of errors, adversarial and random noise. In the

adversarial noise model, we are mainly interested in adversary Eve with a bound δN ′

on the number of errors that she introduces on the quantum communication register
C ′ that passes through her hand. The fraction δ of corrupted transmissions is called
the error rate, and is assessed by requiring that there exists a representation of the
global action of Eve on the N ′ quantum communication registers with Kraus operators
of weight at most δN ′.

In the random noise model, we consider N ′ independent and identically dis-
tributed uses of a noisy quantum channel acting on register C ′, half the time in
each direction. Eve’s workspace register E′ (including her input register E) can be
taken to be trivial in this noise model.

For both noise models, we say that the simulation succeeds with error ε if for any
input, the output in register ÃB̃C̃ corresponds to that of running protocol Π on the
same input, while also maintaining correlations with system R, up to error ε in trace
distance.

Shared Entanglement Model. We give formal definitions for the shared entangle-
ment model in Appendix A.2. Let us give an informal description here.

In the shared entanglement model, Alice has workspace A′, Bob has workspace B′,
adversary Eve has workspace E′, and there is some classical communication register
C ′′ of some fixed size q, exchanged back and forth between them N ′ times, passing
through Eve’s hand each time. Alice and Bob also pre-share noiseless entanglement
in register TATB. Alice and Bob can perform arbitrary local processing between each
transmission, whereas Eve’s processing when the C ′′ register passes through her hand
is limited by the noise model as described below. The input registers ABCE are
shared between Alice (AC), Bob (B) and Eve (E) and the output registers ÃB̃C̃ are
shared between Alice (ÃC̃) and Bob (B̃). The reference register R containing the
purification of the input is left untouched throughout. Alice and Bob also possess
registers CA and CB, respectively, acting as virtual communication register C from
the original protocol Π of length N to be simulated. The communication rate of the
simulation is given by the ratio N

N ′ log q .
We are interested in two models of errors, adversarial and random noise. In the

adversarial noise model, we are mainly interested in an adversary Eve with a bound
δN ′ on the number of errors that she introduces on the classical communication
register C ′′ that passes through her hand. The fraction δ of corrupted transmissions
is called the error rate, and is assessed by requiring that the global action of Eve
on the N ′ classical communication registers introduces errors of Hamming weight at
most δN ′.

In the random noise model, we consider N ′ independent and identically dis-
tributed uses of a noisy classical channel acting on register C ′′, half the time in each
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direction. Eve’s workspace register E′ (including her input register E) can be taken
to be trivial in this noise model.

For both noise models, we say that the simulation succeeds with error ε if for any
input, the output in register ÃB̃C̃ corresponds to that of running protocol Π on the
same input, while also maintaining correlations with system R, up to error ε in trace
distance.

Notice that adversaries in the quantum model and shared entanglement model are
incomparable. In the quantum model, the adversary can inject fully quantum errors
since the messages are quantum, while errors in the shared entanglement model are
restricted to be modifications of classical symbols. On the other hand, in the shared
entanglement model the adversary can read all the classical messages without the risk
of corrupting them, whereas in the quantum model, any attempt to “read” messages
will result in an error in general on some quantum message.

3.3. Quantum Communication Complexity. We discuss how standard mod-
els for quantum communication complexity fit into our model for noiseless quantum
communication. In the Yao model for quantum communication complexity [56], Al-
ice is given a classical input x ∈ X and Bob is given a classical input y ∈ Y , and
they want to compute a classical function f : X × Y → Z of their joint input (often
X = Y = {0, 1}n, Z = {0, 1}) by communicating as few quantum bits as possible, but
without regard to the local computation cost. Often, we are only interested in x ∈ X,
y ∈ Y satisfying some promise P : X × Y → {0, 1}. A global quantum system is
split into three subsystems: the A register held by Alice, the B register held by Bob,
and the C register, which is the communication register initially held by Alice and
exchanged back and forth by Alice and Bob in each round. Our formal description of
the protocols in this model is based upon the one given in Ref. [35].

A length N protocol is defined by a sequence of unitary operators U1, . . . , UN+1

in which for i odd, Ui acts on the AC register, and for i even, Ui acts on the BC
register. We need N + 1 unitary operators in order to have N messages since a first
unitary operation is applied before the first message is sent and a last one is applied
after the final message is received. Initially, all the qubits in the A, B, C registers
are set to the all |0〉 state, except for n qubits in the A register initially set to x ∈ X,
and n in the B register set to y ∈ Y . The number of qubits mA, mB ∈ N in the A
and B registers is arbitrary (of course, mA, mB ≥ n) and is not taken into account
in the cost of the protocol. The complexity of the Ui’s is also immaterial, since local
computation is deemed free. However, the number of qubits c in the C register is
important and is taken into account in the communication cost, which is N · c. The
outcome of the protocol is obtained by measuring an appropriate number of qubits
of registers A and B of Alice and Bob, respectively, after the application of UN+1.
The protocol succeeds if the outcomes of both measurements equal f(x, y) with good
probability, usually required to be a constant greater than 1/2, for any x, y satisfying
the promise.

Another model for quantum communication complexity was introduced by Cleve
and Buhrman [18]. In their model, communication is classical, but parties are allowed
to pre-share an arbitrary entangled quantum state at the outset of the protocol. We
can view protocols in this model as a modification on those of Yao’s model in which
the initial state |ψ〉 on the ABC register is arbitrary except for n qubits in each of
the A, B registers initialized to x, y, respectively. Also, each qubit in the C register is
measured in the computational basis, and it is the outcome of these measurements that
is communicated to the other party. Note that by using pseudo-measurements instead
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of actual measurements in each round, the parties can use quantum communication
instead of classical communication. Then the two models become almost identical,
except for the initial state, which is arbitrary in the Cleve–Buhrman model, and
fixed to the all 0 state in the Yao model (not including each party’s classical input).
Since our simulation protocols consider general unitary local processing but do not
assume any particular form for the initial state, they work on this slight adaptation
of the Cleve–Buhrman model as well as on the Yao model of quantum communication
complexity.

Hence, both the Yao and the Cleve–Buhrman models of quantum communication
complexity can be recast in our framework for noiseless communication by making
all operations coherent: put the initial classical registers into quantum registers, re-
place classically controlled operations by quantumly controlled operations, also replace
measurements by pseudo-measurements, and then replace any classical communica-
tion by quantum communication. In particular, this gets rid of the problem of the
non-reversibility of measurements in the Cleve–Buhrman model.

3.4. Classical Communication.

3.4.1. History. Our simulation protocols contain an important classical com-
ponent. In our setting, we are interested in protocols in which each party sends a
message from some message set [d] = {1, 2, . . . , d − 1, d} of size d in alternation, for

some fixed number of rounds N ′ (actually, N ′

2 in our protocols). A round consists of
Alice sending a message to Bob and then Bob sending a message back. Parties only
have access to some noisy channels, so they need to encode these messages in some
way. The codes used to do so in an interactive setting are described in the next sub-
section. For the moment, let us focus on the messages the parties wish to transmit,
without the coding.

In round i, Alice transmits a message ai ∈ [d] to Bob, and then Bob sends back a
message bi ∈ [d]. These messages depend on the messages a1, a2, . . . , ai−1 ∈ [d] and
b1, b2, . . . , bi−1 ∈ [d] that Alice and Bob sent in the previous rounds, respectively.
We refer to these sequences of messages (at the end of round i) as Alice’s history
sA = a1 · · · ai ∈ [d]i and Bob’s history sB = b1 · · · bi ∈ [d]i, respectively. Note that
these histories are updated in each round, and that each history, at the end of round
i, can be represented as a node at depth i in some d-ary tree of depth N ′. This tree
is called a history tree. The whole (noiseless) communication can be extracted from
the information in these two histories.

When the communication is noisy, in some rounds one party makes errors when
trying to determine the other party’s history. When comparing the history s =
s1 · · · si ∈ [d]i of a party in round i of the protocol without coding, with the other
party’s best guess si = si1 · · · sii ∈ [d]i for that history, the least common ancestor of s
and si is the node at depth i−` such that s1 · · · si−` = si1 · · · sii−` but si−`+1 6= sii−`+1.
We call ` the magnitude of the error of such a guess si, and in general for two histories
s, si ∈ [d]i satisfying the above (with least common ancestor at depth i− `) we write
L(s, si) = `. Note that we can compute ` as i−max {t : (∀j ≤ t)[sj = sij ]}.

3.4.2. Tree Codes. Standard error correcting codes are designed for data trans-
mission and therefore are not particularly well suited for interactive communication
over noisy channels. In his breakthrough papers [46, 47], Schulman defined tree codes,
which are particular codes designed for such interactive communication. Indeed, these
tree codes can perform encoding and decoding round by round (following Ref. [25], we
refer to such codes as online codes), such that for each round, a message from the mes-



NOISY INTERACTIVE QUANTUM COMMUNICATION 15

sage set [d] is transmitted, but even if there is some decoding error in this round, for
each additional round that we perform (without transmission error), the more likely it
is that this previous decoding error is correctly decoded. We describe this self-healing
property in more detail after formally defining tree codes. We use the following for
our definition. Given a set A and its k-fold Cartesian product Ak = A × · · · × A
(k-times), we denote, for any n ∈ N, A≤n = ∪nk=1A

k. Also, given a transmission al-
phabet Σ and two words ē = e1 · · · et ∈ Σt and ē′ = e′1 · · · e′t ∈ Σt over this alphabet,
we denote by ∆(ē, ē′) (the Hamming distance) the number of different symbols, i.e.,
∆(ē, ē′) = |{i : ei 6= e′i}|.

Definition 2. (Tree codes [47]) Given a message set [d] of size d > 1, a number
of rounds of communication N ′ ∈ N, a distance parameter 0 < α < 1 and a transmis-
sion alphabet Σ of size |Σ| > d, a d-ary tree code of depth N ′ and distance parameter
α over alphabet Σ is defined by an encoding function E : [d]≤N

′ → Σ, and a decoding
function D : Σ≤N

′ → [d]≤N
′
.

Let Ē : [d]≤N
′ → Σ≤N

′
denote the extension of E to strings, i.e., for any t ≤ N ′

and a = a1 · · · at ∈ [d]t,

Ē(a) = E(a1)E(a1a2) · · ·E(a1 · · · at−1)E(a1 · · · at) ,

which is a string in Σt.
The encoding function satisfies the following distance property, called the tree code

property. For any t ≤ N ′, and a, a′ ∈ [d]t,

L(a, a′) = ` =⇒ ∆(Ē(a), Ē(a′)) ≥ α · ` .

In other words, if the least common ancestor of a, a′ is at depth t− `, then the corre-
sponding codewords are at distance at least α`.

The decoding function satisfies the property that for any t ≤ N ′, and ē ∈ Σt,

D(ē) ∈ {a : a ∈ [d]t minimizes ∆(Ē(a), ē)} .

See Appendix B for a depiction of tree codes.
We later consider decoding of tree codes with an erasure symbol⊥, that is not used

by the encoding function, but may occur in the output of a channel. The decoding
algorithm extends verbatim to received words with erasure symbols: it outputs a
message sequence whose tree encoding is closest in Hamming distance to the received
word.

Note that the decoding function is not uniquely defined for a given tree code:
we could avoid ambiguity by outputting a special failure symbol for D(ē) whenever
|{a : a ∈ [d]t minimizes ∆(Ē(a), ē)}| > 1. Also note that we can view tree codes in
the following alternative way, connecting them with the history tree representation
defined above. Starting with a history tree, we can label the arcs out of each node by
a symbol from Σ corresponding to the encoding of that path in the tree code. The
encoding function Ē represents the concatenation of the symbols on the path from
root to node a, and the distance property is related to the distance of a, a′ to their
least common ancestor in the history tree, and to the number of errors during these
corresponding L(a, a′) last transmissions. The following was proved in Ref. [47] for
the existence of tree codes. Let H(α) = −α · logα − (1 − α) · log (1− α) denote the
binary entropy function.

Lemma 3. Given a message set [d] of size d > 1, a number of rounds of commu-
nication N ′ ∈ N, and a distance parameter 0 < α < 1, taking transmission alphabet
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Σ with |Σ| = 2b(2 · 2H(α) · d)
1

1−α c − 1 suffices to label the arcs of some tree code, i.e.,
there exists an encoding function E satisfying the tree code property, and the required
alphabet size is independent of N ′, the number of rounds of communication.

In fact, the result due to Schulman is even stronger: there exists an unbounded
depth tree code with Σ of the size discussed above. This stronger result could be useful
in the case in which the number of rounds N ′ is not bounded at the beginning of the
protocol, and it has been used to authenticate streams of classical data in Ref. [25].

The distance property of tree codes ensures the following: if in round t the decod-
ing is good for the first t− ` messages sent (` ≥ 0), but wrong for the message sent in
round t−`+1 (and possibly also for some other messages), then the re-encoding of the
sequence of decoded messages must be distinct from the transmitted one in at least α·`
positions in the last ` rounds. Then, incorrect decoding (i.e., decoding to a message
different from the one encoded) implies that there were at least 1

2 · α · ` transmission
errors during those rounds, independent of what was sent in the first t − ` rounds.
More precisely, given a transmitted message ā ∈ [d]t, encoded as ē = Ē(ā) ∈ Σt,
received as ē′′ ∈ Σt, and decoded as ā′ = D(ē′′) ∈ [d]t, with ē′ = E(ā′), if we have
a1 · · · at−` = a′1 · · · a′t−` but at−`+1 6= a′t−`+1, i.e., L(a, a′) = `, then ∆(ē, ē′) ≥ α · `
and ∆(et−`+1 · · · et, e′′t−`+1 · · · e′′t ) ≥ 1

2 ·α · `. (Note that e1 · · · et−` = e′1 · · · e′t−`). This
property is extremely useful for interactive communication: even if the decoding of a
message is incorrect in some round, if there are sufficiently many error-free subsequent
transmissions, we can later correct that error. This self-healing property is essential
to our analysis of the simulation protocol, and to our proof of Lemma 16.

3.4.3. Blueberry Codes. Another kind of online code we need in order to
withstand the highest possible error rates are randomized error detection codes called
blueberry codes in Ref. [25]. To use these, Alice and Bob encode and decode messages
with a shared secret key in a way that weakly authenticates and encrypts each mes-
sage, and in this way adversary Eve cannot apply a corruption of her choosing. Such
codes unknown to the adversary were termed private codes in Ref. [36]. At best, with
some small (but constant) probability Eve is able to corrupt a message in such a way
that Alice and Bob do not detect it, and this results in an effective decoding error, but
most of the time a corruption of Eve results in an effective erasure decoding. Since
the tree code property, and hence also its decoding, is defined in terms of Hamming
distance, transmission errors are twice as harmful as erasures in the tree decoding.
(We can view the erasure flag ⊥ as a special symbol in Σ; although never used in the
encoding, this symbol helps in decoding.) When incorrect decoding occurs, the two
parties might perform operations on the quantum registers that need to be corrected
later. On the other hand, when an erasure occurs, it is visible to the recipient and
this prevents him from performing such incorrect operations. Hence, concatenating
a blueberry code with the tree code enables significant improvement in the allowed
error rates.

