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Abstract

We study the problems of quantum tomography and shadow tomography using measure-
ments performed on individual, identical copies of an unknown d-dimensional state. We first
revisit known lower bounds [HHJ+17] on quantum tomography with accuracy ε in trace dis-
tance, when the measurement choices are independent of previously observed outcomes, i.e.,
they are nonadaptive. We give a succinct proof of these results through the χ2-divergence be-
tween suitable distributions. Unlike prior work, we do not require that the measurements be
given by rank-one operators. This leads to stronger lower bounds when the learner uses mea-
surements with a constant number of outcomes (e.g., two-outcome measurements). In partic-
ular, this rigorously establishes the optimality of the folklore “Pauli tomography” algorithm in
terms of its sample complexity. We also derive novel bounds of Ω(r2d/ε2) and Ω(r2d2/ε2) for
learning rank r states using arbitrary and constant-outcome measurements, respectively, in the
nonadaptive case.

In addition to the sample complexity, a resource of practical significance for learning quan-
tum states is the number of unique measurement settings required (i.e., the number of differ-
ent measurements used by an algorithm, each possibly with an arbitrary number of outcomes).
Motivated by this consideration, we employ concentration of measure of χ2-divergence of suit-
able distributions to extend our lower bounds to the case where the learner performs possibly
adaptive measurements from a fixed set of exp(O(d)) possible measurements. This implies
in particular that adaptivity does not give us any advantage using single-copy measurements
that are efficiently implementable. We also obtain a similar bound in the case where the goal is
to predict the expectation values of a given sequence of observables, a task known as shadow
tomography. Finally, in the case of adaptive, single-copy measurements implementable with
polynomial-size circuits, we prove that a straightforward strategy based on computing sample
means of the given observables is optimal.

1 Introduction

1.1 State tomography and its variants

In learning theory, an important resource is the number of samples of data used by the learner
to correctly infer or predict their properties. The difficulty of a learning task, at first approxima-
tion, is therefore captured by its sample complexity, defined to be the minimum number of samples
required to solve the problem at hand with high probability. In this paper we consider the sam-
ple complexity of learning properties of an arbitrary unknown quantum state. Here, a sample
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amounts to preparing the state in some register, so that the number of samples is the number
of identical copies of the state on which the learner can perform a measurement. For the most
part, we focus on quantum state tomography, which is the fundamental task of estimating an un-
known d-dimensional state ρ to within some accuracy ε in the standard trace distance between
states. Quantum tomography is of significant practical interest, for example, for the experimen-
tal verification of quantum devices. We are especially interested in how the sample complexity
of tomography scales with the dimension d of the state. In theory, the dimension is the primary
obstacle to efficient learning, since this quantity grows exponentially with the number of qubits
comprising the system.

In the most general scenario for state tomography, n identical copies of a state ρ are prepared
in registers that are jointly measured. It is then said that the measurements are entangled. In a
series of breakthroughs, O’Donnell and Wright [OW16, OW17] as well as Haah, Harrow, Ji, Wu,
and Yu [HHJ+17] proved that O(d2/ε2) samples suffice to perform tomography using entangled
measurements. This matches an information-theoretic lower bound due to Ref. [HHJ+17] and
improves upon previous upper bounds by a factor of d. Fewer samples are needed when a bound
on the rank of the state is known (see, for instance, Ref. [OW16]).

From a practical standpoint, however, the joint measurements used in algorithms for optimal
tomography may not be feasible. Firstly, in the case where one has access to just a single register
that can be prepared in the state ρ, joint measurements of multiple copies of the state are impos-
sible. (For instance, one might wish to perform tomography on the output state of a quantum
computer by repeating a computation. Another example is that of photonic states that are dif-
ficult to store over extended periods of time.) Even given access to a suitably large system that
can be prepared in the state ρ⊗n, it is not clear how efficiently the entangled measurements can
be implemented. Finally, in some experimental realizations, only a limited set of measurements
may be available. For these reasons, there is strong motivation to consider restricted measurement
models, for instance, those in which each copy of ρ is measured separately, possibly using one of
a fixed set of measurement settings. Measurements in which each copy of ρ is measured sepa-
rately have been coined single-copy measurements by some [ACH+19, ALL22] (and unentangled
measurements by others [CD10, Wri16, BCL20]).

Within the single-copy model of measurement, one has access only to a single d-dimensional
register which can be repeatedly prepared in the state ρ upon request, at which point a measure-
ment is performed on the state and the resulting state is discarded. This means that the number of
samples is equal to the number of measurements performed. Upper bounds on the sample com-
plexity of single-copy tomography are well-established. Two prominent examples are the folklore
“Pauli tomography algorithm” (outlined in Section 8.4.2 in Nielsen and Chuang [NC10]) and al-
gorithms based on low-rank matrix recovery due to Kueng, Rauhut, and Terstiege [KRT17]. In
both examples, the upper bound on the sample complexity is worse than in the entangled case.
(For other, simple such algorithms, see Refs. [Wri16, GKKT20, Yu20].)

What can be said about the sample complexity of quantum tomography using single-copy
measurements? Haah et al. [HHJ+17] address this question by providing a Ω(d3/ε2) lower bound
which matches the upper bound following from Ref. [KRT17, GKKT20], under the assumption
that the choice of each measurement is independent of any previous outcomes (referred to as non-
adaptive measurements). However, this does not exhaust all realizable single-copy measurement
strategies. Indeed, numerous proposals for state tomography (e.g., [HH12, MRD+13]) utilize adap-
tive measurements, where the choice of measurement can depend on previous outcomes.

Adaptive measurements represent an intermediate restriction between nonadaptive and en-
tangled measurements, and until very recently little was known about the sample complexity
of learning quantum states or their properties in this setting. (For an early example of a prob-
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lem for which adaptive measurements do not help, see Refs. [HRS05, HMR+10].) This is despite
the fact that bounding the power of adaptivity is a significant problem: proving separations be-
tween entangled and single-copy measurements requires showing that adaptive measurements
result in strictly worse sample complexity. It was posed as an open problem in the Ph.D. thesis of
Wright [Wri16] to provide examples where this is the case, and since then there has been signif-
icant progress on this topic. In 2020, Bubeck, Chen, and Li [BCL20] gave the first unconditional
separation between entangled and single-copy measurements, for the problem of quantum state
certification. Following this, Huang, Kueng and Preskill [HKP21] proved an exponential separation
for the problem of determining the expectations of Pauli operators to constant accuracy. Then, in
2021 Chen, Cotler, Huang, and Li [CCHL22, CCHL21] proved many additional exponential sep-
arations for different learning tasks, including shadow tomography. In this work, we continue
along this line of research to investigate the sample complexity of adaptive quantum tomography
in a realistic setting. We then apply the techniques developed and derive a new lower bound for
single-copy shadow tomography in the same setting.

1.2 Summary of results

We first provide a simplified proof of the lower bound for tomography in the nonadaptive case due
to Haah et al. [HHJ+17, Theorem 4]. In the process, we improve it by a factor of d to Ω(d4/ε2) when
the measurements have a constant number of outcomes. This implies that the straightforward
Pauli tomography algorithm (described in Appendix B) is information-theoretically optimal in
this setting. Using the same techniques, we derive a lower bound of Ω(r2d/ε2) when the states are
known to have bounded rank r. This bound is a multiplicative factor of log(1/ε) larger than the
best previous lower bound [HHJ+17, Theorem 4], and is optimal [KRT17, GKKT20] (see Section B.2
for more details on the upper bound). Moreover, it applies to the case of learning pure states (r =
1), which is not covered by the proof of Theorem 4 in Ref. [HHJ+17]. The rank-dependent bound
can be further strengthened to Ω(r2d2/ε2) for measurements with a constant number of outcomes.

Since state tomography requires Ω(d2/ε2) samples, any quantum algorithm for this problem
necessarily has run-time at least quadratic in d. This is exponential in logd, the number of qubits
representing the unknown state. However, algorithms that measure one copy of the state at a
time, interleaved with classical processing of the measurement outcomes, allow for the possibility
that the individual measurements be more time-efficient. Such algorithms are more attractive from
a practical point of view, given the current challenges in implementing quantum computation. It
is thus no surprise that most of the algorithms based on single-copy measurements mentioned in
Section 1.1 involve measurements that can be implemented efficiently, in particular with quantum
circuits of size polynomial in the number of qubits.

We present new arguments showing there is a broad class of algorithms, including the ones
described above, for which adaptivity makes no difference to the worst-case sample complexity
of learning a quantum state. Specifically, we prove a lower bound of Ω(d3/ε2) for the sample
complexity of any single-copy, adaptive tomography algorithm which uses measurements chosen
from a fixed set of up to exp(O(d)) measurements. This encompasses measurement strategies
which are efficiently implementable, i.e., the measurements may be performed using (uniformly
generated) circuits of size polynomial in logd over some finite universal gate-set. We also show
using the Solovay-Kitaev Theorem that, up to a factor of roughly loglogd + log(1/ε), the same
bound applies to all measurement strategies which are efficiently implementable using circuits
on possibly infinite universal gate-sets. The bounds entail that either (i) adaptivity does not give
any advantage over non-adaptive measurements for single-copy tomography, or (ii) any adaptive
algorithm using o(d3/ε2) samples necessarily uses measurements with super-polynomial-size cir-
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Nonadaptive Adaptive Adaptive & efficient
Allowed meas. O(1)-outcome Arbitrary Binary Pauli O(1)-outcome Arbitrary

Upper bound O(d4/ε2) O(d3/ε2) [KRT17, GKKT20] O(d4/ε2) O(d4/ε2) O(d3/ε2)

Lower bound Ω(d4/ε2) [*] Ω(d3/ε2) [HHJ+17] Ω(d4) [FGLE12] Ω̃(d4/ε2) [*] Ω̃(d3/ε2) [*]

Table 1: Best known upper and lower bounds for the sample complexity of quantum state to-
mography using single-copy measurements under various measurement restrictions, prior to this
work. Ω̃ hides log(d) and polylog(1/ε) factors, lack of citation indicates folklore or implied by
other bounds, and [*] denotes results from this work.

cuits. We summarize lower bounds for single-copy tomography in comparison to previous work
in Table 1, in the full-rank case. In the final column, by “efficient” we mean efficiently imple-
mentable, as defined above.

We also obtain lower bounds of the above kind for computing classical shadows [HKP20] and
for shadow tomography [ACH+19]. In these tasks, one is interested in estimating the expectations
of some collection of observables, and they have practical applications ranging from entanglement
verification to near-term proposals of variational quantum algorithms [HKP20, SZK+21]. We
show that any procedure for ε-accurate shadow tomography of M observables using efficiently
implementable single-copy measurements requires Ω(d log(M)/ε2) samples of the unknown d-
dimensional quantum state. Recently, Ref. [CCHL22] almost fully resolved the sample complexity
of shadow tomography in the more general case where the learner can implement arbitrary single-
copy measurements. They showed a lower bound of Ω̃(min{M,d}/ε2). This, while being more
general than our result, is potentially exponentially looser in the setting of efficient measurements.
In particular, even for M a small constant, our lower bound is linear in the dimension of the state,
whereas the more general lower bound has no dependence on the dimension at all.

Finally, we present a simple procedure for shadow tomography using single-copy measure-
ments that are efficiently implementable. The algorithm is optimal in this setting as well as in the
case where the measurements are nonadaptive but otherwise arbitrary. The procedure is simpler
than the one given in Ref. [HKP20].

