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Abstract

We show an Ω(
√
n/T ) lower bound for the space required by any unidirectional constant-

error randomized T -pass streaming algorithm that recognizes whether an expression over two
types of parenthesis is well-parenthesized. This proves a conjecture due to Magniez, Mathieu,
and Nayak (2009) and rigorously establishes that bidirectional streams are exponentially more
efficient in space usage as compared with unidirectional ones. We obtain the lower bound by
analyzing the information that is necessarily revealed by the players about their respective inputs
in a two-party communication protocol for a variant of the Index function, namely Augmented
Index. We show that in any communication protocol that computes this function correctly with
constant error on the uniform distribution (a “hard” distribution), either Alice reveals Ω(n)
information about her n-bit input, or Bob reveals Ω(1) information about his (log n)-bit input,
even when the inputs are drawn from an “easy” distribution, the uniform distribution over
inputs which evaluate to 0. The information cost trade-off is obtained by a novel application
of the conceptually simple and familiar ideas such as average encoding and the cut-and-paste
property of randomized protocols.

Motivated by recent examples of exponential savings in space by streaming quantum algo-
rithms, we also study quantum protocols for Augmented Index. Defining an appropriate notion
of information cost for quantum protocols involves a delicate balancing act between its applica-
bility and the ease with which we can analyze it. We define a notion of quantum information
cost which reflects some of the non-intuitive properties of quantum information. We show that
in quantum protocols that compute the Augmented Index function correctly with constant error
on the uniform distribution, either Alice reveals Ω(n/t) information about her n-bit input, or
Bob reveals Ω(1/t) information about his (log n)-bit input, where t is the number of messages in
the protocol, even when the inputs are drawn from the abovementioned easy distribution. While
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this trade-off demonstrates the strength of our proof techniques, it does not lead to a space lower
bound for checking parentheses. We leave such an implication for quantum streaming algorithms
as an intriguing open question.

Keywords: streaming algorithm, space complexity, Dyck language, communication com-
plexity, information cost, Augmented Index, quantum information theory, quantum communi-
cation

1 Introduction

Streaming algorithms [39] are designed to process massive input data, which cannot fit entirely
in computer memory. Random access to such input is prohibitive, so ideally we would like to
process it with a single sequential scan. Furthermore, during the computation, the algorithms
are compelled to use space that is much smaller than the length of the input. Formally, streaming
algorithms access the input sequentially, one symbol at a time, a small number of times (called
passes), while attempting to solve some information processing task using as little space (and
time) as possible.

One-pass streaming algorithms that use constant space and time recognize precisely the set
of regular languages. It is thus natural to ask what the complexity of languages higher up in the
Chomsky hierarchy is in the streaming model. In this work, we focus on a concrete such problem,
that of checking whether an expression with different types of parenthesis is well-formed. The
problem is formalized through the language Dyck(2), which consists of all well-parenthesized
expressions over two types of parenthesis, denoted below by a, a and b, b, with the bar indicating
a closing parenthesis. Formally, Dyck(2) is the language over alphabet Σ =

{
a, a, b, b

}
defined

recursively as

Dyck(2) = ε+
(
a ·Dyck(2) · a+ b ·Dyck(2) · b

)
·Dyck(2) ,

where ε is the empty string, ‘·’ indicates concatenation of strings (or subsets thereof) and ‘+’
denotes set union. This deceptively simple language is in a certain precise sense complete for
the class of context-free languages [14], and is implicit in a myriad of information processing
tasks.

There is a straightforward algorithm that recognizes Dyck(2) with logarithmic space, as
we may run through all possible levels of nesting, and check parentheses at the same level.
While this scheme is highly space-efficient, it may make Ω(n) passes over the input in the worst
case, on instances of length n. It is not obvious if we can translate this scheme to a streaming
algorithm with a small number of passes over the input. By appealing to the communication
complexity of the equality function, we can deduce that any deterministic streaming algorithm
for Dyck(2) that makes T passes over the input requires space Ω(n/T ) on instances of length n.
Therefore, any streaming algorithm with smaller space complexity, if one exists, would neces-
sarily be randomized. One such algorithm is suggested by a small-space algorithm for the word
problem in the free group with 2 generators. This is a relaxation of Dyck(2) in which local
simplifications p̄p = ε are allowed in addition to pp̄ = ε for every type of parenthesis (p, p̄).
There is a logarithmic space (randomized) algorithm for solving the word problem [36] that can
easily be massaged into a one-pass streaming algorithm with polylogarithmic space. Again, this
algorithm does not extend to Dyck(2).

We rigorously establish the impossibility of recognizing Dyck(2) with logarithmic space with
a small number of passes in the streaming model, even with randomized algorithms.

Theorem 1.1. For any T ≥ 1, any unidirectional randomized T -pass streaming algorithm that
recognizes length n instances of Dyck(2) with a constant probability of error uses space Ω(

√
n/T ).

A more precise statement of this theorem is presented as Corollary 3.3 later in this article.
Dyck(2) was first studied in the context of the streaming model by Magniez, Mathieu, and

Nayak [37]. They were motivated by its practical relevance, e.g., its relationship to the processing
of large XML files, and by the connection between formal language theory and complexity
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in the context of processing massive data. They overcome the apparent difficulties described
above and present sublinear space randomized streaming algorithms for Dyck(2). The first
makes one pass over the input, recognizes well-parenthesized expressions with space O(

√
n log n )

bits, and has polynomially small probability of error. Moreover, they prove that this one-pass
algorithm is optimal. They establish that any one-pass randomized algorithm that makes error
at most 1/n log n uses space Ω(

√
n log n). Theorem 1.1 establishes a similar result for multi-

pass streaming algorithms. The bound for one-pass algorithms given by Theorem 1.1 is a factor
of
√

log n better than the one in Ref. [37] for constant error probability, but falls short of optimal
(by the same factor) for polynomially small error.

In the standard model for streaming algorithms, access to the input symbols is provided in
the same fixed order in every pass over the input . This reflects a constraint of the infrastructure
available to us in practice. Theorem 1.1 applies to such unidirectional algorithms. Perhaps
surprisingly, Magniez et al. showed that the demand on space shrinks drastically when algo-
rithms for Dyck(2) are allowed another pass over the input in the reverse direction. They
presented a second algorithm that makes two passes in opposite directions over the input, uses
only O(log2 n) space, and has polynomially small probability of error. A question that naturally
arose is whether this is an artefact of the algorithm, or if we could achieve similar reduction in
space usage by making multiple passes in the same direction. Magniez et al. conjecture that
a bound similar to that for the one-pass algorithms hold for multi-pass streaming algorithms if
all passes are made in the same direction. Theorem 1.1 proves this conjecture and establishes
the first natural example for which unidirectional multi-pass streaming algorithms are much less
powerful than bidirectional ones. More importantly, existing computing infrastructure only sup-
ports unidirectional streams, and this result confirms that we cannot reproduce the performance
of the bidirectional algorithm within it.

Theorem 1.1 is a consequence of a lower bound that we establish for the “information cost” of
two-party communication protocols for a variant of the Index problem. In the Index problem,
one party, Alice, is given an n-bit string x, and the other party, Bob, is given an integer k ∈ [n].
Their goal is to determine the bit xk by communicating with each other. In the variant we study,
the player holding the index also receives a portion of the other party’s input. More formally,
Alice holds an n-bit string x, and Bob, holds an integer k ∈ [n], the prefix x[1, k − 1] of x, and
a bit b ∈ {0, 1}. The goal is to compute the function fn(x, (k, x[1, k − 1], b)) = xk ⊕ b, i.e., to
determine whether b = xk or not. This problem was studied in the one-way communication
model, with communication from Alice to Bob, as “serial encoding” [2, 40]. Lower bounds on
its quantum communication complexity were derived and used to establish exponential lower
bounds on the size of one-way quantum finite automata. In later works, the problem was studied
as “Augmented Index”; the linear lower bound was re-derived for classical communication, and
used to establish lower bounds for streaming and sketching (see, e.g., [26, 16]). The problem,
called “the Mountain problem” by Magniez, Mathieu, and Nayak [37], was central to the proof
of optimality of the one-pass streaming algorithm for Dyck(2). We elaborate on this later in
this section.

Informally speaking, we show that in any communication protocol that computes the Aug-
mented Index function fn with constant error on the uniform distribution µ (a “hard distri-
bution”), either Alice reveals Ω(n) information about her n-bit input x, or Bob reveals Ω(1)
information about his (log n)-bit input k, even when the inputs are drawn from an “easy distri-
bution” (µ0, the uniform distribution over f−1n (0)). We formally define the notion of information
cost (ICA

λ(Π), ICB
λ(Π)) for a protocol Π for the two players Alice (A) and Bob (B) with respect

to the distribution λ in Section 2.3, and show:

Theorem 1.2. In any two-party randomized communication protocol Π for the Augmented
Index function fn that makes constant error at most ε ∈ [0, 1/4) on the uniform distribution µ
over inputs, either ICA

µ0
(Π) ∈ Ω(n) or ICB

µ0
(Π) ∈ Ω(1).

A more precise statement of this theorem is presented as Theorem 2.6 later in this article.
We point out that the theorem is optimal as there is a one-message deterministic protocol for
Augmented Index with communication n.
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The connection between streaming algorithms using “small” space to two-party protocols for
Augmented Index with “small” information cost was presented by Magniez et al. for one-pass
algorithms. However, it generalizes in a straightforward manner to multi-pass algorithms. For
completeness, this reduction is described in full in Section 3, for multi-pass algorithms. The
reduction consists of three steps, following the information cost approach. (See, for example,
Refs. [13, 45, 5, 25, 23] for earlier applications of this approach.) First, a streaming algorithm
for Dyck(2) that uses space s is mapped to a multi-party communication protocol in which
the messages are each of the same length s. Second, a two-party communication protocol for
Augmented Index with “small” information cost with respect to µ0 is derived using a “direct
sum” argument. Finally, a lower bound for the aforementioned information cost is proven.
Magniez et al. proved a lower bound for the information cost of a two-message protocol that
resulted from a one-pass streaming algorithm. Our main contribution, Theorem 1.2, lies in this
final step. It applies to protocols with an arbitrary number of messages, and is the first general
lower bound on information cost for Augmented Index.

A notion of information cost for Index was studied previously by Jain, Radhakrishnan, and
Sen [24] in the context of privacy in communication (see also earlier work due to Klauck [28]).
This notion differs from the one we study in two crucial respects. First, it is defined in terms of
the hard distribution for the problem (uniform over all inputs). Second, the hard distribution
is a product distribution. The techniques they develop seem not to be directly relevant to the
problem at hand, as we deal with an easy and non-product distribution.

We devise a new method for analyzing the information cost of fn to arrive at Theorem 1.2.
The proof we present shows how conceptually simple and familiar ideas such as average encoding
and the cut-and-paste property of randomized protocols may be brought to bear on Augmented
Index to derive the optimal (up to constant factors) information cost trade-off. The intuition
behind the lower bound is as follows. Assume, for simplicity, that the protocol transcript
contains the output. Starting from an input pair on which the function evaluates to 0, if the
information cost of any one party is “low” and we carefully change her input, the transcript
does not change “much”. We show that even when we simultaneously change the inputs with
both parties, resulting in a 1-input of the function, the perturbation to the transcript state is
also correspondingly “small”. This implies that the two information costs cannot be “small”
simultaneously.

We point out that the trade-off established by Magniez, Mathieu, and Nayak [37] for two-
message protocols that start with Alice, and make polynomially small error, is stronger. They
show that either Alice reveals Ω(n) information about x, or Bob reveals Ω(log n) information
about k in such protocols. This cannot be reproduced without a further refinement of our
techniques. Indeed, Theorem 1.2 also applies to two-message protocols in which Bob starts.
Such protocols match the trade-off given in the theorem: for every l ∈ {1, 2, . . . , blog2 nc}, there
is a deterministic protocol for fn in which Bob sends l bits of k, and Alice responds with n/2l

bits.
In independent work, concurrent with ours, Chakrabarti, Cormode, Kondapally, and Mc-

Gregor [11] derive a similar information cost trade-off for fn. Their motivation is identical
to ours—to study the space required by unidirectional multi-pass streaming algorithms for
Dyck(2), and they present a similar space lower bound for such algorithms. While some of
the basic tools from information theory at the heart of their proof (e.g., the Chain Rule for
mutual information and the Pinsker Inequality) are equivalent to ours, they take a different
route to these tools. The first version of our article [22] and that of Chakrabarti et al. [10]
contained trade-offs that were weaker, albeit in different respects. After learning about each
other’s work, both groups strengthened our respective proofs to achieve qualitatively the same
result. Subsequently, Chakrabarti and Kondapally [12] extended the result to show that either
Bob reveals Ω(b) information about his input k, or Alice reveals n/2O(b) information about her
input x, i.e., either ICB

µ0
(Π) ∈ Ω(b) or ICA

µ0
(Π) ∈ n/2O(b). This matches the information cost of

the two-message protocol described above up to constant factors.
The promise of fast processing with limited memory held by streaming algorithms make

them especially attractive in the context of quantum computation. The absence of prototypes
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with a large enough number of qubits and long coherence times inevitably leads us to such
algorithms. This has fueled the study of quantum finite automata and also later works on
quantum streaming algorithms [34, 21, 8]. Several of these works show how quantum effects
lead to an exponential savings in space over their classical counterparts, albeit for specially
crafted problems. It is thus natural to ask how much more efficient such quantum algorithms
could be, for a well-studied and important problem such as Dyck(2). Motivated by this, we also
study quantum protocols for Augmented Index. We define appropriate notions of quantum
information cost (QICA

λ(Π),QICB
λ(Π)) for distributions λ with a limited form of dependence in

Section 4.2, and then arrive at the following trade-off.