These blueberry codes were defined in Ref. [25] for the purpose of authenticating
streams of classical messages and for the simulation of interactive classical protocols.
Below we summarize their definition and important properties.

Definition 4. (blueberry codes [25]) For i ≥ 1 let Bi : Γ→ Γ be a random and
independent permutation. The blueberry code maps a string e ∈ Σt ⊂ Γt of arbitrary
length t to B(e) = B1(e1)B2(e2) · · ·Bt(et). We denote such a code as B : Σ∗ → Γ∗,

and define the erasure parameter of this code as β = 1 − |Σ|−1
|Γ|−1 , and its complement

εβ = 1− β = |Σ|−1
|Γ|−1 .
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Definition 5. Assume that at some time i, di = Bi(ei) is transmitted and d′i 6=
di is received. If d′i 6∈ Bi(Σ), we mark the transmission as an erasure, and the decoding
algorithm (for the Blueberry code) outputs ⊥. Otherwise, this event is called an error.

Corollary 6. Let e ∈ Σt and assume B(e) is communicated over a noisy chan-
nel. Every symbol corrupted by the channel causes either an error with probability εβ,
or an erasure with probability β.

Lemma 7. Assume a blueberry code B : Σ∗ → Γ∗ is used to transmit a string
e ∈ Σt over a noisy channel. For any constant 0 ≤ c ≤ 1, if the channel’s corruption
rate is c, then with probability 1−2−Ω(t) at least a (1−2εβ)-fraction of the ct corrupted
transmissions are marked as erasures.

Corollary 8. If out of t received transmissions, ct were marked as erasures
while decoding a blueberry code B : Σ∗ → Γ∗, then except with probability 2−Ω(t) over
the shared randomness, the adversarial corruption rate is at most c/(1− 2εβ).

4. Basic Simulation Protocol. We start by describing a basic simulation pro-
tocol, which achieves our first goal of simulating quantum protocols with asymp-
totically positive communication and tolerable error rates, and with entanglement
consumption linear in the communication. This provides an interactive analogue of
a family of good quantum codes. This protocol contains the essential ideas of the
optimal protocol of section 5, but the description and analysis are simplified because
we do not have the additional blueberry code layer. Moreover, this protocol succeeds
with perfect fidelity, provided the number of errors is below a certain threshold.

4.1. Result. We focus on the shared entanglement model. Techniques to dis-
tribute entanglement in both random [39, 50, 22] and adversarial [16, 24, 43] error
models are well studied. We can combine our findings with these entanglement dis-
tribution techniques to translate results in the shared entanglement model to the
quantum model. We first focus on an adversarial error model, and then adapt these
results to a random error model. Such extensions to other communication models are
explored in section 6. For the basic simulation protocol described in this section, en-
tanglement is only used to teleport the quantum information back and forth between
the two parties. In section 5, we show how to tolerate maximum error rates by also
using entanglement to generate a shared secret key unknown to the adversary, thus
enabling the two honest parties to detect most adversarial errors as effective erasures.

Given an adversarial channel in the shared entanglement model with low enough
error rate, we show how to simulate perfectly any noiseless protocol of length N over
this channel using a number of transmissions linear in N , and consuming a linear
number of EPR pairs. More precisely, we prove the following. (See Appendix A.2 for
the definition of AS

δ,q,N ′ which is mentioned in the theorem.)

Theorem 9. There exist a constant error rate δ > 0, communication rate RC >
0, transmission alphabet size q ∈ N, and entanglement consumption rate RE ∈ R+

such that for all noiseless protocol lengths N ∈ 2N, there exists a universal simulator
S in the shared entanglement model of length N ′, with communication rate at least
RC, transmission alphabet size q, entanglement consumption rate at most RE, which
succeeds with zero error at simulating all noiseless protocols of length N against all
adversaries in AS

δ,q,N ′ .

Specific values for the constants posited in the theorem are given at the end of sub-
section 4.4.
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4.2. Intuition for the Simulation Protocol. Before describing in detail the
basic simulation protocol, first we give some intuition on how it succeeds in simulating
a noiseless quantum protocol over a noisy channel. The strategy to avoid losing
the quantum information in the communication register over the noisy channel is to
teleport the C register of the noiseless protocol back and forth into Alice’s CA register
and Bob’s CB register, creating a virtual C register which is either in Alice’s or in
Bob’s hand. They use the shared entanglement in TATB to do so, and use the noisy
classical channels to transmit their teleportation measurement outcomes. Whenever
Alice possesses the virtual C register she can try to evolve the simulation of the
noiseless protocol by applying one of her noiseless protocol unitary operators on the
virtual AC register, and this applies similarly for Bob on the virtual BC register. If
they later realize that there has been some error in the teleportation decoding, they
might have to apply inverses of these operations, but overall, everything acting on the
virtual ABC quantum register can be described as an intertwined sequence of Pauli
operators acting on the C register and noiseless protocol unitary operators (and their
inverses) acting on the AC and the BC registers. There are two important points to
notice here. First, the sequence of operations acting on the joint register is a sequence
of reversible unitary operators. Hence, if the parties keep track of the sequence of
operations on the joint register, then at least one of the parties can reverse any of
his/her operations when he/she is in possession of the virtual C register. Second,
both parties know the order in which these operators have been applied while only
one knows exactly which operator was applied: for Pauli operators, both parties know
±XxZz is applied at some point, but only one knows the correct value of xz ∈ {0, 1}2,

and similarly both know that UMj (with U+1
j = Uj , U

−1
j = U†j , U0

j = I) is applied
at some point, but only one knows the correct values of j ∈ {1, . . . , N ′ + 1} and
M ∈ {−1, 0,+1}. This is the classical information they try to transmit to each
other so that both know exactly the sequence of operations that have been applied
on the joint register. The tree codes due to Schulman are particularly well suited for
protecting against noise in this interactive scenario.

More concretely, in each round the parties first need to decode the teleportation
before trying to evolve the simulation of the quantum protocol and finally teleporting
back the communication register to the other party. The goal is for each party to know
his/her exact position in the simulation of the protocol (i.e., the sequence of unitary
operators that have been applied to the virtual protocol registers) when they are able
to correctly decode the classical messages sent by the other party. To enable a party
to learn exactly what action was taken by the other party in the earlier rounds, the
message sent in each round is in {0, 1}2 × {−1, 0,+1} × {0, 1}2, encoded with a tree
code. The first pair of bits corresponds to the teleportation decoding operation done
at the beginning of a party’s turn. The trit is associated with the evolution in the
noiseless protocol: +1 stands for going forward with the protocol, i.e., for a unitary
operator of the noiseless protocol that was applied to the joint state of the party’s
local register and the communication register; −1 stands for going backward with the
protocol, i.e., for the inverse of a unitary operation of the noiseless protocol that was
applied by that party to the joint state; and 0 stands for holding the protocol idle, i.e.,
no action is taken by that party to evolve the protocol in that round. Note that the
index j of the unitary operator UMj that a party applies can be computed solely from
the sequence of trits sent by that party, and such an explicit calculation is defined in
the simulation description. Finally, the last pair of bits corresponds to the outcome
of the measurement in the teleportation of the communication register, which enables
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the other party to correctly decode the teleportation.
For each party, we call his/her history at some point the sequence of these triplets

of messages that he/she transmitted up to that point (see subsection 3.4). If a party
succeeds in correctly decoding the history of the other party, he/she then possesses all
the information about the operations that were applied on the joint quantum register
and can choose his/her next move accordingly.

Note that the information about which Pauli operator was used to decode the
teleportation might appear redundant, it is not when there are decoding errors. This
is a subtle and important point, so let us explain in more detail what we mean. In
the case of decoding errors, the wrong Pauli operator might be applied to do the
teleportation decoding. Even though the party who applied the wrong Pauli operator
will later realize his/her mistake (when the self-healing property of the tree code
eventually enables him/her to decode this message correctly), the other party still
needs to be informed of this previous error in decoding. Sending the information
about which Pauli operator was used to do the teleportation decoding accomplishes
this and even enables the other party to correct this wrong teleportation decoding
if needed. Indeed this property has an essential use, especially in the simulation for
maximal error tolerance in section 5. In more detail, when a corruption is detected
as an erasure, the teleportation decoding operation applied is the trivial one. This is
wrong three-quarters of the time on average. Another approach that would also work
would be to let the other party know what information was received, and then let
each party correct for his/her own previous decoding error. The problem with this is
that the tolerable error rate would have to be much lower than 1

2 − ε: in the terms
used in the analysis, we would need a good round to recover from an erasure round,
which is undesirable.

4.3. Description of the Simulator. All communication is done with a tree
encoding over some alphabet Σ. To later simplify the analysis, we fix the distance
parameter to α = 39

40 . The message set consists of {0, 1}2 × {−1, 0,+1} × {0, 1}2 ∼=
[4] × [3] × [4] ∼= [48], so we take arity d = 48. Also, taking N ′ = 4(1 + 1

N )N is
sufficient. By Lemma 3, we know that there exists a q ∈ N independent of N ′ such
that an alphabet Σ of size q suffices to label the arcs of a tree code of any depth
N ′ ∈ N. Before the protocol begins, both parties agree on such a tree code of depth
N ′ with corresponding encoding and decoding functions E and D (each party uses
a separate instance of the same tree code to transmit her/his messages to the other
party). The goal is to tolerate error rates up to δ = 1

80 .
We use the following convention for the variables describing the protocol. On

Alice’s side, in round i, xADi zADi ∈ {0, 1}2 correspond to the bits she uses for the
teleportation decoding on the X and Z Pauli operators, respectively; xAMi zAMi ∈ {0, 1}2
correspond to the bits of the teleportation measurement on the corresponding Pauli
operators; jAi ∈ Z and MA

i ∈ {−1, 0,+1} correspond, respectively, to the index of
the unitary operator she uses in round i and to whether she uses U+1

jAi
= UjAi or its

inverse U−1
jAi

= U†
jAi

or simply applies the identity channel U0
jAi

= I on the AC quantum

register; and the counter cAi keeps track of the sum of all previous messages MA
` ,

l ≤ i. On Bob’s side, we use a similar set of variables, with superscript B instead of A.
All Pauli operators are applied on the virtual C register. When discussing variables
obtained from decoding in round i, a superscript i is added to account for the fact
that this decoding might be wrong and could be corrected in later rounds. Similarly,
a superscript i is used when discussing other variables that are round-dependent.
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4.3.1. Representations of the Joint State. The actions taken by Alice and
Bob round i are based on their best guesses for the state |ψi〉 of the joint register at
the beginning of round i. (Note that |ψ1〉 = |ψinit〉 is the initial state in the protocol
being simulated.) The state |ψi〉 can be classically computed from the information
in Alice’s and Bob’s histories; due to noise, it is generally unknown, at least in part,
to Alice and Bob. The analysis rests on the following two representations for the
state |ψi〉. The first can be directly computed, up to irrelevant operations of Eve on
the E register, as

|ψi〉ABCER =

i−1∏
`=1

(
XxBM

` Zz
BM
` U

MB
`

jB`
Zz

BD
` XxBD

` XxAM
` Zz

AM
` U

MA
`

jA`
Zz

AD
` XxAD

`

)
|ψinit〉ABCER .

(4)

Here, from the history sA of Alice’s history tree, we can directly obtain from the `th
message sent by Alice, for ` = 1 · · · i− 1, the two bits xAD` zAD` used to decode the tele-
portation, the trit MA

` corresponding to the evolution of the protocol performed in
round `, and then the two bits xAM` zAM` corresponding to the outcome of the telepor-
tation measurement. We then use counters cA` ’s that maintain the sums of the MA

` ’s
to compute the indices jA` ’s of the noiseless protocol unitary operators used by Alice
in round `: cA0 = 0, cA` = cA(`−1) +MA

` , j
A
` = 2cA(`−1) +MA

` . Note that jAi depends only

on the sequence of messages MA
1 ,M

A
2 , . . . ,M

A
(i−1),M

A
i . Similarly, the history sB of

Bob’s history tree is used to obtain xBD` zBD` , xBM` zBM` , as well as MB
` , and to compute

cB0 = 0, cB` = cB(`−1) +MB
` , j

B
` = 2cB(`−1) +MB

` + 1. We define UMj = I whenever j ≤ 0

or M = 0. Note that if MA
` 6= 0, jA` is odd and UM

jA`
acts on Alice’s side. Similarly, if

MB
` 6= 0, jB` is even and UM

jB`
acts on Bob’s side. Also note that j ≤ N ′+1, so the Uj ’s

are well-defined, by the noiseless protocol embedding described in subsection 3.2.1.
This first representation of the form of the state |ψi〉 is not too informative in

itself, but from it we can classically compute a second representation by recursively
cleaning it up. The cleanup is performed by combining as many of the operators
as possible as follows: we multiply all consecutive Pauli operators acting on the C
register, and simplify consecutive pairs of operators U`, U

−1
` acting on the same set

of qubits, to obtain a state of the form

|ψi〉ABCER = σ̂i Ũ iti σ̃
i
ti Ũ

i
ti−1 σ̃

i
ti−1 · · · Ũ i2 σ̃i2 Ũ i1 σ̃i1 UriUri−1 · · ·U2U1 |ψinit〉ABCER

(5)

with σ̂i = ±Xx̂iZẑ
i

, and for ` ∈ {1, . . . , ti}, σ̃i` = Xxi`Zz
i
` for x̂iẑi, xi`z

i
` ∈ {0, 1}2,

and Ũ i` = U±1
`′ for some ri − 2ti ≤ `′ ≤ ri + 2ti. The rules used recursively to

perform the cleanup are the following: in the case when σ̃i` = I, for two consecutive
unitary operators acting on the same set of qubits we require that if ` > 1, then
Ũ i` 6= (Ũ i`−1)−1, and if ` = 1, then Ũ i1 6= Uri+1 and Ũ i1 6= U−1

ri . This last rule is what

determines the cut between Uri and Ũ i1σ̃
i
1. The parameter ri determines the number

of noiseless protocol unitary operators the parties have been able to successfully apply
on the joint register before errors arise, and the parameter ti determines the number
of errors the parties have to correct before being able to evolve the state as in the
noiseless protocol. Note that this is well defined: there is a unique representation
in the form (5) corresponding to any in the form (4). This second representation is
thus powerful: it is the analogue in our setting of the protocol tree representation of
classical protocols, and it enables us to precisely keep track of the evolution of the
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noiseless protocol simulation. This is why Alice and Bob will always base their actions
on their best estimates of this representation.