Subsequent work. Most of the results in this article were included in the first author’s Mas-
ter’s thesis [Low21] and were presented at QIP 2022 [LN22]. Chen, Huang, Li, and Liu [CHLL22]
subsequently proved that known non-adaptive algorithms for state certification are optimal even
when adaptive measurements are used. More recently, the same set of authors along with Sel-
lke [CHL+22] reported an Ω(d3/ε2) lower bound on the sample complexity of tomography of
states of possibly full rank, using adaptive single-copy measurements. These bounds imply that
adaptivity does not give any advantage over non-adaptive measurements in terms of sample com-
plexity for state tomography (as a function of the dimension) or for the related tasks mentioned
above.

1.3 Overview of techniques

We first describe a basic framework for proving lower bounds on the task of quantum tomography
common to much of the work on the topic. Here, we use the observation that state discrimination
of well-separated states reduces to tomography with sufficient accuracy. The lower bounds then
follow from the construction of difficult instances of the state discrimination problem, for which
the amount of information that the measurement statistics can reveal about the chosen state is
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severely limited. “Discretizing” the learning problem in this manner for the purposes of providing
worst-case lower bounds is a standard technique in the field of density estimation, which is the
classical analogue of quantum tomography. (See for example Chapter 2 of Ref. [Tsy09].) To the
best of the authors’ knowledge, the method was first employed in the context of tomography by
Flammia, Gross, Liu, and Eisert [FGLE12].

One way to make this argument rigorous is by using Fano’s inequality and Holevo’s theo-
rem, which suggests an interpretation in terms of a communication protocol between two parties,
Alice and Bob. To this end, imagine they have agreed upon an encoding of 2N quantum states
into bit-strings x of length N. In a single round of communication, Alice sends a quantum state
ρ⊗n

x encoding the message x ∈ {0,1}N to Bob who then attempts to decode the message through
tomography. Assuming Bob can perform accurate tomography using n copies of the unknown
state, Alice will have successfully transmitted N bits of information to Bob. On the other hand,
the Holevo information of the ensemble of quantum states gives an upper bound on the size of a
message that could be sent reliably. In particular, it can be shown that when n is small the Holevo
information is also small. This provides the necessary contradiction to arrive at a lower bound: a
procedure for tomography that succeeds when n is small could be used by Bob to reliably decode
too long a message from Alice. Therefore, there is no such procedure.

In summary, this argument may be used to show that the mutual information between the ran-
dom choice of state x and the measurement outcome y satisfies Ω(d2) ≤ I(x : y) ≤ nε2, where the
first inequality comes from Fano’s inequality, and the second from Holevo’s theorem. However,
using Holevo’s theorem in this manner does not take into account restrictions on the measure-
ments we are allowed to perform on the n copies of the state. One might therefore expect that
it be possible to derive a tighter bound on the mutual information by exploiting the fact that the
measurements are not entangled. It turns out that this is indeed the case, as demonstrated by the
Ω(d3/ε2) lower bound for nonadaptive measurements due to Ref. [HHJ+17].

Our approach differs from previous work in making direct use of a connection between the
mutual information of two random variables and the χ2-divergence of related distributions, as
well as techniques for Haar integration based on symmetry. Additionally, we do not require
that the measurements be rank-one POVMs as in Ref. [HHJ+17]; this allows us to conclude the
Ω(d4/ε2) lower bound in the constant-outcome, nonadaptive case, as well as the more precise
bounds stated in Section 1.2 for states of bounded rank. We further build on these simplifications
to derive lower bounds robust to a wide class of adaptive measurements. We accomplish this
by adversarially constructing instances of the state discrimination problem that are as difficult
as possible for the specific set of measurements under consideration. This involves making use
of well-known concentration of measure results for the unitary group. This idea is reminiscent
of the lower bounds for tomography restricted to binary Pauli measurements due to Flammia et
al. [FGLE12]. A key technical step is the analysis of χ2-divergence rather than the probability of in-
dividual measurement outcomes. This enables tight lower bounds agnostic to the measurements
we consider.

2 Preliminaries

2.1 Mathematical background

This section contains relevant notation and properties that may be referred to as needed.
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Sets. We let Z+ denote the set of nonnegative integers, U(d) the set of unitary operators acting
on Cd, H(d) the set of Hermitian operators acting on Cd, Psd(d) the subset of H(d) consisting of
positive semidefinite operators, and D(d) the subset of operators in Psd(d) with unit trace (i.e., the
set of d-dimensional quantum states). We also denote by L(d) the set of square operators acting
on Cd.

Operators. For any square operator A ∈ L(d), we denote its adjoint by A†. We let ‖A‖1 =

Tr(
√

A† A) denote the “trace norm” of the operator A and ‖A‖F =
√

Tr(A† A) it Frobenius norm.
The trace distance between two quantum states is ‖ρ− σ‖1. We use ‖A‖ to denote the spectral
norm of the operator A; this is the operator norm induced by the Euclidean norm on Cd. We have
the useful relations ‖A‖F ≤ ‖A‖1 ≤

√
d‖A‖F and ‖AB‖F ≤ ‖A‖‖B‖F. For any two operators

P, Q ∈ Psd(d), we use the notation P � Q if and only if Q − P ∈ Psd(d). Let A, B ∈ H(d) and
consider the operator A ⊗ B. We denote by Tr2(·) the partial trace over the second system, i.e.,
Tr2(A⊗ B) = ATr(B). The rank of a linear operator X, denoted rank(X), is the dimension of its
image, which we denote by im(X).

Permutation operator and t-designs. The swap operator W acting on (Cd)⊗2 is the linear op-
erator defined by the action W|ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉 for any two vectors |ψ〉, |φ〉 ∈ Cd. We may
extend this procedure to arbitrary permutations, defining the linear operator Wπ for each π ∈ Sn
and acting on (Cd)⊗n as

Wπ |x1〉 ⊗ · · · ⊗ |xn〉 = |xπ−1(1)〉 ⊗ · · · ⊗ |xπ−1(n)〉

for every choice of vectors |x1〉, . . . , |xn〉 ∈ Cd. Here, Sn denotes the symmetric group on {1, . . . ,n}.
We make use of unitary and state t-designs throughout this paper.

Definition 2.1 (Unitary t-design). For positive integers t,d > 0 we say that a random unitary
operator U ∈ U(d) is a unitary t-design if the the following holds for every operator X ∈ L(d)⊗t:

EV⊗tX(V †)⊗t =
∫
U(d)

U⊗tX(U†)⊗tdµ(U)

where µ is the Haar measure on the space of d-dimensional unitary operators.

Definition 2.2 (State t-design). For positive integers t,d > 0, a state t-design is a random quantum
state |u〉 ∈ S(d) which satisfies

E(|u〉〈u|)⊗t =
∫
S(d)

(|v〉〈v|)⊗t dµ(v) (1)

where S(d) is the set of unit vectors in Cd.

Random variables. We denote random variables using bold font, including matrix-valued ran-
dom variables. We use lowercase (e.g., p,q) with appropriate subscripts to denote the distributions
of random variables. For example, suppose x is a random variable taking values in X according
to some distribution px : A → [0,1], where A is the set of Borel-measurable subsets of X . Let
S be some finite-dimensional vector space, and let f : X → S . Then we write interchangeably
Ex f (x) and Ex∼px f (x) to refer to the expectation of f with respect to the distribution px (i.e.,∫
X f (x)dpx(x)) using the latter notation when there may be some ambiguity about what the dis-

tribution is. When it is clear enough from context, we drop the subscripts altogether and write
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E f (x). In the case where x is a discrete random variable taking values in some finite set (or al-
phabet) X , we write its probability mass function (PMF) as px, and corresponding expectations
Ex∼px f (x) = ∑x∈X px(x) f (x). We also refer to px as the distribution of x in this case. Next suppose
we have random variables (x,y) jointly distributed on X × Y . If y is discrete, we write py|x(y) to
mean the probability that y = y given x = x, when it is well-defined. We will often have occasion
to use functionals F mapping distributions to the reals. Then if x has marginal distribution given
by px, we write Ex′∼px F(py|x′) to denote the expectation

∫
X F(py|x)dpx(x). Finally, we sometimes

use in the subscripts of expectations the notation x|y to mean the random variable x conditioned
on y = y, when it is well-defined. For example, suppose we have a function g : X × Y → R. It
holds by definition that Ex Ey|x g(x,y) = Ex,y g(x,y) = Ey Ex|y g(x,y).

Information theory. Consider discrete random variables taking values on the same space. One
may then use the KL-divergence between their distributions to compare them. The KL-divergence
between two discrete distributions (PMFs) p, q : X → [0,1] defined on the same sample space X is

DKL(p ‖ q) =

{
∑x∈X p(x) log

(
p(x)
q(x)

)
, supp(p) ⊆ supp(q)

+∞, otherwise

where we take 0log(0) = 0. (Throughout this work, log denotes the logarithm with base 2.)
We next define some entropic quantities. Let x be a discrete random variable taking values in

X with distribution px : X → [0,1]. The Shannon entropy measures our uncertainty about x and
is defined as

H(x) = − ∑
x∈X

px(x) log(px(x)).

We also write H(px) to refer to the same quantity. A useful property of the entropy is concavity,
whereby for any two discrete distributions p, q defined on the same sample space and λ ∈ [0,1] it
holds that

H(λp + (1− λ)q) ≥ λH(p) + (1− λ)H(q).

Next, let y be a different discrete random variable taking values in Y , so that x and y have joint
distribution given by px,y : X ×Y → [0,1]. The joint entropy of these random variables is

H(x,y) = − ∑
x∈X

∑
y∈Y

px,y(x,y) log(px,y(x,y))

and the conditional entropy of x given y is

H(x|y) = H(x,y)− H(y).

These definitions are valid only in the case where x and y are discrete. Mutual information, on
the other hand, is well-defined for arbitrary random variables x, y though for our purposes it will
suffice to define this quantity in the following way, which is valid when y is discrete.

Definition 2.3 (Mutual information). Consider two random variables x and y such that y is dis-
crete. Let py|x be the conditional distribution of y given x = x, px the marginal distribution of x,
and py the marginal distribution of y. The mutual information between x and y is

I(x : y)B E
x∼px

DKL(py|x ‖ py).
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As the name suggests, the mutual information between two random variables quantifies the
shared information between them. Since this definition is somewhat non-standard, it is worth
taking the time to see how it reduces to the more standard definitions in familiar settings. Firstly,
it may be shown that the above is equal to

I(x : y) = H(y)− E
x′∼px

H(y|x = x′)

where y|x = x is the random variable y conditioned on the event x = x. Then, if x is also discrete, it
holds that H(y|x) = Ex′∼px H(y|x = x′) in which case we arrive at the commonly used expression
for the mutual information,

I(x : y) = H(y)− H(y|x) = H(x)− H(x|y) = H(x) + H(y)− H(x,y).

Next, suppose z is another random variable jointly distributed with x and y. When z has a fixed
value z, we use the notation

I(x : y|z = z)B I( (x|z = z) : (y|z = z) )

where (x|z = z) is x conditioned on z = z, and likewise for (y|z = z). The conditional mutual
information between x and y given z is then defined as

I(x : y|z)B E
z′∼pz

I(x : y|z = z′).

We now present three exceedingly useful facts about mutual information. We will use these to de-
rive stronger lower bounds on tomography than the ones obtained by applying Holevo’s theorem
in the case where there is some restriction on the measurements.

Fact 2.4 (Chain rule for mutual information). It holds that

I(x : y1, . . . ,yn) =
n

∑
i=1

I(x : yi|yi−1, . . . ,y1).