Theorem 1.3. In any two-party quantum communication protocol Π (with read-only behaviour
on inputs and no intermediate measurements) for the Augmented Index function fn that has t
message exchanges and makes constant error at most ε ∈ [0, 1/4) on the uniform distribution µ
over inputs, either QICA

µ0
(Π) ∈ Ω(n/t) or QICB

µ0
(Π) ∈ Ω(1/t).

Quantum protocols have the ability to compute without revealing much information [20, 18].
It is thus hardly a surprise that the quantum information cost trade-off involves a number
of subtleties. For instance, it is not obvious how we may quantify information cost in the
absence of the notion of a message transcript, or how we discount information leakage due
to the non-product nature of the input distribution. These issues are discussed in detail in
Section 4.2. Nonetheless, we show how the ideas behind Theorem 1.2 also shed light on quantum
communication. The intuition from the classical case comes with its own complications, such
as the absence of an analogue of the Cut-and-Paste Lemma. We circumvent the Cut-and-Paste
property by appealing to the “Local Transition Theorem” and adapting a hybrid argument due
to Jain, Radhakrishnan, and Sen [23]. We apply these on a message-by-message basis, which
leads to the dependence of the trade-off on the number of messages in the protocol. We are not
aware of quantum protocols that beat the classical information bounds. However the dependence
of the trade-off in Theorem 1.3 on the number of messages t may be inherent, as is the case
with Set Disjointness [23].

Theorem 1.3 demonstrates the versatility of our proof techniques. The techniques due to
Magniez et al. [37] and Chakrabarti et al. [11] for showing information cost trade-off in classical
protocols do not seem to generalize to quantum protocols. They analyze the input distribution
conditioned on the message transcript, a notion for which no suitable quantum analogue is
known. Theorem 1.3, however, does not immediately lead to a lower bound on the space required
by quantum streaming algorithms for Dyck(2). The main hurdle here is that the connection
between streaming algorithms and communication protocols for Augmented Index with low
information cost does not extend to the quantum case. This appears to be due to the stronger
notion of information cost that we adopt. (The stronger notion appears to be necessary for our
proof technique.) It is possible that a version of Theorem 1.3 hold with an alternative definition
of information cost that is more relevant to quantum streaming algorithms. We leave this for
future investigation.

Communication problems involving the Index and Augmented Index functions capture a
number of phenomena in the theory of computing, both classical and quantum, in addition to
playing a fundamental role in the area of communication complexity [32]. For instance, they have
been used to analyze data structures [38], the size of finite automata [3] and formulae [29], the
length of locally decodable codes [27], learnability of states [31, 1], and sketching complexity [4].
Recently, phenomena in quantum information have been discovered via the Index function
problem, e.g., information causality [44], a connection between non-locality and the uncertainty
principle [43] and quantum ignorance [47]. We believe that the more nuanced properties of the
Augmented Index function such as the one we establish here are of fundamental importance,
and are likely to find application in other contexts as well.
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2 Classical information cost of Augmented Index

In this section we present the first result of this article. We summarize the notational conventions
we follow and the background from classical information theory that we assume in Section 2.1.
We do the same for two-party communication complexity and information cost in Section 2.2.
Then we develop the lower bound for classical protocols for Augmented Index in Section 2.3.

2.1 Information theory basics

We reserve small case letters like x, k,m for bit-strings or integers, and capital letters likeX,K,M
for random variables over the corresponding sample spaces. We use the same symbol for a ran-
dom variable and its distribution. As is standard, given jointly distributed random variables AB
over a product sample space, A represents the marginal distribution over the first component.
We sometimes use A|b as shorthand for the conditional distribution A|(B = b) when the second
random variable B is clear from the context. For a string x ∈ {0, 1}n, and integers i, j ∈ [n],
where [n] = {1, 2, . . . , n}, we let x[i, j] denote the substring of consecutive bits xi · · ·xj . If j < i,
the expression denotes the empty string. This notation extends to random variables over {0, 1}n
in the obvious manner. When a sample z is drawn from distribution Z, we denote it as z ← Z.

The `1 distance ‖A−B‖ between two random variables A,B over the same finite sample
space S is given by

‖A−B‖ =
∑
i∈S
|A(i)−B(i)| ,

and takes values in the interval [0, 2]. (Recall that as per our notational convention A(i), B(i)
denote the probabilities assigned to i ∈ S by A,B, respectively.) The Hellinger distance h(A , B)
between the random variables is defined as

h(A , B) =

[
1

2

∑
i∈S

(√
A(i)−

√
B(i)

)2]1/2
.

Hellinger distance is a metric, and is related to `1 distance in the following manner. (See
Section 3.2 in [33] for a proof.)

Proposition 2.1. Let P,Q be distributions over the same sample space. Then

h(P , Q)
2 ≤ 1

2
‖P −Q‖ ≤

√
2 h(P , Q) .

The square of the Hellinger distance satisfies the following property, called joint convexity .
It may be verified by a straightforward application of the Cauchy-Schwarz inequality.

Proposition 2.2. Let Pi, Qi be distributions over the same sample space for each i ∈ [n], and
let (αi) be a probability distribution over [n]. Let P =

∑n
i=1 αiPi, and Q =

∑n
i=1 αiQi. Then

h(P , Q)
2 ≤

n∑
i=1

αi h(Pi , Qi)
2
.
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Proof: By the Cauchy-Schwarz Inequality, for each j ∈ S,

√
P (j)Q(j) =

∑
i∈[n]

αi Pi(j)

∑
i′∈[n]

αi′ Qi′(j)

1/2

≥
∑
i∈[n]

√
αi Pi(j)

√
αiQi(j) .

So we have

h(P , Q)
2

=
1

2

∑
j∈S

(
P (j) +Q(j)− 2

√
P (j)Q(j)

)
≤ 1

2

∑
j∈S

∑
i∈[n]

αi

(
Pi(j) +Qi(j)− 2

√
Pi(j)Qi(j)

)

=

n∑
i=1

αi h(Pi , Qi)
2
.

We rely on a number of standard results from information theory in this work. For a
comprehensive introduction to the subject, we refer the reader to a text such as [15].

We use H(X) to denote the Shannon entropy of the random variable X, I(X : Y ) to denote
the mutual information between two random variables X,Y , and I(X : Y |Z) to denote the
conditional mutual information of X,Y with respect to a jointly distributed random variable Z.
We also use H(p) to denote the Binary entropy function when p ∈ [0, 1].

The chain rule for mutual information, Theorem 2.5.2 in [15], states:

Proposition 2.3 (Chain Rule). Let ABC be jointly distributed random variables. Then

I(AB : C) = I(A : C) + I(B : C |A) .

This implies that for jointly distributed random variables A1 · · ·AnC,

I(A1 · · ·An : C) = I(A1 : C) + I(A2 : C |A1) + · · ·+ I(An : C |A1 · · ·An−1) .

The Average encoding theorem [30, 23] is a quantitative version of the intuition that two
random variables that are only weakly correlated are nearly independent. Stated differently,
the conditional distribution of one given the other is close to its marginal distribution, if their
mutual information is sufficiently small.

Proposition 2.4 (Average encoding theorem [30, 23]). Let AB be jointly distributed random
variables. Then,

Eb←B h(A|b , A)
2 ≤ κ I(A : B) ,

where κ is the constant ln 2
2 .

2.2 Communication protocols and information cost

In the two-party communication model [48] for computing Boolean functions, parties Alice and
Bob receive inputs x ∈ X and y ∈ Y, respectively, for some sets X ,Y. They may share a random
bit string R, that is independent of the inputs x, y. The bits of R are called public coins, as
they are known to both parties. Alice (or Bob) may use an additional random string RA (RB,
respectively), that is not known to the other party. These strings RA, RB are called private
coins.

The goal of the two parties is to compute a bi-variate Boolean function f : X ×Y → {0, 1},
by communicating with each other. The communication occurs in the form of t ≥ 0 messages,
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starting with one party, and then alternating with the other. In each of the t steps, the party
sending it computes the message as a function of the input, the public and private random coins
she or he has, and the messages received so far. After all t messages have been sent, the recipient
of the last message produces the output of the protocol. The output is computed in a manner
analogous to the messages, from the party’s input, random coins, and all the messages received.

The pattern of communication is specified by a protocol Π, which lists the type, number, and
distribution of the coins used by each party, the number of messages, the party that starts the
protocol, and the functions used by the parties to generate the messages and the output. The
sequence of t messages produced during a run of the protocol Π on a pair of inputs x, y together
constitute the transcript . This is in general a random variable due to the use of random coins.
We denote the random variable corresponding to the output by Π(x, y). We point out that the
transcript need not include the output of the protocol.

The probability of correctness (or success) of a protocol on input x, y is Pr[Π(x, y) = f(x, y)].
We consider inputs drawn from a joint distribution XY , in which case the success probability
is Pr[Π(X,Y ) = f(X,Y )]. The probability of the complementary event is called the error of
the protocol on the distribution XY .

We refer the reader to the text [32] for equivalent formulations of communication protocols,
and a thorough introduction to the models of two-party classical communication.

Protocols that use only public coins are called public-coin protocols and those that use only
private coins are called private-coin protocols. The availability of public randomness obviates
the need for private randomness in typical settings. Conversely, private randomness can often
simulate public coins with a slight increase in communication [41]. In the context of information
cost, however, access to the private randomness used by one party may result in more information
being revealed to the other. To the best of our knowledge, there is no general recipe for replacing
private with public randomness while preserving information cost. (For recent progress on this
question, see Ref. [9].) In the reductions between protocols we encounter in this article, regardless
of the nature of randomness used in the original protocol, we end up with a protocol with both
types of randomness. We therefore study protocols of this type.

We use the following Cut-and-Paste property of private-coin communication protocols. (For
a proof, see Lemma 6.3 in Ref. [5].)

Proposition 2.5 (Cut-and-Paste [5]). Let Π be a two-party private-coin communication pro-
tocol. Let M(x, y) denote the random variable representing the message transcript in Π when
the first party has input x and the second party has input y. Then for all pairs of inputs (x, y)
and (u, v),

h(M(x, y) , M(u, v)) = h(M(x, v) , M(u, y)) .

We consider the information revealed during a communication protocol and focus on a notion
known as “internal information” in the literature. Although this notion is implicit in earlier
work [5], it was named so by Barak, Braverman, Chen, and Rao [6]. We emphasize that there
is no canonical measure of information cost, and the choice of definition is often driven by a
motivating application. A different definition of information cost would suffice for our application
to streaming algorithms, and would additionally simplify some of our proofs. However, we use
internal information, as this gives us the strongest information cost trade-off result.

Consider a randomized two-party communication protocol Π which uses public random-
ness R, and may additionally use private randomness. Suppose that M is the message tran-
script of the protocol, when the inputs to the two players, Alice and Bob, respectively, are
sampled from the joint distribution λ. Let the input random variables be denoted by X,Y .
The information cost of the protocol for Alice with respect to the distribution λ is defined

as ICA
λ(Π)

def
= I(X : M |Y R). The information cost of the protocol for Bob is defined symmetri-

cally as ICB
λ(Π)

def
= I(Y : M |XR). These quantities measure the amount of information about

one party’s input that the other gains through the course of the protocol.
Note that we could have conditioned on the private randomness used by one party (say,

Bob) as well in the other’s (Alice’s) information cost. This is however redundant, as given
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his input Y , the public randomness R, and the message transcript M , Bob’s private random-
ness RB is independent of Alice’s input (and private randomness). Indeed, by the Chain Rule
(Proposition 2.3),

I(X : M |Y RRB) = I(X : MRB |Y R)− I(X : RB |Y R)

= I(X : MRB |Y R)

= I(X : M |Y R) + I(X : RB |Y RM)

= I(X : M |Y R) .

2.3 The classical information cost lower bound

The first main theorem in this article may be viewed as a trade-off between information revealed
by the two parties about their inputs while computing the Augmented Index function fn. We
show that at least one of the parties necessarily reveals “a lot” of information even on an “easy
distribution” if the protocol computes fn with bounded error on a “hard distribution”.

Recall that in the Augmented Index problem, one party, Alice, has an n-bit string x, and
the other party, Bob, has an integer k ∈ [n], the prefix x[1, k−1] of x, and a bit b ∈ {0, 1}. Their
goal is to compute the function fn(x, (k, x[1, k−1], b)) = xk⊕b, i.e., to determine whether b = xk
or not, by engaging in a two-party communication protocol.

Let (X,K,B) be random variables distributed according to µ, the uniform distribution
over {0, 1}n× [n]×{0, 1}. Let µ0 denote the distribution conditioned upon B = XK , i.e., when
the inputs are chosen uniformly from the set of 0s of fn. We are interested in the information cost
of a protocol Π with public randomness R for Augmented Index under the distribution µ0,
for the two parties. Let M denote the entire message transcript under µ, and let M0 denote
the transcript under distribution µ0. Then the information cost of Π is given by ICA

µ0
(Π) =

I(X : M0 |X[1,K]R) and ICB
µ0

(Π) = I(K : M0 |XR). Note that X[1,K] = X[1,K − 1]B
under distribution µ0 and that K can be computed from X[1,K]. Hence K,B are not explicitly
included in Bob’s input in the expression for Alice’s information cost. Similarly, X[1,K−1]B are
determined by K when we condition on X under distribution µ0. Hence, these are not explicitly
included in Bob’s input in the expression for his information cost. The use of the notation M0

is equivalent to conditioning on the event XK = B, i.e., imposing the distribution µ0, and helps
us present our arguments more cleanly.