4.3.2. Choosing the Next Step. To decide which action to take in round i,
Alice starts by decoding the possibly corrupted messages f ′1, . . . , f

′
i−1 ∈ Σ received

from Bob up to this point to obtain her best guess siB = D(f ′1, . . . , f
′
i−1) for the history

sB of his history tree. Along with the history sA of her history tree, she uses this to
compute her best guess of the form (5) of the joint state. If her decoding of Bob’s
history is good (error-free), then she has all the information she needs to compute the
joint state |ψi〉. She can then choose the correct actions to evolve the simulation. She
takes the following actions based on the assumption that her decoding is good. If it
is not, errors might accumulate on the joint register ABC, which she will later have
to correct.

Alice’s next move depends on whether ti = 0 in her best guess for the state |ψi〉. If
ti = 0, then she wishes to evolve the protocol one round further, if it is her turn to do
so. That is, if ri is even, then Alice sets MA

i = +1 to apply UACri+1, but if ri is odd, Bob
should be the next to apply a unitary operator of the protocol, so she sets MA

i = 0. If
ti 6= 0, then she wishes to correct the last error not yet corrected if she is the one who
applied it. That is, if Ũti = UM

′

`′ for `′ odd, then she sets MA
i = −M ′ ∈ {±1} (note

that in this case it holds that jAi = `′); otherwise, she sets MA
i = 0 and hopes that

Bob will correct Ũti . In all cases, with σ̂Ci = ±Xx̂iZẑi , she sets xADi = x̂i, z
AD
i = ẑi and

computes cAi = cA(i−1) + MA
i , j

A
i = 2cA(i−1) + MA

i . Note that she does not care about

the global phase factor ±1 appearing in σ̂i during the clean-up from the form (4) to
the form (5). This phase arises because the Pauli operators X and Z anticommute,
and it is irrelevant.

After this classical preprocessing, she can now perform her quantum operations
on the AC registers: she first decodes the teleportation operation (and possibly some

other Pauli errors remaining on the C register) by applying Zz
AD
i XxAD

i on the T
2(i−1)
A

register before swapping registers T
2(i−1)
A and CA, effectively putting the virtual C

register into CA. (Note that in round 1, Alice already possesses the C register so this

part is trivial: we let T 0
A = CA and set xAD1 zAD1 = 00.) She then performs U

MA
i

jAi
on the

virtual AC register to try to evolve the protocol (or correct a previous error) before
teleporting back the virtual C register to Bob using the half of the entangled state in
the T 2i−1

A register, obtaining measurement outcome xAMi zAMi ∈ {0, 1}2. She updates
her history sA by following the edge ai = (xADi zADi ,MA

i , x
AM
i zAMi ) in the history tree,

and transmits message ei = E(a1 · · · ai) over the noisy classical channel, with E the
encoding function of the tree code.

Upon receiving the message e′i, a possibly corrupted version of ei, Bob obtains his
best guess siA for Alice’s history sA by computing, with previous messages e′1 · · · e′i−1,
siA = D(e′1 · · · e′i). He uses this, along with his own history sB, to compute his best
guess of the representation of the state(

XxAM
i Zz

AM
i U

MA
i

jAi
Zz

AD
i XxAD

i

)
|ψi〉(6)

analogous to that in (4). He then cleans this up to obtain a representation analogous
to that in (5) and, based on this latest representation, chooses in the same way as Alice
his xBDi zBDi ,MB

i , and then uses MB
i and cBi−1 to compute cBi , j

B
i . After this classical

preprocessing, he can then perform his quantum operations: he first decodes the

teleportation operation by applying Zz
BD
i XxBD

i on the T 2i−1
B register and by swapping it
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with CB, creating a virtual C register, then performs U
MB
i

jBi
on the virtualBC register to

try to evolve the protocol before teleporting back the virtual C register to Alice using
the half of the entangled state in the T 2i

B register, and obtains measurement outcome
xBMi zBMi . He updates his history sB by following the edge bi = (xBDi zBDi ,MB

i , x
BM
i zBMi ),

and transmits message fi = E(b1 · · · bi) over the channel. The round is completed when

Alice receives message f ′i , a possibly corrupted version of fi. After the N ′

2 rounds,

Alice and Bob take the particular registers Ã, B̃, and C̃ specified by the noiseless
protocol embedding (see subsection 3.2.1) and use them as their respective outcomes
for the protocol. If the simulation is successful, the output quantum state corresponds
to the ABC subsystem of |ψfinal〉ABCE specified by the original noiseless protocol. We
later prove that the protocol is successful if the error rate is below 1

80 .

4.3.3. Summary of Protocol. We summarize the protocol below. Alice and
Bob start with the state |ψinit〉 in the registers ABCAE, the register CB initialized

to |0〉, the registers TATB initialized to N ′ EPR pairs
[

1√
2
(|00〉+ |11〉)

]⊗N ′
, with

one qubit each from each EPR pair held by Alice and Bob, and the qubits in reg-
isters Ã, B̃, C̃ initialized to |0〉 (cf. the noiseless protocol embedding described in
subsection 3.2.1). They also have access to a suitable amount of classical workspace
for local computations required for the simulation. They repeat the following for
i = 1, . . . , N ′

2 :
1. If i > 1, Alice computes siB = D(f ′1 · · · f ′i−1), and for ` = 1, . . . , i − 1 she

extracts bi` = (xiBD` ziBD` ,M iB
` , x

iBM
` ziBM` ). These are her best guesses for Bob’s

messages. She computes the corresponding ciB` , j
iB
` . For i = 1, the values of

the parameters Alice needs for the simulation are straightforward.
2. Also using sA, she computes her best guess for the form (5) of the state |ψi〉

of the joint register and of the corresponding xADi zADi , MA
i , cAi , jAi , described

earlier in this section.
3. If i > 1, she completes the teleportation operation by applying Zz

AD
i XxAD

i to

register T
2(i−1)
A and swaps this with the CA register.

4. She applies U
MA
i

jAi
to the ACA register, in an attempt to evolve the original

protocol.
5. She teleports the CA register to Bob using entanglement in register T 2i−1

A and
gets outcomes xAMi zAMi .

6. Alice updates her state sA by following edge ai = (xADi zADi ,MA
i , x

AM
i zAMi ) and

transmits message ei = E(a1 · · · ai) using the noisy classical channel to Bob,
who receives e′i, a possibly corrupted version of ei.

7. Bob computes siA = D(e′1 · · · e′i) and also using sB, performs actions analogous
to Alice’s. He completes the teleportation operation, swaps register T 2i−1

B

with CB, applies the appropriate unitary operation to the register CBB, uses
the T 2i

B register to teleport the CB register to Alice, and finally transmits fi.
Round i is completed when Alice receives f ′i , a possibly corrupted version of
fi.

After these N ′

2 rounds, both Alice and Bob extract their protocol outcomes from the

ÃB̃C̃ registers specified by the noiseless protocol embedding.

4.4. Analysis. The analysis is done conditioned on some overall classical state
(and in particular, some respective views of Alice and Bob) at each round. By a view
of Alice or Bob, we mean the transcript of messages sent and received. Moreover,
if the adversary Eve has an adaptive, probabilistic strategy, we condition on some
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strategy based on the outcome of her previous measurements. We return to this issue
later.

The total number of rounds is N ′

2 , with two transmissions per round, for a total of
N ′ transmissions. We define two kinds of rounds: good rounds in which both parties
correctly decode the each other’s history, and bad rounds, in which at least one party
makes a decoding error. To analyse the protocol, we define a “potential function”
P (i) ∈ Z, which increases at least by some (strictly positive) amount in good rounds,
and decreases by at most some other (bounded) amount in bad rounds. The potential

function is such that we know the simulation succeeds whenever P (N
′

2 + 1) ≥ N + 1.
Hence, it is sufficient to bound the ratio of good to bad rounds as a function of the
error rate to prove the success of the simulation.

Let us now define P (i) more formally. To do so, we use the representation (5)
for the form of the quantum state of the joint registers at the beginning of round i
(or equivalently, at the end of round i − 1). Recall that ri determines the number
of noiseless protocol unitary operators that the parties have been able to successfully
apply on the joint register before errors arise, and ti determines the number of errors
that the parties have to correct before being able to resume the simulation. Define

(7) P (i) = ri − 2ti.

The factor of 2 in front of ti accounts for the worst-case scenario for the simulation in
round i. As will be apparent from our analysis below, in the worst case, all remaining
Ũ i` ’s are applied by the same party who applied Uri−1 and Ũ iti = U−1

ri−1−2(ti−1). Then,

if P (N
′

2 + 1) ≥ N + 1, the operators Ũ i` in (5) at the end of the simulation (i.e.,
with i = N ′ + 1) may only be equal to the identity operator, as ensured by the
noiseless protocol embedding. Thus the output of the simulation is correct. We now
prove the following technical lemma which bounds P (i) as a function of the number
of good and bad rounds.

Lemma 10. At the end of round i, define

N i
g = |{j : j ≤ i, round j was good}|,

N i
b = |{j : j ≤ i, round j was bad}|.

Then P (i+ 1) ≥ N i
g − 4N i

b.

Proof. We prove Lemma 10 by induction. For the base case, |ψ1〉 = |ψinit〉, so
P (1) = 0, and the statement holds.

To get a flavor of the induction step, let us look at P (2) at the end of round 1.
In round 1, Alice applies U1 and then teleports the virtual C register. If Bob decodes
the message correctly, he applies U2 and teleports back the virtual register C, leading
to a joint state of the form σ̂U2U1 |ψinit〉. In this case N1

b = 0, so P (2) = 2 ≥ 1 = N1
g .

If there is a decoding error, at worst Bob applies the incorrect Pauli operation to
complete the teleportation step, and he still applies U2. The joint state is then of the
form σ̂U2σ̃U1 |ψinit〉. In this case N1

g = 0, and P (2) = 1− 2 = −1 ≥ −4 = −4N1
b .

For the induction step, given the state |ψi〉 at the end of round i− 1, we consider
two cases. First, suppose that the ith round is good, so that N i

g = N i−1
g +1 and N i

b =

N i−1
b . Both Alice and Bob correctly reconstruct the state as in (5). If ti = 0, by

the simulation rules, at least one of Alice or Bob can advance the original noiseless
protocol, and ti+1 = ti = 0 and ri+1 ≥ ri + 1. (If ri is odd, only Bob advances the
protocol, otherwise both do.) If ti ≥ 1, again, at least one of Alice or Bob can invert
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the unitary operation Ũ iti (depending on the parity of `, where Ũ iti = U±1
` ). Then

ti+1 ≤ ti − 1, and ri+1 ≥ ri. So in all cases

P (i+ 1) = ri+1 − 2ti+1

≥ ri − 2ti + 1

= P (i) + 1

≥ N i−1
g − 4N i−1

b + 1

= N i
g − 4N i

b .

In the second case, the ith round is bad, so that N i
g = N i−1

g and N i
b = N i−1

b + 1.
At worst, both Alice and Bob decode the received messages incorrectly. With an
incorrect guess for the state in (5), Alice’s actions in this round either decrease ri by
one, increase ti by one, or leave both unchanged. The same holds for Bob. At worst,
ti+1 = ti + 2 and ri+1 = ri. The other eight possibilities such as ti+1 = ti + 1, ri+1 =
ri−1, or ti+1 = ti, ri+1 = ri−2, lead to a smaller decrease in the potential function P .
So

P (i+ 1) = ri+1 − 2ti+1

≥ ri − 2ti − 4

= P (i)− 4

≥ N i−1
g − 4N i−1

b − 4

= N i
g − 4N i

b.

In all cases, P (i+ 1) ≥ N i
g − 4N i

b which proves the claim.

Corollary 11. If P (N
′

2 + 1) ≥ N + 1, then the simulation succeeds with zero
error.

Proof. For notational convenience, in this proof let r = rN ′
2 +1

, t = tN ′
2 +1

. We

also let the superscript N ′

2 + 1 be implicit in all of the operators Ũ±1
` that occur in

the proof below.
The only unitary operations from the original protocol that Alice applies are of

the form U±1
` for odd `. Moreover, Alice knows her history at all times. Thus, even

in a bad round i, she applies either U`+2, I, or U−1
` , where U` is the last unitary

operation she applied in the representation (5). A similar statement holds for Bob.
Thus, the subscripts in the original protocol of two consecutive unitary operators
applied by the same party in (5) do not differ by more than 2.

We have P (N
′

2 + 1) = r− 2t ≥ N + 1, so r ≥ N + 1 + 2t with t ≥ 0. In particular,
we have r ≥ N + 1. Once Ur has been applied, the noiseless protocol embedding
ensures that the final state of the noiseless protocol in registers ABC is safely stored
in local registers ÃB̃C̃ that are never changed by UN+2 · · ·UN ′+1 or by the Pauli
operations on the virtual C register. It remains to be verified that all of the operators
Ũ`, 0 ≤ ` ≤ t, have indices strictly higher than N + 1.

The indices (in the original protocol) of the operators Ũ` applied by Alice may
decrease by at most two at once, and similarly for Bob. So the worst case is if all of the
operators Ũ` are applied by the same party, and are inverses of the noiseless protocol
unitary operators. Without loss of generality, we consider only this case. If the
party who applied Ur also applies all the operators Ũ`, then Ũ1 = U−1

r , Ũ2 = U−1
r−2,
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. . . , Ũt = U−1
r−2(t−1) and r − 2(t − 1) > r − 2t = P (N

′

2 + 1) ≥ N + 1. Thus the

simulation generates the correct output. Similarly, if the party who applied Ur−1 also
applies all the operators Ũ`, then Ũ1 = U−1

r−1, Ũ2 = U−1
r−3, . . . , Ũt = Ur−2t+1, and

r − 2t+ 1 > r − 2t = P (N
′

2 + 1) ≥ N + 1. In all cases, the safe registers ÃB̃C̃ to be
outputted by the parties contain the ABC subsystem of |ψfinal〉 at the end of round
N ′

2 whenever P (N
′

2 + 1) ≥ N + 1.

We now show that if the number of errors as a fraction of N ′, which is the total
number of classical symbols transmitted over the adversarial channel, is bounded by
a particular constant δ > 0, then we are guaranteed that the simulation succeeds.
We do this in two steps: we first give a bound on the fraction of bad rounds as a
function of the error rate, and then use it to show that below a certain error rate, the
simulation succeeds.