Corollary 2.5 (Subadditivity of mutual information). If y1, . . . ,yn are independent given x, it holds
that

I(x : y1, . . . ,yn) ≤
n

∑
i=1

I(x : yi).

The random variables x, y, z form a Markov chain x→ y→ z if given y, the random variables x
and z are independent (Ref. [CT05], Section 2.8). Under this assumption, the following lemma
holds, which is indispensable toward proving information-theoretic lower bounds on estimation
tasks.

Lemma 2.6 (Fano’s inequality [Fan66]). Let x, y, x̂ be discrete random variables forming a Markov chain
x→ y→ x̂, where x takes values in X . It holds that

H(pe) + pe log(|X |) ≥ H(x|y).

where pe B Pr[x , x̂], and H(·) is the binary entropy function.
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Corollary 2.7. Let x,y, x̂ be discrete random variables forming a Markov chain x→ y→ x̂. Suppose Alice
has a message x ∼ Unif([N]) and Bob is able to decode the message with constant probability of success
using x̂. It must hold that

I(x : y) = Ω(log(N)).

Proof. Using the definition of mutual information we have I(x : y) = H(x)− H(x|y). Let pe be as
in Lemma 2.6. By Lemma 2.6 we have I(x : y) ≥ H(x)− pe log(N)− H(pe). Using the fact that
H(x) = log(N) and H(pe) ≤ 1 we obtain I(x : y) ≥ (1− pe) log(N)− 1.

Besides the KL-divergence, another way to compare distributions defined on the same space
is the following.

Definition 2.8 (χ2-divergence). The χ2-divergence between two discrete distributions p,q : X →
[0,1] defined on the same sample space X is

Dχ2(p ‖ q) := ∑
x∈X

q(x)
(

p(x)
q(x)

− 1
)2

= ∑
x∈X

q(x)
(

p(x)
q(x)

)2

− 1.

These divergences are related in the following way.

Lemma 2.9 (KL vs. χ2 inequality). Let p,q : X → [0,1] be discrete distributions defined on the same
sample space X . We have

DKL(p ‖ q) ≤ 1
ln(2)

·Dχ2(p ‖ q).

Proof. By Eq. (5) in Ref. [SV16], we have the inequality DKL(p ‖ q) ≤ log(1 + Dχ2(p ‖ q)) from
which the lemma follows by the inequality log(1 + x) ≤ x/ln(2) ∀x ≥ 0. For an exposition of the
many other relationships between divergences, we refer the interested reader to Ref. [SV16].

2.2 Single-copy measurements

In general, an m-outcome measurement of a d-dimensional quantum state is a linear map M :
D(d)→ L(m) acting on quantum states ρ ∈ D(d) by

M : ρ 7→ ∑
z∈Z

Tr(Mzρ)|z〉〈z|

for some “positive operator-valued measure” (POVM) (Mz : z ∈ Z , Mz ∈ Psd(d)) satisfying
∑z∈Z Mz = 1, and where Z is a set of m possible outcomes of the measurement. For a mea-
surementM, rank(M) denotes the number of possible outcomes |Z|. Without loss of generality
we can assume Z = [m]. In this work we focus on measurements with a finite number of out-
comes, letting Ξ(d,m) denote the set of all m-outcome measurements on d-dimensional states, and
Ξ(d)B

⋃
m∈Z+

Ξ(d,m) denote the set of all finite-outcome measurements on d-dimensional states.
The distribution of the random outcome z from measuring the state ρ is described by the PMF
pz = diag(M(ρ)), so that pz(z) = Tr(Mzρ) for all outcomes z.

Suppose there is a single d-dimensional register which can be prepared in the state ρ upon
request, at which point it is measured once, and this process is repeated n times. We refer to
the class of measurements corresponding to this scenario as single-copy measurements, where the
number of samples used is equal to the number of measurements performed. Within this class,
there are two models of particular interest.
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Nonadaptive measurements. Consider n copies of the state ρ ∈ D(d) prepared in the above man-
ner, so that they must be measured individually. In the nonadaptive measurement model, we use a
sequence of measurementsMi ∈ Ξ(d) for i = 1, . . . ,n which are determined before any measure-
ments are performed. Equivalently, we measure the state ρ⊗n using a tensor product of measure-
ments on d-dimensional states, M1 ⊗M2 ⊗ · · · ⊗Mn. Note that allowing the choice of the ith

measurement to be an independent random variable is equivalent to the above description, since
the randomness in the choice of measurement can be incorporated into the measurement itself. I.e.,
the resulting linear maps on d-dimensional states still correspond to some fixed measurements.

Adaptive measurements. In the adaptive measurement model, the choice of each d-dimensional
measurement in the sequence can depend on the outcomes obtained by the previous measure-
ments. This means that the ith measurement in the sequence can be written My<i , where y<i =
yi−1 . . . y1 are the outcomes of the previous i − 1 measurements. For each possible value of y<i
there is a POVM (My<i

yi )yi corresponding to ith measurement and potentially depending on y<i,
such that the measurement has the action

My<i : ρ 7→∑
yi

Tr(My<i
yi ρ)|yi〉〈yi|

on quantum states ρ ∈ D(d).

3 Packing construction

To demonstrate lower bounds for quantum tomography, it suffices to show that there exists a large,
but well-separated collection of quantum states (an ε-packing) which are difficult to discriminate
with too few copies of the state. This is due to the fact that the task of state discrimination reduces
to tomography with sufficient accuracy when the states are far enough apart, since the latter task
allows one to correctly identify the state in the ensemble under these conditions. We therefore aim
to construct a hard instance of the state discrimination problem, and then argue that if the number
of samples n is too small the success probability of our protocol goes to zero as the parameters d
and 1/ε increase.

Definition 3.1 (ε-packing). A finite set of quantum states S ⊂ D(d) is an ε-packing for some ε > 0
if it holds that ‖ρ− σ‖1 > ε for every ρ,σ ∈ S such that ρ , σ.

Let {|i〉 : i ∈ [d]} denote the standard basis for Cd, and let Qk be the orthogonal projection
operator onto the subspace spanned by {|i〉 : i ∈ [k]}. The ε-packing we construct comprises states
of the following form:

ρε,U :=
2ε

d
UQd/2U† +

1− ε

d
1 (2)

where ε ∈ (0,1) and we assume d is even for simplicity. The assumption of d being even does
not take away from the argument, and we may proceed analogously with a floor or ceiling when
it is odd. States of the above form have also been considered in the previous lower bounds for
tomography and related tasks (see, e.g., Refs. [HHJ+17, BCL20]). Intuitively, these states are useful
because they represent a hard case where the completely mixed state is slightly perturbed, which
leads to “noisy” measurement statistics. This is in analogy with the packing of distributions which
one would construct to prove lower bounds for distribution estimation, the classical analogue of
tomography. We make use of the definition in Eq. (2) frequently in the remainder of this paper.

10



We apply the probabilistic method to construct an ε-packing of states of this form. We draw a
sequence of i.i.d. unitary operators U1,U2, . . . from the Haar distribution on U(d) and consider the
states ρε,Ui . We then apply standard concentration of measure results to argue that the probability
of selecting an undesirable state (that our state “collides” with a previously chosen one) is expo-
nentially small. This in turn implies that a large fraction of the states are “safe” choices, so that we
may choose one and repeat the argument many times.

We use the following “concentration of projector overlaps” result, which is implied by the
proof of Lemma III.5 in Ref. [HLW06], and has also been employed in the lower bounds for to-
mography which appear in [HHJ+17] as well as lower bounds for similar tasks (see for example
Refs. [Aar20, HKP21]).

Lemma 3.2. Let U ∈ U(d) be a Haar-random unitary operator and let Π1,Π2 ∈ Psd(d) be orthogonal
projection operators with rank r1,r2 respectively. For all t ∈ (0,1) it holds that

Pr
U∼Haar

[
Tr(Π1U Π2U†) ≤ (1− t)

r1r2

d

]
≤ exp

(
−r1r2t2/2

)
and Pr

U∼Haar

[
Tr(Π1U Π2U†) ≥ (1 + t)

r1r2

d

]
≤ exp

(
−r1r2t2/4

)
.

Proof. By Lemma III.5 in Ref. [HLW06] we have

Pr
U∼Haar

[
Tr(Π1U Π2U†) ≤ (1− t)

r1r2

d

]
≤ exp (r1r2(t + ln(1− t)))

for all t ∈ (0,1), and the first bound follows immediately from the inequalities ln(1− t) ≤ −t−
t2/2 which holds for all t ∈ (0,1). Similarly, the second bound in Lemma III.5 of Ref. [HLW06] is

Pr
U∼Haar

[
Tr(Π1U Π2U†) ≥ (1 + t)

r1r2

d

]
≤ exp (−r1r2(t− ln(1− t))) (3)

for all t ∈ (0,1), and noting that the inequality ln(1+ t) ≤ t− t2/4 holds for all t ∈ (0,1) completes
the proof.

The second tail bound above is a bit looser than that shown in Ref. [HHJ+17], but suffices
for our purposes. We now construct a sufficiently large packing of quantum states of the form
in Eq. (2) which are difficult to discriminate, using a probabilistic existence argument. This is a
special case of the approach adopted in Ref. [HHJ+17].

Lemma 3.3. Fix an ε ∈ (0,1) and a positive integer d, and let N ≤ bξed2/32c be a positive integer for some
ξ ∈ (0,1]. Consider a finite set of quantum states {ρ1,ρ2, . . . ,ρN} ⊂ D(d) where

ρi =
2ε

d
UiQd/2U†

i + (1− ε)
1

d

for each i ∈ [N] and U1,U2, . . . ,UN ∈ U(d) are arbitrary unitary operators. For Haar-random U ∈ U(d),
the probability that ‖ρε,U − ρi‖1 ≤ ε/2 for any i ∈ [N] is at most ξ.

Proof. Define a rank-d/2 orthogonal projection operator P ∈ Psd(d) as P = 1− Qd/2. A straight-
forward consequence of Lemma 3.2 is that

Pr
U∼Haar

[
Tr(PUQd/2U†) ≤ d/8

]
≤ e−d2/32. (4)
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This follows by taking t = 1/2 in the lemma. Using the definition of ρε,U we have

ρε,U − ρε,1 =
2ε

d

(
UQd/2U† −Qd/2

)
for any U ∈ U(d). We also have

Tr(PUQU†) =
1
2

[
Tr(PUQd/2U†) + Tr((1−Qd/2)UQd/2U†)

]
(by the definition of P)

=
1
2

Tr
(
(UQd/2U† −Qd/2)(P−Qd/2)

)
(P, Qd/2 are orthogonal)

≤ 1
2

∥∥∥UQd/2U† −Qd/2

∥∥∥
1
=

d
4ε
‖ρε,U − ρε,1‖1

where the final line follows from the property that ‖X‖1 = max{|Tr(XU)| : U ∈ U(d)} for any
square operator X ∈ L(d), and P− Qd/2 ∈ U(d). Therefore, if ‖ρε,U − ρε,1‖1 ≤ ε/2 for a unitary
operator U ∈ U(d), we also have that Tr(PUQd/2U†) ≤ d/8, from which we may conclude

Pr
U∼Haar

[‖ρε,U − ρε,1‖1 ≤ ε/2] ≤ e−d2/32

by Eq. (4). Next, consider the unitary operator Ui and corresponding state ρi in the lemma, for
some i ∈ [N]. Using the invariance of the trace distance under unitary transformations, we have

‖ρε,UiU − ρi‖1 =
∥∥∥UiUQd/2U†U†

i −UiQd/2U†
i

∥∥∥
1
=
∥∥∥Ui(UQd/2U† −Qd/2)U†

i

∥∥∥
1
= ‖ρε,U − ρε,1‖1

which leads to the conclusion that

Pr
U∼Haar

[‖ρε,U − ρi‖1 ≤ ε/2] ≤ e−d2/32 (5)

by invariance of the Haar measure. Since this inequality holds for any index i ∈ [N] the proof is
complete upon applying the union bound over the events ‖ρε,U − ρi‖1 ≤ ε/2, i ∈ [N]: we have
that this probability is at most Ne−d2/32 ≤ ξ.

