Available at
www.ElsevierComputerScience.com Informa!tlon
Processing
Letters

POWERED BY SCIENCE @DIRECT'3

ELSEVIER Information Processing Letters 89 (2004) 131-135

www.elsevier.com/locatefipl

Weak coin flipping with small bias

|. Kerenidis**1, A. Nayak®?2

& Computer Science Division, University of California, Berkeley, CA 94720, USA
b The Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, CA 94720-5070, USA

Received 6 December 2002; received in revised form 21 July 2003

Communicated by P.M.B. Vitanyi

Abstract

This paper presents a quantum protocol that demonstratesadiatoin flipping with biasx 0.239, less than /4, is possible.
A bias of 1/4 was the smallest known, and followed from the strong coin flipping protocol of Ambainis in [33rd STOC, 2001]
(also proposed by Spekkens and Rudolph [Phys. Rev. A 65 (2002) 012310]). Protocols with yet smake0.Bi@8 have
independently been discovered by Ambainis (2001) and Spekkens and Rudolph [Phys. Rev. Lett. 89 (2002) 227901]. We also
present an alternative strong coin flipping protocol with biaé With analysis simpler than that of Ambainis [33rd STOC,
2001].
0 2003 Elsevier B.V. All rights reserved.
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1. Quantum weak coin flipping to decide the issue. Motivated by this, we consider the
following weaker version of coin flipping.
A weak coin flipping protocol with biag, is a two-

In the classic example from [5], Alice and Bob are party communication game in the style of Yao [13], in
getting a divorce, and would like to decide who gets which the players start with no inputs, and compute
the car. They decide to toss a coin for that purpose, but a valuecy, cp € {0, 1} respectively or declare that
don't trust each other. In such a scenario, instead of the other player is cheating. The protocol is deemed
a coin tossing protocol, they could play any fair game successful if Alice and Bob agree on the outcome,

i.e.,ca = cp. Then, the outcome 0 is identified with
Alice winning, and 1 with Bob winning. The protocol
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her local computation), then the other paniyns

with probability at most 12+ ¢. In other words, if
Bobis dishonest,thenRiy =cp =1) <1/2+¢,

and if Alice is dishonest, then Riy = cp =0) <

1/2+¢.

In a strong coin flipping protocol, the goal is
instead to produce a random bit which is biased
away from any particular value 0 or 1. Clearly, any
strong coin flipping protocol with biag leads to
weak coin flipping with the same bias. We may also
derive a strong coin-flipping protocol from a weak
one. A simple way to do this is to have the winner
of the game flip the coin. This results in an increase in
the bias of the protocol, however: if when one player,
say Alice, is dishonest, and the other (Bob) honest,
the probability of Alice winning isp,, > 1/2, and the
probability of Bob winning isp,, then the coin will
have biagp,, + (p, — 1)/2.

The primitive of quantum strong coin flipping
has been studied extensively, e.g., in [7,8,1,2,11].
The best known protocol, with bias/4 = 0.25, is
due to Ambainis [2], also independently proposed
by Spekkens and Rudolph [11]. This note presents
a protocol that demonstrates thatak coin flipping
with bias ~ 0.239, less than M, is possible. Our
protocol is obtained by modifying the protocol of [2]
especially so that theinning party is checked for
cheating. We also describe a related strong coin
flipping protocol with bias 14 that has the advantage
over [2] that the analysis is considerably simpler.
A similar analysis for a class of cheating strategies has
been given by [11].

Since the discovery of the above mentioned proto-
col, we have learnt of several exciting developments.
Kitaev [6] has shown that in any protocol fetrong
coin flipping, the product of the probabilities with
which each of the players can achieve outcome (say) O,
has to be at least/2. Hence the protocols with ar-
bitrarily small bias are not possible; the bias is al-
ways at least 4v/2 — 1/2 ~ 0.207. (Previous lower
bounds applied only to certain kinds of protocol [2,
11,9].) Furthermore, Ambainis [4] and Spekkens and
Rudolph [12] have constructed a family of protocols
for weak coin flipping, where the product of the win-
ning probabilities is exactly /2. By making the win-
ning probabilities equal, they get protocols in which
each player wins with probability at mosf <2, and
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hence the bias is/A/2 — 1/2 ~ 0.207. Subsequently,
Ambainis [3] proved a lower bound of/2 for the
product of the winning probabilities for the specific
class of protocols considered in [12]. We note that the
lower bound of Kitaev for strong coin flipping does not
apply here and hence quantum games of the weaker
variety with even smaller bias may be possible.