The bound on the fraction of bad rounds as a function of the error rate we use
follows from the more general result in Lemma 16, which we prove in the next section
when studying a protocol designed to tolerate the highest possible error rate. The
implication we use here is the following: if the error rate is bounded by δ (so there
are at most δN ′ errors) and the tree code distance of both Alice and Bob’s tree code
is at least α, then the number of bad rounds Nb is bounded as Nb ≤ (2δ + εα)N ′,
where εα = 1− α.

We are now ready to prove that the simulation succeeds with the parameters
chosen for our protocol. We have εα = 1

40 , δ = 1
80 , N ′ = 4(N + 1), so

P

(
N ′

2
+ 1

)
≥ Ng − 4Nb

=
N ′

2
− 5Nb

≥ N ′

2
− 5(2δ + εα)N ′

= N ′
(

1

2
− 10

80
− 5

40

)
=

1

4
N ′

= N + 1 .

Here, the first inequality is from Lemma 10, the first equality is by definition of Ng,

Nb, i.e., N ′

2 = Ng + Nb, and the second inequality is from our bound on Nb due to
Lemma 16. The fact that the simulation succeeds is then immediate from Corollary 11.

Note that the form of the simulation protocol does not depend on the particular
protocol to be simulated but only on its length N and the noise parameter of the
adversarial channel we want to tolerate. Also note that even if the adversary is adap-
tive and probabilistic (with adaptive, random choices depending on her measurement
outcomes and her view of the transcript, as allowed by the model), the simulation
succeeds regardless of her choice of action. As long as the corruption rate is bounded
by δ, our analysis holds in each branch of the adversary’s probabilistic computation
. We use the definition of the class AS

δ,q,N ′ to prove that, indeed, the simulation

succeeds with zero error. (See Appendix A.2 for the definition of AS
δ,q,N ′ .)

For |ψ〉 ∈ H(A⊗B ⊗C ⊗E ⊗R), with R a purifying system of the same size as
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A⊗B ⊗ C ⊗ E, we have that

(Π⊗ IR)(|ψ〉) = TrE(UN · · ·U1|ψ〉〈ψ|U†1 · · ·U
†
N ) ,

where Π is the protocol being simulated. For any adversary in A ∈ AS
δ,q,N ′ , the

simulation yields state

(SΠ(A)⊗ IR)(|ψ〉) = Tr¬(ÃB̃C̃R)(M
Π
N ′+1NN ′MΠ

N ′ · · ·MΠ
2N1MΠ

1 (|ψ〉〈ψ|)),

in which the ¬(ÃB̃C̃R) subscript for the partial trace means that we trace all except
the ÃB̃C̃R registers, and the instrument MΠ

` is the simulation step for the `th local
computation by the corresponding party. Then we can rewrite

(SΠ(A)⊗ IR)(|ψ〉)

=
∑
xTyTz

pXTYTZ(xT, yT, z| |ψ〉) |xT〉〈xT|XT ⊗ |yT〉〈yT|YT⊗ |z〉〈z|Z ⊗ ρ(xT, yT, z)

where XT, YT are the registers containing the views xT, yT of the transcript as seen
by Alice and Bob, respectively, Z is the adversary’s classical register, ρ(xT, yT, z)
are some quantum states, and pXTYTZ is a probability distribution conditional on
the input |ψ〉. By definition of the class AS

δ,q,N ′ , we have that, conditioned on some
classical state z of Eve, ρ(xT, yT, z) suffers at most δN ′ corruptions by Eve for any
possible transcript views xT, yT. So, by the above analysis, the ÃB̃C̃R subsystems
contains TrE(UN · · ·U1|ψ〉〈ψ|U†1 · · ·U

†
N ), a perfect copy of (Π⊗ IR)(|ψ〉) for any views

xT, yT of the transcripts of Alice and Bob, respectively. Hence, tracing over all sub-
systems but ÃB̃C̃R, we obtain (Π ⊗ IR)(|ψ〉), and the simulation protocol succeeds
with zero probability of error at simulating any noiseless protocol of length N against
all adversaries in AS

δ,q,N ′ .
We have thus established the following. We use a tree code of arity d = 48 and

distance parameter α = 1 − εα = 39
40 . With q = |Σ| chosen according to Lemma 3,

RC = N
N ′ log q = 1

4(1+
1
N ) log q

≥ 1
8 log q , RE = 1

log q , and δ = 1
80 , we have that for all N ,

there exists a universal simulation protocol in the shared entanglement model that,
given black-box access to any two-party quantum protocol of length N in the noiseless
model, succeeds with zero probability of error at simulating the noiseless protocol on
any input (independent of the contents of the purifying register held by Eve) while
transmitting 1

RC log qN symbols from an alphabet Σ of size q over any adversarial

channel with error rate δ, and consuming RE

RC
N EPR pairs. This proves Theorem 9.

5. Tolerating Maximal Error Rates. We show how we can modify the basic
protocol described in the last section such that it tolerates an error rate up to 1

2−ε, for
arbitrarily small ε > 0, in the shared entanglement model. In particular, we show that
given an adversarial channel in the shared entanglement model with error rate strictly
smaller than 1

2 , we can simulate any noiseless protocol of length N with negligible
error over this channel using a linear in N number of constant-size transmissions and
consuming a linear number of EPR pairs.

Theorem 12. There exists a constant c > 0 such that for arbitrarily small con-
stant ε > 0, there exist a communication rate RC > 0, an alphabet size q ∈ N, and
an entanglement consumption rate RE ≥ 0 such that for all N ∈ 2N, there exists a
universal simulator S for noiseless quantum protocols of length N with the follow-
ing properties. The simulator S is in the shared entanglement model, has length N ′,
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communication rate RC, transmission alphabet size q, and entanglement consumption
rate RE. Further, the simulation succeeds with error at most 2−cN for all noiseless
protocols of length N against all adversaries in AS

1
2−ε,q,N

′
.

This is optimal since we also prove that no interactive protocol can withstand an
error rate of 1

2 in this model. In particular, given any two-party quantum protocol of
length N in the noiseless model, no simulation protocol in the shared entanglement
model can tolerate an error rate of 1

2 and succeed in simulating the noiseless proto-
col with worst-case error lower than the worst-case error of the best uni-directional
protocol.

Theorem 13. For all noiseless protocol lengths N ∈ N, communication rates
RC > 0, transmission alphabet sizes q ∈ N, entanglement consumption rates RE ≥ 0,
and simulation protocols S in the shared entanglement model of length N ′ with the
above parameters, there exists an adversary A ∈ AS

1
2 ,q,N

′
and a unidirectional protocol

U such that for all noiseless protocols Π of length N , ‖SΠ(A)−Π‖� ≥ ‖U−Π‖�. This
result holds in the oblivious model as well as the alternating communication model.

5.1. Proof of Optimality. To prove Theorem 13, we observe that the argument
of Ref. [25] in the classical case applies here as well; we need only note that if the error
rate is 1

2 with alternating communication in the shared entanglement model, then an
adversary can completely corrupt all of the transmissions of either Alice or Bob, at
his choosing. For example, the adversary could replace all of Bob’s transmissions
by a fixed message and leave Alice’s messages unchanged. Effectively, Bob does not
transmit any information to Alice, and this protocol can be simulated in the uni-
directional model. Indeed, suppose that for a fixed register E, transmission alphabet Σ
of size q, noiseless protocol length N , and simulation protocol length N ′, the adversary
A 1

2
maps all transmissions from Bob to Alice to a fixed symbol e0 ∈ Σ for any

simulator S of length N ′ that tries to simulate a noiseless protocol Π of length N .
We construct MU

1 , which is the composition of all operations of Alice in S while
replacing all messages of Bob by e0. In the unidirectional protocol U , Alice applies
the instrumentMU

1 to Alice’s share of the joint state in the simulation protocol. The
quantum communication from Alice to Bob is the concatenation of all the messages
from Alice in the simulation protocol, along with Bob’s share of the initial joint state.
Bob would then apply the instrument MU

2 , which is the sequential application of all
his operations in the simulation protocol S. This unidirectional protocol simulates S
running against the adversary A 1

2
for any noiseless protocol and any input and then

produces the same output.
The above proof also applies in an oblivious model for noisy communication. In an

oblivious model, the order in which the parties speak is fixed by the protocol and does
not depend on the input or the actions of the adversary. An adversary can choose to
disrupt all of the messages of the party who communicates at most half the number
of bits. Hence, the proof also extends to the case of oblivious, but not necessarily
alternating, communication. In such a case, the simulation protocol would also define
a function Speak : [N ′]→ {A,B} known to all (Alice, Bob, and Eve) which specifies
whose turn it is to speak and is independent of both the input and the action of Eve.

We can further extend the argument to the case of a Speak function, which
depends on some secret key and is unknown to Eve, so Eve does not always know who
is going to speak more often. In that case, Eve can flip a random bit to decide which
party’s communication she is going to corrupt. If the communication is classical, then
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a reasonable assumption is that Eve can see who speaks before she decides whether
or not to corrupt a message. In this case, the statement is changed to “‖SΠ(A)−Π‖�
is bounded away from zero”, as can be seen by considering, for increasing N , some
family of protocols computing, for example, the bitwise parity function of N

2 bits
output by both parties or the swap function in which Alice and Bob want to exchange
their A,B registers. An extension of the argument of the proof of Theorem 19 shows
that the fidelity is also bounded away from 1 for the case of protocols computing the
inner product binary function. To reach the 1

2 bound on the tolerable error rate, the
parties would then need an adaptive strategy that depends on the sequence of errors
applied by the adversary. However, this is dangerous in a noisy model: depending on
the error pattern, the parties might not agree on whose turn it is to speak, and they
could run into synchronisation problems.

5.2. Proof of Achievability.

5.2.1. Description of the Simulation. The proof of achievability is somewhat
more involved. It follows ideas similar to those of the basic simulation, but the protocol
must be carefully analysed and optimized. We start by setting up new notation that
enables us to do so. The intuition given in subsection 4.2 still applies here, but
parameters which were fixed in the basic case now depend on the parameter ε when
we wish to tolerate an error rate of 1

2 − ε. In particular, the distance parameter
α = 1 − εα, as well as the length of the protocol N ′ = `N , now changes. Since
the parties have access to shared entanglement, they do not need to distribute it
at the beginning of the protocol, and they can also use it to generate a secret key
unknown to the adversary Eve. The secret key is used to generate a blueberry code
with erasure parameter εβ = (|Σ| − 1)/(|Γ| − 1), with Σ the tree code alphabet and Γ
the blueberry code alphabet. Each of the tree code transmission alphabet symbols is
further encoded with the blueberry code before transmission over the noisy channel.
A corruption caused by the adversary is detected as an erasure with probability 1−εβ .
When an erasure is detected by either party in a round, that party does not attempt to
continue the simulation (as in the previous section) in that round. The corresponding
trit sent is 0, and the teleportation decoding bits are 00. Otherwise, the structure of
the protocol is mainly unchanged.

We summarize the optimized protocol below. Alice and Bob start with the
state |ψinit〉 in the registers ABCAE, the register CB initialized to |0〉, the regis-

ters TATB initialized to N ′ EPR pairs
[

1√
2
(|00〉+ |11〉)

]⊗N ′
, with one qubit each from

each EPR pair held by Alice and Bob, and the qubits in registers Ã, B̃, C̃ initialized
to |0〉 (cf. the noiseless protocol embedding described in subsection 3.2.1). They mea-
sure a suitable number of additional EPR pairs to produce a secret key unknown to
the adversary. Using this, they generate common blueberry codes B1, B2, . . . , BN ′

uniformly and independently from the set of permutations over Γ. They also have
access to a suitable amount of classical workspace for local computations required for
the simulation.

Alice and Bob repeat the following for i = 1 · · · N
′

2 :
1. For i = 1, there is no message to be decoded, and the values of the parameters

needed for the simulation are straightforward. Alice continues with step 3.
If i > 1, Alice decodes the blueberry encoding of Bob’s possibly corrupted
last transmission. If she detects an erasure, she sets MA

i = 0, xADi = zADi = 0
and f ′i−1 =⊥ and skips to step 4. Otherwise, she decodes the transmission as
f ′i−1 ∈ Σ, a possibly corrupted version of Bob’s last tree encoding fi−1, and
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continues with step 2.
2. Alice computes siB = D(f ′1 · · · f ′i−1), and for ` = 1, . . . , i − 1 she extracts
bi` = (xiBD` ziBD` ,M iB

` , x
iBM
` ziBM` ), her best guess for Bob’s messages, and the

corresponding ciB` , jiB` .
3. Using sA, sB, she computes her best guess for the state |ψi〉 of the joint

register, and the corresponding xADi zADi , MA
i , cAi , jAi .

4. She completes the teleportation by applying Zz
AD
i XxAD

i to register T
2(i−1)
A and

swaps this with the CA register.

5. She tries to make progress in the simulation by applying U
MA
i

jAi
to the ACA

register.
6. She teleports the CA register to Bob using entanglement in register T 2i−1

A and
gets outcomes xAMi zAMi .

7. Alice updates her history sA by following edge ai = (xADi zADi ,MA
i , x

AM
i zAMi ),

computes ei = E(a1 · · · ai), and transmits the blueberry encoding B2i−1(ei)
of ei over the noisy channel to Bob.

8. Upon receiving a possibly corrupted version of Alice’s last transmission, Bob
decodes the blueberry code layer: he either detects an erasure and sets e′i =⊥,
or else decodes the transmission as e′i ∈ Σ, a possibly corrupted version of ei.

9. Bob computes xBDi zBDi , MB
i in the same way as Alice, depending on whether

or not he detects an erasure. In more detail, if Bob does not detect an era-
sure, he decodes siA = D(e′1 · · · e′i) and also uses sB to compute the above
parameters. He then performs actions on his registers analogous to Alice’s:
he completes the teleportation step, swaps register T 2i−1

B with CB, applies

the operator U
MB
i

jBi
to the registers BCB, uses the T 2i

B register to teleport

back the CB register to Alice, computes fi, and transmits the blueberry en-
coding B2i(fi) of fi to Alice. Round i is completed when Alice receives a
possibly corrupted version of this message.

After these N ′

2 rounds, both Alice and Bob extract the output of the simulation

from the ÃB̃C̃ registers specified by the noiseless protocol embedding.

5.2.2. Analysis. As in the proof in subsection 4.4, the analysis is first carried
conditioned on some respective views of Alice and Bob of the transcript at each
round. An additional component is the conditioning on some classical state z of the
Z register of the adversary, Eve, and the averaging over the shared secret key used for
the blueberry code. In particular, if the adversary has an adaptive and probabilistic
strategy, we condition on some strategy consistent with the transcript on which we
have already conditioned. We return to this issue later.