Using Lemma 3.3 we may construct a (non-explicit) set of N states with N ∈ exp(Ω(d2)), which
form an ε/2-packing in trace distance, using a probabilistic existence argument.

Corollary 3.4. Fix an ε ∈ (0,1) and a positive integer d > 1. There exists an ε/2-packing S ⊂ D(d) of
N ∈ exp

(
Ω(d2)

)
quantum states of the form in Eq. (2).

Proof. First, suppose we have a set of states Sk = {ρ1, . . . ,ρk} ⊂ D(d) which are of the same form as
in Eq. (2), where k ≤ ded2/32e− 1. Suppose further that this set is an ε/2-packing. From Lemma 3.3
we know that the probability of choosing a unitary operator U ∈ U(d) Haar randomly such that
Sk ∪ {ρε,U} is not an ε/2-packing is strictly less than one. Therefore, there exists at least one state
which we can add to the packing. The result follows by induction on k.

This packing of states is used in the following section to prove lower bounds for nonadaptive
tomography. Then, in Section 5 we alter this construction to derive lower bounds on adaptive
tomography.
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4 Lower bounds for tomography with nonadaptive measurements

4.1 Information in measurement outcomes

We begin with some useful results quantifying our intuition that measurements performed on
states in the packing described above are uninformative. Recall that in the nonadaptive case,
measurement choices do not depend on the previously observed outcomes. The following lemma
enables us to bound mutual information in terms of the χ2-divergence, which is more amenable
to analysis in this context.

Lemma 4.1. Let x be an arbitrary random variable and y ∈ Y be a discrete random variable for some
sample space Y . Denote by py|x : Y → [0,1] the distribution of y conditioned on the event x = x. For an
arbitrary discrete distribution q : Y → [0,1], it holds that

I(x : y) ≤ 1
ln(2)

E
x∼px

Dχ2(py|x ‖ q). (6)

Proof. By Lemma 2.9 we have the inequality DKL(a ‖ b) ≤ Dχ2(a ‖ b)/ln(2) for any two discrete
distributions a and b defined on the same sample space. This implies the relation in Eq. (6) upon
showing that

I(x : y) = E
x∼px

DKL(py|x ‖ py) ≤ E
x∼px

DKL(py|x ‖ q). (7)

This inequality is a special case of Lemma 6 in Ref. [BD10], but for completeness we include a
proof below. Using the definition of KL-divergence, we have

E
x∼px

DKL(py|x ‖ q) = E
x∼px

∑
y∈Y

py|x(y) log

(
py|x(y)

q(y)

)

= ∑
y∈Y

py(y) log
(

1
q(y)

)
− H(y|x)

= DKL(py ‖ q) + H(y)− H(y|x)
= DKL(py ‖ q) + I(x : y)

which proves the inequality in Eq. (7) since DKL(py ‖ q) ≥ 0.

Corollary 4.2. Define x,y as in Lemma 4.1. It holds that

I(x : y) ≤ 1
ln(2)

E
x∼px

Dχ2(py|x ‖ py) =
1

ln(2)

(
∑

y∈Y
E

x∼px

py|x(y)2

py(y)
− 1

)
. (8)

In the analysis of state tomography, x corresponds to a random state from a suitably chosen
ensemble. Although these results could be applied directly to the information contained in each
measurement about x, it would be intractable to compute an expectation over x since we do not
explicitly know the states in our ensemble, whose existence is argued by means of the probabilistic
method. Fortunately, we can make use of an intermediate result to effectively replace that ensem-
ble with one which admits such explicit calculations, as explained in the following proposition.
(A similar property is also used in the proof of Lemma 10 in Ref. [HHJ+17].)
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Proposition 4.3. Fix an ε ∈ (0,1) and a positive integer d > 1. Let U ∈ U(d) be a Haar-random uni-
tary operator and z be the outcome obtained upon measuring the random state ρ⊗n

ε,U ∈ D(dn) with the
measurement M ∈ Ξ(dn), where ρε,U ∈ D(d) is defined as in Eq. (2) for any U ∈ U(d). There exists a
set of N ∈ exp(Ω(d2)) quantum states S = {ρ1, . . . ,ρN} ⊂ D(d) of the form in Lemma 3.3 which is an
ε/2-packing and which satisfies

I(x : y) ≤ I(U : z)

where x ∼ Unif([N]) and y is the outcome obtained from measuring the random state ρ⊗n
x withM.

Proof. Consider a fixed set of N ∈ exp(Ω(d2)) quantum states S ′ = {ρ′1, . . . ,ρ′N} ⊂ D(d) of the
form in Lemma 3.3 which is an ε/2-packing. We know such a set exists from Corollary 3.4. Let
U = {U1, . . . ,UN} be the set of unitary operators such that ρ′i = ρε,Ui for each i ∈ [N]. Note that
making the replacement U → WU for an arbitrary unitary operator W ∈ U(d) results in another
ε/2-packing of N states. Indeed, for any ρ′i,ρ

′
j ∈ S ′ we have∥∥∥ρ′i − ρ′j

∥∥∥
1
=

2ε

d
‖UiQd/2U†

i −UjQd/2U†
j ‖1

=
2ε

d
‖WUiQd/2U†

i W† −WUjQd/2U†
j W†‖

1

=
∥∥∥ρε,WUi − ρε,WUj

∥∥∥
1

by invariance of the trace distance under unitary transformation. Next, define yW to be the out-
come obtained by measuring ρ⊗n

ε,WUx
withM, and let W ∈ U(d) be a Haar-random unitary operator

chosen independently of x. We claim that

E
W∼Haar

I(x : yW ) ≤ I(U : z). (9)

Let py|W,x to be the distribution of yW given x = x. We have

E
W

I(x : yW ) = E
W

H
(

E
x∼[N]

py|W,x

)
− E

W
E

x∼[N]
H(py|W,x)

≤ H
(

E
W

E
x∼[N]

py|W,x

)
− E

W
E

x∼[N]
H(py|W,x)

= H
(

E
x∼[N]

E
W

py|W ,x

)
− E

x∼[N]
E
W

H(py|W ,x). (10)

Where the first line follows from the definition of mutual information, the second line uses the
concavity of entropy, and in the final line we make use of the independence of x and random
unitary operator W . Furthermore, by right-invariance of the Haar measure we have

E
W

py|W ,x = E
W

diag
(
M(ρ⊗n

ε,WUx
)
)

= E
W

diag
(
M(ρ⊗n

ε,W )
)

= pz. (11)

Similarly, we have for any x ∈ [N] that

E
W

H(py|W ,x) = E
U

H(pz). (12)
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By substituting Eqs. (11) and (12) into Eq. (10) we arrive at the inequality in Eq. (9). We may once
again invoke a probabilistic existence argument: since the expectation of I(x : yW ) over unitary
operators W is at most I(U : z), there exists at least one unitary operator V ∈ U(d) for which the
inequality I(x : yV) ≤ I(U : z) holds. The proposition follows by considering the set of quantum
states S := {ρε,VU1 ,ρε,VU2 , . . . ,ρε,VUN}.

Note that in this proposition the measurements performed on the product state can be arbi-
trary.

4.2 Lower bounds for nonadaptive measurements

In light of Proposition 4.3, in order to prove limitations of algorithms for tomography, it suffices
to bound quantities of the form I(U : z) for Haar-random U ∈ U(d) and measurement outcome z.
To this end, it is helpful to establish the following relations based on Haar integration.

Lemma 4.4. Fix an ε ∈ (0,1) and a positive integer d > 1. Let U ∈ U(d) be a Haar-random unitary
operator, M ∈ Psd(d) be a positive semidefinite operator such that M � 1, ρε,U ∈ D(d) be defined as in
Eq. (2) for each U ∈ U(d), and w := Tr(M)/d. It holds that

E
U

Tr (Mρε,U) = w,

and

E
U

(Tr (Mρε,U))
2 ≤ w2

(
1 +

ε2

d + 1
·min

{
1,

1
w(d− 1)

})
.

Proof. We defer the calculation of some Haar integrals to Appendix A. By the definition of ρε,U in
Eq. (2) the first expectation is

E
U∼Haar

Tr (Mρε,U) =
2ε

d
E

U∼Haar
Tr
(

MUQd/2U†
)
+ (1− ε)w.

Recall that Qd/2 ∈ Psd(d) is a rank-d/2 orthogonal projection operator. By Proposition A.2 in
Appendix A and the linearity of trace we have

E
U∼Haar

Tr
(

MUQd/2U†
)
=

Tr(M)

2
.

This leads to the first identity in the lemma. For the second expectation in the lemma, note that by
substituting the definition of ρε,U and expanding we have

E
U∼Haar

(Tr(Mρε,U))
2 =

4ε2

d2 E
U∼Haar

(
Tr(MUQd/2U†)

)2
+ w2(1− ε2)

=
4ε2

d2 Tr
(

M⊗2 E
U∼Haar

(UQd/2U†)⊗2
)
+ w2(1− ε2). (13)

The Haar integral on the right-hand side is evaluated explicitly in Proposition A.3 by setting the
rank parameters to r1 = r2 = d/2. This yields

E
U∼Haar

(UQd/2U†)⊗2 =
1

4(d2 − 1)
[
(d2 − 2)1+ dW

]
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where the identity and swap operator W act on (Cd)⊗2. Substituting into Eq. (13) and making use
of the identity Tr(W(A⊗ B)) = Tr(AB) we find that the right-hand side is equal to

ε2(d2 − 2)(Tr(M))2

d2(d2 − 1)
+

ε2 Tr(M2)

d(d2 − 1)
+ w2(1− ε2) =

ε2(d2 − 2)w2

d2 − 1
+

ε2 Tr(M2)

d(d2 − 1)
+ w2(1− ε2)

= w2 +
ε2(Tr(M2)− dw2)

d(d2 − 1)
. (14)

Assume for now that

Tr(M2)− dw2 ≤min{w2d(d− 1),wd}. (15)

Then the right-hand side of Eq. (14) is at most

w2 +
ε2

d(d2 − 1)
·min{w2d(d− 1),wd} = w2

(
1 +

ε2

d + 1
·min

{
1,

1
w(d− 1)

})
as required. To prove the inequality in Eq. (15), we make use of the relations Tr(M2) ≤ (Tr(M))2 =
w2d2 and Tr(M2) ≤ Tr(M) = wd both of which follow from the property that 0 � M � 1. The
second bound of wd follows from the nonnegativity of dw2.

