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Problem Definition

Let S be any algebraic structure over which matrix multiplication is defined, such as
a field (e.g., real numbers), a ring (e.g., integers), or a semiring (e.g., the Boolean
semiring). If we use + and - to denote the addition and multiplication operations over
S, then the matrix product C of two n x n matrices A and B is defined as C;; =
Y pey Air - Byj for all 4,5 € {1,2,...,n}. Over the Boolean semiring, the addition and
multiplication operations are the logical OR and logical AND operations respectively,
and thus the matrix product C' is defined as C;; := \/;_, (A A By;). In this article we
consider the following problems.



Problem 1 (Matrix multiplication).
INPUT: Two n X n matrices A and B with entries from S.
OutruT: The matrix C := AB.

Problem 2 (Matrix product verification).
INPUT: Three n x n matrices A, B, and C' with entries from S.
OuTtpUT: A bit indicating whether or not C' = AB.

The matrix multiplication problem is a well-studied problem in classical com-
puter science. The straightforward algorithm for matrix multiplication that computes
each entry separately using its definition uses O(n3) operations. In 1969, Strassen [17]
presented an algorithm that multiplies matrices over any ring using only O(n?#7) op-
erations, showing that the straightforward approach was suboptimal. Since then there
have been many improvements and the complexity of matrix multiplication remains an
area of active research.

Surprisingly, the matrix product verification problem can be solved faster. In
1979, Freivalds [6] presented an optimal O(n?) time bounded-error probabilistic algo-
rithm to solve the matrix product verification problem over any ring using a randomized
fingerprinting technique, which has found numerous other applications in theoretical
computer science (see, e.g., Ref. [15]).

In the quantum setting, these problems are traditionally studied in the model
of quantum query complexity, where we assume the entries of the input matrices are
provided by a black box or an oracle. The query complexity of an algorithm is the
number of queries made to the oracle. The bounded-error quantum query complexity
of a problem is the minimum query complexity of any quantum algorithm that solves
the problem with bounded error, i.e., it outputs the correct answer with probability
greater than (say) 2/3. The time complexity of an algorithm refers to the time required
to implement the remaining non-query operations. In this article we only consider
bounded-error quantum algorithms.

Key Results

It is not known if quantum algorithms can improve the time complexity of the general
matrix multiplication problem compared to classical algorithms. Improvements are
possible for matrix product verification and special cases of the matrix multiplication
problem, as described below.

Matrix product verification over rings

According to Buhrman and Spalek [3], matrix product verification was first studied (in
an unpublished paper) by Ambainis, Buhrman, Hgyer, Karpinski, and Kurur. Using a
recursive application of Grover’s algorithm [7], they gave an O(n"/*) query algorithm for
the problem. The first published work on the topic is due to Buhrman and Spalek [3],
who gave an O(n®?) query algorithm for matrix product verification over any ring
using a generalization of Ambainis’ element distinctness algorithm [I]. This algorithm
also achieves the same query complexity over semirings and more general algebraic
structures. The algorithm can easily be cast in the quantum walk search framework of
Magniez, Nayak, Roland, and Santha [I4] as explained in the survey by Santha [16].
More interestingly, they presented an algorithm with time complexity O(n®/3) for the
problem over fields and integral domains. Their algorithm uses the same technique used
by Freivalds [6] and is therefore also time efficient over arbitrary rings. Buhrman and
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Spalek also proved a lower bound showing that any bounded-error quantum algorithm
must make at least £2(n%/2) queries to solve the problem over the field Fy. This lower
bound can be extended to all rings [10].

Theorem 1 (Matrix product verification over rings). The matriz product verifi-
cation problem over any ring can be solved by a quantum algorithm with query complex-
ity O(n®/3) and time complexity O(n®3). Furthermore, any quantum algorithm must
make 2(n3/?) queries to solve the problem over a ring.

Buhrman and Spalek also studied the relationship between the complexity of
their algorithm and the number of incorrect entries in the purported product, C', and
showed that their algorithm performs better when C' has a large number of incorrect
entries [3].

Matrix multiplication over rings

The quantum query complexity of multiplying two n xn matrices is easy to characterize
in terms of the input size. Clearly the query complexity is upper bounded by the input
size, O(n?). On the other hand if A equals the identity matrix, then C' = B and in
this case the matrix multiplication problem is equivalent to learning all the bits of an
input of size n?, which requires §2(n?) queries. This follows, for example, from the fact
that computing the parity of n? bits requires £2(n?) queries [2, [5]. This shows that the
quantum query complexity of matrix multiplication is ©(n?), which is the same as the
classical query complexity. Similarly, no quantum algorithm is known to improve the
time complexity of matrix multiplication over rings compared to classical algorithms.