Since the value of the Augmented Index function fn is a constant on µ0, there is no
a priori reason for the information cost of any party in a protocol to be large. However,
we additionally require the protocol to be correct with non-trivial probability on the uniform
distribution, under which there is equal chance of the function being 0 or 1. If the information
cost (under µ0) of the two parties is sufficiently low, we show that neither party can determine
with high enough confidence what the function value is. The intuition behind this is as follows.
Suppose we restrict the inputs to µ0. If Bob’s input K is changed, the random variables in
Alice’s possession, specifically the message transcript M0 conditioned on her inputs, are not
perturbed by much. This is because these random variables reveal little information about K.
Similarly, if we flip one of the bits of Alice’s input X outside of the prefix with Bob, the random
variables in Bob’s possession at the end of the protocol are not perturbed by much. Formally,
these properties follow from the Average Encoding Theorem. Observe that if we simultaneously
change Bob’s index K to some L > K and flip the Lth bit of X, we switch from a 0-input of fn
to a 1-input. The Cut-and-Paste Lemma ensures that by simultaneously changing the inputs
with the two parties, the message transcript is perturbed by at most the sum of the amounts
when the inputs are changed one at a time. This implies that the message transcript does not
sufficiently help either party compute the function value.

We formalize this intuition in the next theorem, which we state for even n. A similar result
holds for odd n, and may be derived from the proof for the even case. Together, they give us
Theorem 1.2, as stated in the introduction (Section 1).

9



Theorem 2.6. For any two-party randomized communication protocol Π for the Augmented
Index function fn with n even, that makes error at most ε ∈ [0, 1/4) on the uniform distribu-
tion µ over inputs, we have[

ICA
µ0

(Π)

n

]1/2
+
[
2 · ICB

µ0
(Π)
]1/2

≥ 1− 4ε

4
√

ln 2
−
[

H(2ε)

n

]1/2
,

where µ0 is the uniform distribution over f−1n (0). In particular, for any ε smaller than 1/4 by
a constant, either ICA

µ0
(Π) ∈ Ω(n) or ICB

µ0
(Π) ∈ Ω(1).

Proof: Consider a protocol Π as in the statement of the theorem. Let the inputs be given by
random variables X,K,B, drawn from the distribution µ.

Let M be the entire message transcript of the protocol, and let M0 be the transcript under
distribution µ0. Without loss of generality, we assume that Bob computes the output of the
protocol. If Alice computes the output, we include an additional message from her to Bob
consisting of the output. We show below that this only marginally increases the information
revealed by Alice, and include its effect in the lower bound we derive. Indeed, if the single bit
output of the protocol is O0 under the distribution µ0, H(O0) ≤ H(2ε), as the protocol produces
the correct output with probability at least 1 − 2ε on the distribution µ0. Let d ≥ 0 be such
that I(X : M0 |X[1,K]) = dn. Then,

I(X : M0O0 |X[1,K]) = I(X : M0 |X[1,K]) + I(X : O0 |M0X[1,K])

≤ dn+ H(O0) ,

and I(K : M0O0 |X) = I(K : M0 |X). Henceforth, we assume that the output of the protocol Π
is computed by Bob, and its information costs are bounded as ICA

µ0
(Π) ≤ d1n with d1 =

d+ H(2ε)/n, and ICB
µ0

(Π) ≤ c.
Let R be the public randomness used in the protocol. For each specific value r for the

public random coins, we use the subscript r on a random variable to denote conditioning
on R = r. In particular, the random variable M0

r is the transcript M conditioned on R = r,

under distribution µ0. Define d1r
def
= 1

n I(X : M0
r |X[1,K]) and cr

def
= I(K : M0

r |X), so

that Er←R d1r = ICA
µ0

(Π)/n and Er←R cr = ICB
µ0

(Π). We emphasize that the protocol may use
private randomness in addition to the public randomness R. Let εr denote the error made by
the protocol Π on the uniform distribution µ over inputs, when R = r.

In the rest of the proof, we fix a specific value r for the public randomness, and show that

d
1/2
1r + (2cr)

1/2 ≥ 1− 4εr

4
√

ln 2
. (2.1)

Averaging this over r ← R and applying the Jensen Inequality gives us the theorem.
We show below that the random variables M0

rX[1,K] with Bob are “close” in distribution
to the random variables M1

rX[1,K − 1] X̄K , where M1
r denotes the transcript Mr conditioned

on the function value being 1, i.e., when B = X̄K . In other words, we show that the `1 distance
between them is only “slightly more” than 1 if the information cost of the protocol is small.

Lemma 2.7.
∥∥M0

rX[1,K]−M1
rX[1,K − 1] X̄K

∥∥ ≤ 1+8
√
κ cr+4

√
2κ d1r, where κ = ln 2

2 .

For any fixed r, given the message transcript and his input, Bob’s private randomness is in-
dependent of Alice’s input and private randomness. Therefore, we can regenerate Bob’s private
randomness exactly from the other random variables in his possession. As a result, we may
use the protocol Π to identify the two distributions, M0

rX[1,K] and M1
rX[1,K − 1] X̄K , with

average error εr. If the error εr were small, the `1 distance would be correspondingly closer
to 2. Formally, the `1 distance between two distributions is non-increasing under the action of
a stochastic map. So

∥∥M0
rX[1,K]−M1

rX[1,K − 1] X̄K

∥∥ ≥ 2(1 − 2εr), as the latter is a lower
bound on the `1 distance between the distributions of the output of the protocol in the two
cases. This gives us a lower bound on the information cost, in terms of the error made by the
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protocol. Combining the two bounds on the `1 distance, we get Eq. (2.1) and hence the theorem.

We now prove the heart of the theorem, i.e., that the message transcript for the 0 and 1
inputs are close to each other in distribution.
Proof of Lemma 2.7: The proof follows the intuition given before Theorem 2.6. We break
the proof into several steps, each of which is captured by a lemma. The proofs of the lemmata
are postponed to later in the section so as to present the high-level argument first.

When we wish to explicitly write the transcript Mr as a function of the inputs to Alice and
Bob, say x and x[1, k − 1], b respectively, we write it as Mr(x;x[1, k − 1], b). If b = xk, we write
Bob’s input as x[1, k].

For any x ∈ {0, 1}n and i ∈ [n], let x(i) denote the string that equals x in all coordinates
except at the ith. Since (X,X[1,K − 1], X̄K) and (X(K), X[1,K]) are identically distributed,
M1
r = Mr(X;X[1,K− 1], X̄K) has the same distribution as Mr(X

(K);X[1,K]). Thus, our goal
is to bound ∥∥∥Mr(X;X[1,K])X[1,K]−Mr(X

(K);X[1,K])X[1,K]
∥∥∥ .

Later, we consider the random variables in Bob’s possession when we flip one of the bits in
input X with Alice. In order to do the flip in a manner consistent with the prefix with Bob,
we only flip bits in coordinates > n/2. This gives us a bound on the above quantity when
the index is larger than n/2. Therefore we consider L uniformly and independently distributed
in [n]− [n/2], and J be uniformly and independently distributed in [n/2]. We have∥∥∥Mr(X;X[1,K])X[1,K]−Mr(X

(K);X[1,K])X[1,K]
∥∥∥

=

∥∥∥∥1

2
(Mr(X;X[1, J ])X[1, J ] +Mr(X;X[1, L])X[1, L])

− 1

2

(
Mr(X

(J);X[1, J ])X[1, J ] +Mr(X
(L);X[1, L])X[1, L]

)∥∥∥∥
≤ 1

2

∥∥∥Mr(X;X[1, J ])X[1, J ]−Mr(X
(J);X[1, J ])X[1, J ]

∥∥∥
+

1

2

∥∥∥Mr(X;X[1, L])X[1, L]−Mr(X
(L);X[1, L])X[1, L]

∥∥∥
≤ 1 +

1

2

∥∥∥Mr(X;X[1, L])X[1, L]−Mr(X
(L);X[1, L])X[1, L]

∥∥∥ , (2.2)

and we bound the RHS from above.
Recall that our goal is to show that, on average, changing from a 0-input to a 1-input does

not perturb the message transcript by much. For this, we begin by showing that changing
Alice’s input alone, or similarly, Bob’s input alone, has this kind of effect. If the information
cost of Bob is small, the message transcript does not carry much information about K when the
inputs are drawn from µ0. From this, we deduce that the transcript M0

r is (on average) nearly
the same for different inputs to Bob.

We compare the transcript when Bob’s input index is J to when it is L.

Lemma 2.8. E(x,j,l)←(X,J,L) h(Mr(x ; x[1, j]) , Mr(x ; x[1, l]))
2 ≤ 8κ cr.

We defer the proof to later in this section.
In the interest of readability, we abbreviate some random variables in the rest of the proof,

as also in the intermediate lemmata. For i ∈ [n], and a prefix x[1, i] of a string x ∈ {0, 1}n
that will be clear from the context, let vi denote the prefix x[1, i], let Ui denote the random
variable x[1, i]X[i+1, n] (i.e., X conditioned on having prefix vi), and let U ′i denote the random
variable x[1, i− 1] x̄iX[i+ 1, n] (i.e., Ui with the ith bit flipped).

When changing Alice’s input, we would like to ensure that the prefix held by Bob does not
change. So we restrict our attention to Bob’s inputs with index J ∈ [n/2], and change Alice’s
input by flipping the Lth bit, with L ∈ [n]− [n/2]. If the information cost of Alice is small, M0

r
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does not carry much information about X, even given a prefix. Therefore, flipping a bit outside
the prefix does not perturb the transcript by much.

Lemma 2.9. E(x[1,l],j,l)←(X[1,L],J,L) h(Mr(Ul ; vj) , Mr(U
′
l ; vj))

2 ≤ 16κ d1r .

This is proven later in the section.
We now conclude the proof of Lemma 2.7. Since Hellinger distance squared is jointly convex

(Proposition 2.2), Lemma 2.8 gives us a bound on the distance between the transcripts averaged
over the choice of suffix x[l + 1, n]. Along with the Jensen Inequality, we get

E(x[1,l],j,l)←(X[1,L],J,L) h(Mr(Ul ; vj) , Mr(Ul ; vl)) ≤
√

8κ cr . (2.3)

Along with the Triangle Inequality, and Lemma 2.9, this implies that

E(x[1,l],j,l)←(X[1,L],J,L) h(Mr(Ul ; vl) , Mr(U
′
l ; vj)) ≤

√
8κ cr +

√
16κ d1r .

Using the Cut-and-Paste property of private coin communication protocols (Proposition 2.5),
we conclude that simultaneously changing Bob’s input from x[1, j] to x[1, l] and flipping the lth
bit of x perturbs the transcript by no more than the individual changes.

E(x[1,l],j,l)←(X[1,L],J,L) h(Mr(Ul ; vj) , Mr(U
′
l ; vl))

= E(x[1,l],j,l)←(X[1,L],J,L) h(Mr(Ul ; vl) , Mr(U
′
l ; vj))

≤
√

8κ cr +
√

16κ d1r . (2.4)

Combining Eq. (2.3) and Eq. (2.4), and using the Triangle Inequality we get

E(x[1,l],l)←(X[1,L],L) h(Mr(Ul ; vl) , Mr(U
′
l ; vl)) ≤ 4

√
2κ cr + 4

√
κ d1r .

Using Proposition 2.1, we translate this back to a bound on `1 distance:

‖Mr(X ; X[1, L])X[1, L] − Mr(X
(L) ; X[1, L])X[1, L]

∥∥∥
≤ E(x[1,l],l)←(X[1,L],L) ‖Mr(Ul ; vl)−Mr(U

′
l ; vl)‖

≤ 16
√
κ cr + 8

√
2κ d1r .

Lemma 2.7 follows by combining this with Eq. (2.2).

We return to the lemmata whose proofs we had deferred.

Lemma 2.8. E(x,j,l)←(X,J,L) h(Mr(x ; x[1, j]) , Mr(x ; x[1, l]))
2 ≤ 8κ cr.

Proof: Let us define a new random variable M̃r jointly distributed with X, and independent
of all other random variables, such that the joint distribution of XM̃r is identical to the joint
distribution of XM0

r . In particular, we have M̃r(x) = Ek←KMr(x ; x[1, k]).
By the Average Encoding Theorem, Proposition 2.4, we have that for every x ∈ {0, 1}n,

Ek←K h
(
Mr(x ; x[1, k]) , M̃r(x)

)2
≤ κ I(K : M0

r |X = x) ,

where κ = ln 2
2 . Averaging over x← X,

E(x,k)←(X,K) h
(
Mr(x ; x[1, k]) , M̃r(x)

)2
≤ κ I(K : M0

r |X) = κ cr .