This leads us to the lower bounds stated in Theorem 4.5 below. Intuitively, the theorem estab-
lishes the following property: for the family of quantum states of the form in Eq. (2), the ability
to distinguish the distribution over outcomes of a measurement from some fixed distribution—as
quantified by their χ2-divergence—is small on average, no matter the measurement performed.
In proving this theorem, our analysis is simplified due to Lemma 4.1 as well as techniques for
Haar integration based on permutation invariance. (We refer the interested reader to Section 7.2
of Ref. [Wat18] for more on this topic.) We also do not assume that the measurement operators
which comprise a given POVM are rank-one, as has been considered in other works [HHJ+17,
HKP21, CCHL22]. This allows us to conclude the novel Ω(d4/ε2) lower bound in the constant-
outcome case, in addition to laying the groundwork for the results in Sections 5 and 6.

Theorem 4.5. Fix an ε ∈ (0,1) and a positive integer d > 1. Let ρε,U ∈ D(d) be defined as in Eq. (2),
U ∈ U(d) be a Haar-random unitary operator, and z be the outcome of a measurementM∈ Ξ(d) performed
on the random state ρε,U such that pz|U = diag(M(ρε,U)) for every U ∈ U(d). Then

E
U∼Haar

Dχ2(pz|U ‖ pz) ≤
ε2

d + 1
·min

{
1,

rank(M)

d− 1

}
.

Proof. Let Z be an alphabet denoting the set of possible outcomes of the measurementM, such
that z ∈ Z if and only if |z〉〈z| ∈ im(M) for orthonormal {|z〉}. By Definition 2.8 we have

E
U∼Haar

Dχ2(pz|U ‖ pz) = ∑
z∈Z

E
U∼Haar

pz|U(z)2

pz(z)
− 1 (16)

where for fixed U ∈ U(d) the conditional probabilities may be written as pz|U(z) = Tr(Mzρε,U)
for the POVM (Mz)z corresponding to the measurementM, and the marginal probabilities in the
denominator can be written as pz(z) = EU∼Haar Tr(Mzρε,U). Let w(z) = Tr(Mz)/d for all z ∈ Z .
By Lemma 4.4 the right-hand side of Eq. (16) is at most

∑
z∈Z

w(z)
(

1 +
ε2

d + 1
·min

{
1,

1
w(z)(d− 1)

})
− 1 =

ε2

d + 1
·min

{
1,
|Z|

d− 1

}
. (17)

Since |Z| = rank(M), this concludes the proof.
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In the above theorem, the rank ofMmay be interpreted as the maximum number of outcomes
that can be resolved using the measurements, under the assumption that the learner discards each
copy of the state after measuring it.

We now have the tools we need to prove the two lower bounds for the nonadaptive case shown
in Table 1. The first is a result originally due to Ref. [HHJ+17].

Corollary 4.6 (Special case of Theorem 4 in Ref. [HHJ+17]). Let ε ∈ (0,1). Any procedure for quantum
tomography of d-dimensional quantum states that is ε/4-accurate in trace distance using nonadaptive,
single-copy measurements requires n ∈Ω

(
d3/ε2) samples of the unknown state.

Proof. Let M = M1 ⊗ · · · ⊗Mn ∈ Ξ(dn) be the single-copy, nonadaptive measurement which
is performed on the n copies of the unknown state to do tomography. By Proposition 4.3, there
exists an ε/2-packing S = {ρ1, . . . ,ρN} ⊂ D(d) of N ∈ exp(Ω(d2)) quantum states of the form in
Lemma 3.3 such that the following holds. Let x ∼ Unif([N]) and y = (y1, . . . ,yn) be the outcome of
the measurementMwhen performed on n copies of the random state ρx. Then I(x : y) ≤ I(U : z)
where U and z = (z1, . . . ,zn) are defined as in the proposition: U ∈ U(d) is Haar-random, and
zk is the measurement outcome obtained by measuring ρε,U withMk, for each k ∈ [n]. Since the
random variables zk are independent given U, using the chain rule for mutual information, and
monotonicity of entropy under conditioning, we have

I(U : z) =
n

∑
k=1

H(zk|z<k)− H(zk|z<k,U)

=
n

∑
k=1

H(zk|z<k)− H(zk|U)

≤
n

∑
k=1

H(zk)− H(zk|U)

=
n

∑
k=1

I(U : zk).

We apply Corollary 4.2 to bound mutual information from above in terms of χ2-divergence, and
then Theorem 4.5 to each of the terms in this sum to get

I(x : y) ≤ n
ln(2)

(
max
k∈[n]

E
U∼Haar

Dχ2(pzk |U ‖ pzk)

)
≤ nε2

ln(2)(d + 1)
min

{
1,

maxk∈[n] rank(Mk)

d− 1

}
(18)

≤ nε2

ln(2)(d + 1)
. (19)

Under the assumption that the tomography algorithm gives us a state that is accurate to within
ε/4 in trace distance, the measurementM can be used to decode x with some constant probability
of success. By Fano’s inequality as well as the bound in Eq. (19), it holds that

nε2

ln(2)(d + 1)
∈Ω(d2)

which is true if and only if n ∈Ω(d3/ε2).
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Corollary 4.7. Any procedure for quantum tomography of d-dimensional quantum states that is ε-accurate
in trace distance using nonadaptive, single-copy measurements, each with at most ` outcomes, requires
n ∈Ω

(
d4/ε2`

)
samples of the unknown state.

Proof. The proof is identical to that for Corollary 4.6 except we use Theorem 4.5 to bound the right-
hand side of Eq. (18) in terms of the maximum rank of the measurement operators, which in this
case is at most ` by assumption. We then have

nε2`

ln(2)(d2 − 1)
∈Ω(d2)

which is true if and only if n ∈Ω(d4/ε2`).

Corollary 4.7 implies that there is a strong sense in which the folklore “Pauli tomography”
algorithm—which has an upper bound of O(d4/ε2) measurements—is sample-optimal: amongst
all possible strategies making use of constant-outcome (and in particular, two-outcome) measure-
ments, there is no way to perform tomography that is more efficient. Note that here it is assumed
that each copy of the state is discarded upon performing the measurement. In the more general
case where one may perform further non-adaptive measurements on post-measurement states,
the lower bound from Corollary 4.6 applies.

4.3 Rank-dependent bounds

In this section we derive lower bounds for state tomography using non-adaptive single-copy mea-
surements, when the states are known to have bounded rank.

We consider a different packing of states defined as follows (cf. Ref. [HHJ+17, Section VI.B]).
Fix ν ∈ (0,1), positive integers d ≥ 3 and r ∈ [1,d/3]. For i ∈ [r], define the pure state

|ψν,i〉B
√

1− ν |d + 1− i〉+
√

ν |i〉 . (20)

For a unitary operator U ∈ U(Cd−r), which we extend to Cd by taking a direct sum with the
identity, define the rank r state

σν,U BU

(
1
r

r

∑
i=1
|ψν,i〉〈ψν,i|

)
U† . (21)

There is a large packing of states of this form.

Lemma 4.8 (part of Lemma 7 in Ref. [HHJ+17]). For any ν ∈ (0,1/4) there exists a
√

ν/4-packing
S ⊂ D(d) of N quantum states of the form in Eq. (21), with N ∈ exp (Ω(rd)).

By the same reasoning as for Proposition 4.3, we have

Lemma 4.9. Let U be a Haar-random unitary operator over Cd−r and z be the outcome obtained upon
measuring the random state σ⊗n

ν,U with some measurement M. There exists a set of N quantum states
S B {σ1, . . . ,σN} ⊂ D(d) with N ∈ exp(Ω(rd)) of the form in Eq. (21) which is a

√
ν/4-packing and

satisfies I(x : y) ≤ I(U : z), where x ∼ Unif([N]) and y is the outcome obtained from measuring the
random state σ⊗n

x withM.

We bound some measurement statistics associated with a random state of the form in Eq. (21)
in preparation for the main results of this section. Let Γ1 B ∑d−r

i=1 |i〉〈i| and Γ0 B 1− Γ1.
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Lemma 4.10. Let U be a Haar-random unitary operator on Cd−r, M ∈ Psd(d) be a positive semidefinite
operator such that M � 1, σν,U ∈ D(d) be defined as in Eq. (21) for each unitary operator U on Cd−r, and

wB
(1− ν)

r
Tr(M Γ0) +

ν

d− r
Tr(M Γ1) . (22)

Then

E
U

Tr (M σν,U) = w ,

and

E
U

(Tr (M σν,U))
2 ≤ w2 +

2ν2

(d− r)4 (Tr(M Γ1))
2 +

3ν2

r(d− r)2 Tr
(
(M Γ1)

2)
+

2ν(1− ν)

r2(d− r)
Tr (M Γ1M Γ0) .

Proof. Due to the ±1 symmetry of the Haar measure, the terms with an odd number of occur-
rences of U or U† in the expansion of σν,U and σ⊗2

ν,U evaluate to 0 in expectation. The expectation
of Tr(M σν,U) then follows as before. For the bound on the second expectation, note that

E
U

(Tr (M σν,U))
2 = E

U
Tr ((M⊗M) (σν,U ⊗ σν,U)) .

Define Γ̃1 B ∑r
i=1 |i〉〈i|, Γ̃10 B ∑r

i=1 |i〉〈d + 1− i|, and Γ̃01 B ∑r
i=1 |d + 1− i〉〈i|. Combining the ±1

symmetry of the Haar measure with Propositions A.4 and A.3, we get

E
U

σ⊗2
ν,U = E

U

[ (1− ν)2

r2 Γ⊗2
0 +

ν(1− ν)

r2

(
Γ0 ⊗U Γ̃1U†

+ U Γ̃1U† ⊗ Γ0 +
(
U(Γ̃10 + Γ̃01)U†)⊗2

)
+

ν2

r2

(
U Γ̃1U†)⊗2

]
=

(1− ν)2

r2 Γ⊗2
0 +

ν(1− ν)

r(d− r)

(
Γ0 ⊗ Γ1 + Γ1 ⊗ Γ0

)
+

ν(1− ν)

r2(d− r)

r

∑
i=1

d−r

∑
k=1

(
|k〉〈d + 1− i| ⊗ |d + 1− i〉〈k|+ |d + 1− i〉〈k| ⊗ |k〉〈d + 1− i|

)
+

ν2

r(d− r)((d− r)2 − 1)

(
(r(d− r)− 1)1 + (d− 2r)W

)
(Γ1 ⊗ Γ1) ,

where 1 and W are the identity and swap operators on Cd ⊗Cd, respectively. We have

1
(d− r)2 − 1

≤ 1
(d− r)2

(
1 +

2
(d− r)2

)
,

since (d− r)2 ≥ 2. Noting that Tr((A⊗ B)W) = Tr(AB) and d− 2r ≤ d− r, we get

E
U

(Tr (M σν,U))
2 ≤ (1− ν)2

r2

(
Tr(M Γ0)

)2
+

2ν(1− ν)

r(d− r)
Tr(M Γ0)Tr(M Γ1)

+
2ν(1− ν)

r2(d− r)
Tr(M Γ1M Γ0)

+
ν2

(d− r)2

(
1 +

2
(d− r)2

)(
Tr(M Γ1)

)2
+

3ν2

r(d− r)2 Tr
(
(M Γ1)

2) .

The bound in the statement of the lemma now follows by the definition of w in Eq. (22).
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We now prove a slightly stronger lower bound for the tomography of states with bounded
rank as compared with the bound implied by Ref. [HHJ+17]; see the remark following Theorem 4
in this reference. The proof of the said theorem assumes that the rank of the input states is strictly
greater than one, so the bound for pure states in the theorem we establish below appears to be
new.

Recall that d ≥ 3 and r ∈ [1,d/3].