We again define a function P (i) such that the simulation succeeds whenever

P (N
′

2 + 1) ≥ N + 1. Using the notation and the form of the state |ψi〉 as in (5)
on the joint register ABCE at the beginning of round i (or at the end of round i−1),
we let P (i) = ri − 2ti (i.e., the same potential function works for the enhanced sim-
ulation as well). We now have three kinds of rounds: good rounds, in which both
parties decode correctly the other party’s history; bad rounds in which at least one
party makes a decoding error; and erasure rounds, in which no party makes a de-
coding error, but at least one party decodes an erasure from the blueberry code. (In
an erasure round, the party detecting an erasure applies the identity operator on the
quantum register before teleporting it back.)

We state an analogue of the technical Lemma 10 and its corollary.
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Lemma 14. At the end of round i, define

N i
g = |{j : j ≤ i, round j was good}|,

N i
b = |{j : j ≤ i, round j was bad}|,

N i
e = |{j : j ≤ i, round j was an erasure round}|.

Then P (i+ 1) ≥ N i
g − 4N i

b.

The proof of this lemma and its corollary below are omitted since they are nearly
identical to the proofs in the basic simulation. The only difference is if at least one
party detects an erasure in some round, which may be a bad round or an erasure
round. We sketch the argument in the case that round i is an erasure round. The
only unitary operation applied by a party that detects an erasure, is a Pauli operator
on the virtual communication register C. If both parties detect an erasure, ri+1 = ri
and ti+1 = ti. If any one party decodes correctly and the other detects an erasure, we
have ri+1 ≥ ri and ti+1 ≤ ti, so P (i+ 1) ≥ P (i). (The function increases only if the
party that decoded correctly can apply Uri+1 or Ũ−1

ti as defined by the simulation;
i.e., that party holds the registers on which the said unitary operation acts.) In both
cases, the quantity N i

g − 4N i
b = N i−1

g − 4N i−1
b ≤ P (i), so P (i+ 1) ≥ N i

g − 4N i
b.

Corollary 15. If P (N
′

2 + 1) ≥ N + 1, then the simulation succeeds with zero
error.

Hence, it suffices to bound the ratio of bad to good rounds as a function of the
corruption rate in order to prove the success of the simulation. To do so, we show that
depending on a given tolerable error rate 1

2 − ε, we can vary the distance parameter
α = 1− εα of the tree codes used by Alice and Bob, as well as the erasure parameter
β = 1 − εβ of the blueberry codes they use, and make this ratio as low as desired
(except with negligible probability in the random choice of the shared secret key used
for the blueberry code). However, there is now a third kind of round, and we would
also want to ensure that the ratio of good rounds versus erasure rounds does not
become arbitrarily low and that P (N

′

2 + 1) ≥ N + 1.

We focus on the numbers Ng = N
N ′

2 +1
g , Nb = N

N ′

2 +1

b and Ne = N
N ′

2 +1
e of

good, bad and erasure rounds in the whole simulation, respectively. To bound the
fraction of bad rounds as a fraction of the corruption rate, we appeal to a corollary
of the following technical lemma. The lemma derives a new bound on tree codes
with an erasure symbol. Since this result only pertains to the structure of such codes
independent of our application, it might have applications to classical interactive
coding and other settings as well.

Lemma 16. If there is a bound δ on the fraction of the total number of trans-
missions N ′ that are corrupted and not detected as erasure errors by the blueberry
code, then the number Nb of bad rounds in the whole simulation is bounded as Nb ≤
(2δ + εα)N ′, where εα = 1− α, and α is the distance parameter of the tree code with
an erasure symbol used by Alice and Bob.

Proof. For any 1 ≤ i ≤ j ≤ N ′

2 , let IAe (i, j), IAb (i, j), IAg (i, j) be the subset of
rounds i, i + 1, . . . , j − 1, j in which the symbol that Alice gets from the blueberry
decoding is an erasure, an error (i.e., an incorrect symbol), or the original encoded
symbol, respectively. Note that these are disjoint sets satisfying IAe (i, j) ∪ IAb (i, j) ∪
IAg (i, j) = [i, j], where [i, j] denotes the set {i, i+1, . . . , j−1, j}. Similarly, let JA

b (i, j)

and JA
g (i, j) be the subsets of [i, j], respectively, in which the sequence of messages
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Alice receives from the tree decoding corresponds to a decoding error and the correct
decoding. Again note that IAe (i, j) ∪ JA

b (i, j) ∪ JA
g (i, j) = [i, j], a disjoint union. We

define analogous subsets for Bob with A’s replaced by B’s in the notation. Using this
notation, we have

Nb =

∣∣∣∣JA
b

(
1,
N ′

2

)
∪ JB

b

(
1,
N ′

2

)∣∣∣∣ , and∣∣∣∣IAb(1,
N ′

2

)∣∣∣∣+

∣∣∣∣IBb(1,
N ′

2

)∣∣∣∣ ≤ δN ′ .

The statement we wish to prove is∣∣∣∣JA
b

(
1,
N ′

2

)
∪ JB

b

(
1,
N ′

2

)∣∣∣∣ ≤ 2δN ′ + εαN
′.

We prove the following stronger statements, which claim that the number of rounds
in which a party makes a tree code decoding error is only slightly larger than the
number of rounds in which that party makes a blueberry code decoding error:∣∣∣∣JA

b

(
1,
N ′

2

)∣∣∣∣ ≤ 2

∣∣∣∣IAb(1,
N ′

2

)∣∣∣∣+
1

2
εαN

′ ,(8)

and ∣∣∣∣JB
b

(
1,
N ′

2

)∣∣∣∣ ≤ 2

∣∣∣∣IBb(1,
N ′

2

)∣∣∣∣+
1

2
εαN

′ .

The proofs of the two statements are similar, so we only prove the statement for
Alice’s subsets. To simplify notation, we drop the A superscripts. For any subset K of
[N
′

2 ] and any two strings ē, ē′ ∈ Σt with ē = e1 · · · et and ē′ = e′1 · · · e′t, and t ≤ N ′/2,

define ∆K(ē, ē′) = |{i ∈ K : i ≤ t, ei 6= e′i}|. Note that with K̄ = [N
′

2 ] \ K,
∆(ē, ē′) = ∆K(ē, ē′) + ∆K̄(ē, ē′), and ∆K(ē, ē′) ≤ |K|.

We are now ready to prove the statement (8). We prove by strong induction on
the number of rounds t that |Jb(1, t)| ≤ 2|Ib(1, t)| + εαt. The base case, t = 1, is
immediate: in the first round, Alice does not decode any message, so that the two
sets Jb(1, 1), Ib(1, 1) are empty.

For t > 1, assume that

|Jb(1, j)| ≤ 2|Ib(1, j)|+ εαj ,

for all j with 0 ≤ j < t, where we define Jb(1, 0) = Ib(1, 0) = ∅. If in round t, t > 1,
Alice detects an erasure or decodes correctly, then the induction step is immediate.
Hence, for the induction step, we consider the case of incorrect decoding. Let ā ∈ [d]t

be the sequence of transmitted messages, ē = Ē(ā) ∈ Σt the corresponding sequence of
transmissions, ē′ ∈ Σt the sequence of possibly corrupted receptions, ā′ = D(ē′) ∈ [d]t

the sequence of decoded messages, and ē′′ = Ē(ā′) the encoding of ā′ in the tree code.
Then, by the decoding condition, ∆(ē′′, ē′) ≤ ∆(ē, ē′). Let ` = L(ā, ā′) be the distance
of ā, ā′ to their least common ancestor. Then ∆[1,t−`](ē

′′, ē) = 0, as the encodings
have the same prefix as well. Since ē′′ 6= ē, note that 1 ≤ ` ≤ t. By the induction
hypothesis,

|Jb(1, t− `)| ≤ 2|Ib(1, t− `)|+ εα(t− `) .
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By definition

|Jb(1, t)| = |Jb(1, t− `)|+ |Jb(t− `+ 1, t)|,
|Ib(1, t)| = |Ib(1, t− `)|+ |Ib(t− `+ 1, t)|,

so it suffices to prove

|Jb(t− `+ 1, t)| ≤ 2|Ib(t− `+ 1, t)|+ εα`(9)

to complete the proof.
Let K = Ie(t− `+ 1, t), the set of rounds in which Alice detects an erasure. Since

codewords in the tree code, in particular ē′′ and ē, do not contain the erasure symbol,
the decoding condition ∆(ē′′, ē′) ≤ ∆(ē′, ē) is equivalent to ∆K̄(ē′′, ē′) ≤ ∆K̄(ē′, ē).
We therefore have

∆(ē′′, ē) = ∆K(ē′′, ē) + ∆K̄(ē′′, ē)

≤ |Ie(t− `+ 1, t)|+ ∆K̄(ē′′, ē)

≤ |Ie(t− `+ 1, t)|+ ∆K̄(ē′′, ē′) + ∆K̄(ē′, ē)

≤ |Ie(t− `+ 1, t)|+ 2 ∆K̄(ē′, ē)

= |Ie(t− `+ 1, t)|+ 2 |Ib(t− `+ 1, t)| .(10)

On the other hand, the tree code distance condition stipulates that ∆(ē′′, ē) ≥ α` =
(1− εα)` since ā 6= ā′. Along with (10), this gives

` ≤ ∆(ē′′, ē) + εα` ≤ |Ie(t− `+ 1, t)|+ 2 |Ib(t− `+ 1, t)|+ εα` .(11)

We use this to bound the number of bad rounds for Alice, in terms of the number of
blueberry decoding errors she encounters. We have

` = |Ie(t− `+ 1, t)|+ |Jb(t− `+ 1, t)|+ |Jg(t− `+ 1, t)|
≥ |Ie(t− `+ 1, t)|+ |Jb(t− `+ 1, t)| .(12)

Combining (11) and (12), we get the claimed bound, as in (9).

Corollary 17. If the corruption rate c of the channel satisfies 0 ≤ c < 1
2 , then

except with probability smaller than 2−Ω(N ′), where N ′ is the length of the simulation
protocol, the total number of bad rounds in the simulation is bounded as Nb ≤ (2εβ +
εα)N ′, where εα = 1 − α, α is the distance parameter of the tree code, εβ = 1 − β,
and β is the erasure parameter of the blueberry code.

Proof. Suppose that the transmitted symbol is gi ∈ Γ after a blueberry encoding
Bj (where j ∈ {2i− 1, 2i}) and that conditional on her classical state and some
measurement outcomes zk until round i, Eve chooses to corrupt gi into a different
g′i ∈ Γ. This action is independent of the randomness used in Bj , and it holds that
Pr[B−1

i (g′i) ∈ Σ|z1, . . . , zi] = εβ . This is independent of the classical state and any
measurement outcome zi of Eve. We consider two cases. First, suppose the corruption
rate c is bounded as εβ ≤ c < 1

2 (so that the corruption rate is at least a constant).

By Lemma 7, with probability 1 − 2−Ω(N ′) at least a (1 − 2εβ)-fraction of the cN ′

corrupted transmissions are detected as erasures. So the blueberry decoding gives at
most cN ′−c(1−2εβ)N ′ = 2cεβN

′ < εβN
′ transmission errors, except with probability

negligible in N ′. Taking δ = εβ in the statement of Lemma 16 gives us the corollary.
If 0 ≤ c ≤ εβ , then the corollary is immediate from Lemma 16, with δ = εβ .
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With the above result in hand, we can show that if the corruption rate is 1
2 − ε

with ε > 0, and we take εα = 1
20ε, εβ = 1

40ε,N
′ ≥ 2

ε (N + 1), then except with
negligible probability, the simulation succeeds:

P

(
N ′

2
+ 1

)
≥ Ng − 4Nb

=
N ′

2
−Ne − 5Nb (By Lemma 14)

≥ εN ′ − 5Nb (since N ′/2 = Ng +Nb +Ne)

≥ εN ′ − 5(2εβ + εα)N ′ (since Ne ≤ (1/2− ε)N ′)

= N ′
(
ε− 10

40
ε− 5

20
ε

)
(By Corollary 17)

=
1

2
εN ′

≥ N + 1 .

That the simulation succeeds is now immediate from Corollary 15.
The above statement holds conditional on some classical state z of the Z register

of Eve and on some respective views of Alice and Bob of the transcript at each
round. To prove Theorem 12, we argue as in subsection 4.4 in order to translate
these results into the output state produced by the protocols, even when we consider
inputs entangled with some reference register R. We do not repeat the whole analysis
here, since it is nearly identical to the analysis in subsection 4.4 once we make the
following observation. An arbitrary adversary Eve fitting the framework of the shared
entanglement model could have adaptive, probabilistic behaviour based on previous
measurement outcomes. However, these probabilistic choices are independent of the
secret key generated by Alice and Bob for the blueberry code. As in subsection 4.4,
the above result holds for each probabilistic choice of Eve. Summing over all such
choices, we obtain the same result, proving Theorem 12.

6. Results in Other Models. By adapting the results in the shared entangle-
ment model for an adversarial error model, we can obtain several other interesting
results. We first complete our study of the shared entanglement model with results in
a random error setting. We then consider the quantum model and obtain results for
both adversarial and random error settings. We also prove that the standard forward
quantum capacity of the quantum channels used does not characterize their commu-
nication capacity in the interactive communication scenario. Finally, we consider a
variation on the shared entanglement model in which, along with the noisy classical
communication, the shared entanglement is also noisy.

6.1. Shared Entanglement Model with Random Errors. In this section
we consider two-party protocols with prior shared entanglement and classical com-
munication over binary symmetric channels. Given a two-party quantum protocol of
length N in the noiseless model and any C > 0, we exhibit a simulation protocol in
the shared entanglement model that is of length O( 1

CN) and succeeds in simulating
the original protocol with negligible error over classical binary symmetric channels of
capacity C. More precisely, we have the following theorem.

Theorem 18. There exist constants c, l > 0 such that given any C > 0 and N ∈
2N, there exists a universal simulator S for noiseless quantum protocols of length N
with the following properties. The simulator S is in the shared entanglement model,
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has length N ′, communication rate RC ≥ lC, transmission alphabet of size 2, and
entanglement consumption rate RE ≤ 6. Further, the simulation succeeds with error at
most 2−cN for all noiseless protocols of length N over any classical binary symmetric
channel M of capacity C.

We complement this with a lower bound for the communication rate. We exhibit
a sequence of two-party quantum protocols of increasing length N in the noiseless
model such that for all C > 0, any corresponding sequence of simulation protocols
of length o( 1

CN) in the shared entanglement model with classical binary symmetric
channels of capacity C fails at producing the final state with low error on some input.
Moreover, the family of quantum protocols can be chosen as one that computes a
distributed binary function. More precisely, we have the next theorem.

Theorem 19. There exists a sequence {ΠN}N∈2N of two-party quantum protocols
such that for all C > 0, for any simulation protocol S in the shared entanglement model
of length N ′ ∈ o(N/C) with communication rate RC = N

N ′ and arbitrary entanglement
consumption rate RE, the simulation produces an error of at least 1−o(1) over binary
symmetric channels of capacity C.