An immediate consequence is that

E(x,j)←(X,J) h
(
Mr(x ; x[1, j]) , M̃r(x)

)2
≤ 2κ cr , and

E(x,l)←(X,L) h
(
Mr(x ; x[1, l]) , M̃r(x)

)2
≤ 2κ cr .
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By the Triangle Inequality, for any j ∈ [n/2], l ∈ [n]− [n/2], and x ∈ {0, 1}n,

h(Mr(x ; x[1, j]) , Mr(x ; x[1, l]))
2

≤
(
h
(
Mr(x ; x[1, j]) , M̃r(x)

)
+ h
(
Mr(x ; x[1, l]) , M̃r(x)

))2
≤ 2 h

(
Mr(x ; x[1, j]) , M̃r(x)

)2
+ 2 h

(
Mr(x ; x[1, l]) , M̃r(x)

)2
.

Taking expectation over X, J, L, we get the claimed bound.

Lemma 2.9. E(x[1,l],j,l)←(X[1,L],J,L) h(Mr(Ul ; vj) , Mr(U
′
l ; vj))

2 ≤ 16κ d1r .

Proof: This intuition behind this lemma is the same as that behind the impossibility of “random
access encoding” [40, 3], as we explain next. Suppose we view the transcript as an encoding of the
bits ofX not known to Bob, of which there are at least n/2. Since they are uniformly random, the
net information in the encoding about the bits is no more than the sum of the information about
the individual bits, even conditioned on the prefix. This follows by the superadditivity of mutual
information for independent random variables (equivalently, the Chain Rule, Proposition 2.3).
This implies that, on average, the encoding is very weakly correlated with the bits. The Average
Encoding Theorem (Proposition 2.4) then implies that the messages for two prefixes that differ
in one bit are close to each other, on average. We formalize this below.

We have

d1rn ≥ I(X : M0
r |X[1,K])

=
1

2
Ej←J I(X : Mr(X ; X[1, J ]) |X[1, J ]) +

1

2
El←L I(X : Mr(X ; X[1, L]) |X[1, L])

≥ 1

2
Ej←J I(X : Mr(X ; X[1, J ]) |X[1, J ]) . (2.5)

Fix a sample point (x[1, j], j), with j ∈ [n/2]. By the Chain Rule (Proposition 2.3),

I(X[j + 1, n] : Mr(Uj ; vj)) (2.6)

=

n∑
l=j+1

I(Xl : Mr(Uj ; vj) |X[j + 1, l − 1])

≥
n∑

l=n/2+1

I(Xl : Mr(Uj ; vj) |X[j + 1, l − 1]) . (2.7)

Moreover, by the Triangle Inequality and the Average Encoding Theorem (Proposition 2.4), for
any given x[1, l], with l ∈ [n]− [n/2],

h(Mr(Ul ; vj) , Mr(U
′
l ; vj))

2

≤
[
h(Mr(Ul ; vj) , Mr(Ul−1 ; vj)) + h(Mr(U

′
l ; vj) , Mr(Ul−1 ; vj))

]2
≤ 2

[
h(Mr(Ul ; vj) , Mr(Ul−1 ; vj))

2
+ h(Mr(U

′
l ; vj) , Mr(Ul−1 ; vj))

2 ]
≤ 4κ I(Xl : Mr(Ul−1 ; vj)) . (2.8)

Combining Eqs. (2.5), (2.7), and (2.8), we get

E(x[1,l],j,l)←(X[1,L],J,L) h(Mr(Ul ; vj) , Mr(U
′
l ; vj))

2

≤ 4κ E(x[1,l−1],j,l)←(X[1,L−1],J,L) I(Xl : Mr(Ul−1 ; vj))

= 4κ E(x[1,j],j,l)←(X[1,J],J,L) I(Xl : Mr(Uj ; vj) |X[j + 1, l − 1])

≤ 8κ

n
I(X : Mr(X ; X[1, J ]) |X[1, J ]) ≤ 16κ d1r ,

as claimed.
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3 The connection with streaming algorithms

Streaming algorithms are algorithms of a simple form, intended to process massive problem
instances rapidly, ideally using space that is of smaller order than the size of the input. A
pass on an input x ∈ Σn, where Σ is some alphabet, means that x is read as an input
stream x1, x2, . . . , xn, which arrives sequentially, i.e., letter by letter in this order.

Definition 3.1 (Streaming algorithm). Fix an alphabet Σ. A (unidirectional) T -pass streaming
algorithm A with space s(n) and time t(n) is an algorithm such that for every input stream x ∈
Σn:

1. A performs T sequential passes on x in the order x1, x2, . . . , xn,

2. A maintains a memory space of size s(n) bits while reading x,

3. A has running time at most t(n) per letter xi, and

4. A has pre-processing and post-processing time at most t(n).

We say that A is bidirectional if it is allowed to read the input in the reverse order, after
reaching the last letter. Then the parameter T is the total number of passes in either direction.

In general, the pre- and post-processing times of a streaming algorithm may be different, and
may differ from the running time per letter. Since the results in this section apply to streaming
algorithms regardless of their time complexity, we choose not to make this finer distinction.

We refer the reader to the text [39] for a more thorough introduction to streaming algorithms.
Recall that in a two-party communication protocol for Augmented Index, one party, Alice,

has an n-bit string x, and the other party, Bob, has an integer k ∈ [n], the prefix x[1, k−1] of x,
and a bit b ∈ {0, 1}. Their goal is to compute the function fn(x, (k, x[1, k− 1], b)) = xk ⊕ b, i.e.,
to determine whether b = xk or not, by engaging in a two-party communication protocol.

The relationship between streaming algorithms for Dyck(2) and communication protocols
for fn is captured by a reduction due to Magniez, Mathieu, and Nayak [37]. The reduction was
originally described only for one-pass streaming algorithms, but extends readily to unidirectional
multi-pass algorithms. For completeness, we include a proof of this theorem here.

Theorem 3.1. Suppose there is a randomized unidirectional streaming algorithm for Dyck(2)
with T passes that uses space s for instances of length at most 4n2, and has worst-case two-
sided error δ. Then there is a two-party communication protocol Π for the Augmented Index
function fn that makes error at most δ on the uniform distribution µ over its inputs, and has
information costs ICA

µ0
(Π) ≤ sT for Alice and ICB

µ0
(Π) ≤ sT/n for Bob, with respect to the

uniform distribution µ0 over f−1n (0).

Proof: For any string z = z1 · · · zn ∈ {a, b}n, let z denote the matching string zn zn−1 · · · z1
corresponding to z. Let z[i, j] denote the substring zizi+1 · · · zj if 1 ≤ i ≤ j ≤ n, and the empty
string ε otherwise. We abbreviate z[i, i] as z[i] if 1 ≤ i ≤ n.

We focus on a subset of instances for Dyck(2) defined as follows. Let n be a positive integer.
Consider strings of the form

w = x1 y1 z1 z1 y1 x2 y2 z2 z2 y2 · · · xn yn zn zn yn xn · · · x2 x1 , (3.1)

where for every i, xi ∈ {0, 1}n, yi = xi[n− ki + 2, n] for some ki ∈ {1, 2, . . . , n}, and zi ∈ {a, b}.
The string w is in Dyck(2) if and only if, for every i, zi = xi[n − ki + 1]. Note that these
instances have length in the interval [2n(n+ 1), 4n2]. Figure 1 depicts an instance of this form.

Intuitively, recognizing strings of the form w is difficult in one pass with space o(n). After
reading xi, the streaming algorithm does not have enough space to store this string so as to be
able to check the bit at unknown index (n−ki+ 1). Moreover, after reading yn it does not have
enough space to store information about all indices k1, k2, . . . , kn. When it reads xn · · ·x2 x1
it therefore misses out on its second chance to check whether zi = xi[n − ki + 1] for every i.
When the algorithm is allowed a larger number of passes T in the same direction, it may adopt a
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Figure 1: An instance of the form described in Eq. (3.1). A line segment with positive slope denotes
a string over {a, b}, and a segment with negative slope denotes a string over

{
a, b
}

. A solid dot
depicts a pair of the form zz for some z ∈ {a, b}. The entire string is distributed amongst 2n
players A1,B1,A2,B2, . . . ,An,Bn in a communication protocol for Ascension(n) as shown.

more sophisticated strategy. Nevertheless, the same intuition carries over with a tighter bound
of o(n/T ) on the space.

We observe that a space s streaming algorithm gives rise to a multiparty communication
protocol for the problem Ascension(n), which is the logical OR of n independent instances of
the Augmented Index function fn. In more detail, in the problem Ascension(n) there are 2n
players A1,A2, . . . ,An and B1,B2, . . . ,Bn. Player Ai is given xi ∈ {0, 1}n, player Bi is given
ki ∈ [n], a bit zi, and the prefix xi[1, ki− 1] of xi. Let x = (x1, x2, . . . , xn), k = (k1, k2, . . . , kn),
and z = (z1, z2, . . . , zn).

The goal of the communication protocol is to compute

Fn(x,k, z) =

n∨
i=1

fn(xi, ki, zi) =

n∨
i=1

(xi[ki]⊕ zi) ,

which is 0 if xi[ki] = zi for all i, and 1 otherwise. The communication between the 2n parties is
required to be T sequential iterations of communication in the following order, for some T ≥ 1:

A1 → B1 → A2 → B2 → · · ·An → Bn → An → An−1 → · · · → A2 → A1 . (3.2)

In other words, for t = 1, 2, . . . , T ,

– for i from 1 to n− 1, player Ai sends message MAi,t to Bi, then Bi sends message MBi,t to
Ai+1,

– An sends message MAn,t to Bn,

– Bn sends message MBn,t to An,
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– for i from n down to 2, Ai sends message M ′Ai,t
to Ai−1.

At the end of the T iterations, A1 computes the output.
There is a one-to-one correspondence between inputs to Dyck(2) of the form in Eq. (3.1)

and the inputs to Ascension(n). This arises from a partition of the word among 2n players as
depicted in Figure 1. For ease of notation, the strings xi in Ascension(n) are taken to be the
ones in Dyck(2) with the bits in reverse order . This switches the suffixes yi with prefixes of
the same length.

The following is immediate.

Lemma 3.2. A unidirectional T -pass streaming algorithm for Dyck(2) with space s implies
a communication protocol for Ascension(n) with T iterations of communication as above, in
which every message is of length s. Moreover, on any input, the probability of error of the
protocol is the same as that of the algorithm.

Proof: In each of the T iterations, a player simulates the streaming algorithm on his/her part
of the input, and sends the length s workspace to the next player in the sequence. The final
player A1 gives the output of the algorithm as that of the protocol.

We prove a direct sum result that captures the relationship of Ascension(n) to solving n
instances of the more “primitive” problem Augmented Index. The direct sum result is proven
using the superadditivity of mutual information for inputs (xi, ki, zi) picked independently from
the uniform distribution µ0 over f−1n (0). The use of this “easy” distribution collapses the
function Ascension(n) to an instance of Augmented Index in any chosen coordinate. The
direct sum result allows us to choose a coordinate with small information cost, which proves the
theorem.

Consider an instance (X,K,Z) of Ascension(n) distributed according to µn0 over ({0, 1}n×
[n]× {0, 1})n, where X = (X1, X2, . . . , Xn), K = (K1,K2, . . . ,Kn) and Z = (Z1, Z2, . . . , Zn).

Let Π̃ be a public-coin randomized protocol for Ascension(n) derived from a unidirec-
tional T -pass streaming algorithm for Dyck(2). Assume it has worst-case error δ, and that
each message is of length at most s. For each j ∈ [n], we construct a protocol Πj as follows for
the Augmented Index function fn. Let (x, k, c) be the input for Augmented Index.

1. Alice sets Aj ’s input xj to her input x.

2. Bob sets Bj ’s input (kj , xj [1, kj − 1], zj) to his input (k, x[1, k − 1], c).

3. Alice and Bob generate, using public coins, Xi uniformly at random from {0, 1}n, inde-
pendently for all i > j, and (Xi,Ki, Zi) distributed according to µ0, independently for
all i < j.

4. Bob generates Ki uniformly and independently for i > j, using private coins. Then
Bob sets Zi = Xi[ki] for i > j, so that (Xi,Ki, Zi) are distributed according to µ0,
independently for all i > j.

5. Alice and Bob simulate the protocol Π̃ by executing the roles of players (Ai,Bi)
n
i=1 as

follows. In the tth iteration of communication in the order described in Eq. (3.2),

(a) Alice runs Π̃ until she generates the message MAj ,t from player Aj . She sends this
message to Bob.

(b) Bob continues running Π̃ until he generates the message MBn,t from player Bn. He
sends this message to Alice.

(c) Alice completes the rest of the tth iteration of Π̃ until she generates the message M ′A2,t

from player A2, and moves to the next iteration of Π̃ (if any).

At the end of the T th iteration, Alice completes the rest of the protocol Π̃ and produces
as output for Πj , the output of player A1 in Π̃.

By definition of the distribution µ0, we have fn(Xi,Ki, Zi) = 0 for all i 6= j. So Fn(X,K,Z) =
fn(x, k, c), and each protocol Πj computes the function fn, i.e., solves Augmented Index,
with worst-case error at most δ.
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Note that in the simulation of Π̃ by Alice and Bob above, the random variables (Xi,Ki, Zi)
for i < j are used only by Alice, and could have been generated by Alice using private coins.
Making these random variables public does not affect the correctness of Πj , but turns out to be
convenient in deriving the direct sum result.

Let R denote the public coins used in the protocol Π̃. Let M denote the sequence of T
random variables MBn,1MBn,2 · · ·MBn,T , viz., the messages sent by Bn over all the iterations.
By the Chain Rule (Proposition 2.3),

I(KZ : M | XR) =

n∑
j=1

I(KjZj : M | XRK1Z1 · · ·Kj−1Zj−1) .