Buhrman and Spalek [3] studied the matrix multiplication problem in terms of
n and an additional parameter ¢, the number of nonzero entries in the output matrix
C', and showed the following result.

Theorem 2. The matrix multiplication problem over any ring can be solved by a quan-
tum algorithm with query and time complexity upper bounded by

O:( 5/302/3) when 1 < £ < /n,
Q( 320)  when /n <0 <n, and
O(n®Vl) when n < < n?

n
n

where { is the number of nonzero entries in the output matriz C'.

When / is small, this algorithm achieves subquadratic time complexity and when
¢ approaches n?, its time complexity is close to O(n?), which is trivial and slower than
known classical algorithms. A detailed comparison of this quantum algorithm with
classical algorithms may be found in Ref. [3].

Boolean matrix product verification

Buhrman and Spalek [3] also studied the matrix product verification problem over the
Boolean semiring and showed that the problem can be solved with query and time
complexity O(n*/?). On the other hand, the best known lower bound is only §2(n'%?)
queries due to Childs, Kimmel, and Kothari [4].

Theorem 3 (Boolean matrix product verification). The Boolean matriz prod-
uct verification problem can be solved by a quantum algorithm with query complexity
O(n®?) and time complexity O(n®?). Furthermore, any quantum algorithm must make
2(n'955) queries to solve the problem.



Boolean matrix multiplication

As before, the quantum query complexity of multiplying two n x n Boolean matrices
is ©(n?), since it is at least as hard as learning n? input bits. The time complexity of
Boolean matrix multiplication can be improved to O(n*?®) by observing that the inner
product of two Boolean vectors of length n can be computed with O(y/n) queries using
Grover’s algorithm [7]. This observation also speeds up matrix multiplication over some
other semirings.

Similar to the matrix multiplication problem over rings, Boolean matrix multi-
plication can be studied in terms of an additional parameter ¢, the number of nonzero
entries in the output matrix. Indeed, the problem has been extensively studied in this
setting.

Buhrman and Spalek [3] observed that two Boolean matrices can be multi-
plied with query complexity O(n*?y/¢). This upper bound was improved by Vas-
silevska Williams and Williams [18], who presented an algorithm with query com-
plexity O(min{n!3¢17/30 n2 4 p13/15¢47/601) "which was then improved by Le Gall [I1].
Finally, Jeffery, Kothari, and Magniez [8] presented a quantum algorithm for Boolean
matrix multiplication that makes O(n\/Z) queries. These upper bounds are depicted
in Figure [I] The log factors present in their algorithm were later removed to yield an
algorithm with query complexity O(nv?) [9]. Jeffery, Kothari, and Magniez [8] also
proved a matching lower bound of £2(nv/f) when ¢ < en? for any constant e < 1. Their
algorithm can also be modified to achieve time complexity O(nv/¢ 4 (y/n) [12).

Query complexity

¢ (number of nonzero entries in C')

Fig. 1. Upper bounds on the quantum query complexity of Boolean matrix multiplication.

Theorem 4 (Boolean matrix multiplication). The Boolean matriz multiplication
problem can be solved by a quantum algorithm with query complexity O(n\/Z) Further-

more, any quantum algorithm that solves the problem must make Q(n\/Z) queries when
¢ < en? for any constant € < 1. Boolean matriz multiplication can be solved in time

O(nVI + ty/n).

Recently the problem has also been studied in terms of the sparsity of the input
matrix. Le Gall and Nishimura [13] present algorithms with improved time complex-
ity in this case. Their algorithm’s time complexity is a complicated function of the
parameters and the reader is referred to Ref. [13] for details.

Matrix multiplication over other semirings

Le Gall and Nishimura [I3] recently initiated the study of matrix multiplication over
semirings other than the Boolean semiring and presented algorithms with improved
time complexity for the (max, min)-semiring and related semirings.



Open Problems

Several open problems remain in the time and query complexity settings. In the time
complexity setting, a major open problem is whether quantum algorithms can solve
the matrix multiplication problem faster than classical algorithms over any ring. In the
query complexity setting, the complexity of matrix product verification over rings and
the Boolean semiring remains open. The best upper and lower bounds are presented in
Theorem [T] and Theorem [3] A more comprehensive survey of the quantum query com-
plexity of matrix multiplication and its relation to other problems studied in quantum
query complexity such as triangle finding and graph collision can be found in the first
author’s PhD thesis [10], which also contains additional open problems.
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