6.1.1. Discussion of Optimality. The above results show that in the regime
where we use binary symmetric channels of classical capacity close to 0, we cannot do
much better than what we achieve, up to a multiplicative constant on top of the 1

C
dilation factor. If we want to perform better in that regime, we would have to use the
specifics of the operations implemented by the noiseless protocol instead of using these
operations as black-boxes, even if we are restricting to protocols computing binary
functions. We could, however, hope to be able to get much better hidden constants,
since we do not match the case of one-way communication in which the constant can
be made arbitrarily close to 1

2 as the quantum message size increases. Another regime
of interest would be one for channels of capacity close to 1, in which our techniques
dilate the length of the protocols by a large multiplicative constant even when the
error rate is low. In the classical case, recent results of Kol and Raz [34] show how to
obtain communication rates going to 1 as the capacity goes to 1.

6.1.2. Proof of Theorem 18. In Lemma 2 of Ref. [47], it is stated that, given
a transmission alphabet Σ, there exists d > 0 and ε ∈ (0, 1

90 ) such that given a binary
symmetric channel M of capacity C, there is a p ∈ N, p ≤ d 1

C , an encoding function
E : Σ→ {0, 1}p and a decoding function D : {0, 1}p → Σ such that Pr[D(M(E(e))) 6=
e] ≤ ε for all e ∈ Σ. We use this in conjunction with the result of Theorem 9 and the
Chernoff bound to obtain the following result. Consider ε < 1

80 , Σ given by Lemma 3
for a tree code of arity 48 and distance parameter α = 39

40 , the corresponding d > 0, and
the length N ′′ = 4(1 + 1

N )N of the basic simulation protocol over alphabet Σ for the
length N of the noiseless protocol to be simulated. Given a binary symmetric channel
of capacity C and the corresponding p ∈ N, E, and D, if all the Σ transmissions in the
basic simulation protocol are done by re-encoding over {0, 1}p with E (and decoding
with D), then N ′ = pN ′′ is the length of the oblivious simulation protocol over the
binary symmetric channel, and except with probability 2−Ω(N ′′), the error rate for
transmission of Σ symbols is below 1

80 . By Theorem 9 the simulation succeeds.

6.1.3. Proof of Theorem 19. It is known that for a classical discrete mem-
oryless channel such as the binary symmetric channel, entanglement assistance does
not increase the classical capacity [8], and it is also known that allowing for classical
feedback does not lead to an increase in the classical capacity. However, we might
hope that allowing for both simultaneously might lead to improvements. This is not
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the case: classical feedback augmented by shared entanglement can be seen as equiva-
lent to quantum feedback, and it is also known that for discrete memoryless quantum
channels, the classical capacity with unlimited quantum feedback is equal to that with
unlimited entanglement assistance [9]. Hence, in the shared entanglement model, the
classical capacity of the binary symmetric channels used is not increased by the en-
tanglement assistance and the other binary symmetric channel’s feedback. For some
protocols of length N fitting our general framework in the noiseless model, such as
those accomplishing a quantum swap function or even a classical swap or bitwise XOR
functions on inputs of size N

2 , the parties effectively exchange their entire inputs to
produce the correct output. Hence, a dilation factor proportional to the inverse of the
capacity 1

C is necessary. What we wish to prove is even stronger: there exists a fam-
ily of distributed binary functions such that this is necessary. We consider the inner
product function IPn : {0, 1}n × {0, 1}n → {0, 1}, defined as IPn(x, y) = ⊕ni=1xi ∧ yi,
which has communication complexity in Θ(n) in both the Yao and the Cleve–Buhrman
quantum communication complexity model [19, 40].

By a reduction due to Cleve, van Dam, Nielsen, and Tapp [19], any protocol
evaluating the IPn function with small error can be used to transmit n classical bits
with small probability of error. Hence, any noise-tolerant simulation of such a protocol
over a channel of classical capacity C can be used to transmit n-bit strings with some
small probability of failure. As a consequence, for small enough error, the simulation
requires at least 1

Cn uses of the channel. Note that we have made the reasonable
assumption that we can run the simulation backward over the noisy channel at the
same communication cost or else that we can start with a coherent protocol for the
inner product function. The restriction of having protocols compute a function in a
coherent way is natural if we wish to compose quantum simulation protocols; then
they may be run on arbitrary superpositions of inputs.

6.2. Quantum Model with Adversarial Errors. We turn our attention to
two-party protocols where there is no prior entanglement and the communication is
over noisy quantum channels. Given an adversarial channel in the quantum model
with error rate strictly smaller than 1

6 , we can simulate any noiseless protocol of length
N over this channel using a number of transmissions linear in N . More precisely, we
show the following. (See Appendix A.1 for the definition of AQ

1
6−ε,q,N

′
mentioned in

the theorem.)

Theorem 20. There exists a constant c > 0 such that for arbitrarily small ε > 0,
there exist a communication rate RC > 0 and an alphabet size q ∈ N such that for
all N ∈ 2N, there exists a universal simulator S for noiseless quantum protocols of
length N with the following properties. The simulator S is in the quantum model, has
length N ′, communication rate at least RC, and transmission alphabet size q. Further,
the simulation succeeds with error at most 2−cN for all noiseless protocols of length
N against all adversaries in AQ

1
6−ε,q,N

′
.

6.2.1. Proof of Theorem 20. The approach we take in the quantum model
is to emulate the simulation in the shared entanglement model. First, we use the
quantum channels available to distribute sufficient entanglement. Alice and Bob can
use entanglement to generate a secret key. They then use the quantum channels
effectively as classical channels along with the entanglement to run the simulation
protocol from section 5. Thus the simulation consists of an entanglement distribution
phase, followed by a protocol implementation phase.
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Specifically, suppose we wish to emulate a simulation protocol of length N ′ in
the shared entanglement model. Alice uses lN ′ transmissions, for a parameter l to
be specified below, to distribute sufficient perfect entanglement to Bob through the
use of a quantum error correcting code (QECC). (We refer the reader to Ref. [41,
Chapter 10] for the definition of a QECC.) They then run the simulation protocol in
section 5. During this protocol implementation phase, before transmission and after
reception of a quantum register through the channel, both the sender and the receiver
measure the register. These measurements have the effect of transforming all possible
quantum actions of Eve into classical actions. Conditioned on the results of the two
measurements, the corresponding branches of the simulation proceed exactly as if
the sender and the receiver had transmitted and received information over a classical
channel. If the size q of the communication register is larger than the alphabet size Γ
of the transmissions, and Eve maps some of these classical messages outside of Γ,
Alice and Bob mark these as erasures. So Eve does not gain anything by introducing
errors outside Γ.

We start by pinning down the parameters of the QECCs needed to distribute the
necessary amount of entanglement. In the interest of simplicity, we do not attempt
to optimize the parameters involved.

For a given ε > 0, let s = (|Γ|!)
(|Γ|−|Σ|)! be the size of the shared secret key used

to do the blueberry encoding in each round of the simulation in section 5. Two
maximally entangled states of size 2s, i.e., states of the form

∑2s−1
j=0 |j〉

TA |j〉TB , are
used to generate the secret keys and to create the EPR pairs required for teleportation
in every round. For a given size q for the communication register, and for a simulation
protocol in the shared entanglement model of length N ′, we distribute a maximally
entangled state over N ′ logq(2s) registers of size q.

In the entanglement distribution phase of the simulation in the quantum model,
we encode the N ′ logq(2s) registers into lN ′ registers of size q. For the encoding, we
use a quantum error correcting code with alphabet size q, transmission rate RQ ≥
1
l logq(2s), and maximum tolerable error rate δ to be determined shortly. We only
consider exact QECCs, but the analysis extends to approximate ones. (Approximate
error correction allows for some deviation from perfect transmission.)

To determine the relationship between q, l, and δ required for the simulation to
succeed, we first note that in the protocol implementation phase (the second phase
of the simulation), we transmit classical messages chosen from a set of size |Γ| over
the quantum channel. For simplicity, we choose q ≥ |Γ|. To ensure that this second
phase succeeds, the number of corruptions in it should be bounded by ( 1

2 − ε)N
′. An

adversary could choose to put all of the allowed corruptions in the first (entanglement
distribution) phase, so the QECC should be able to recover from the same number of

errors. In other words, we require δlN ′ ≥ N ′

2 − εN
′. The length of the message in the

entanglement distribution phase satisfies l ≥ 1−2ε
2δ . In summary, the entire simulation

tolerates N ′

2 −εN
′ adversarial errors during a total of (l+1)N ′ transmissions of size q

registers provided a suitable QECC exists. The error rate tolerated is 1−2ε
2(l+1) .

The above analysis applies to the oblivious communication model. If we restrict
ourselves to the alternating communication model, we have twice as much communica-
tion, i.e., 2lN ′ size-q registers, in the entanglement transmission phase. The adversary
can choose to corrupt the transmissions of one party alone, so l ≥ 1−2ε

2δ as before.
The total number of transmissions is, however, (2l+ 1)N ′, so the error rate tolerated
is 1−2ε

2(2l+1) .

We now appeal to a high-dimensional quantum Gilbert–Varshamov bound [2, 24]
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stating that for arbitrarily small ε′ > 0, there exist strictly positive communication
rate RQ > 0 and large enough transmission alphabet size such that families of quan-
tum codes of arbitrarily large length exist which can tolerate a fraction 1

4−ε
′ of errors

and allow for perfect decoding of the quantum state. Using these codes with ε′ = ε,

we get δ = 1
4 − ε, l ≥

1−2ε
2δ = 2(1−2ε)

1−4ε and net error rate 1−2ε
2(2l+1) = (1−2ε)(1−4ε)

6−16ε ≥ 1
6 − ε

that the simulation protocol can tolerate in an oblivious model of communication. In
an alternating model of communication, we are able to tolerate an error rate of 1

10−ε.
The above choice of parameters ensures that the error rate in the entanglement

distribution phase is bounded by 1
4 − ε, and the received quantum state can be de-

coded perfectly. This establishes a shared maximally entangled state of the required
dimension. Moreover, the corruption rate of the adversary during the protocol imple-
mentation phase is lower than 1

2 − ε. Recall that Alice and Bob measure the states
received over the quantum channel in the standard basis to convert it to a classical
channel. Given any strategy of the adversary, which is necessarily independent of the
secret key used for the blueberry codes, for any choice of measurement outcomes for
Alice and Bob, the simulation succeeds with probability exponentially close to 1 (in
terms of N ′). The remainder of the analysis follows that in subsection 5.2.2, proving
Theorem 20.

6.2.2. Discussion of Optimality. If we consider only perfect QECCs for quan-
tum data transmission, it is known that we cannot tolerate error rates of more than 1

4
asymptotically. With the approach of first distributing entanglement and then using
the 1

2 − ε error rate simulation protocol in the shared entanglement model, we get an
overall tolerable error rate for the simulation of less than 1

6 . Crépeau, Gottesman,
and Smith [20] showed how we can tolerate an error rate up to 1

2 asymptotically for
data transmission if we consider approximate QECCs. Using these, we could get a
tolerable error rate of 1

4 − ε for a two phase simulation protocol as described above.
However, their register size, as well as the number of communicated registers, is linear
in the number of transmitted qubits in the original protocol. This would lead to a
communication rate of 0 asymptotically in the simulation. It would be interesting to
see whether we can do something similar with register size independent of the trans-
mission size, but possibly dependent on the fidelity we want to reach and how close
to 1

2 (or some other fraction strictly larger than 1
4 ) we would like the tolerable error

rate to be. Using this kind of code, if we break up the simulation into two phases—an
entanglement distribution part and then a protocol implementation part—the above
is the best we can do. We might hope to develop a fully quantum analogue of tree
codes that does not entail the two phase simulation, in order to achieve higher error
rates. The putative quantum codes would require some properties for fault-tolerant
computation, so that we may coherently apply the noiseless protocol unitary opera-
tions in the simulation. This issue does not occur in the fully classical setting, since
we can copy classical information and perform the computation on the copy.

Finally, we note that the proof of Theorem 13 applies here as well. It establishes a
bound of 1

2 on the maximum error rate tolerable in an oblivious communication model,
that is, no simulation protocol in the quantum model can succeed with arbitrarily
small error against all adversaries in AQ

1
2 ,q,N

′
for any q,N ′ ∈ N. (See Appendix A.1

for the definition of AQ
1
2 ,q,N

′
.)

6.3. Quantum Model with Random Errors. We shift our focus to quantum
communication over depolarizing channels. Given a two-party quantum protocol of
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length N in the noiseless model and any CQ > 0, we devise a simulation protocol
in the quantum model that is of length O( 1

CQ
N) and succeeds in simulating the

original protocol with arbitrarily small error over quantum depolarizing channels of
quantum capacity CQ. (We refer the reader to Ref. [54, Chapter 23] for the definition
of quantum capacity CQ.) More precisely, we state the following theorem.

Theorem 21. There exist a constant l > 0 and a function f : N → R+ with
limN→∞ f(N) = 0 such that given any CQ > 0 and N ∈ 2N, there exists a universal
simulator P for noiseless quantum protocols of length N with the following properties.
The simulator P is in the quantum model, has length N ′, communication rate RQ ≥
lCQ, and transmission alphabet size 2. Further, the simulation succeeds with error at
most f(N) in simulating all noiseless protocols of length N over depolarizing channel
M of quantum capacity CQ.

We point out that quantum capacity with feedback is a lower bound on the dila-
tion needed to simulate protocols over depolarizing channels. There exist a sequence
of two-party quantum protocols of increasing length N in the noiseless model such that
for all CB

Q > 0, any corresponding sequence of simulation protocols of length o( 1
CB
Q

N)

in the quantum model with quantum depolarizing channels of quantum capacity CB
Q

with classical feedback fails at producing the final state with low error on some input.
(We refer the reader to Refs [5, 37] for definitions of quantum capacity with classical
feedback CB

Q and quantum capacity with free assistance by two-way classical com-

munication C2
Q.) Moreover, the family of quantum protocols can be chosen as one

computing a distributed binary function.

Theorem 22. There exists a sequence {ΠN}N∈2N of two-party quantum protocols
such that for all CB

Q > 0, for any simulation protocol P in the quantum model of length

N ′ ∈ o(N/C) with communication rate RQ = N
N ′ , the simulation produces an error

of at least Ω(1) over quantum depolarizing channels of quantum capacity CB
Q with

classical feedback.

It turns out that quantum capacity does not capture the ability to transmit
information in an interactive setting. Given a two-party quantum protocol of length
N in the noiseless model, there exist a quantum depolarizing channel of unassisted
forward quantum capacity CQ = 0 and a simulation protocol in the quantum model
with asymptotically positive rate of communication which succeeds in simulating the
original protocol with arbitrarily small error over that quantum channel.