Theorem 4.11. Let ε ∈ (0,1/8). Any algorithm for quantum tomography of rank r quantum states in
d-dimensions that uses non-adaptive, single-copy measurements and produces an approximation within ε
in trace distance with positive constant probability requires Ω

(
r2d/ε2) samples of the unknown state.

Proof. We proceed as in the proof of Corollary 4.6. Consider any algorithm as in the statement of
the theorem, and letMBM1⊗ · · · ⊗Mn ∈ Ξ(dn) be the single-copy, non-adaptive measurement
performed by it on the n copies of the unknown pure state.

We take νB 64ε2. By Lemma 4.9, there exists a 2ε-packing S B {σ1, . . . ,σN} ⊂ D(d) of quantum
states of the form in Eq. (21), with N ∈ exp(Ω(rd)), which satisfy the following property. Let
x ∼ Unif([N]) and yB (y1, . . . ,yn) be the outcome of the measurementM when performed on n
copies of the random state σx. Then I(x : y) ≤ I(U : z), where U and zB (z1, . . . ,zn) are defined as
in the lemma: U is a Haar-random unitary operator over Cd−r, and zk is the measurement outcome
obtained by measuring σν,U withMk, for each k ∈ [n].

As in Corollary 4.6, using Lemma 4.10, we get

I(x : y) ≤ n
ln(2)

(
max
k∈[n]

E
U

Dχ2(pzk |U ‖ pzk)

)
≤ n

ln(2)

[
2ν2

(d− r)4 ∑
z

1
wz

(Tr(Mz Γ1))
2 +

3ν2

r(d− r)2 ∑
z

1
wz

Tr
(
(Mz Γ1)

2)
+

2ν(1− ν)

r2(d− r) ∑
z

1
wz

Tr (Mz Γ1Mz Γ0)

]
, (23)

where (Mz) is one of the n measurementsMk which maximizes the expected χ2-divergence above,
and wz is given by Eq. (22) with MBMz.

Since the algorithm approximates the unknown state to within ε and the states σx form a 2ε-
packing, the algorithm correctly identifies x with positive constant probability. By Fano’s Inequal-
ity, we have

I(x : y) ∈Ω(rd) . (24)

To conclude the lower bound of Ω(r2d/ε2) on n, it suffices to show that the right side of Eq. (23)
is of the order of nν/r.

We have Tr
(
(Mz Γ1)

2) ≤ (Tr(MzΓ1)
)2, and

Tr (Mz Γ1Mz Γ0) ≤
(
Tr(Γ1M2

z Γ1)
)1/2 (

Tr(Γ0M2
z Γ0)

)1/2

≤ (Tr(Mz Γ1)) (Tr(Mz Γ0)) .

Combining this with 2r/(d − r)2 ≤ 1 and the definition of wz (in particular that wz ≥ (ν/(d −
r))Tr(Mz Γ1)), we get the desired bound on the right hand side of Eq. (23):

n
ln(2)

· ν

r(d− r) ∑
z

Tr(Mz Γ1)

wz

[
4ν

(d− r)
Tr(Mz Γ1) +

2(1− ν)

r
Tr(Mz Γ0)

]
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≤ n
ln(2)

· 4ν

r(d− r) ∑
z

Tr(Mz Γ1)

≤ 4nν

r ln(2)
.

This completes the proof.

The same approach allows us to derive stronger bounds when the measurements used by the
tomography algorithm have a constant number of outcomes. Again, d ≥ 3 and r ∈ [1,d/3].

Theorem 4.12. Let ε ∈ (0,1/8). Any algorithm for quantum tomography of rank r quantum states in d-
dimensions that uses non-adaptive, single-copy measurements with at most ` outcomes and produces an
approximation within ε in trace distance with positive constant probability requires Ω

(
r2d2/`ε2) samples

of the unknown state.

Proof. The proof largely proceeds as for Theorem 4.11. We use the same notation here, and only
indicate where we deviate from that proof.

To conclude the claimed lower bound on n, it suffices to show that the right side of Eq. (23) is
of the order of n`ν/rd. We have

Tr
(
(Mz Γ1)

2) = Tr
(
(Γ1Mz Γ1)

2) ≤ Tr(Γ1Mz Γ1) ,

and
Tr(Mz Γ1Mz Γ0) ≤ Tr(M2

z Γ0) ≤ Tr(Mz Γ0) ,

since Γ1 � 1, M2
z � Mz, and Γ0 � 0. Further observe that wz ≥ νTr(MzΓ1)/(d− r), 2r/(d− r)2 ≤ 1,

and Tr(Mz Γ1) ≤ d− r. We thus get the following bound on the right side of Eq. (23):

n
ln(2)

· ν

r(d− r)

[
∑

z

1
wz

(
3ν

d− r
Tr(Mz Γ1) +

2(1− ν)

r
Tr(Mz Γ0)

)

+
2r

(d− r)2 ∑
z

ν

wz(d− r)
(Tr(Mz Γ1))

2

]

≤ n
ln(2)

· ν

r(d− r)

[
3`+

2r
(d− r)2 ∑

z
Tr(Mz Γ1)

]

≤ n
ln(2)

· 4ν`

r(d− r)
.

Here, we bounded the term in the curved parentheses in the first line by 3wz. The result is the
desired bound on the right hand side of Eq. (23).

5 Lower bounds for tomography with adaptive measurements

In Section 4 we saw that it is possible to derive lower bounds on tomography that are stronger
than the bound of Ω(d2) obtained by a direct application of Holevo’s theorem, by considering
restricted measurements. (See also Theorem 4 in Ref. [HHJ+17], or Chapter 5 in Wright’s Ph.D.
thesis [Wri16].) Specifically, we were able to show optimal lower bounds on tomography in the
nonadaptive case for both constant-outcome and arbitrary measurements. In this section we con-
sider a different kind of restriction on the measurements; namely, the measurements may be adap-
tively chosen, so long as they are chosen from a finite set of m different measurements.
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We show that even when we have a choice of exp(d) different measurements, the Ω(d3/ε2)
lower bound from the previous section continues to hold. In particular, this lower bound applies to
the case when the single-copy measurements are all efficiently implementable, i.e., implementable
as uniformly generated polylog(d)-size quantum circuits. In other words, adaptivity does not
help while using measurements involving quantum computation with a number of gates growing
only polynomially in the number of qubits measured. In Section C we explain how these results
can also be applied to rule out an advantage for adaptivity using a possibly infinite number of
measurement settings (i.e., when the measurements are chosen from an infinite set), whenever the
measurements are implementable with polylog(d)-size quantum circuits.

The approach we take also leads to a lower bound in the adaptive, constant-outcome case
which generalizes an earlier result due to Ref. [FGLE12]. There it is shown that Ω(d4/log(d))
copies of the state are required when one is restricted to two-outcome, projective, possibly adap-
tive Pauli measurements.

5.1 Distinguishability of a hard ensemble

To arrive at lower bounds robust to adaptivity, we once again appeal to difficult instances of the
quantum state discrimination problem. This time, however, we construct a packing of quantum
states with the additional requirement that all selected states lead to uninformative measurements
using any measurement from a fixed set of possibilities. Such a construction is enabled by a tail
bound on the χ2-divergence quantities we have been considering, so that most states, in addition
to being well-separated from previous choices, offer only uninformative measurement statistics.
Similar tail bounds have been derived in prior work for the purpose of showing unconditional
lower bounds for quantum state certification with adaptive measurements [BCL20].

The concentration of measure property we invoke to arrive at our tail bounds follow from log-
Sobolev inequalities, and is analogous to Lévy’s Lemma for functions on the unit sphere [Mec19].
A detailed discussion is beyond the scope of this work, but roughly speaking these imply that
sufficiently well-behaved functions of unitary operators concentrate strongly around their expec-
tation. In particular, we have the following theorem.

Theorem 5.1 (Special case of Theorem 5.17 in Ref. [Mec19]). Let d > 1 be a positive integer, f : U(d)→
R be κ-Lipschitz with respect to the metric induced by the Frobenius norm, and let µ := EU∼Haar f (U).
Then, for any t > 0, it holds that

Pr
U∼Haar

[ f (U) ≥ µ + t] ≤ exp
(
− (d− 2)t2

24κ2

)
.

Before proceeding, we introduce a more convenient short-hand notation for the χ2-divergence
quantities which arose in the analysis in the previous section.

Definition 5.2. For any ε ∈ (0,1) and positive integer d > 1, let ρε,U ∈ D(d) be defined as in Eq. (2).
We define the function Fχ2

ε,d : Ξ(d)×U(d)→R by

Fχ2

ε,d(M,U)BDχ2(pz|U ‖ w)

for all U ∈ U(d) andM∈ Ξ(d), where pz|U B diag(M(ρε,U)) and wBEU∼Haar pz|U .

For any M ∈ Ξ(d) with corresponding measurement operators {Mz : z ∈ Z} ⊂ Psd(d) and
U ∈ U(d),

|Fχ2

ε,d(M,U)| = ∑
z∈Z

Tr(Mzρε,U)
2

w(z)
− 1 = ∑

z∈Z

ε2(2Tr(MzUQd/2U†)/d− w(z))2

w(z)
,

22



where w(z)B Tr(Mz)/d. Here, we have used the definition of ρε,U from Eq. (2) to write the expres-
sion in terms of the operator Qd/2. Since 0≤ Tr(MzUQd/2U†)/d ≤ 2w(z), we have ‖Fχ2

ε,d‖∞ ≤ ε2.
We turn to the tail bound which we use in this section to derive lower bounds in the case of

adaptive measurements.

Lemma 5.3 (χ2-squared tail bound). Fix an ε ∈ (0,1) and a positive integer d ≥ 4. For any finite-
outcome measurementM∈ Ξ(d) it holds that

Pr
U∼Haar

[
Fχ2

ε,d(M,U) > α + t
]
≤ exp

(
−Cd2t

ε2

)
(25)

where α := cε2/d and c,C are universal constants that we may take to be 2 and 1/(3 · 28), respectively.
Furthermore, ifM is restricted to having ` outcomes then the inequality holds with α := 4`ε2/3d2.

Proof. We first consider the case where the measurement M may have an arbitrary number of
outcomes. Our goal is to prove that the random variable Fχ2

ε,d(M,U) − cε2/d is subexponential,
where U is Haar-random. To accomplish this, we follow the approach in the proof of Lemma 7.6
in Ref. [BCL20]. Instead of bounding the tail of the random variable directly using Lemma 5.3, we
consider its square root. We are then able to show a comparatively stronger bound on the Lipschitz

constant of this function. Translating the resulting subgaussian tail on
√

Fχ2

ε,d into a subexponential

tail on Fχ2

ε,d controls its deviations in the regime we care about. In particular, it suffices to show that
the function f which acts on U ∈ U(d) as

f : U 7→
√

Fχ2

ε,d(M,U)− E
V∼Haar

√
Fχ2

ε,d(M,V)

has a tail like exp(−Ω(d2t2/ε2)), for U selected randomly from the Haar distribution.
In more detail, note that

E
V∼Haar

√
Fχ2

ε,d(M,V) ≤
√

E
V∼Haar

Fχ2

ε,d(M,V) ≤ ε√
d

by the Jensen inequality and Theorem 4.5. Furthermore, the inequality

cε2/d + t ≥
(√

cε2/d +
√

t
)2

/2

for any t ≥ 0 entails that

Pr
U∼Haar

[
Fχ2

ε,d(M,U) >
cε2

d
+ t
]
= Pr

U∼Haar

[√
Fχ2

ε,d(M,U) >

√
cε2

d
+ t

]

≤ Pr
U∼Haar

[√
Fχ2

ε,d(M,U) > ε

√
c

2d
+

√
t
2

]
.

