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Abstract

The Quantum Substate Theorem due to Jain, Radhakrishnan, and Sen (2002) gives us a
powerful operational interpretation of relative entropy, in fact, of the observational divergence
of two quantum states, a quantity that is related to their relative entropy. Informally, the
theorem states that if the observational divergence between two quantum states ρ, σ is small,
then there is a quantum state ρ′ close to ρ in trace distance, such that ρ′ when scaled down by
a small factor becomes a substate of σ. We present new proofs of this theorem. The resulting
statement is optimal up to a constant factor in its dependence on observational divergence.
In addition, the proofs are both conceptually simpler and significantly shorter than the earlier
proof.

1 The Quantum Substate Theorem

Consider quantum states ρ, σ ∈ D(H), where H is a finite dimensional Hilbert space H, and D(H)
denotes the set of all quantum states with support in H, i.e., the set of unit trace positive semi-
definite operators on H. We say that ρ is a c-substate of σ if ρ � 2cσ, where � represents the
Löwner partial order on operators on H. We may equivalently express this condition in terms of
measurement outcomes (“POVM elements”) as follows. Let

P(H)
def
= {M ∈ L(H) : O �M � I} ,

denote the set of POVM elements onH, where L(H) is the space of linear operators and I is the iden-
tity operator on H. The state ρ is a c-substate of σ iff for every measurement outcome M ∈ P(H),
the probability Tr(Mσ) of observing M when σ is measured according to the POVM {M, I−M} is
at least Tr(Mρ)/2c, a 1/2c fraction of the probability of observing M when ρ is measured. Morally,
the state σ may be decomposed as σ = αρ + (1 − α)σ̃, for some σ̃ ∈ D(H), with α ≥ 1/2c.
This in turn may be used to construct the state ρ from σ through quantum analogues of rejec-
tion sampling. For example, we may apply the quantum measurement specified by the Kraus
operators

{√
αρ1/2σ−1/2,

√
1− α σ̃1/2σ−1/2

}
, or go through a purification of σ [8, 10].
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Given arbitrary quantum states ρ, σ ∈ D(H) we are interested in how well σ masquerades as ρ
in the above sense. In other words, we are interested in the least c such that ρ is a c-substate
of σ. We call this quantity the relative min-entropy S∞(ρ‖σ) of the two states. A generalization
of this notion to bipartite states has been studied by Renner [14, Chapter 3], and the notion itself
has been studied by Datta [2] as “max-relative entropy”. For typical applications, such as privacy
trade-offs in communication protocols [8, 10], it suffices to construct an approximation ρ′ to ρ,
with respect to a metric on quantum states. This leads us to the notion of the smooth relative
min-entropy Sε∞(ρ‖σ) of the two states, a quantity implicitly studied by Jain, Radhakrishnan, and
Sen [8, 10] and later explicitly by Renner [14, Chapter 3] and Datta [2]. The metric initially used
for the smoothness parameter ε was the trace distance. The fidelity of quantum states gives us a
more natural metric in typical applications, and we adopt this measure of closeness in the article.

Let ε ∈ (0, 1) and ρ, σ ∈ D(H) be such that supp(ρ) ⊆ supp(σ). We may express the ε-smooth
relative min-entropy Sε∞(ρ‖σ) as the base-2 logarithm of the value of the following optimization
problem with variables ρ′ ∈ D(H) and κ ∈ R:

minimize: κ

subject to:

ρ′ � κσ

Tr ρ′ = 1 (P1)

F(ρ, ρ′) ≥ 1− ε
ρ′ ∈ L(H), ρ′ � 0

κ ∈ R, κ ≥ 0

Here F(ρ′, ρ)
def
=
∥∥√ρ′√ρ∥∥2

tr
, denotes the fidelity between the two quantum states, and ‖M‖tr

def
=

Tr
√
M †M denotes the trace norm of the linear operatorM ∈ L(H). The existence of a pair ρ′, κ that

are feasible for the problem (P1) means that there is a quantum state ρ′ with fidelity F(ρ′, ρ) ≥ 1−ε
that is also a (log2 κ)-substate of σ. The substate constraint implies that κ ≥ 1.

The program (P1) is feasible, as ρ′
def
= ρ and κ

def
= 1/λ, where λ is the smallest non-zero eigenvalue

of σ, satisfy all the constraints. Therefore we may restrict the optimization to κ ∈ [0, 1/λ] and the
compact set of quantum states with fidelity at least 1−ε with ρ. The ε-smooth relative min-entropy
between the two states is thus always achieved.