Theorem 23. There exist constants c,RQ > 0 such that given any N ∈ 2N, there
exists a universal simulator P for noiseless quantum protocols of length N with the
following properties. The simulator P is in the quantum model, has length N ′, com-
munication rate at least RQ, and transmission alphabet size 2. Further, the simulation
succeeds with error at most 2−cN at simulating all noiseless protocols of length N over
a particular depolarizing quantum channel M0 of forward quantum capacity CQ = 0.

6.3.1. Proof of Theorem 21. For the case of random error in the quantum
model, we use techniques similar to the case of adversarial error. Indeed, we split
the protocol into two phases: an entanglement distribution phase and a protocol
implementation phase.

It suffices to adapt the result from section 4 for a basic simulation protocol of
length N ′′ over some large alphabet Σ. We then need only distribute N ′′ maximally
entangled states of the appropriate size. For any depolarizing channel of quantum
capacity CQ > 0, we use standard coding results from quantum Shannon theory [54]
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to distribute entanglement at a rate of d
CQ

for some d > 0 with low error. Then, for

the protocol implementation phase, we appeal to two properties. First, the classical
capacity C of a quantum channel is at least as large as its quantum capacity. Second,
a classical capacity achieving strategy for the depolarizing channel is to simulate a
binary symmetric channel (BSC) of capacity C for each transmission by measuring
the output in the computational basis, and then to block code over the corresponding
BSC (see, e.g., Ref. [54] for details). We can then translate the proof of Theorem 18
in order to design our classical strategy. This succeeds with overwhelming probability
assuming perfect entanglement, and the output is arbitrarily close to the noiseless
protocol output. Combining the bound on the error from the two phases, the simula-
tion can be made to succeed with error less than f(N) over the depolarizing channel
of quantum capacity CQ, for some function f : N→ R+ which asymptotically goes to
zero.

6.3.2. Proof of Theorem 22. The idea for this proof is to use the fact that
distributing an EPR pair over a quantum depolarizing channel produces a Werner
state, which is symmetric under the interchange of Alice and Bob (see subsection 6.4
for a definition of Werner states). Moreover, if Bob uses the free classical feedback to
teleport to Alice with these Werner states, this creates a virtual depolarizing channel
from him to Alice, with the same parameter as the actual channel from Alice to him.
Hence, a quantum depolarizing channel from Alice to Bob along with free classical
feedback is sufficient to simulate depolarizing channels in both directions, and the
total number of uses of the depolarizing channel is the same in both cases.

Similar to what was argued in the proof of Theorem 19 for classical communica-
tion, there exist protocols of length N that fit our general framework in the noiseless
model and can be used to communicate up to N

2 qubits in each direction. Hence, since
our simulation protocols of length N ′ can be simulated by N ′ uses of a depolarizing
channel from Alice to Bob supplemented by classical feedback from Bob to Alice, we
cannot have a rate of communication better than N

2CB
Q

for small enough error.

To prove that a protocol to compute a binary function is sufficient, we once again
consider the inner product function IPn. We apply a coherent version of the idea to use
the inner product protocol to communicate, as in the proof of Theorem 19. This allows
us to use the depolarizing channel to distribute quantum entanglement, and then also
to teleport (again with the inner product protocol used this time to communicate
classical information). For this, it is sufficient to note that what we achieved in the
proof of Theorem 19 using the protocol for IPn is actually stronger than Θ(N) bits of
classical communication: we had a coherent bit channel [29] for Θ(N) cobits (coherent
bits), which can be used to distribute Θ(N) ebits (EPR pairs). Note that we once
again make the reasonable assumption that we can run the simulation backward over
the noisy channel at the same communication cost or that we can start with a coherent
protocol for the inner product function.

6.3.3. Proof of Theorem 23. The case of the depolarizing channel requires
some technical work, so for simplicity we first consider the case of the quantum era-
sure channel. For the quantum erasure channel, we use the property that, for erasure
probability 1

2 ≤ p < 1, the (forward, unassisted) quantum capacity is 0 while both the
classical capacity and the entanglement generation capacity with classical feedback
equal 1−p [5]. Moreover, the feedback required to achieve this bound is only one mes-
sage of length linear in the size of the quantum communication. The strategy we use
is the following: for a basic simulation protocol of length N ′′ over Σ, Alice distributes
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N ′′ EPR pairs to Bob by sending 4N ′′

(1−p) halves of such states over the quantum erasure

channel. Then, except with negligible probability, at least N ′′ of them are received
intact, and Bob knows which ones these are. The feedback consists of informing Alice
which N ′′ pairs were received intact and can be used in the protocol. This can be
done over the quantum erasure channel, with probability negligibly smaller than 1,
with a classical message of length linear in N ′′.

Then, given a message set Σ we can use the quantum erasure channel a constant
number of times to decrease the probability of error in a classical transmission of
any symbol e ∈ Σ below 1

90 . Except with negligible probability, the fraction of N ′′

transmissions of symbols of Σ transmitted in this way is below 1
80 . We can then use

a reasoning similar to that in the proof of Theorem 20 to argue that the output is
arbitrarily close to the noiseless protocol output.

Now for the depolarizing channel, the reasoning is mostly the same, but we have
to work harder to obtain (almost) noiseless entanglement. The unassisted forward
capacity of the depolarizing channel is shown in Ref. [6] to be equivalent to one-
way entanglement distillation yield. To separate one-way and two-way entanglement
distillation, they use a combination of the recurrence method of Ref. [4] along with
their hashing method. The recurrence method is an explicitly two-way entanglement
distillation protocol, which can purify highly noisy entanglement but does not have
a positive yield in the limit of high fidelity distillation. The hashing method is a
one-way protocol with positive yield in the perfect fidelity limit, but which does not
work on highly noisy entanglement. We cannot hope to use this strategy to distill
near-perfect EPR pairs in our scenario since the hashing method as they describe
it requires too much communication. (We could probably use a derandomization
argument to avoid communicating the random strings in this protocol.) To reduce
the communication cost, we instead use a hybrid approach of entanglement distillation
followed by quantum error correction.

Starting with a depolarizing channel with depolarizing parameter as high as pos-
sible, but still low enough to have CQ = 0, we use it to distribute imperfect EPR
pairs. This yields (rotated) Werner states with the highest possible fidelity to perfect
EPR pairs, but such that one-way entanglement distillation protocols cannot have
a positive yield of EPR pairs while two-way entanglement distillation protocols can.
(See subsection 6.4 for a definition of Werner states.) We then do one round of the
recurrence method for entanglement distillation to obtain a lesser number of Werner
states of higher fidelity to perfect EPR pairs, and so we could now use one-way dis-
tillation protocols on these to obtain a positive yield of near-perfect EPR pairs. The
amount of classical communication required up to this point is one message from Al-
ice to Bob of linear length informing him of her measurement outcomes, and then
one classical message of linear length from Bob to Alice informing her which states
to keep as well as which rotation to apply to these. (The rotation takes the states
back to the symmetric Werner form; log 12 bits of information per pair is sufficient
for this purpose [6].) We now use these EPR pairs along with teleportation to effec-
tively obtain a depolarizing channel of quantum capacity CQ > 0. We use standard
coding from quantum Shannon theory [54] over this quantum channel to distribute
N ′′ near-perfect EPR pairs. This new step only requires a linear amount of classical
communication. After the initial very noisy entanglement distribution step, we thus
only have three classical messages to send over the depolarizing channel of classical
capacity C > 0. We generate near-perfect entanglement using the depolarizing chan-
nel a linear number of times, and then go on to the protocol implementation phase
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as before. Note that we are not yet guaranteed an exponential decay of the error
at this point, but only that the error tends to zero in the limit of large N . To get
exponential decay in error, we adapt the above protocol. Before using teleportation
and QECCs to distribute near-perfect entanglement, we perform a few more rounds
of the recurrence method until the Werner states reach fidelity parameter above 0.82.
Except with negligible probability, starting with some linear number of noisy EPR
pairs, after a constant number of rounds of the recurrence method, we are left with
sufficiently many less noisy EPR pairs for our next step. At this point, it is known that
there exist stabilizer codes achieving the hashing bound (which has strictly positive
yield for this noise parameter) and which have negligible error. Using the property
that some classical capacity achieving strategy for the depolarizing channel also has
negligible error, we get the stated exponential decay in the error.

6.3.4. Discussion of Optimality. It is known that for some range of the de-
polarizing parameter, the quantum capacity CB

Q with classical feedback of the depo-
larizing channel is strictly larger than its unassisted forward quantum capacity CQ
[6]. In particular, there exist values for which CQ = 0 but CB

Q > 0. A careful analysis
of the related two-way entanglement distillation protocols (in particular their com-
munication cost and their amount of interaction) reveals that there is some range
of the depolarizing parameter for which we can achieve successful simulation even
though CQ = 0, by using the depolarizing channels in each direction to transmit
classical information. This proves that the standard forward quantum capacity of the
quantum channels used does not characterize their communication capacity in the
interactive communication scenario. Note that CB

Q > 0 if and only if the depolarizing

parameter ε′ < 2
3 , and so CB

Q > 0 if and only if the quantum capacity assisted by two-

way classical communication C2
Q > 0. In the case where we are given a depolarizing

channel with CB
Q > 0, we can modify the method used in the proof of Theorem 23.

We iteratively use the recurrence method a constant number of times on the noisy
distributed EPR pairs, until the depolarizing channels induced through teleportation
over the noisy distilled EPR pairs have non-zero forward quantum capacity. (Here
the constant depends on the depolarizing parameter, but not on N .) Then we dis-
tribute entanglement over the induced channels using standard QECCs. We achieve
asymptotically positive rates of communication for our simulation protocols. It is an
interesting open question whether we can close the gap between our lower and upper
bounds and always achieve successful simulation at a rate O( 1

CB
Q

N). The separation

result regarding the forward, unassisted quantum capacity of the depolarizing channel
requires some technical work, but the case of the erasure channel already makes it
clear that in general for discrete memoryless quantum channels, the unassisted for-
ward quantum capacity is not the most suitable quantity to consider in the setting of
interactive quantum communication.

6.4. Noisy Entanglement. The last model we consider is a further variation on
the shared entanglement model, in which, along with the noisy classical links between
the honest parties, the entanglement these parties share is also noisy.

There are many possible models for noisy entanglement; we consider a sim-
ple one in this section, in which parties share noisy EPR pairs instead of perfect
pairs. Following Ref. [4], we consider the so-called (rotated) Werner states WF =
F |Φ00〉〈Φ00| + 1−F

3 (|Φ01〉〈Φ01| + |Φ10〉〈Φ10| + |Φ11〉〈Φ11|), which are mixtures of the
four Bell states parametrized by 0 ≤ F ≤ 1. Note that these are the result of passing
one qubit of an EPR pair through a Tε′ depolarizing channel, for F = 1 − 3ε′

4 . The
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purification of these noisy EPR pairs is given to Eve. We use the result of Ref. [4] to
show that for any F > 1

2 , simulation protocols with asymptotically (in N → ∞, not
in F → 1

2 ) positive communication rates and which can tolerate a positive error rate
can succeed with asymptotically zero error. This is optimal since at F = 1

2 , Werner
states are separable, so there is no way to use them in conjunction with classical
communication to simulate quantum communication.

6.4.1. Adversarial Errors in the Classical Channel. We first consider the
case of adversarial errors. Let lc be the number of rounds of the recurrence method [4]
for entanglement distillation necessary to reach the F = 0.82 bound. This number
is independent of N , and depends only on the initial value of the parameter F . As
described in the proof of Theorem 23, each round of the recurrence method only re-
quires a linear length classical message in each direction. After this bound is reached,
one last linear length classical message is sufficient to generate a linear amount of
entanglement through teleportation via an induced depolarizing channel of non-zero
quantum capacity CQ. Standard quantum error correction techniques enable us to
extract near-perfect entanglement at this point. Once we have near-perfect entangle-
ment, we can use techniques from the basic simulation protocol to perform successful
simulation of noiseless protocols and hence achieve our goal. The protocol sketched
above requires the communication of 2lc + 1 messages to distill near-perfect entangle-
ment, independent of N , followed by a phase of simulating the message transmissions
from the original protocol. The simulation protocol tolerates a constant error rate,
though inversely proportional to lc. It requires a constant rate of noisy entanglement
consumption, which is exponential in lc since each round of the recurrence method
consumes at least half of the noisy EPR pairs. The protocol has a constant, positive
rate of communication, though inversely proportional to the number of consumed
noisy EPR pairs.

6.4.2. Random Errors in the Classical Channel. The case of noisy com-
munication through binary symmetric channels once again is immediate from the
adversarial error case by a concentration of measure argument. The communication
rate of the resulting protocol is inversely proportional to the classical capacity C, and
also to the number of noisy EPR pairs consumed.

7. Conclusion: Discussion and Open Questions. In this work, we pro-
posed a simulation of interactive quantum protocols intended for noiseless communi-
cation over noisy channels. Our approach is to replace irreversible measurements by
reversible pseudo-measurements in the Cleve–Buhrman model, i.e., the model with
shared entanglement and classical communication. Then, in the noisy version of the
model, we teleport back and forth the corresponding quantum communication regis-
ter to avoid losing quantum information. We develop a representation for such noisy
quantum protocols that gives an analogue of Schulman’s protocol tree representation
for classical protocols. We prove that with this approach, it is possible to simulate the
evolution of quantum protocols designed for noiseless quantum channels over noisy
classical channels with only a linear dilation factor.

In the case of adversarial channel errors in which the parties are allowed to pre-
share a linear amount of entanglement, we prove that the error rate of 1

2 − ε that
our simulation tolerates is optimal unless we allow adaptive protocols. (An adaptive
protocol is a generalization of the noisy communication model wherein the order in
which the parties take turns speaking can be adapted to the errors.) In a noisy setting,
restricting to non-adaptive (oblivious) protocols seems natural. Adaptive protocols



NOISY INTERACTIVE QUANTUM COMMUNICATION 43

run the risk of entering a deadlock: depending on the particular view of each party
of the evolution of the protocol due to previous errors, the parties could disagree on
whose turn it is to speak. This would result in protocols that are not well defined.

To get the tolerable error rate as high as 1
2 − ε, we develop new techniques along

with a new bound on tree codes with an erasure symbol, Lemma 16. To simplify the
exposition, we chose not to optimize the parameters in our simulation protocol such as
communication and entanglement consumption rates, or the size of the communication
register.