By choosing cB 2 we find that if f has a tail of exp(−Ω(d2t2/ε2)) we get

Pr
U∼Haar

[
Fχ2

ε,d(M,U) >
cε2

d
+ t
]
≤ exp

(
−Cd2t

ε2

)
for some universal constant C, as required.
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To arrive at the desired concentration of measure for f we invoke Theorem 5.1, according to
which it suffices to show that f is O(ε/

√
d )-Lipschitz. Let z be the outcome obtained by measuring

ρε,U withM. It has conditional distribution pz|U given U = U. Also recall the distribution w over
outcomes given by w := EU∼Haar pz|U . For arbitrary U,V ∈ U(d), by Definitions 5.2 and 2.8 and
the Triangle Inequality, we have

| f (U)− f (V)| =
∣∣∣∣√Fχ2

ε,d(M,U)−
√

Fχ2

ε,d(M,V)

∣∣∣∣
=

∣∣∣∣∣∣∣
√√√√

E
z′∼w

(
pz|U(z′)
w(z′)

− 1

)2

−

√√√√
E

z′∼w

(
pz|V(z′)
w(z′)

− 1

)2
∣∣∣∣∣∣∣

≤

√√√√
E

z′∼w

(
pz|U(z′)
w(z′)

−
pz|V(z′)
w(z′)

)2

.

Let {Mz : z ∈ Z} be the measurement operators corresponding to M. We have that pz|U(z) =
Tr (Mzρε,U) and w(z) = Tr(Mz)/d from Lemma 4.4. Recalling the definition of ρε,U from Eq. (2)
we may simplify the right-hand side of the above inequality to arrive at

| f (U)− f (V)| ≤ 2ε

d

√
∑

z∈Z

1
w(z)

[Tr (Mz(UQU† −VQV†))]
2.

It suffices to show that the sum in the square root is at most O(d)‖U −V‖2
F. Write WDW† for

the spectral decomposition of the Hermitian matrix UQU† −VQV†, where W is unitary and D is
diagonal. As explained below, we have

∑
z∈Z

1
w(z)

[
Tr
(

MzWDW†
)]2

= d2 ∑
z∈Z

w(z)
[

Tr
((

W† MzW
w(z)d

)
D
)]2

≤ d2 ∑
z∈Z

w(z)Tr
((

W† MzW
w(z)d

)
D2
)

= d ∑
z∈Z

Tr
(

W† MzWD2
)

= d
∥∥∥UQU† −VQV†

∥∥∥2

F

≤ 4d‖U −V‖2
F ,

where in the second line we used the property that WMzW†/(w(z)d) is positive semidefinite with
unit trace and applied Jensen’s inequality to deduce that (Tr(AD))2 = (∑i AiiDii)

2 ≤ ∑i AiiD2
ii =

Tr(AD2) for any positive semidefinite matrix A with unit trace. Also, in the fourth line we used
the property that the measurement operators for the different outcomes z sum to identity. In the
final line, we use the matrix inequality ‖AB‖F ≤ ‖A‖‖B‖F to deduce that∥∥∥UQU† −VQV†

∥∥∥
F
=

1
2

∥∥∥(U + V)Q(U −V)† + (U −V)Q(U + V)†
∥∥∥

F

≤
∥∥∥(U + V)Q(U −V)†

∥∥∥
F

≤ (‖UQ‖+ ‖VQ‖)‖U −V‖F
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≤ 2‖U −V‖F . (26)

So | f (U) − f (V)| ≤ (4ε/
√

d ) ‖U −V‖F, i.e., f is (4ε/
√

d )-Lipschitz and Eq. (25) follows. The
proof in the `-outcome case is identical, except that the expectation is then

EU∼Haar Fχ2

ε,d(M,U) ≤ 4`ε2

3d2

for d ≥ 2, in accordance with the bound in Theorem 4.5.

5.2 Sample complexity for adaptive measurements

Using the concentration of measure results derived in Section 5.1, we can show lower bounds
for single-copy tomography robust to adaptively chosen measurements, so long as the number of
different measurements that may be performed is suitably bounded. Our intermediate goal is to
construct an ε-packing of states which are especially difficult to discriminate using the choice of
measurements available to the learner. We invoke the tail bound from Lemma 5.3 to claim that
for a non-negligible fraction of states of the form in Eq. (2), the measurement statistics from these
measurements are uninformative. This is the content of the following lemma.

Lemma 5.4. Fix an ε ∈ (0,1), positive integer d ≥ 4, and a set of m measurements {M1,M2, . . . ,Mm} ⊂
Ξ(d). Let c,C be the universal constants defined in Lemma 5.3, and let α := cε2/d. For Haar-random
U ∈ U(d), the probability that Fχ2

ε,d(Mi,U) ≤ α + ε2 ln(3m)/Cd2 for every i ∈ [m] is at least 2/3. Fur-
thermore, if maxi∈[m] rank(Mi) = `, the claim holds with α := 4`ε2/3d2.

Proof. Applying the union bound over the m possible measurements we find that the probability
that there is some measurement i ∈ [m] such that Fχ2

ε,d(Mi,U) > α + ε2 ln(3m)/Cd2 is at most

m

∑
k=1

Pr
U∼Haar

[
Fχ2

ε,d(Mk,U) > α + ε2 ln(3m)/Cd2
]
≤ mexp

(
−Cd2

ε2 ·
ε2 ln(3m)

Cd2

)
=

1
3

,

where the inequality follows from the tail bound in Lemma 5.3.

We now use a probabilistic existence argument to show that there is a packing which has the
desired properties.

Corollary 5.5. Fix an ε ∈ (0,1) and positive integer d ≥ 4. Let {M1, . . . ,Mm} ⊂ Ξ(d) be a fixed set of
measurements and define α,C as in Lemma 5.4. There exists a set of N quantum states, S B {ρ1, . . . ,ρN} ⊂
D(d) with

ρi B
2ε

d
UiQd/2U†

i + (1− ε)
1

d

for some unitary operators U1, . . . ,UN ∈ U(d) such that

1. N ∈ exp(Ω(d2)),

2. S is an (ε/2)-packing, and

3. Fχ2

ε,d(Mi,Uj) ≤ α + ε2 ln(3m)/Cd2 for every i ∈ [m] and j ∈ [N].
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Proof. The proof is similar to that of Corollary 3.4, except that it has an extra step. Suppose we have
constructed a set of k quantum states Sk B {ρ1, . . . ,ρk} with k ≤ bed2/32−ln(2)c, where the states are
as in the statement of the corollary with corresponding unitary operators {U1, . . . ,Uk}. Further
suppose that Sk is an ε/2-packing and that Uj satisfies the bound in part (3) of the statement for
all j ∈ [k]. By setting the parameter ξ B 1/2 in Lemma 3.3 and making use of Lemma 5.4 and the
union bound, we see that the probability of selecting a Haar-random unitary operator U ∈ U(d)
such that Sk+1 := Sk ∪ ρε,U no longer satisfies either condition is at most 1/2 + 1/3. To be precise,
the probability that

∥∥ρε,U − ρj
∥∥

1 ≤ ε/2 for some j ∈ [k] or that Fχ2

ε,d(Mi,U) > α+ ε2 ln(3m)/Cd2 for
some i ∈ [m] is strictly less than one. Therefore, at least one state satisfying the desired properties
exists, and the result follows by induction on k.

We now have all the ingredients to derive the sample complexity for adaptive measurements.

Theorem 5.6. Let ε ∈ (0,1). Any procedure for quantum tomography of d-dimensional quantum states
that is (ε/2)-accurate in trace distance and uses single-copy (possibly adaptive) measurements chosen from
a fixed set of m measurements requires

n ∈Ω
(

d3 (1 + log(m)/d)−1 /ε2
)

samples of the unknown state.

Proof. Let S B {ρ1, . . . ,ρN} be a set of N ∈ exp(Ω(d2)) states which satisfies the conditions in
Corollary 5.5 for the choice of m measurements {M1, . . . ,Mm} ⊂ Ξ(d), with corresponding uni-
tary operators {U1, . . . ,UN} ⊂ U(d). Let x ∼ Unif([N]) and y B (y1, . . . ,yn) be the measure-
ment outcomes from applying n possibly adaptive measurements, each of which is an element
of {M1, . . . ,Mm}, on identical copies of ρx. (Recall that ρx = ρε,Ux .) By Fano’s inequality as well as
the assumption that the output of the tomography algorithm is accurate to within trace distance
ε/2, we have I(x : y) ∈Ω(d2).

On the other hand, we can upper bound the mutual information from above by using the
properties of the states which comprise S . Firstly, by the chain rule for mutual information we
have

I(x : y) =
n

∑
i=1

I(x : yi|y<i) (27)

where we use the shorthand y<i to refer to the sequence of random variables yi−1, . . . ,y1. For
each i ∈ [n], let pyi |y<i ,x be the conditional distribution for the outcome of the ith measurement
performed on the ith copy of the state ρx, given previous outcomes y<i. The probabilities of this
distribution are given by

pyi |y<i ,x(y)B Tr(My<i
y ρx)

for each possible outcome y, where {My<i
y }y is the POVM corresponding to the ith measurement

My<i when the previous i − 1 outcomes are y<i. Also, let wy<i(y) := EU∼Haar Tr(My<i
y ρε,U) be a

fixed distribution, for each possible sequence of prior outcomes y<i. Consider the ith term in the
sum in the right-hand side of Eq. (27). We apply the upper bound on mutual information from
Lemma 4.1 as well as Definition 5.2 for the function Fχ2

ε,d(·, ·) to deduce that

I(x : yi|y<i) = E
y′<i∼py<i

I(x : yi|y<i = y′<i)
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≤ 1
ln(2)

E
y′<i∼py<i

E
x′∼px|y<i

Dχ2(pyi |y′<i ,x
′ ‖ wy′<i)

=
1

ln(2)
E
y<i

E
x|y<i

Fχ2

ε,d(M
y<i ,Ux) (28)

≤ 1
ln(2)

(
cε2/d + ε2 ln(3m)/Cd2)

∈O
(

ε2(1 + log(m)/d)
d

)
. (29)

where c,C are the universal constants defined in Lemma 5.4. The fourth line follows by the as-
sumption that for every y<i we have My<i =Mj for some j ∈ [m]. Applying this argument to
each of the n mutual information terms in Eq. (27) and combining with the relation I(x : y) ∈Ω(d2)
gives the desired lower bound.

For a fixed finite gate set, the number of distinct polylog(d)-size quantum circuits is at most
polylog(d)polylog(d) ∈ exp(o(d)). Hence, a lower bound of Ω(d3/ε2) samples holds in the set-
ting where the learner is restricted to such circuits. This improves the bound we obtain from the
Holevo theorem by a factor of d. Furthermore, this lower bound is tight by the algorithm we
present in Appendix B.2, along with the fact that random Clifford circuits, which are efficiently
implementable [AG04, VDB21], comprise a unitary 3-design [KG15, Web16, Zhu17]. The algo-
rithm we present is nearly identical to an algorithm using Haar-random measurements given in
Ref. [Wri16, Section 5.1], except we make use of the fact that measurements based on unitary
2-designs suffice1.