If ρ is a c-substate of σ, i.e., their relative min-entropy is at most c, then their relative entropy

S(ρ‖σ)
def
= Tr ρ(log2 ρ − log2 σ) is also at most c. Jain et al. [8, 10] gave a weak converse to this

relation via the Quantum Substate Theorem, which gives a bound on the ε-smooth relative min-
entropy in terms of the more familiar notion of relative entropy. This theorem may also be viewed
as a handy operational interpretation of the rather abstract notion of relative entropy.

The substate theorem (classical or quantum) lies at the heart of a growing number of applica-
tions [10, Section 1]. These include privacy trade-offs in communication protocols for computing
relations [9], message compression leading to direct sum theorems in classical and quantum com-
munication complexity [9], impossibility results for bit-string commitment [4], the communication
complexity of remote state preparation [3], and direct product theorems for classical communica-
tion complexity [6, 5]. To highlight one of these examples, the Quantum Substate Theorem enables
(non-oblivious) compression of an ensemble of mixed quantum states to within a constant factor of
the Holevo information of the ensemble, given access to shared entanglement and classical commu-
nication, when we are allowed a small loss of fidelity in the compression process. In contrast, the
compression of arbitrary ensembles of mixed quantum states to the Holevo limit remains an open
problem in quantum information theory.
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Jain et al. formulated their bound in terms of a new information theoretic quantity, observa-
tional divergence D(ρ‖σ), rather than relative entropy.

Definition 1 (Observational divergence). Let ρ, σ ∈ D(H). Their observational divergence is
defined as

D(ρ‖σ)
def
= sup

{
(TrMρ) log2

TrMρ

TrMσ
: M ∈ P(H), TrMσ 6= 0

}
.

The supremum in the definition above is achieved if and only if supp(ρ) ⊆ supp(σ). As is evident,
this quantity is a scaled measure of the maximum factor by which Tr(Mρ) may exceed Tr(Mσ) for
any measurement outcome M of interest. Observational divergence is related to relative entropy.
In particular, D(ρ‖σ) ≤ S(ρ‖σ) + 1. However, it could be smaller than relative entropy by a factor
proportional to the dimension [10, Proposition 4] (see also [7]).

We present alternative proofs of the Quantum Substate Theorem, also strengthening it in the
process.

Theorem 1. Let H be a Hilbert space, and let ρ, σ ∈ D(H) be quantum states such that supp(ρ) ⊆
supp(σ). For any ε ∈ (0, 1), there is a quantum state ρ′ with fidelity F(ρ′, ρ) ≥ 1− ε such that ρ′ �
κσ, where

κ =
1

1− ε
2D(ρ‖σ)/ε .

Equivalently, for any ε ∈ (0, 1),

Sε∞(ρ‖σ) ≤ D(ρ‖σ)

ε
+ log2

1

1− ε
.

The proofs that we present are both shorter and conceptually simpler than the original proof.
The proof due to Jain et al. consists of a number of technical steps, several of which are bundled into
a “divergence lifting” theorem that reduces the problem to one in which ρ is a pure state (a rank one
quantum state). Finally, the pure state case is translated into a problem in two dimensions which
is solved by a direct calculation. Divergence lifting involves going from a construction of a suitable
state ρ′ for a fixed POVM element to one that is independent of the POVM element, by appealing
to a minimax theorem from Game Theory. We show that this minimax theorem can be applied
directly to establishing the Quantum Substate Theorem. The resulting statement is stronger in its
dependence on observational divergence. The original bound read as Sε∞(ρ‖σ) ≤ d′/ε− log2(1− ε),
where d′

def
= d+ 4

√
d+ 2 + 2 log2(d+ 2) + 6 with d

def
= D(ρ‖σ). The formulation in terms of fidelity

also allows us to show that the dependence on observational divergence in Theorem 1 is optimal
up to a constant factor. A similar result in the classical case was already established by Jain et al.

Theorem 2. Let H be a Hilbert space, and let ρ, σ ∈ D(H) be quantum states such that supp(ρ) ⊆
supp(σ). Suppose k ∈ R is such that for any ε ∈ (0, 1), there is a quantum state ρ′ with fi-
delity F(ρ′, ρ) ≥ 1− ε such that ρ′ � κσ, where

κ =
1

1− ε
2k/ε ,

or equivalently,

Sε∞(ρ‖σ) ≤ k

ε
+ log2

1

1− ε
.