We adapt our findings to a random error model in which parties are allowed
to share entanglement but communicate over binary symmetric channels of non-zero
capacity C. We obtain communication rates proportional to C. We show that, up
to a hidden constant, this is optimal for some family of distributed binary functions,
for example the inner product functions IPn : {0, 1}n × {0, 1}n → {0, 1}, defined as
IPn(x, y) = ⊕ni=1xi · yi. Our findings can also be adapted to obtain similar (though
not optimal) results for the quantum model (the noisy version of Yao’s model). Here,
the simulation protocols run in two phases. In the first, a preprocessing phase, a
linear amount of entanglement is distributed with standard techniques from quantum
Shannon theory for random noise and from quantum coding theory for adversarial
noise. This is followed by a simulation phase in which the actions of the parties
parallel those in the shared entanglement model. In the case of adversarial noise,
we show that we can tolerate an error rate of 1

6 − ε in the quantum model. In the
case of random noise in which the parties communicate over depolarizing channels
of capacity CQ > 0, we obtain rates proportional to CQ. Perhaps surprisingly, we
show that the use of depolarizing channels in both directions enables the simulation
to succeed even for some quantum channels of unassisted forward quantum capacity
CQ = 0. This proves that Q does not characterize a quantum channel’s capacity
for interactive quantum communication. We extend our ideas to perform simulation
in an extension of the shared entanglement model in which not only the classical
communication is noisy but also the entanglement.

A direction of research that immediately grows out of this work is characterizing
the communication rates in all of the models discussed. In particular, the precise
interactive capacity of the depolarizing channel with a specified noise parameter re-
mains open. The question of interactive capacity for the binary symmetric channel
was raised in the classical context by Schulman [47] and brought to attention recently
by Braverman in a survey article on the topic of interactive coding [13]. Recent devel-
opments provide tight lower and upper bounds for this quantity [34]. In the classical
setting, a particular problem with worst-case interaction of one-bit transmissions to
which all classical interactive protocols can be mapped was proposed for the study of
such a quantity. Since every interactive quantum protocol can be mapped onto our
general problem, it would be natural to study such a quantity in the quantum domain.
Would the interactive capacity of the binary symmetric channel (with entanglement
assistance) for quantum protocols be the same as that for classical protocols [34], up
to a factor of 2 for teleportation? Do the techniques developed in Ref. [34] adapt to
the quantum setting to obtain an upper bound of 1

2 − Ω(
√

H(ε) )? What about the
depolarizing channel and other channels?

Another question that remains open is finding the highest adversarial error rate
that can be withstood in the quantum model. To study this question, it is likely
that a “fully quantum” approach with new kinds of quantum codes is needed. In
particular, ideas from fault-tolerant quantum computation might be necessary. Fur-
thermore, the important question of integrating our results into a larger fault-tolerant
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framework, in which the local operations are also noisy, remains open. Yet another
important question for interactive quantum coding is what would happen in a shared
entanglement setting if, along with the noisy classical communication, the entangle-
ment provided were also noisy; we investigated this question for a depolarizing noise
model for the entanglement, but other models would also be interesting to study, in
particular, adversarial noise on the shared EPR pairs above the unidirectional binary
error rate limit. Note that below that bound, standard quantum error correction
for qubits with teleportation can be used for distillation. Finally, the question of
computationally efficient simulation also remains open.

Acknowledgments. The authors are grateful to Louis Salvail, Benno Salwey
and Mark M. Wilde for useful discussions.

Appendix A. Formal Definitions for Noisy Communication Model.

A.1. Quantum Model. For the quantum model, Alice possesses a local quan-
tum register A′ which contains five subsystems of interest: to implement a noiseless
protocol Π as a black-box, the A and CA parts correspond to the registers of the noise-
less communication protocol, while Ã and C̃A are the corresponding registers defined
by the noiseless protocol embedding, and A′′ is some scratch register used for her local
quantum computation in the simulation. Similarly, Bob possesses a local quantum
register B′ which contains four subsystems of interest: to implement Π as a black-box,
the B and CB parts correspond to the registers of the noiseless communication proto-
col, while B̃ is the corresponding register defined by the noiseless protocol embedding,
and B′′ is some scratch register used for his local quantum computation in the simu-
lation. Eve possesses a local quantum register E′ which contains two subsystems of
interest: the E part corresponds to her input register of the noiseless communication
protocol and E′′ is some scratch register used for her local quantum computation in
the simulation. The input registers ABCAE are purified by a reference register R,
which remains untouched throughout. A quantum communication register C ′, of some
fixed size q independent of the length N of the protocol to be simulated, is exchanged
back and forth between Alice and Bob, passing through Eve; it is held by Alice at both
the beginning and the end of the simulation protocol. A simulation protocol Q in the
quantum model of length N ′ is defined by a sequence of quantum instrumentsMA′C′

1 ,

MB′C′

2 , . . . , MA′C′

N ′+1 such that, on state |ψ′init〉
A′B′C′E′R

= |ψinit〉ABCAER⊗ |0〉 as in-
put, given black-box access to a noiseless protocol Π (Π is assumed to be known to
everyone) and against an adversary A defined by a sequence of quantum instruments
NE′C′

1 , . . . , NE′C′

N ′ , the protocol outputs the ÃB̃C̃ subsystems of

ρfinal =MΠ
N ′+1NN ′MΠ

N ′ · · ·MΠ
2N1MΠ

1 (|ψ′init〉〈ψ′init|).(13)

(Here, the superscript Π emphasizes the black-box access to the protocol.) We denote
the state of the output registers ÃB̃C̃ by QΠ(A(|ψinit〉)), and the induced quantum
channel from ABCE to ÃB̃C̃ ∼= ABC by QΠ(A). The success of the simulation is
measured by how close the simulation output state is to the final state of the noiseless
protocol on the ABC registers, and is captured by the following definition.

Definition 24. A simulation protocol Q in the quantum model of length N ′ suc-
ceeds with error ε at simulating all length N noiseless protocols against all adversaries
in some class A if, for all noiseless protocols Π of length N , for all adversaries A ∈ A,
‖Π−QΠ(A)‖� ≤ ε. The communication rate RQ of Q is RQ = N

N ′ log q for q ≥ 2 the

alphabet size of the communication register C ′.
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Note that the adversary only has to make the simulation fail on some particular
protocol, and on some particular input, to characterize the simulation protocol as
ineffective against her.

In a random error model (analogous to that studied in quantum information
theory à la Shannon), Eve is a non-malicious passive environment, and Ni = NQ for

some fixed quantum channel NQ, and the class A contains a single element NC′⊗N
′

(with trivial Z,E′ registers). For simplicity, we then say that the simulation succeeds
over NQ. In an adversarial error model (analogous to that studied in quantum coding
theory, à la Hamming), Eve is a malicious adversary who wants to make the protocol
fail, and we are interested in particular classes of adversaries which we denote by
AQ
δ,q,N ′ for some parameter δ such that 0 ≤ δ ≤ 1. The class AQ

δ,q,N ′ contains all
adversaries with a bound δ on the fraction of communications of the C ′ register they
corrupt, in the following sense. Here, Fq′,1, Eδ,q,N ′ are defined in Eqs. (2) and (3),
respectively.

Definition 25. The class AQ
δ,q,N ′ of adversaries in the quantum model with error

rate bounded by δ, 0 ≤ δ ≤ 1, contains adversaries of the following kind: each adver-

sary is specified by a sequence of instruments NE′C′1
1 , . . . , NE′C′

N′
N ′ with arbitrary local

quantum register E′ of dimension q′ ∈ N. All of these adversaries act on a quantum
communication register C ′ of dimension q ∈ N, and on protocols of length N ′ ∈ N.
For any ρ ∈ D(E′ ⊗ C ′⊗N ′), the action of such an adversary is

NE′C′
N′

N ′ · · · NE′C′1
1 (ρ) =

∑
i

GiρG
†
i ,

for i ranging over some finite set and with each Gi of the form

Gi =
∑

H∈Eδ,q,N′ ,F∈Fq′,1

αH,F,iF
E′ ⊗HC′⊗N

′

,

which is also subject to the requirement that
∑
iG
†
iGi = IE

′C′⊗N
′

.

This adapts to an interactive communication model the formal definition of ad-
versarial channel given in Ref. [38] in a unidirectional communication model. Note
that this allows for adaptive, probabilistic, entangled strategies for Eve, but such that
any Kraus operator Gi,z,z0 is a linear combination of operators which act on at most
a δ fraction of the C ′ registers non-trivially. We therefore say that the fraction of
errors is bounded by δ for all adversaries in AQ

δ,q,N ′ .

A.2. Shared Entanglement Model. For the shared entanglement model, Al-
ice, Bob and Eve possess local classical-quantum registers split analogously to those
in the quantum model. In addition to the entanglement inherent in |ψinit〉ABCER,
Alice and Bob also share entanglement to be consumed during the simulation in
the form of a large state |φ〉TATB with the registers TA, TB held by Alice and Bob,
respectively. In general, the entanglement registers have a product decomposition
TA = T 1

A ⊗ · · · ⊗ TN
′

A , TB = T 1
B ⊗ · · · ⊗ TN

′

B . A classical communication register C ′′,
of some fixed size q independent of the length N of the protocol to be simulated, is
exchanged back and forth between Alice and Bob, passing through Eve; it is held by
Alice at both the beginning and the end of the simulation protocol. A simulation
protocol S in the shared entanglement model of length N ′ is defined by a sequence

of quantum instruments MA′TAC
′′

1 , MB′TBC
′′

2 , . . . , MA′TAC
′′

N ′+1 such that, with state
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|ψ′init〉
A′B′C′′E′R

= |ψinit〉ABCAER⊗ |0〉 as input, given black-box access to a noiseless
protocol Π, and against an adversary A defined by a sequence of quantum instruments
NE′C′′

1 , . . . , NE′C′′

N ′ , the protocol outputs the ÃB̃C̃ subsystems of the state ρfinal given
by

ρfinal =MΠ
N ′+1NN ′MΠ

N ′ · · ·MΠ
2N1MΠ

1 (|ψ′init〉〈ψ′init|).(14)

(Again, the superscript Π emphasizes the black-box access to the protocol by the
simulator.) We denote the state of the output registers ÃB̃C̃ by SΠ(A(|ψinit〉)), and
the induced quantum channel from ABCE to ÃB̃C̃ ∼= ABC by SΠ(A). The success
of the simulation is measured by how close the simulation output state is to the final
state of the noiseless protocol on the ABC registers, and is captured by the following
definition:

Definition 26. A length N ′ simulation protocol S in the shared entanglement
model of succeeds with error ε at simulating all length N noiseless protocols against
all adversaries in some class A if, for all noiseless protocols Π of length N , for all
adversaries A ∈ A, ‖Π − SΠ(A)‖� ≤ ε. The communication rate RC of S is RC =

N
N ′ log q for q ≥ 2, the alphabet size of the classical communication register C ′′, and

the entanglement consumption rate RE is RE = log (max (dimTA,dimTB))
N ′ for TA, TB the

entanglement registers used for the simulation by Alice and Bob, respectively.

In a random error model, Eve is a non-malicious passive environment, Ni = N S

for some fixed classical channel N S , and the class A contains a single element NC′′⊗N
′

(with trivial Z,E′ registers). For simplicity, we then say that the simulation succeeds
over N S . In an adversarial error model, Eve is a malicious adversary who wants to
make the protocol fail, and we are interested in particular classes of adversaries, which
we denote by AS

δ,q,N ′ for some parameter 0 ≤ δ ≤ 1. The class AS
δ,q,N ′ contains all

adversaries with a bound δ on the fraction of communications of the C ′′ register they
corrupt, in the following sense. Here, for two strings c, c0 over a finite alphabet, ∆ is
the Hamming distance function counting the number of positions in which c, c0 differ;
see subsection 3.4.2 for a formal definition.

Definition 27. The class AS
δ,q,N ′ of adversaries with error rate bounded by δ,

0 ≤ δ ≤ 1, in the shared entanglement model contains adversaries of the following

kind: each adversary is specified by instruments NE′C′′1
1 , . . . ,NE′C′′

N′
N ′ with arbitrary

local quantum register E′ of dimension q′ ∈ N. All these instruments act on a classical
communication register C ′′ of dimension q ∈ N, and on protocols of length N ′ ∈ N.
For any ρ ∈ D(E′ ⊗ C ′′⊗N ′), the action of such an adversary is

NE′C′′
N′

N ′ · · · NE′C′′1
1 (ρ) =

∑
c,c0

Gc,c0ρG
†
c,c0 ,

for c, c0 ∈ {0, 1, · · · , q − 1}N ′ satisfying ∆(c, c0) ≤ δN ′ and with each Gc,c0 of the
form

Gc,c0 =
∑

F∈Fq′,1

αF,c,c0F
E′ ⊗ |c〉〈c0|C

′′⊗N′

,

also subject to the requirement that for any c0 ∈ {0, 1, . . . , q − 1}N ′ ,∑
c

G†c,c0Gc,c0 = IE
′
⊗ |c0〉〈c0|C

′′⊗N′

.
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a

z

Ē(z)

b

Ē(x) Ē(y)

`

Fig. 2. Depiction of paths x = za and y = zb in a tree with divergence of length `, along with
the encodings Ē(x), Ē(y), and Ē(z) of these strings.

Note that this allows for adaptive, probabilistic strategies for Eve, but such that
conditioned on any final transcript c and input transcript c0 on the communication
register, at most a δ fraction of the actions of Eve have acted non-trivially on the C ′′

register, even though she can copy all classical transmissions in the E′ registers. We
therefore say that the fraction of error is bounded by δ for all adversaries in AS

δ,q,N ′ .
Note that the adversaries in the quantum and the shared entanglement models are

fundamentally different: in the shared entanglement model, Eve can copy all classical
messages without inducing any error and gather the corresponding information to
establish her strategy, but she cannot modify Alice’s or Bob’s quantum information,
except for what is possible by corrupting their classical communication and by using
the information in the quantum register E purifying the input state. In contrast, in
the quantum model, she cannot always “read” the quantum messages, but she can
apply entangled, fully quantum corruptions to the quantum register when she chooses
to.

Appendix B. Tree Code Figure.
Figure 2 depicts two paths x = za and y = zb in a tree with divergence of

length `, along with the encodings Ē(x), Ē(y), and Ē(z) of the strings x, y, and z.
Let a = a1a2 . . . a` and b = b1b2 . . . b`; then the tree code encoding of x and y are
Ē(x) = Ē(z)◦ Ē(a|z) and Ē(y) = Ē(z)◦ Ē(b|z), in which ◦ is the concatenation operator
for strings, Ē(a|z) = E(za1)E(za1a2) . . .E(za) and Ē(b|z) = E(zb1)E(zb1b2) · · ·E(zb).

The main property of the tree code is : ∆(Ē(x), Ē(y)) = ∆(Ē(a|z), Ē(b|z)) ≥ α · `
; i.e., the suffixes of the codewords are at distance at least α`.
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