The paper is organized as follows: In Section 2,
we describe and analyze a weak coin flipping protocol
with small bias. In Section 3, we present an alternative
strong coin flipping protocol with bias/4 and simpler
analysis. For an introduction to Quantum Computation
we refer the reader to [10].

2. A gamewith small bias

Below, we describe a weak coin flipping game that
has bias less than/4. The game is derived from the
protocol of [2], which achieves the previously best
known bias of 4.

The protocol is parametrized hy < [0, 1], which
we will optimize over later. Fox € {0, 1}, define the
state|y,) = |Y(a)) in a Hilbert spaceH, ® H;
C2® C3 as:

[Vy) = Velxx) + /1 —a|22).

The protocol has the following rounds:

1)

(1) Alice picksa €r {0, 1}, prepares the state,) in
Hs @ H, (i.e., over a pair of qutrits) and sends Bob
theH, quitrit.
(2) Bob picksb er {0, 1} and sends it to Alice.
(3) Alice then reveals the bit to Bob. Letc =a & b.
If ¢ =0, thency < 0 and she sends the other
part of the statéy,) (theH; qutrit). Bob checks
that the qutrit pair he received in the first and
the current rounds are indeed in statge,) by
measuring according to the orthogonal projection
operatorsP, = |y, ){¥,| andI — P,. If the test
is passed, Alice winsc < 0 as well), else
Bob concludes that Alice has deviated from the
protocol, and aborts.
If, onthe otherhand,=a @& b =1, thencg < 1,
and Bob returns the quitrit he received in round 1.
Alice checks that her qutrits are in stdig,) by
measuring according t@P,, I — P,}. If the test is
passed, Bob wins the game(«— 1), else, Alice

4)
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concludes that Bob has tampered with her qutrit to
bias the game, and aborts.

If the two players follow this protocol, the game is
fair. We now analyze the situation where one of the
players cheats.

Lemma 2.1. If Bob is honest, then the probability that
AlicewinsPr(cg =0) <1—«/2.

Proof. We assume without loss of generality that
a dishonest Alice tries to maximize her probability
of winning, and therefore sends= b (so thatc =

a @b =0)inround 3. Her cheating strategy then takes
the following form. Alice uses some ancillary space
‘H and prepares some stdie) € H ® H; ® H,;. She
keeps the part of the state #f ® H, and sends the
qutrit part in H; to Bob. Leto denote the density
matrix of Bob after the first round of the protocol (i.e.,
of the’H, quitrit). Letp, be the density matrix he would
have if Alice had prepared the honest stafg):

Pa = Tr’HS [Va) (Wal
=ala)(al + (1 —a)|2)(2].

In the second round, Bob replies with a random
bit 5. So that she wins, Alice sends= b to Bob
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where F(w, 1) = ||Jo./T|2 is the fidelity of two
density matrices. Here, we have used the fact that the
fidelity between two states can only increase when we
trace out a part of the states. Note also that the state
Try, (0p) is equal tao, which is independent df.

Finally we have,

Pr{Alice wins]
< 3[F (o, po) + F(o, p1)]

< 3[1+VF(po. p1)]

=1-«a/2

The second inequality is due to [11, Lemma 2], also
[9, Lemma 3.2]. Moreover (pg, p1) = (1—a)2. This
completes the proof. O

Note that the analysis above is tight in the sense
that Alice can cheat with probability equal to-1
a/2. She does this by preparing the statg) + |v1)
(normalized) and sending one quitrit to Bob in the first
round. In the third round, she sends= b, and the
remaining qutrit from the above state.

If Bob is the dishonest player, we can show the
following bound.

Lemma 2.2. If Alice is honedt, then Pr(cy = 1) <

and subsequently tries to pass his check. For that, she((1 — a)/V2+a)?.

performs some unitary operati@f, on her part of the
state, and getsy,) = (U, ® I)|¥). After that, she
sends the part of the state’iy to Bob. The final joint
state can be written now as

Vs =Y /Pili)Vin).