Then D(ρ‖σ) ≤ 4k + 3.

3



We thus settle two questions posed by Jain et al. [10, Section 5].
For the first proof (Section 2), we start by converting the convex minimization problem (P1)

into a min-max problem through a simple duality argument. The minimax theorem now applies
and reduces the problem of construction of a suitable state ρ′ to one that works for a fixed POVM
element. The latter task turns out to be similar to proving the Classical Substate Theorem.
This proof is thus shorter and conceptually simpler than the original one, and also leads to a
tighter dependence on observational divergence. We present a second proof based on semi-definite
programming (SDP) duality (Section 3). We believe that both approaches have their own merits.
The first approach is more intuitive in that once the problem is formulated as a min-max program,
the subsequent steps emerge naturally. The second approach has the appeal of relying on the more
standard SDP duality. These routes to the theorem may prove useful in its burgeoning list of
applications, as also in the study of smooth relative min-entropy.

2 A proof based on min-max duality

In this section, we present an alternative proof of the Quantum Substate Theorem. It hinges on a
powerful minimax theorem from game theory, which is a consequence of the Kakutani fixed point
theorem in real analysis [13, Propositions 20.3 and 22.2].

Theorem 3. Let A1, A2 be non-empty, convex and compact subsets of Rn for some positive inte-
ger n. Let u : A1 ×A2 → R be a continuous function such that

• ∀a2 ∈ A2, the set {a1 ∈ A1 : (∀a′1 ∈ A1) u(a1, a2) ≥ u(a′1, a2)} is convex, i.e., for every a2 ∈
A2, the set of points a1 ∈ A1 such that u(a1, a2) is maximum is a convex set; and

• ∀a1 ∈ A1, the set {a2 ∈ A2 : (∀a′2 ∈ A2) u(a1, a2) ≤ u(a1, a
′
2)} is convex, i.e., for every

a1 ∈ A1, the set of points a2 ∈ A2, such that u(a1, a2) is minimum is a convex set.

Then, there is an (a∗1, a
∗
2) ∈ A1 ×A2 such that

max
a1∈A1

min
a2∈A2

u(a1, a2) = u(a∗1, a
∗
2) = min

a2∈A2

max
a1∈A1

u(a1, a2) .

We start with the following lemma which bounds the distance between a quantum state and
its normalized projection onto a subspace in which it has “large” support. It is a variant of the
“gentle measurement lemma” due to Winter [16].

Lemma 4. Let ρ ∈ D(H) be a quantum state in the Hilbert space H. Let Π be an orthogonal
projection onto a subspace of H such that Tr Πρ = δ < 1. Let ρ′′ = (I−Π)ρ(I−Π) be the projection

of ρ onto the orthogonal subspace, and let ρ′ = ρ′′

Tr ρ′′ be this state normalized. Then F(ρ, ρ′) ≥ 1− δ.

Proof: Let K be a Hilbert space with dim(K) = dim(H). Let |v〉 ∈ K ⊗ H be a purification
of ρ [12]. Let |v′′〉 = (I⊗ (I−Π))|v〉. Let |v′〉 = |v′′〉/ ‖v′′‖. Observe that TrK |v′′〉〈v′′| = ρ′′, so∥∥v′′∥∥2 = Tr |v′′〉〈v′′| = Tr ρ′′ = Tr ρ− Tr Πρ = 1− δ ,

and TrK |v′〉〈v′| = ρ′. Now,

F(ρ, ρ′) ≥ F(|v〉〈v|, |v′〉〈v′|)
= |〈v|v′〉|2

=
∥∥v′′∥∥2 = 1− δ ,
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where the first inequality follows from the monotonicity of fidelity under completely positive trace
preserving (CPTP) operations [12].

The next lemma is an important step in the proof, and along with the minimax theorem
(Theorem 3) yields the Quantum Substate Theorem. It mimics the proof of the Classical Substate
Theorem with respect to a particular operator M � 0, which may be viewed as an unnormalized
POVM element. Namely, we decompose M into its diagonal basis, and imagine measuring with
respect to this basis. If the observational divergence of ρ with respect to σ is small, then for most of
the basis elements, the probability of the outcome for ρ is not too large relative to the probability
for σ. Projecting ρ onto the space spanned by these basis elements gives us a state ρ′, close to ρ,
for which TrMρ′ is correspondingly bounded, relative to TrMσ.