Let Rj = (R, (Xi)j 6=i, (K
i, Zi)i<j). These are all the public random coins used in the proto-

col Πj , and any further random coins are used only by Bob privately to generate (Ki, Zi)i>j . In
particular, Alice does not use any private coins and her messages are (deterministic) functions
of XjRj and the messages received from Bob. Thus, for all j

ICB
µ0

(Πj) = I(KjZj : M | XjRj)

= I(KjZj : M | XRK1Z1 · · ·Kj−1Zj−1) ,

and we have the direct sum result
n∑
j=1

ICB
µ0

(Πj) = I(KZ : M | XR) .

Furthermore, M has length at most sT , so that

n∑
j=1

ICB
µ0

(Πj) ≤ sT ,

and there is a j0 ∈ [n] such that ICB
µ0

(Πj0) ≤ sT/n. We also have, by the Chain Rule (Proposi-
tion 2.3),

ICA
µ0

(Πj0) = I(Xj0 : MAj0
,1MAj0

,2 · · ·MAj0
,T M | Kj0Zj0 Rj0)

=

T∑
t=1

[
I(Xj0 : MAj0 ,t

| Kj0Zj0 Rj0MAj0 ,1
MBn,1 · · ·MAj0 ,t−1MBn,t−1)

+ I(Xj0 : MBn,t | Kj0Zj0 Rj0MAj0
,1MBn,1 · · ·MAj0

,t−1MBn,t−1MAj0
,t)
]

=
T∑
t=1

I(Xj0 : MAj0 ,t
| Kj0Zj0 Rj0MAj0 ,1

MBn,1 · · ·MAj0 ,t−1MBn,t−1) , (3.3)

since Bob’s tth message is independent of Alice’s input, conditioned on his input, the public
randomness, and the transcript until Alice’s tth message. Since the length of each messageMAj0

,t

is bounded by s, Eq (3.3) implies

ICA
µ0

(Πj0) ≤ sT .

The protocol Πj0 is the protocol claimed by the theorem.

The information cost trade-off in Theorem 2.6 implies that any streaming algorithm that
makes a “small” number of passes over the input requires a “large” amount of space.

Corollary 3.3. Any randomized unidirectional T -pass streaming algorithm for Dyck(2) that
has worst-case two-sided error δ < 1/4 uses space at least

b
√
N/2c
T

× 1

3 + 2
√

2

[
1− 4δ

4
√

ln 2
−
(

H(2δ)

b
√
N/2c

)1/2
]2

on instances of length N .
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4 Quantum information cost of Augmented Index

We now turn to quantum communication. We present the necessary background on quantum
information theory in Section 4.1, and discuss quantum protocols and information cost in Sec-
tion 4.2. In Section 4.3, we show how the notion of average encoding may be applied also to
quantum protocols for Augmented Index. The analysis of quantum protocols for Augmented
Index involves a number of additional additional subtleties, which are also described along the
way.

4.1 Quantum information theory basics

We continue the use of capital letters to denote random variables. We see these as special cases
of quantum states, which are trace one positive semi-definite matrices. Indeed, random variables
may be viewed as quantum states that are diagonal in a canonical basis. Quantum states are
also denoted by capital letters P,Q, etc.

The trace distance ‖A−B‖tr between two quantum states A,B over the same Hilbert space

is the metric induced by the trace norm ‖M‖tr = Tr
√
M†M . The fidelity between the two

states is defined as F(A,B) =
∥∥∥√A√B∥∥∥

tr
. The Bures distance h(A , B) between the states is

a metric arising from fidelity, and is defined as

h(A , B) = [1− F(A,B)]
1/2

=
[
1−

∥∥∥√A√B∥∥∥
tr

]1/2
.

This metric generalizes Hellinger distance to quantum states; when A,B are random variables,
Bures distance coincides with Hellinger distance. For pure states |ψ1〉, |ψ2〉 we use h(|ψ1〉 , |ψ2〉)
as shorthand for h(|ψ1〉〈ψ1| , |ψ2〉〈ψ2|). Bures distance is related to trace distance in the fol-
lowing manner (see, e.g., Lemma II.6 in Ref. [30]):

Proposition 4.1. Let P,Q be quantum states over the same Hilbert space. Then

h(P , Q)
2 ≤ 1

2
‖P −Q‖tr ≤

√
2 h(P , Q) .

In the following, let (px), (qy) be distributions over the finite sample spaces S,S ′, respectively.
The Bures distance satisfies the following property.

Proposition 4.2. Let Px, Qx be quantum states over the same finite Hilbert space for each x ∈
S. Let P =

∑
x∈S px|x〉〈x| ⊗ Px, and Q =

∑
x∈S px|x〉〈x| ⊗Qx. Then

h(P , Q)
2

=
∑
x∈S

px h(Px , Qx)
2
.

This may be verified readily by the definition of the Bures distance, but may also be derived
as an immediate consequence of the strong concavity property of fidelity [42, Theorem 9.7,
p. 414].

The Local Transition Theorem due to Uhlmann [42] helps us find purifications of quantum
states that achieve the Bures distance between them.

Proposition 4.3 (Local Transition Theorem). Let |ψ1〉 and |ψ2〉 be two pure states in a tensor
product H1 ⊗H2 of Hilbert spaces. Then there exists a unitary operator U on H1 such that

h((U ⊗ IH2
) |ψ1〉 , |ψ2〉) = h(TrH1

|ψ1〉〈ψ1| , TrH1
|ψ2〉〈ψ2|) .

We rely on a number of standard results from quantum information theory in this work. For
a comprehensive introduction to the subject, we refer the reader to a text such as [42].

Let S(P ) denote the von Neumann entropy of the quantum state P , and I(P : Q) denote the
mutual information between the two parts of a joint quantum state PQ.
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For a joint quantum state XQ =
∑
x∈S px|x〉〈x|⊗Qx we define the conditional von Neumann

entropy as S(Q |X) =
∑
x∈S px S(Qx). Similarly, for a joint state XPQ =

∑
x∈S px|x〉〈x| ⊗

(PQ)x, where (PQ)x is a joint state for each x ∈ S, we define the conditional mutual information
as

I(P : Q |X) = S(P |X) + S(Q |X)− S(PQ |X) .

The chain rule for mutual information states:

Proposition 4.4 (Chain rule). Let XYQ =
∑
x∈S,y∈S′ pxqy|xy〉〈xy| ⊗Qxy be a joint quantum

state. Then
I(XY : Q) = I(X : Q) + I(Y : Q |X) .

It follows directly from the identity S(XQ) = S(X) + S(Q|X) for joint states XQ of the
form XQ =

∑
x∈S px|x〉〈x| ⊗Qx.

The Average Encoding Theorem [30, 23] also holds for quantum states. (In fact, it was first
formulated in the context of quantum communication.)

Proposition 4.5 (Average encoding theorem). Let XQ =
∑
x∈S px|x〉〈x| ⊗Qx be a joint quan-

tum state. Then,
Ex←X h(Qx , Q)

2 ≤ κ I(X : Q) ,

where κ is the constant ln 2
2 .

4.2 Quantum communication and information cost

We briefly describe the model of two-party quantum communication, à la Yao [49]. We only
consider protocols with classical inputs and outputs. For the basic elements of quantum com-
putation, we refer the reader to a text such as [42].

Informally, two “players”, Alice and Bob, hold some number of qubits. When the protocol
starts, Alice holds a classical input represented by a bit string x ∈ X and similarly Bob holds y ∈
Y. The qubits in the workspace of the two parties are initialized to a state |Φ〉 that is independent
of the inputs x, y, and may be entangled across the parties. The protocol consists of some
number t ≥ 1 of rounds of message exchange, in which the two players “play” alternately. Any
party may be the first to play. Suppose it is Alice’s turn to play. She applies a unitary operator
to her workspace qubits, which depends on her input x and the round. Then, Alice sends some
of her workspace qubits to Bob. In the next round, Bob’s local computation thus involves
some qubits previously in Alice’s control. At the end of the t rounds of message exchange, the
player to receive the last message, say Bob, observes the qubits in his possession according to a
measurement that may depend on his input y. The measurement outcome is considered to be
the output of the protocol.

More formally, a two-party quantum communication protocol Π is specified as follows. The
protocol uses some N qubits, for some positive integer N , so that the associated state space
is (C2)⊗N . We view this space as a tensor product space A ⊗ HA,i ⊗ HB,i ⊗ B, for each i =
0, 1, . . . , t, with the initial factorization given by i = 0, and the factorization at the end of the jth
round given i = j. This factorization reflects the ownership of the qubits. The space A contains
Alice’s input, B contains Bob’s input, and the spaces HA,i and HB,i correspond to Alice’s and
Bob’s workspace qubits at the end of round i, respectively.

The qubits in space A are initialized to |x〉, and those in B are initialized to |y〉. The qubits
in the space HA,0 ⊗HB,0 are initialized to a possibly entangled state |Φ〉 that is independent of
the inputs. The initial joint state is thus |x〉 ⊗ |Φ〉 ⊗ |y〉.

The protocol specifies the number t of messages sent, and the player that sends the first
message. Suppose it is Alice’s turn to play in round i, with i ≥ 1. The workspace of the two
players just before the round factors as HA,i−1 ⊗HB,i−1. Alice applies a unitary operator Vi,x
to the qubits in HA,i−1. Note that her operator depends on her input x and the round. (Later,
we imagine running the protocol on superpositions of inputs. In this case, we think of Alice as
applying the unitary Vi =

∑
x |x〉〈x| ⊗ Vi,x to the qubits in the space A⊗HA,i−1.) Then, Alice

19



sends some of her qubits, corresponding to the space Mi, to Bob. That is, the space HA,i−1
factors as HA,i ⊗Mi, and HB,i =Mi ⊗HB,i−1.

After the tth message is sent, the recipient, say Bob, observes the qubits corresponding
to HB,t according to a POVM (positive operator valued measurement) that depends on his in-
put y. The output of the protocol is the measurement outcome, and we denote the corresponding
random variable by Π(x, y). Figure 2 depicts such a two-party protocol.

x yΦ〉

V1

V3

V2

Vt

HA,0 HB,0A B

M1

HA,1 HB,2A M2 B

HA,t HB,t-1A M t B

measurement

outcome  Π(x,y)

M1 HB,0HB,1 = ⊗

M t HB,t-1HB,t = ⊗

M2HA,1HA,2= ⊗

Figure 2: A quantum two-party communication protocol with t messages, inputs x, y and shared
initial state |Φ〉.

We emphasize that the input qubits in the protocol are read only , and that there are no
intermediate measurements. A more general protocol may be transformed into this form by
appealing to standard techniques in quantum computation [7].

In this article, we are concerned with protocols designed to compute a bi-variate Boolean
function f : X × Y → {0, 1}. As for classical protocols, the probability of correctness (or
success) of a protocol on input x, y is Pr[Π(x, y) = f(x, y)]. We consider inputs drawn from
a joint distribution XY , in which case the success probability is Pr[Π(X,Y ) = f(X,Y )]. The
probability of the complementary event is called the error of the protocol on the distributionXY .

As in the classical case, there is no canonical measure of quantum information leaked by a
protocol, and this notion is a topic of active research. The choice of the measure is driven by a
motivating application and the ease with which we can analyze it. We typically strike a balance
between these opposing forces.

A significant difference between classical and quantum information costs arises because the
no cloning principle [42, p. 532] prevents the two parties from keeping a copy of the messages.
A natural notion of a transcript that encapsulates the history of a quantum protocol is instead
the sequence of the joint states after each message exchange. Correspondingly, the notion of
information cost is also different from the one in the classical case.

Consider a quantum communication protocol Π with a total of t messages, beginning with
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Alice and alternating with Bob. We emphasize that the input qubits in Π are read-only. The
first player is assumed to be Alice solely to eliminate awkwardness in defining and referring to
quantum information cost. The assumption may be removed without affecting the results in
this article. Alternatively, if Bob starts, we may modify the protocol so that Alice sends a single
qubit in a fixed state, say |0〉, at the beginning. This does not affect the information cost, but
increases the number of messages by one.

Let λ be a probability distribution over X ×Y, and let random variables XY be distributed
according to λ. Let PiQi denote the joint state of Alice and Bob’s workspace immediately after
the ith message is sent, in a protocol Π when we start with the inputs XY . In analogy with the
classical case, we may define the quantum information cost of Π for Alice with respect to λ as∑

odd i∈[t]

I(X : Qi |Y ) , (4.1)

and similarly for Bob as ∑
even i∈[t]

I(Y : Pi |X) . (4.2)

A similar definition has been considered by Jain, Radhakrishnan, and Sen [23]. This appears to
be a natural definition; it captures the amount of information about the other party’s input that
is not already contained in her state. It also allows us to relate quantum streaming algorithms
for Dyck(2) that use small space, to two-party protocols for Augmented Index with small
quantum information cost. (The reduction described in Section 3 extends to quantum algorithms
with minor modifications.) However, we are not able to prove an information cost trade-off for
Augmented Index with this definition.

The tension between applicability and ease of analysis is rather acute in our case. This leads
us to consider the information contained in the messages when the input qubits are initialized
to an appropriate superposition. This information is in general more than that contained in the
messages when we have the corresponding distribution over inputs. The former measure may
sometimes capture the information revealed by a party in a quantum communication protocol
more accurately (see, e.g., Ref. [24]). The resulting notion also seems to be necessary for the
proof of the information cost trade-off we present.