Proof. A cheating Bob tries to infer the value of the
bit « that Alice picked from the qutrit he receives in
round 1 so that he can sehAd=a = 1 ® a. However,

he has to minimize the disturbance caused to the over
all state|y,). Suppose that Bob applies the unitary
transformation/ on H; ® H ® C? to the qutrit he

As we see, at the end of the protocol Bob has the receives from Alice, some ancillary qubits initialised

density matrixo, = 3", p;[Vip) (Vi pl.
The probability that Alice wins the game is equal to

the probability that she passes Bob’s check at the end

to |0), and a qubit reserved for his reply, and that:
U :1i)0)[0) = |¢i.0)10) + |¢i.1)[1). (2)

of the protocol, i.e., that Bob measures his part of the He measures the last qubit, and sends that across in

joint state and getg/;,) as the outcome
PrAlice wins | Bob send#]

= Zpi|<¢h|1ﬁi,b)|2

= F(op, V) (¥)

< F(Tryg, (03), Trag, [¥n) (Vs |)
= F(o, p»),

round 2. If he wins, i.e., if the XOR of the bit he sent
and the one that Alice picked is & & a), in round 4
he sends one qutrit (tHE; part) from the above state
across to Alice. (Note that any transformation he may
do after learning that he won, i.e., after round 3, may
be incorporated int&/.)

Assume that Alice had picked the hite {0, 1} in
round 1. Then, the joint state under the above cheating
strategy before Bob measures his reply for round 2 is:
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Vala)(1¢a,010) + |¢a,1)11))
+vV1—a|2)(I¢2,010) + $2,1)I1)).
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By choosinge to satisfy the above equation, we get
a protocol in which no player can win the game
with probability greater than 0.739. The bias is then

The unnormalized residual state when the outcome of 0.239< 1/4.

his measurement isis thus:
Vala)lgaa) +vV1—al2)|p2a).

Then Bob sends to Alice th, part of his state. (The
stateg ¢, .a), [¢2.a) are inH; ® H.) After round 4 their
joint state is inH, ® H; ® H, where theH; ® H, part
is with Alice and theH part is with Bob.

So Bob’s probability of winning, given that Alice’s
bit is a, may be bounded as:
1*

|(Pa ® D(Vala)l¢aa) + vV1—al2)d2a))
=le((al®1)l¢aa) + L —)((2 ®@1)I$2a)
< (@laall + L =) d2all)?
< e+ A-a)lg2al)>

Now, consider RBob wing, which is the average
of the above expression over € {0,1}. This is
maximized when||¢20l = l¢2.1]l = 1/4/2 (recall
from Eq. (2) that|¢2.0l% + ll¢2.1/> = 1). Thus, the
probability of Bob winning is bounded by

11—«

( 72 *"‘)2’

as claimed. O

2
|

There is a cheating strategy for Bob that achieves
the above probability of success. Bob can use the
following transformation on the quitrit he receives and
an ancillary qubit:

|2>|0>H|2>®%(|o>+|1>), and

[x)]0) =~ |x)|x), forx e{O0,1}.

He then measures the ancilla to get the ibihe is
supposed to send in the second round.

As we vary the parameter from 0 to 1 Alice’s
cheating probability decreases from 1 tg2land
Bob’s cheating probability increases fromi2lto 1.
The bias is minimized when the two probabilities are

made equal:
2
+ oe) .

1«

V2

l—oz/2=<

3. A strong coin flipping protocol

Finally, we present a variant of the strong coin
flipping protocol of [2], which has the same bias,
but is much more simple to analyze. The idea behind
this protocol also occurs in the “purification protocol”
for bit-commitment in [11]. The protocol has the
following three rounds:

(1) Alice picksa €r {0, 1}, prepares the stale,) €
Hs ® H; as in Eq. (1) and sends Bob the quitrit.

(2) Bob picksb €g {0, 1} and sends it to Alice.

(3) Alice then reveals the bit to Bob and sends the
second half of the state/,,). Bob checks that the
qutrit pair he received are indeed in state,).

If the test is passed, Bob accepts the outcome
c=a® b, else Bob concludes that Alice deviated
from the protocol, and aborts.

The analysis for Bob’s cheating strategy is the same
as in [2] and his cheating probability is at most

lloo — oalltr
4

The analysis for Alice’s cheating strategy is the
same as in Lemma 2.1 above, and the same bound of
1— «/2 holds here as well. This analysis is consider-
ably simpler and does not require the symmetrization
in [2] for the state sent in the first round.

By making the two cheating probabilities equal

1-a/2=311+a),

3+ =11+a).

we achieve the bias df for a = 3.
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