Lemma 5. Suppose ρ, σ ∈ D(H) are quantum states in the Hilbert space H such that supp(ρ) ⊆
supp(σ). Let d = D(ρ‖σ), ε ∈ (0, 1), and M � 0 be an operator on H. There exists a quantum
state ρ′ ∈ D(H) such that F(ρ′, ρ) ≥ 1− ε and

(1− ε) · TrMρ′ ≤ 2d/ε · TrMσ .

Proof: Consider M in its diagonal form M =
∑dim(H)

i=1 pi|vi〉〈vi|, where the (pi) are the eigenvalues
of M corresponding to the orthonormal eigenvectors (|vi〉). Let

B
def
=

{
i : 〈vi|ρ|vi〉 > 2d/ε · 〈vi|σ|vi〉, 1 ≤ i ≤ dim(H)

}
.

Let Π =
∑

i∈B |vi〉〈vi| be the projector onto the space spanned by vectors specified by B. Then

Tr Πρ > 2d/ε · Tr Πσ and hence,

d ≥ (Tr Πρ) log2
Tr Πρ

Tr Πσ
> (Tr Πρ) · d

ε
.

This implies that Tr Πρ < ε. Let ρ′′ = (I − Π)ρ(I − Π) and ρ′ = ρ′′

Trρ′′ ≺
ρ′′

1−ε . From Lemma 4 we

have F(ρ, ρ′) ≥ 1− ε. Finally, by the definition of Π,

(1− ε) · TrMρ′ ≤ TrMρ′′

=
∑
i 6∈B

pi〈vi|ρ|vi〉

≤ 2d/ε
∑
i 6∈B

pi〈vi|σ|vi〉

≤ 2d/ε · TrMσ .

We now prove the main result, Theorem 1. For this, it suffices to produce a state close to ρ
that when scaled suitably is a substate of σ. The condition ρ′ � κσ is equivalent to TrMρ′ ≤ κ
for all M � 0 with TrMσ ≤ 1. We use this dual view of the substate condition to convert
the minimization problem (P1) into a min-max optimization problem. We then use the minimax
theorem, Theorem 3, to drastically simplify the search for a suitable state ρ′. As a consequence,
it suffices to produce a state ρ′ close to ρ such that TrMρ′ ≤ κ for an arbitrary but fixed M � 0
with TrMσ ≤ 1.

5



Proof of Theorem 1: We first massage the program (P1) into a form to which Theorem 3 applies.
If a pair ρ′, κ are feasible for (P1), then supp(ρ′) ⊆ supp(σ). By taking H = supp(σ) if necessary,
we may therefore assume that σ � 0, i.e., σ has full support. It is straightforward to check that for
any given ρ′ ∈ D(H),

min
κ : ρ′�κσ

κ = max
M�0 : TrMσ≤ 1

TrMρ′ .

Hence we may rewrite Sε∞(ρ‖σ) as the base-2 logarithm of

min
ρ′�0 : Tr ρ′=1,
F(ρ′,ρ)≥ 1−ε

max
M�0 : TrMσ≤ 1

TrMρ′ .

Viewing ρ′ and M as elements of the real vector space of Hermitian operators in L(H), noting that
fidelity is concave in each of its arguments [12] and that the trace function is bilinear, we may apply
Theorem 3 to the resulting optimization problem. We get

2S
ε
∞(ρ‖σ) = max

M � 0 : TrMσ≤ 1
min

ρ′� 0 : Tr ρ′=1,
F(ρ′,ρ)≥ 1−ε

TrMρ′ .

By Lemma 5, for every M � 0 with TrMσ ≤ 1, there is a quantum state ρ′, with F(ρ′, ρ) ≥ 1− ε,
such that (1− ε) TrMρ′ ≤ 2d/ε, where d = D(ρ‖σ). The desired result now follows.

Combining Theorem 1 and the Uhlmann theorem [12] immediately gives us the following state-
ment. The Quantum Substate Theorem is often used in this form in its applications.

Corollary 6. Let H,K be Hilbert spaces with dim(K) ≥ dim(H), and let ρ, σ ∈ D(H) be quantum
states such that supp(ρ) ⊆ supp(σ). Let d = D(ρ‖σ), ε ∈ (0, 1), and |v〉 ∈ K ⊗H be a purification
of ρ. Then there is a pure state |v′〉 ∈ K⊗H with F(|v〉〈v|, |v′〉〈v′|) ≥ 1− ε, and a pure state |w′〉 ∈
K ⊗H such that |w〉 ∈ C2 ⊗K ⊗H defined as

|w〉 def
=

√
α |0〉|v′〉+

√
1− α |1〉|w′〉 ,

with α = (1− ε)2−d/ε, is a purification of σ.