Defining quantum information cost with superpositions over inputs, corresponding to ar-
bitrary non-product distributions, comes with its own set of complications. A comprehensive
discussion of such measures is beyond the scope of this article. We focus on distributions λ over
the input space X×Y with Y = Y1×Y2, and the following limited type of dependence. Let X,Y1
be independent random variables taking values in X ,Y1, respectively, and Y2 = s(X,Y1) ∈ Y2,
where s is some function of the first two random variables. Moreover, the function s is such that
the conditional random variables X|(Y2 = v) and Y1|(Y2 = v) are also independent, for any v
with Pr[Y2 = v] 6= 0. Then λ is the distribution of XY1Y2. In other words, Alice is given some
input X, Bob an independent input Y1, and also a joint function Y2 = s(X,Y1) of the two. More-
over, their inputs X,Y1 remain independent when conditioned on any given value of Y2. Such
distributions include product distributions as well as distributions for problems in which the two
communicating parties may share a portion of the input, as in the case of Augmented Index.
(The correspondence for Augmented Index is that X is uniformly distributed over {0, 1}n,
Y1 is the index K that is uniformly distributed over [n], and Y2 = s(X,Y1) = X[1,K].)

The final point of difference between the notions of classical and quantum information cost we
consider comes from the dependence described above in the distribution λ. Recall that under this
distribution λ, Bob’s input Y1 is independent of X and that Bob additionally gets Y2 = s(X,Y1).
In the classical case, Alice may have information about Y2 due to its dependence on X, but
does not have any information about Y1, i.e., I(X : Y1) = 0. When the input registers are
initialized with a superposition corresponding to λ, however, Alice may gain information about
Bob’s input Y1 without any communication between the parties: we may have I(X̂ : Ŷ1) > 0,
where X̂Ŷ1Ŷ2 are in state

∑
x∈X ,y∈Y

√
λ(x, y) |x, y〉.
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To illustrate this phenomenon, consider the following example. Let X be uniformly dis-
tributed over {0, 1}n, Y1 be an index K that is uniformly distributed over [n], and Y2 = XK ,
i.e., the Kth bit of X. We have I(X : Y1) = 0. Let X̂Ŷ1Ŷ2 be initialized to the state

1√
n2n

∑
x∈{0,1}n,k∈[n]

|x, k, xk〉 .

Suppose we measure the qubits holding Ŷ1 in the basis (|i〉)i∈[n] and recover Y1. By monotonicity

of mutual information under quantum operations [42, Theorem 11.15, p. 522], we have I(X̂ :
Ŷ1) ≥ I(X̂ : Y1). The reduced state of X̂Y1 is

1

n

∑
k∈[n]

|u〉〈u|⊗(k−1) ⊗ I
2
⊗ |u〉〈u|⊗(n−k) ⊗ |k〉〈k| ,

where |u〉 = (|0〉+ |1〉)/
√

2. By conjugating X̂ by the n-qubit Hadamard operation, we see that
the state is equivalent to

1

n

∑
k∈[n]

|0〉〈0|⊗(k−1) ⊗ I
2
⊗ |0〉〈0|⊗(n−k) ⊗ |k〉〈k| .

A straightforward calculation now shows that I(X̂ : Y1) = log2 n. So I(X̂ : Ŷ1) ≥ log2 n,
whereas I(X : Y1) = 0.

This phenomenon also occurs in the case of Augmented Index, due to the prefix shared by
the two parties. To quantify the information leaked by the protocol , rather than the preparation
of the initial state in a superposition, we view the protocol differently. We imagine that there is
a single quantum register that carries the superposition corresponding to X, and that Bob’s uni-
tary operations are controlled appropriately by this register. In other words, his transformation
in the ith round is of the form

Vi =
∑
x,y1

|x〉〈x| ⊗ |y1〉〈y1| ⊗ Vi,y1s(x,y1) ,

where the qubits holding x are with Alice. Bob’s information cost is then measured with respect
to all the qubits with Alice.

We are now in a position to define the measure of quantum information cost for two-party
protocols that we analyze. Let λ be a probability distribution over X ×Y of the type described
above, and let X̂Ŷ1 denote the corresponding superposition

∑
x∈X ,y1∈Y1

√
λ(x, y1) |x, y1〉 over

inputs. Let X̂PiQiŶ1 denote the joint state of Alice and Bob’s input and workspace qubits
immediately after the ith message is sent, in a protocol Π when we start with the input qubits
in state X̂Ŷ1. Note that the input qubits may get entangled with the message qubits during the
protocol. As the state of the input qubits we refer to will be clear from the context, we do not
label it with the message number i. The quantum information cost of Π for Bob with respect
to λ is then defined as

QICB
λ(Π) =

∑
even i∈[t]

I(Ŷ1 : X̂Pi) .

In this cost, we measure the information about Ŷ1 contained in Alice’s quantum state, while
disregarding Y2 = s(X,Y1) (which is not available to Alice).

In Alice’s cost, we would like to measure the information about X̂ in Bob’s quantum state,
given access to Y2. We model this as follows. We imagine an additional register that we label Y2.
We copy s(X,Y1) into this register and measure the qubits in the standard basis. The initial
state of the registers X̂Ŷ1Y2 is then∑

y2∈Y2

∑
x,x′∈X
y1,y

′
1∈Y1:

s(x,y1)=s(x
′,y′1)=y2

√
λ(x, y1)λ(x′, y′1) |x, y1〉〈x′, y′1| ⊗ |y2〉〈y2| .
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The joint state X̂PiQiŶ1Y2 of Alice and Bob’s input and workspace qubits, immediately after
the ith message is sent, is correspondingly affected. We define Alice’s information cost as

QICA
λ(Π) =

∑
odd i∈[t]

I(X̂ : QiŶ1 |Y2) .

The inclusion of the register holding Y2 precisely captures the distribution of inputs in the
communication protocol. The artificial construct described before, of substituting this with
suitable read-only access to Alice’s input qubits (for executing Bob’s unitary transformations),
however, is more appropriate for the proof of the quantum information cost trade-off.

The above notion corresponds to a hybrid of “internal” and “external information cost” [6].
For product distributions (when Y2 is trivial), each term of this notion reduces precisely to the
amount of (quantum) information available to a party about the other’s input.

In the rest of Section 4, we use a convention similar to the one above: a symbol such as Z
without a hat denotes the random variable resulting from an imagined measurement, in the
computational basis, of a sequence of qubits initialized to a superposition. The state of the
qubits prior to the measurement is denoted by the symbol with a hat, e.g., Ẑ.

Measuring any part of a quantum system in general affects the state of the remaining qubits.
Thus the symbol X̂ used in the expressions for Alice’s and Bob’s information cost denotes
potentially different states. In the analysis that we present for Augmented Index, we imagine
measurements only of parts of Alice’s and Bob’s inputs in the computational basis. In that case,
we denote the resulting state of the qubits without a hat. Thus the state we mean will be clear
from the context.

4.3 The quantum information cost trade-off

In this section, we derive an analogue of the information trade-off result established in Section 2.3
for quantum communication protocols for Augmented Index.

We first specialize the notion of quantum information cost to the Augmented Index func-
tion fn, and simplify it further. This allows us derive a stronger information cost trade-off than
with the original definition. Let (X,K,B) be random variables distributed according to µ, the
uniform distribution over {0, 1}n × [n] × {0, 1}. Let µ0 denote the distribution µ conditioned
upon XK = B, i.e., when the inputs are chosen uniformly from the set of 0s of fn. We are
interested in the quantum information cost of a protocol Π for Augmented Index under the
distribution µ0, for the two parties.

As explained in Section 4.2, we adopt the following convention with respect to the inputs for
Augmented Index. Alice is given the input x. We imagine that Bob is given k, b, and access
to the prefix x[1, k−1], rather than a copy of these bits. When we restrict to the distribution µ0,
we assume he has read-only access to x[1, k]. This means that in any round i of the protocol in
which Bob plays, his local unitary operation Vi is controlled by the qubits with Alice that hold
the prefix. It is important to bear in mind the qubits on which the unitary operations of the
protocol act non-trivially, i.e., do not equal the identity. In particular, in Lemma 4.10, we use
the commutativity of the unitary operations used in the protocol and the corresponding unitary
operations given by Lemmata 4.8 and 4.9. See, for example, the paragraph before Eq. (4.11).

Suppose we have a quantum protocol Π for Augmented Index with a total of t messages.
Without loss of generality (see Section 4.2), we assume that Alice sends the first message, and
alternates with Bob thereafter.

Let X̂PiQiK̂B̂ denote the joint state of Alice and Bob’s workspace in the protocol Π immedi-
ately after the ith message is sent, when we start with uniform superpositions X̂ over strings x ∈
{0, 1}n, K̂ over [n], and B̂ over {0, 1} (this corresponds to distribution µ). Let X̂0P 0

i Q
0
i K̂

0B̂0 de-
note the analogous joint state corresponding to µ0, where we assume that Bob is given read-only
access to the register containing xk, rather than a copy of this bit. The quantum information
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cost of Π for Alice and Bob with respect to µ0 is then

QICA
µ0

(Π) =
∑

odd i∈[t]

I(X̂0[K + 1, n] : Q0
i K̂

0 |X[1,K]) , and

QICB
µ0

(Π) =
∑

even i∈[t]

I(K̂0 : X̂0P 0
i ) .

Due to the monotonicity of mutual information under quantum operations [42, Theorem 11.15,
p. 522], for each i = 1, . . . , t we have

I(X : Q0
i |X[1,K]) ≤ I(X̂0[K + 1, n] : Q0

i K̂
0 |X[1,K]) , and

I(K : X̂0P 0
i ) ≤ I(K̂0 : X̂0P 0

i ) ,

where the symbols without a hat denote random variables resulting from an imagined measure-
ment of the corresponding qubits in the computational basis. (We drop the superscript ‘0’ on
these random variables, as their marginals are the same as under the distribution µ.) The trade-
off we prove also holds for the potentially smaller quantities on the left side above. In order
to state the theorem in the strongest possible terms, we define another measure of information
cost as follows:

Q̃IC
A

µ0
(Π) =

∑
odd i∈[t]

I(X : Q0
i |X[1,K]) , and

Q̃IC
B

µ0
(Π) =

∑
even i∈[t]

I(K : X̂0P 0
i ) .

The intuition behind the lower bound on quantum information cost is the same as that in the
classical case. Namely, starting from an input pair on which the function evaluates to 0, if the
information cost of any one party is low and we carefully change her input, the other party’s share
of the state does not change much. Assume for simplicity that Alice produces the output of the
protocol. We show that even when we simultaneously change both parts of the input, resulting
in a 1-input of the function, the perturbation to Alice’s final state is also correspondingly small.
This implies that the two information costs cannot be small simultaneously. For more intuition
into the main lemmata in this proof, we refer the reader to the analogous steps in the classical
case. In the final piece of the argument for the quantum case, the Local Transition Theorem
and a hybrid argument take the place of the Cut-and-Paste Lemma. Unlike the latter, these are
applied on a message-by-message basis, à la Jain, Radhakrishnan, and Sen [23], and leads to a
dependence of the information cost trade-off on the number of messages in the protocol.

The next theorem executes this argument for even n. A similar result also holds for odd n,
and may be inferred from the proof for the even case. As explained in the previous section, the
assumption that Alice sends the first message is not necessary.

Theorem 4.6. Let Π be any quantum two-party communication protocol for the Augmented
Index function fn with n even, Alice starting and alternating with Bob for a total of t ≥ 1
messages. If Π makes error at most ε ∈ [0, 1/4] on the uniform distribution µ over inputs, then

2

 Q̃IC
A

µ0
(Π)

n

1/2

+
[
2 · Q̃IC

B

µ0
(Π)
]1/2

≥ 1− 4ε

4
√
κ t

,

where µ0 is the uniform distribution over f−1n (0).

Proof: Consider a protocol Π as in the statement of the theorem. Let the inputs be given by

random variables X,K,B, drawn from the distribution µ, let d
def
= Q̃IC

A

µ0
(Π)/n, and let c

def
=

Q̃IC
B

µ0
(Π).
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Let X̂PiQiKB be the joint state of the registers used in the protocol, when the inputs
are initialized with a uniform superposition X̂ over x ∈ {0, 1}n and random variables K,B,
immediately after the ith message in the protocol. Let di = 1

n I(X : Q0
i |X[1,K]) for odd i ∈ [t],

and ci = I(K : X̂0P 0
i ) for even i ∈ [t]. So d =

∑
odd i∈[t] di and c =

∑
even i∈[t] ci.

We prove the theorem assuming that Alice computes the output of the protocol, i.e., t is
even. The proof when Bob computes the output is similar; we point out the main differences
along the way. If t is even, we show that the state XP 0

t is close in trace distance to the
state XP 1

t , where XP 1
t denotes the reduced state XPt conditioned on the function value be-

ing 1, i.e., when B = X̄K . (Note that X is the classical random variable corresponding to the
superposition X̂.)

Lemma 4.7. For even t,
∥∥XP 0

t −XP 1
t

∥∥
tr
≤ 1 + 4

√
κ t
[
2
√
d+
√

2c
]
, where κ = ln 2

2 .