Proof: Let ρ′ be a state given by Theorem 1 such that fidelity F(ρ′, ρ) ≥ 1− ε and αρ′ � σ. Then
we can decompose σ as

σ = αρ′ + (1− α)θ ,

where θ ∈ D(H) is some quantum state. By the Uhlmann theorem [12] there is a purifica-
tion |v′〉 ∈ K ⊗ H of ρ′ such that F(|v〉〈v|, |v′〉〈v′|) = F(ρ, ρ′) ≥ 1 − ε. Let |w′〉 ∈ K ⊗ H be
any purification of θ. Then we may verify that |w〉 as defined in the statement of the corollary is a
purification of σ.

The dependence of the bound on the ε-smooth relative min-entropy in Theorem 1 in terms of
observational divergence is optimal up to a constant factor, as stated in Theorem 2. We start its
proof with the following lemma.

Lemma 7. Let δ, δ′ ∈ [0, 1] and β ∈ [0, 1/4] such that(√
δ δ′ +

√
(1− δ)(1− δ′)

)2
≥ 1− βδ .

Then δ′ ≥
(
1−
√
β
)2
δ.
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Proof: Let u =
(√

δ,
√

1− δ
)T

and u′ =
(√

δ′,
√

1− δ′
)T

be vectors in R2. Let φ, φ′ ∈ [0, π/2] be

the angles u, u′ make with (1, 0)T, respectively. By hypothesis, 〈u|u′〉2 ≥ 1 − βδ. Let θ ∈ [0, π/2]
be the angle between u, u′, so that cos2 θ ≥ 1− βδ.

We wish to bound δ′ = cos2 φ′ from below given that |φ′ − φ| = θ. Observe that cos(φ + θ) ≥√
δ(1− βδ) −

√
(1− δ)βδ ≥ 0, so that φ + θ ≤ π/2. Therefore, δ′ takes its minimum value

when φ′ = φ+ θ.
We may now bound δ′ as follows.

δ′ = cos2 φ′ ≥ cos2(φ+ θ)

≥
(√

δ(1− βδ)−
√

(1− δ)βδ
)2

= (1 + β)δ − 2βδ2 − 2
√
β δ
(
1− (1 + β)δ + βδ2

)1/2
≥ (1 + β)δ − 2βδ2 − 2

√
β δ(1− δ)1/2

≥ (1 + β)δ − 2βδ2 − 2
√
β δ(1− δ/2)

=
(

1−
√
β
)2
δ + (

√
β − 2β)δ2

≥
(

1−
√
β
)2
δ ,

since β ≤ 1/4.

We are now ready to prove the optimality of Theorem 1.

Proof of Theorem 2: It suffices to prove that for any POVM element M ∈ P(H) with Tr(Mρ) 6=
0,

Tr(Mρ) log
Tr(Mρ)

Tr(Mσ)

is bounded by 4k + 3 from above.
Fix such a POVM element M , let δ = Tr(Mρ), and ε = βδ for some β ∈ (0, 1) to be specified

later. By hypothesis, there is a quantum state ρ′ ∈ D(H) with F(ρ′, ρ) ≥ 1− ε and ρ′ � κσ, where

κ =
2k/ε

1− ε
.

Let δ′ = Tr(Mρ′). By the monotonicity of fidelity under CPTP operations [12], we have(√
δ δ′ +

√
(1− δ)(1− δ′)

)2
≥ F(ρ′, ρ) ≥ 1− ε = 1− βδ .

By Lemma 7, we have Tr(Mρ′) = δ′ ≥ (1−
√
β )2δ if β ≤ 1/4.

We set β = 1/4, so that Tr(Mρ′) ≥ δ/4. Furthermore,

Tr(Mσ) ≥ (1− ε)
2k/ε

Tr(Mρ′) ≥ (1− δ/4)

24k/δ
(δ/4) ≥ δ

23+4k/δ
,

as δ ≤ 1. So

Tr(Mρ) log
Tr(Mρ)

Tr(Mσ)
= δ log

δ

Tr(Mσ)
≤ 4k + 3 .
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3 A proof based on SDP duality

In this section we present a second alternative proof of the Quantum Substate Theorem, Theorem 1.
The proof is based on a formulation of smooth relative min-entropy as a semi-definite program.