If t is odd, i.e., Bob computes the output of the protocol, we show the same bound on∥∥Q0
t X[1,K]−Q1

t X[1,K − 1] X̄K

∥∥
tr

.

Since the protocol identifies the two states XP 0
t and XP 1

t , with average error ε, and trace
distance is monotonic under quantum operations [42, Theorem 9.2, p. 406], we have∥∥XP 0

t −XP 1
t

∥∥
tr
≥ 2(1− 2ε) .

The theorem follows.

We now prove the core of the theorem, i.e., that if Alice computes the output, her final state
for the 0 and 1 inputs are close to each other in distribution.
Proof of Lemma 4.7: When we wish to explicitly write a state, say Pi, as a function of the
inputs to Alice and Bob, say x and x[1, k − 1], b respectively, we write it as Pi(x;x[1, k − 1], b).
If b = xk, we write Bob’s input as x[1, k].

As before, for any x ∈ {0, 1}n and i ∈ [n], we let x(i) denote the string that equals x in all
coordinates except at the ith. Note that P 1

t = Pt(X;X[1,K − 1], X̄K) is the same mixed state
as Pt(X

(K);X[1,K]), since X and X(K) are identically distributed. Thus, our goal is to bound∥∥∥XPt(X;X[1,K])−X(K)Pt(X
(K);X[1,K])

∥∥∥
tr

.

For reasons similar to those the classical case and new ones arising from our proof (an
explanation for which is included below), we consider the trace distance between the first term
above with K ∈ [n/2] and the second term with K ∈ [n]−[n/2]. (Recall that in the classical case,
we restricted ourselves to K ∈ [n]− [n/2] in both terms.) Let J be uniformly and independently
distributed in [n/2], and let L be uniformly and independently distributed in [n]− [n/2]. Then∥∥∥XPt(X;X[1,K])−X(K)Pt(X

(K);X[1,K])
∥∥∥
tr

=

∥∥∥∥1

2
(XPt(X;X[1, J ]) +XPt(X;X[1, L]))

− 1

2

(
X(J)Pt(X

(J);X[1, J ]) +X(L)Pt(X
(L);X[1, L])

)∥∥∥∥
tr

≤ 1 +
1

2

∥∥∥XPt(X;X[1, J ])−X(L)Pt(X
(L);X[1, L])

∥∥∥
= 1 +

1

2

∥∥∥X(L)Pt(X
(L);X[1, J ])−X(L)Pt(X

(L);X[1, L])
∥∥∥ , (4.3)

where we use the fact that X and X(L) are identically distributed, even given the prefix X[1, J ],
and that the states XPt(X;X[1, J ]) and X(L)Pt(X

(L);X[1, J ]) are therefore identical. So it
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suffices to bound the RHS above. If t is odd, we instead bound∥∥∥Qt(X;X[1,K])X[1,K]−Qt(X(K);X[1,K])X[1,K]
∥∥∥
tr

≤ 1 +
1

2

∥∥∥Qt(X;X[1, L])X[1, L]−Qt(X(L);X[1, L])X[1, L]
∥∥∥
tr

. (4.4)

The expression for odd t, Eq. (4.4), is similar to the one we had in the classical case: we focus
on the case K ∈ [n]− [n/2] alone.

For every j ∈ [n/2], l ∈ [n]− [n/2] and z ∈ {0, 1}l, we consider four runs of the protocol Π.
The inputs to Alice and Bob in the four runs are summarized in the table below. Only the
first l bits of Alice’s input are specified. In all four runs, the last (n − l) input bits of Alice
are initialized to a uniform superposition over all (n− l)-bit strings. The final column gives the
notation for the (pure) state corresponding to the registers X̂[l + 1, n]PiQi, which constitute
the last (n− l) inputs bits of Alice, her workspace, and that of Bob, immediately after the ith
message has been sent, i ∈ [t].

Run Alice’s input x[1, l] Bob’s input k, x[1, k − 1], b State
00 z j, z[1, j − 1], zj |φi(z, j)〉
01 z l, z[1, l − 1], zl |φi(z, l)〉
10 z(l) j, z[1, j − 1], zj |φi(z(l), j)〉
11 z(l) l, z[1, l − 1], zl |φi(z(l), l)〉

The two bits in the “Run” column indicate whether Alice’s lth bit has been flipped, and whether
we have switched j to l. A “1” indicates a switch. Note that for the first three kinds of inputs,
the function value is 0, and for the last it is 1.

When Bob’s information cost is low, it follows that the final state on inputs of type “00” is
close to the final state on inputs of type “01” (Lemma 4.8). We show a similar closeness between
the final state on inputs of type “10” and that on inputs of type “11”. This explains the choice
made in Eq. (4.3) when Alice produces the output of the protocol. For similar reasons, when
Bob produces the output of the protocol, we compare the final state of the protocol on inputs
of type “01” with that on inputs of type “11”, as in Eq. (4.4).

As the first step, we compare the intermediate protocol states in the above four runs, when
we flip the lth input bit of Alice, and when we switch Bob’s input from j to l (along with the
corresponding prefix). We show that the switch results in a perturbation to reduced state of
the other party that is related to the information contained about the bit or the index (as in
the classical case). To quantify this perturbation, define

hi(j, l, z) = h
(
Qi(zX[l + 1, n]; z[1, j]) , Qi(z

(l)X[l + 1, n]; z[1, j])
)
,

for every odd i ∈ [t]. This is the perturbation in Bob’s reduced state when we flip the lth bit of
Alice input, when Bob has index j. Define

hi(j, l, z) = h
(
X̂[l + 1, n]Pi(zX̂[l + 1, n]; z[1, j]) , X̂[l + 1, n]Pi(zX̂[l + 1, n]; z[1, l])

)
,

for every even i ∈ [t]. This is the perturbation in Alice’s reduced state when we switch Bob’s
index from j to l. In the above states, Pi is entangled with the qubits holding X̂, and is written
as a function of X̂[l + 1, n] to emphasize this.

The number of qubits Alice and Bob have during the protocol changes with every message.
To maintain simplicity of notation, we denote the identity operator in any round on the register
holding X̂[l + 1, n] and Alice’s workspace qubits by IA and the identity operator on Bob’s
workspace qubits by IB.

We begin by showing that changing Bob’s input alone from j to l while keeping Alice’s input
fixed at zX̂[l + 1, n], does not perturb Alice’s reduced state in any round of communication by
much, provided the corresponding information cost of Bob is small. By the Local Transition
Theorem, we then see that Bob may apply a unitary operation to his qubits alone to bring the
protocol states close to each other.
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Lemma 4.8. For every even i ∈ [t], there is a unitary operator Ui that depends upon j, l, z,
acts on Bob’s workspace qubits alone (i.e., on the register holding state Qi), and is such that

h( (IA ⊗ Ui) |φi(z, j)〉 , |φi(z, l)〉) = hi(j, l, z) .

Moreover,
E(j′,l′,z′)←(J,L,X[1,L]) hi(j

′, l′, z′) ≤
√

8κ ci .

The proof is presented later in this section.
Next, we show that if the information cost of Alice is small, Bob’s state Q0

i does not carry
much information about X, even given a prefix. Therefore, flipping a bit outside the prefix does
not perturb Bob’s state by much, and there is a unitary operation on Alice’s qubits which brings
the joint states close to each other.

Lemma 4.9. For every odd i ∈ [t], there is a unitary operator Ui that depends upon j, l, z, acts
on the qubits holding X̂[l+ 1, n] and Alice’s workspace qubits (the register holding state Pi), and
is such that

h
(

(Ui ⊗ IB) |φi(z, j)〉 , |φi(z(l), j)〉
)

= hi(j, l, z) .

Moreover,

E(j′,l′,z′)←(J,L,X[1,L]) hi(j
′, l′, z′) ≤ 4

√
κ di .

This is proven later in the section.
There is no quantum counterpart to the Cut-and-Paste lemma, so that unlike in the classical

case, the above two lemmata are by themselves not sufficient to conclude the theorem. Instead,
we combine these with a hybrid argument to show that switching from chosen 0-inputs of
Augmented Index of the type “10” (as defined above) to corresponding 1-inputs of type “11”
does not affect the final state by “much”.

Lemma 4.10. Let (Ui)i∈[t], be the unitary operators given by Lemmata 4.8 and 4.9. For every
odd r ∈ [t],

h
(

(Ur ⊗ IB) |φr(z, l)〉 , |φr(z(l), l)〉
)
≤ hr(j, l, z) + 2

r−1∑
i=1

hi(j, l, z) .

For every even r ∈ [t],

h
(

(IA ⊗ Ur)|φr(z(l), j)〉 , |φr(z(l), l)〉
)
≤ hr(j, l, z) + 2

r−1∑
i=1

hi(j, l, z) .

This is proved later in this section.
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Recall that t is even. We have∥∥∥X(L)Pt(X
(L);X[1, J ])−X(L)Pt(X

(L);X[1, L])
∥∥∥
tr

≤ E(j,l,z)←(J,L,X[1,L])

∥∥∥X[l + 1, n]Pt(z
(l)X[l + 1, n]; z[1, j])−X[l + 1, n]Pt(z

(l)X[l + 1, n]; z[1, l])
∥∥∥
tr

(by the Triangle Inequality)

≤ E(j,l,z)←(J,L,X[1,L])

∥∥∥X̂[l + 1, n]Pt(z
(l)X̂[l + 1, n]; z[1, j])− X̂[l + 1, n]Pt(z

(l)X̂[l + 1, n]; z[1, l])
∥∥∥
tr

(by the monotonicity of trace distance under quantum operations [42, Theorem 9.2, p. 406])

≤ 2
√

2 E(j,l,z)←(J,L,X[1,L]) h
(
X̂[l + 1, n]Pt(z

(l)X̂[l + 1, n]; z[1, j]) , X̂[l + 1, n]Pt(z
(l)X̂[l + 1, n]; z[1, l])

)
(by Proposition 4.1)

≤ 2
√

2 E(j,l,z)←(J,L,X[1,L]) h
(

(IA ⊗ Ut)|φt(z(l), j)〉 , |φt(z(l), l)〉
)

(by monotonicity of Bures distance under quantum operations [42, Theorem 9.6, p. 414])

≤ 4
√

2 E(j,l,z)←(J,L,X[1,L])

t∑
i=1

hi(j, l, z) (by Lemma 4.10)

≤ 4
√

2

 ∑
odd i∈[t]

4
√
κ di +

∑
even i∈[t]

2
√

2κ ci

 (by Lemmata 4.8 and 4.9)

≤ 8
√
κ t
[
2
√
d+
√

2c
]
. (by the Jensen Inequality)

In deriving the fourth inequality above, we used the fact that the states here are purification
of the states in the previous inequality. This gives us a bound on the RHS of Eq. (4.3), and
concludes the proof of Lemma 4.7.

We turn to the deferred proofs.

Lemma 4.8. For every even i ∈ [t], there is a unitary operator Ui that depends upon j, l, z,
acts on Bob’s workspace qubits alone (i.e., on the register holding state Qi), and is such that

h( (IA ⊗ Ui) |φi(z, j)〉 , |φi(z, l)〉) = hi(j, l, z) .

Moreover,
E(j′,l′,z′)←(J,L,X[1,L]) hi(j

′, l′, z′) ≤
√

8κ ci .

Proof: Note that X̂[l + 1, n]Pi(zX̂[l + 1, n]; z[1, k]) for k ≤ l is the reduced state of |φ(z, k)〉
with Bob’s workspace (i.e., the register holding state Qi) traced out. By the Local Transition
Theorem, Proposition 4.3, there is a unitary operator Ui that depends upon j, l, z, acts on Bob’s
workspace qubits alone, and is such that

h( (IA ⊗ Ui) |φi(z, j)〉 , |φi(z, l)〉) = hi(j, l, z) .

We show that this distance is bounded on average. Consider the quantum state X̂P̃i which is
the reduced state of all quantum registers except Bob’s workspace and his input K. We denote
by X̂Pi(X̂; X̂[1, k]) this state for a fixed index k, so that

X̂P̃i =
1

n

n∑
k=1

X̂Pi(X̂; X̂[1, k]) .

By the Average Encoding Theorem, Proposition 4.5,

Ek←K h
(
X̂Pi(X̂ ; X̂[1, k]) , X̂P̃i

)2
≤ κ ci ,
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where κ = ln 2
2 . An immediate consequence is that

Ej′←J h
(
X̂Pi(X̂ ; X̂[1, j′]) , X̂P̃i

)2
≤ 2κ ci , and

El′←L h
(
X̂Pi(X̂ ; X̂[1, l′]) , X̂P̃i

)2
≤ 2κ ci .

By the Triangle Inequality, for any j′ ∈ [n/2], l′ ∈ [n]− [n/2],

h
(
X̂Pi(X̂ ; X̂[1, j′]) , X̂Pi(X̂ ; X̂[1, l′])

)2
≤

(
h
(
X̂Pi(X̂ ; X̂[1, j′]) , X̂P̃i

)
+ h
(
X̂Pi(X̂ ; X̂[1, l′]) , X̂P̃i

))2
≤ 2 h

(
X̂Pi(X̂ ; X̂[1, j′]) , X̂P̃i

)2
+ 2 h

(
X̂Pi(X̂ ; X̂[1, l′]) , X̂P̃i

)2
.

Since Bures distance is monotonic under quantum operations [42, Theorem 9.6, p. 414], mea-
suring the first l′ qubits of X̂ yields

h
(
X[1, l′] X̂[l′ + 1, n]Pi(X[1, l′] X̂[l′ + 1, n] ; X[1, j′]) ,

X[1, l′] X̂[l′ + 1, n]Pi(X[1, l′] X̂[l′ + 1, n] ; X[1, l′])
)2

≤ 2 h
(
X̂Pi(X ; X[1, j′]) , X̂P̃i

)2
+ 2 h

(
X̂Pi(X ; X[1, l′]) , X̂P̃i

)2
,

where X[1, l′] denotes the classical random variable resulting from the measurement of X̂[1, l′].
Moreover, by Proposition 4.2, the left hand side above is equal to

Ez′←X[1,l′] h
(
X̂[l′ + 1, n]Pi(z

′X̂[l′ + 1, n] ; z′[1, j′]) , X̂[l′ + 1, n]Pi(z
′X̂[l′ + 1, n] ; z′[1, l′])

)2
.

Taking expectation over (j′, l′)← (J, L), and invoking the Jensen inequality, we get the claimed
bound.

Lemma 4.9. For every odd i ∈ [t], there is a unitary operator Ui that depends upon j, l, z, acts
on the qubits holding X̂[l+ 1, n] and Alice’s workspace qubits (the register holding state Pi), and
is such that

h
(

(Ui ⊗ IB) |φi(z, j)〉 , |φi(z(l), j)〉
)

= hi(j, l, z) .

Moreover,

E(j′,l′,z′)←(J,L,X[1,L]) hi(j
′, l′, z′) ≤ 4

√
κ di .

Proof: Note that Qi(zX[l + 1, n]; z[1, k]) for k ≤ l is the reduced state of |φ(z, k)〉 with the
register holding X̂ and Alice’s workspace (the register holding state Pi) traced out. By the Local
Transition Theorem, Proposition 4.3, there is a unitary operator Ui that depends upon j, l, z,
acts on the registers holding X̂[l + 1, n]Pi alone, and is such that

h
(

(Ui ⊗ IB) |φi(z, j)〉 , |φi(z(l), j)〉
)

= hi(j, l, z) .

Since Q0
i = Qi(X ; X[1,K]), we have

I(X : Qi(X ; X[1, J ]) |X[1, J ]) ≤ 2 I(X : Q0
i |X[1,K]) = 2din . (4.5)

Fix j′ ∈ [n/2] and z′′ ∈ {0, 1}j
′
. By the Chain Rule, Proposition 4.4,

I(X[j′ + 1, n] : Qi(z
′′X[j′ + 1, n] ; z′′))

=

n∑
l′=j′+1

I(Xl′ : Qi(z
′′X[j′ + 1, n] ; z′′) |X[j′ + 1, l′ − 1])

≥
n∑

l′=n/2+1

I(Xl′ : Qi(z
′′X[j′ + 1, n] ; z′′) |X[j′ + 1, l′ − 1]) . (4.6)
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Moreover by the Triangle Inequality, and the Average Encoding Theorem (Proposition 4.5), for

any given l′ ∈ [n]− [n/2] and z′ ∈ {0, 1}l
′
,

h
(
Qi(z

′X[l′ + 1, n] ; z′[1, j′]) , Qi(z
′(l′)X[l′ + 1, n] ; z′[1, j′])

)
≤ h(Qi(z

′X[l′ + 1, n] ; z′[1, j′]) , Qi(z
′[1, l′ − 1]Xl′X[l′ + 1, n] ; z′[1, j′]))

+ h
(
Qi(z

′(l′)X[l′ + 1, n] ; z′[1, j′]) , Qi(z
′[1, l′ − 1]Xl′X[l′ + 1, n] ; z′[1, j′])

)
≤ [ 4κ I(Xl′ : Qi(z

′[1, l′ − 1]Xl′ X[l′ + 1, n] ; z′[1, j′])) ]
1/2

. (4.7)

Combining Eqs. (4.5), (4.6), and (4.7), we get

E(j′,l′,z′)←(J,L,X[1,L]) h
(
Qi(z

′X[l′ + 1, n] ; z′[1, j′]) , Qi(z
′(l′)X[l′ + 1, n] ; z′[1, j′])

)2
≤ 4κ E(j′,l′,z′)←(J,L,X[1,L]) I(Xl′ : Qi(z

′[1, l′ − 1]Xl′X[l′ + 1, n] ; z′[1, j′]))

= 4κ E(j′,l′,z′′)←(J,L,X[1,J]) I(Xl′ : Qi(z
′′X[j′ + 1, n] ; z′′) |X[j′ + 1, l′ − 1])

≤ 8κ

n
I(X : Qi(X ; X[1, J ]) |X[1, J ]) ≤ 16κ di ,

as claimed.

Lemma 4.10. Let (Ui)i∈[t], be the unitary operators given by Lemmata 4.8 and 4.9. For every
odd r ∈ [t],

h
(

(Ur ⊗ IB) |φr(z, l)〉 , |φr(z(l), l)〉
)
≤ hr(j, l, z) + 2

r−1∑
i=1

hi(j, l, z) .

For every even r ∈ [t],

h
(

(IA ⊗ Ur)|φr(z(l), j)〉 , |φr(z(l), l)〉
)
≤ hr(j, l, z) + 2

r−1∑
i=1

hi(j, l, z) .

Proof: We prove the lemma by induction over r ∈ [t]. The base case is r = 1. By the convention
we have adopted, Alice sends the first message. Since the joint state immediately after the first
message is independent of Bob’s input, we have

|φ1(z, l)〉 = |φ1(z, j)〉 and |φ1(z(l), l)〉 = |φ1(z(l), j)〉 .

That is, the state on the input of type “01” equals that on the input of type “00”. The same
holds for inputs of type “11” and “10”. Along with Lemma 4.9 we get

h
(

(U1 ⊗ IB) |φ1(z, l)〉 , |φ1(z(l), l)〉
)

= h
(

(U1 ⊗ IB) |φ1(z, j)〉 , |φ1(z(l), j)〉
)

= h1(j, l, z) .

In other words, the state on the input of type “01” is, up to a unitary operation on Alice’s part,
“close” to that on the input of type “11”.

We prove that the lemma holds for r, assuming that it holds for r − 1 ∈ [t]. The argument
here follows the same intuition as in the base case, but is more involved because the analogous
equalities need not hold. However, the first pair of states may be shown to be close to each
other, modulo a local unitary operator, by virtue of Bob’s low information cost. The second pair
are assumed to be close, again modulo a local unitary operator, by the inductive hypothesis. A
careful hybrid argument then gives us the claimed bound. Figure 3 depicts this schematically.

There are two cases: r is odd, or r is even. We conduct the argument in the second case,
when r is even. The argument for r odd is similar, and is omitted.
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Base case
(1st message sent by Alice)

00 input

01 input

11 input

10 input

equal

equal

close, modulo local 
unitary, if Alice's 
information cost 
is small

Therefore close, 
modulo same unitary,
if Alice's information 
cost is small

Inductive step
(rth message sent by Bob)

00 input

01 input

11 input

10 input

close after rth 
message, modulo 
local unitary,
if Bob's information 
cost is small

Therefore close, 
modulo local unitary,
if total information 
cost is small

close after (r-1)th 
message, modulo 
local unitary,
if Alice's information 
cost is small

close after (r-1)th 
message, modulo 
local unitary, by 
inductive hypothesis

Figure 3: The relationship between states at intermediate stages of the protocol, as described in
the proof of Lemma 4.10.

By our convention, Bob sends the even numbered messages, including the rth message. By
Lemma 4.8, the states on the inputs of type “00” and “01” are “close” up to the local unitary Ur,
i.e.,

h( (IA ⊗ Ur) |φr(z, j)〉 , |φr(z, l)〉) = hr(j, l, z) . (4.8)

Similarly, by Lemma 4.9, the states before the rth message on the inputs of type “00” and “10”
are “close” up to the local unitary Ur−1, i.e.,

h
(

(Ur−1 ⊗ IB) |φr−1(z, j)〉 , |φr−1(z(l), j)〉
)

= hr−1(j, l, z) . (4.9)

By the induction hypothesis, we also have the following relationship between the states on inputs
of type “01” and “11”:

h
(

(Ur−1 ⊗ IB) |φr−1(z, l)〉 , |φr−1(z(l), l)〉
)
≤ hr−1(j, l, z) + 2

r−2∑
i=1

hi(j, l, z) . (4.10)

Now

|φr(z, l)〉 = (IA ⊗ Vr,z[1,l]) |φr−1(z, l)〉 , and

|φr(z(l), l)〉 = (IA ⊗ Vr,z[1,l]) |φr−1(z(l), l)〉 ,

where Vr,z[1,l] is the unitary operator that Bob applies on his part of the state (i.e., on the register
holding state Qr−1 before sending the rth message. Note that Vr,z[1,l] commutes with Ur−1, as
they act on disjoint sets of qubits. Since the Bures distance is invariant under unitary operators,
Eq. (4.9) gives us

h
(

(Ur−1 ⊗ IB) |φr〉(z, j) , |φr(z(l), j)〉
)

= hr−1(j, l, z) , (4.11)

and Eq. (4.10) gives us

h
(

(Ur−1 ⊗ IB) |φr(z, l)〉 , |φr(z(l), l)〉
)
≤ hr−1(j, l, z) + 2

r−2∑
i=1

hi(j, l, z) . (4.12)
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By the Triangle Inequality, Eqs. (4.8), (4.11), and (4.12), and the observation that Ur−1 and Ur
act on disjoint sets of qubits, we get

h
(

(IA ⊗ Ur) |φr(z(l), j)〉 , |φr(z(l), l)〉
)

≤ h
(

(IA ⊗ Ur) |φr(z(l), j)〉 , (Ur−1 ⊗ I⊗ Ur) |φr(z, j)〉
)

+ h
(

(Ur−1 ⊗ I⊗ Ur) |φr(z, j)〉 , |φr(z(l), l)〉
)

= hr−1(j, l, z) + h
(

(Ur−1 ⊗ I⊗ Ur) |φr(z, j)〉 , |φr(z(l), l)〉
)

≤ hr−1(j, l, z) + h((Ur−1 ⊗ I⊗ Ur) |φr(z, j)〉 , (Ur−1 ⊗ IB) |φr(z, l)〉)

+ h
(

(Ur−1 ⊗ IB) |φr(z, l)〉 , |φr(z(l), l)〉
)

≤ hr−1(j, l, z) + hr(j, l, z) + h
(

(Ur−1 ⊗ IB) |φr(z, l)〉 , |φr(z(l), l)〉
)

≤ hr(j, l, z) + 2

r−1∑
i=1

hi(j, l, z) .

(The identity operators without a subscript in this derivation act on the space of the rth mes-
sage.) This completes the induction step.

5 Concluding remarks

The main focus of this article is the amount of information two parties necessarily reveal about
their inputs in the process of the computing a function in a distributed manner. The function
of interest is Augmented Index, a natural variant of the Index function that is ubiquitous
in communication complexity. We show that in any randomized communication protocol that
computes this function correctly with constant error on the uniform distribution (a “hard”
distribution), either Alice reveals Ω(n) information about her n-bit input, or Bob reveals Ω(1)
information about his (log n)-bit input, even when the inputs are drawn from the uniform
distribution over inputs which evaluate to 0. At first glance, a trade-off under a distribution on
inputs on which the function value is known in advance may appear to be counter-intuitive. This
is a consequence of the correctness of the protocol on the hard distribution. Such a phenomenon
was first demonstrated by Bar-Yossef, Jayram, Kumar, and Sivakumar [5].

The motivation for this work comes from the study of tasks that may be accomplished with a
few sequential scans of massive data, using significantly smaller memory, i.e., through streaming
algorithms. The above result has implications for the space required by streaming algorithms
for Dyck(2), the problem of checking the syntax of a parenthesized expression. It implies that
for this problem, we need space

√
n/T on inputs of length n, when allowed T unidirectional

passes over the input.
The proof of the information cost trade-off showcases a modular and conceptually simple

technique involving the Average Encoding Theorem and the Cut-and-Paste Lemma. Originally
developed to analyse properties of quantum protocols, Average Encoding has been used more
widely in classical complexity theory. For instance, it has been used to derive lower bounds
for data structures [46], and can be used to derive the “Disguising Distribution Lemma” [17],
which has applications for instance compression. The technique developed in this article has
also been adapted by François and Magniez to prove space lower bounds for the problem of
checking priority queues with time stamps in the streaming model [19]. We expect that these
tools have yet more applications in information processing.

A few recent works show how simple quantum streaming algorithms may use exponentially
smaller amount of space as compared with classical ones [35, 21]. We ask if there is similar
advantage in solving a natural and important problem such as Dyck(2). We make partial
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progress in this direction, by establishing a quantum information cost trade-off for Augmented
Index. We show that in quantum protocols that compute Augmented Index correctly with
constant error on the uniform distribution, either Alice reveals Ω(n/t) information, or Bob
reveals Ω(1/t) information, where t is the number of messages in the protocol, even when the
inputs are drawn from the aforementioned easy distribution.

The quantum information cost trade-off by itself does not imply a space lower bound for
streaming quantum algorithms. The reduction from streaming algorithms for Dyck(2) with
small space to quantum two-party protocols for Augmented Index breaks down for the notion
of information cost we adopt. We conjecture a trade-off similar to Theorem 4.6 for the notion
of information cost in Eqs. (4.1) and (4.2). We leave the resolution of this conjecture as an
intriguing open problem.
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