The optimization problem (P1) in Section 1 is seen to be an SDP once we express the fidelity
constraint as a semi-definite inequality. This is based on a formulation due to Watrous [15] of the
fidelity of two quantum states as an SDP. For completeness, we include a proof of its correctness.

Lemma 8 (Watrous). Suppose ρ, ρ′ ∈ D(H) are quantum states in the Hilbert space H. The
fidelity F(ρ, ρ′) of the two states equals the square of the optimum of the following SDP over the
variable X ∈ L(H).

maximize:
1

2

(
TrX + TrX†

)
subject to:(

ρ′ X
X† ρ

)
� 0 (P2)

X ∈ L(H)

Proof: By Theorem IX.5.9 in the text [1], the matrix inequality in the program (P2) holds iff there

is an operator Y ∈ L(H) such that ‖Y ‖ ≤ 1 and X =
√
ρ′ Y
√
ρ. Since F(ρ′, ρ) =

∥∥√ρ′√ρ∥∥2
tr

and we
may characterize trace norm as ‖M‖tr = max {|Tr(ZM)| : Z ∈ L(H), ‖Z‖ ≤ 1} for any M ∈ L(H),
the lemma follows.

The problem (P1) may now be formulated as the following SDP with variables κ ∈ R, ρ′ ∈
L(H), X ∈ L(H) in the primal problem, and variables Z1, Z2 ∈ L(H) and z3, z4 ∈ R in the dual,
where Z1, Z2 are Hermitian.

P3 Primal problem

minimize: κ

subject to:

ρ′ � κσ

Tr ρ′ = 1(
ρ′ X
X† ρ

)
� 0

TrX + TrX† ≥ 2
√

1− ε
ρ′ ∈ L(H), ρ′ � 0

κ ∈ R, κ ≥ 0

X ∈ L(H)

P3 Dual problem

maximize: z4 + 2z3
√

1− ε+ Tr(Z2ρ)

subject to:

Tr(Z1σ) ≤ 1(
z4I− Z1 z3I
z3I Z2

)
� 0

Z1 ∈ L(H), Z1 � 0

z3, z4 ∈ R, z3 ≥ 0

Z2 ∈ L(H), Z2 Hermitian

The equivalence of the problems (P1) and (P3) follows from Lemma 8 and paves the way for the
second proof.

Proof of Theorem 1: We may verify that strong duality holds since the P3 primal program is
feasible, and the dual is strictly feasible [15, 11]. Therefore, it suffices to bound the dual objective
function for any set of dual feasible variables (Z1, Z2, z3, z4).
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By Lemma 5, there is a quantum state ρ′, with F(ρ′, ρ) ≥ 1 − ε, such that (1 − ε) Tr(Z1ρ
′) ≤

2d/ε Tr(Z1σ) ≤ 2d/ε, where d = D(ρ‖σ).
Since F(ρ′, ρ) ≥ 1− ε, by Lemma 8, there is an operator X ∈ L(H) such that(

ρ′ X
X† ρ

)
� 0 ,

and TrX + TrX† ≥ 2
√

1− ε. Therefore,

Tr

(
ρ′ X
X† ρ

)(
z4I− Z1 z3I
z3I Z2

)
≤ 0 .

In other words,

z4 − Tr(Z1ρ
′) + z3(TrX + TrX†) + Tr(Z2ρ) ≤ 0 ,

which implies that the dual objective function is bounded as

z4 + 2z3
√

1− ε+ Tr(Z2ρ) ≤ Tr(Z1ρ
′) ≤ 2d/ε

1− ε
.

This completes the proof.

4 Conclusion

We presented two alternative proofs of the Quantum Substate Theorem due to Jain, Radhakrishnan,
and Sen [8, 10]. In addition to giving bounds on the smooth relative min-entropy of two quantum
states, this gives us a powerful operational interpretation of relative entropy and observational
divergence. In the process, we resolve two questions left open by Jain et al.

The crucial insight here is that the we may express smooth relative min-entropy as a convex
or semi-definite program and appeal to duality theory. In this respect, we join a growing number
of applications of convex and semi-definite programming to quantum information processing. This
approach can be extended to the more general notion of smooth relative min-entropy studied by
Renner [14] to get similar bounds on this quantity. This view of the quantity may shed light on its
numerous applications.
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Finally, we thank the referees for their extensive feedback. It led not only to what we hope is a
vastly improved presentation of the work, but also to the discovery of a tight connection between
smooth relative min-entropy and observational divergence.
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