Another particularly simple setting in which the above lower bound works well is that of d-
outcome Pauli basis measurements, as considered by Yu [Yu20]. Yu shows a Õ(d3.32/ε2) upper
bound on the sample complexity of tomography with non-adaptive measurements, while Theo-
rem 5.6 once again yields a lower bound of Ω(d3/ε2), even with adaptive measurements.

We also have the following extension of the above theorem, which generalizes the lower bound
for the case of two-outcome Pauli measurements due to Ref. [FGLE12] (although we do not con-
sider possible dependence on the rank of the state here).

Theorem 5.7. Let ε ∈ (0,1). Any procedure for quantum tomography of d-dimensional quantum states
that is (ε/2)-accurate in trace distance and uses single-copy (possibly adaptive), `-outcome measurements
chosen from a fixed set of m possible measurements requires

n ∈Ω
(

d4/(`+ logm)ε2
)

samples of the unknown state.

Proof. The proof is identical to that for Theorem 5.6 except that the right-hand side of Eq. (28) is of
the order of 4`ε2/3d2 + ε2 ln(3m)/Cd2, by Theorem 4.5.

6 Sample complexity of classical shadows

In this section, we consider classical shadows and shadow tomography, variants of state tomography
which have received much attention recently. Building on the ideas developed in the previous
sections, we obtain new bounds on the sample complexity of these problems.

1Ref. [GKKT18] makes a similar observation; namely, that a measurement based on state 2-designs yields a sample
complexity on the order of d3 log(d)/ε2.

27



6.1 Classical shadows

Full quantum state tomography is often unnecessary for determining important properties of a
quantum system. For example, to verify the output of a quantum computer, one might only
be concerned with comparing the state that is produced to some target pure state, perhaps by
estimating their fidelity. Alternatively, in variational quantum algorithms an essential subroutine
is to determine the expectation values of some observables encoding the cost function of interest.
For both these tasks and more, succinctly represented information about the state known as a
classical shadow [HKP20] can provide an exponential reduction in the number of copies of the
state required to learn properties of interest. Informally, a classical shadow of a quantum state
refers to a classical string, also called a sketch, using which we can estimate the expectation values
of any given sequence of M observables to within accuracy ε. The sketch is produced by the
measurement of individual copies of the otherwise unknown state.

For any state ρ ∈ D(d), consider the function fρ mapping Psd(d)M to RM, defined as

fρ(E1, E2, . . . , EM)B (Tr(Eiρ) : i ∈ [M]) .

More formally, the associated task is defined as defined below. In this definition, single-copy ac-
cess refers to restricting measurements to individual copies of an unknown state, as described in
Section 2.2.

Definition 6.1 (Classical shadows problem). Given parameters ε ∈ (0,1), B > 0, and M ≥ 1,
and single-copy access to n copies of an unknown quantum state ρ ∈ D(d) the classical shadows
problem consists of computing a description of a function f : Psd(d)M → RM, called a classical
shadow, such that for any fixed collection of M observables (Oi : 0 � Oi � 1, i ∈ [M]) satisfying
maxi∈[M] Tr(O2

i ) = B, it holds that
∥∥ f (O1, . . . ,OM)− fρ(O1, . . . ,OM)

∥∥
∞ ≤ ε with probability at least

2/3.

Huang, Kueng, and Preskill [HKP20] give a procedure for computing classical shadows which
uses only n ∈O(B log(M)/ε2) efficient, nonadaptive measurements on single copies of the state ρ.
Here, the measurements are implemented by using random q-qubit Clifford operators, which form
a unitary 3-design. Then, the procedure performs a median-of-means estimation of the expectation
values. Overall this is an unbounded improvement over full state tomography in the case where
Tr(O2

i ) is at most a constant for the observables of interest Oi, since there is no explicit dependence
on the dimension. They then show a matching lower bound in the nonadaptive measurement
setting. However, this bound does not take into account the possibility of adaptive measurements.
We turn to this in Section 6.2, focusing on the case where an upper bound on B is not known.

6.2 Lower bound with a limited choice of measurements

In this section, we show how the arguments developed in the previous sections for quantum
tomography can be adjusted to give a lower bound for classical shadows with adaptive measure-
ments, when the measurements are chosen from a “small enough” set. We obtain this result by
proving the same lower bound for a variant of shadow tomography [Aar20] with single-copy mea-
surements described below.

Definition 6.2 (Single-copy shadow tomography for bounded operators). Given parameters ε ∈
(0,1) and B > 0, single-copy access to n copies of ρ ∈ D(2q), as well as the description of M
observables (Oi : 0�Oi � 1, i ∈ [M]) satisfying maxi∈[M] Tr(O2

i ) = B, the task is to output a vector
b ∈RM such that with probability at least 2/3 we have |bi − Tr(Oiρ)| ≤ ε for every i ∈ [M].
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Upper bound Lower bound

Entangled Õ(log(d) log2(M)/ε4) [BO21] Ω(log(M)/ε2) [Aar20]

Single-copy O(d log(M)/ε2) [HKP20] Ω(min{M/log(M),d}/ε2) [CCHL22]

Single-copy & Efficient O(d log(M)/ε2) [HKP20] Ω(d log(M)/ε2) (this work)

Table 2: The best known upper and lower bounds on the sample complexity of shadow tomog-
raphy for M observables O1, . . . ,OM, for M ∈ exp(O(d)) for entangled measurements and M ∈
exp(O(d2)) for single-copy measurements. Note that for M larger than the corresponding thresh-
olds, we may use state tomography with joint measurements or single-copy measurements to
achieve sample complexity of order d2/ε2 and d3/ε2, respectively. The lower bounds for M ∈
exp(Ω(d2)) are Ω of d2/ε2,d/ε2, and d3/ε2, respectively for the three cases above. The Õ notation
hides loglog factors in d and log factors in 1/ε.

Note that the output of the classical shadows problem can be used to produce a solution to
the shadow tomography problem, when the Frobenius norm of the input operators is suitably
bounded. Hence, any lower bound on the sample complexity for the latter task applies to the
classical shadows problem as well.

Table 2 summarizes known results on the sample complexity of shadow tomography under
various assumptions about the measurements. In Theorem 6.3 below, we prove a lower bound on
the sample complexity of single-copy shadow tomography for bounded operators, when the pos-
sible measurements available to the learning algorithm are limited in number. The bound implies
that in the setting of single-copy measurements with efficient circuits (i.e., uniformly generated
polylog(d)-size quantum circuits over a finite universal gate set), the non-adaptive classical shad-
ows algorithm due to Huang et al. [HKP20] is optimal for single-copy shadow tomography. In
contrast with the lower bound due to Ref. [CCHL22] (in the second column of Table 2), a num-
ber of samples exponential in the number of qubits is inevitable using efficiently implementable
measurements. This is a consequence of the fact that for a finite set of allowed measurements,
one can always construct an instance of the classical shadows problem such that the measurement
{Oi,1−Oi} is not in the set, for some i ∈ [M].

Theorem 6.3. Any algorithm for the classical shadows or the single-copy shadow tomography problem that
only uses single-copy measurements chosen from a fixed set of m measurements requires

Ω
(

dmin{d2, log M}
ε2(1 + log(m)/d)

)
samples when B = d/2.

Proof. As mentioned earlier, it suffices to prove the claimed lower bound for the shadow tomog-
raphy problem. Consider any algorithm that only uses single-copy measurements chosen from a
fixed set of m measurements {M1, . . . ,Mm} ⊂ Ξ(d). We construct a set of hard input instances for
this algorithm and show that the algorithm requires a large number of samples for these instances.

We observe, as in Ref. [Aar20, Theorem 19], that well-separated states of the form we have
been studying (cf. Eq. (2)) can be distinguished well by the measurements operators given by their
deviation from the completely mixed state. We build on this to show that there exists a special col-
lection of M states ρ1, . . . ,ρM, and observables O1, . . . ,OM whose expectation values enable us to
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uniquely identify a state from the M alternatives ρ1, . . . ,ρM. The states satisfy the additional prop-
erty that the statistics obtained from measuring any of the ρi with any of m measurementsMj are
not very informative. The lower bound then follows from Fano’s inequality and the upper bound
on the chi-squared divergence quantity we have been considering in the context of tomography.
Since we may only take M to be at most exp(κd2) for a universal constant κ, the lower bound
plateaus at this threshold.

More formally, we first construct the difficult instance of the shadow tomography problem.
Let U ∈ U(d) be a Haar-random unitary operator and, as before, let Q ∈ Psd(d) be a rank-d/2
orthogonal projection operator. By setting the parameter t = 1/3 in Lemma 3.2, we get that for
any fixed rank-d/2 orthogonal projection operator P ∈ Psd(d),

Pr[Tr(PUQU†) ≥ d/3] ≤ exp(−c′d2) (30)

for a universal constant c′. Since the algorithm only uses single-copy measurements from a fixed
set of m measurements, Lemma 5.4 applies and we have the following result.

Lemma 6.4. Fix an ε ∈ (0,1) and a positive integer d ≥ 4. Define α,C as in Lemma 5.4. There is
a universal constant κ, such that for any M ∈ [1,exp(κd2)], there exists a set of M unitary operators
U1, . . . ,UM ∈ U(d) such that

1. Tr(UiQU†
i UjQU†

j ) ≤ d/3 for every i, j ∈ [M], i , j, and

2. Fχ2

ε,d(Mi,Uj) ≤ α + ε2 ln(3m)/Cd2 for every i ∈ [m] and j ∈ [M].

Proof. The proof is similar to that for Corollary 5.5 except that we use Eq. (30) to ensure the first
condition (instead of using Lemma 5.4).

Now, let S B {ρ1, . . . ,ρM} ⊂ D(d) be a collection of states of the form in Eq. (2), given by

ρi B
2ε

d
UiQU†

i + (1− ε)
1

d
.

For any i ∈ [M]

Tr(UiQU†
i ρi) =

1
2
+

ε

2
,

while by condition (1) in Lemma 6.4 we have for any j , i

Tr(UjQU†
j ρi) ≤

1
2
+

ε

6
.

This means that by estimating Tr(UiQU†
i ρx) with ε/12 accuracy for every i ∈ [M] we can identify

the value of x ∈ [M]. Thus, we may use the algorithm for shadow tomography with input observ-
ables U1QU†

1 , . . . ,UMQU†
M to discriminate between the M states in S with probability at least 2/3.

We argue next that the algorithm requires a “large” number of single-copy measurements in order
to accomplish this.

Let x be uniformly random over [M] and y B (y1, . . . ,yn) be the measurement outcomes ob-
tained from n single-copy (possibly adaptive) measurements performed on distinct copies of the
state ρx. By chain rule for mutual information, we have

I(x : y) =
n

∑
i=1

I(x : yi|y<i)
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≤
n

∑
i=1

E
y<i

E
x|y<i

Fχ2

ε,d(M
y<i ,Ux)

∈O
(

nε2(1 + log(m)/d)
d

)
, (31)

where we have omitted some steps since they are identical to those leading to Eq. (29).
On the other hand, since the algorithm identifies the state ρx with probability ≥ 2/3 from the

measurement outcomes y, by Fano’s Inequality, I(x : y) ≥ Ω(log(M)). This concludes the proof
of Theorem 6.3.

Suppose an algorithm for classical shadows or shadow tomography uses only efficient single-
copy measurements over a fixed, finite universal gate set. The number m of different measure-
ments it may use is then O(exp(polylog(d))). (See Appendix C for further justification and a slight
generalization.) By the above lower bound, the algorithm requires Ω(dmin{d2, log(M)}/ε2) sam-
ples. In fact, this bound is optimal.

Lemma 6.5. There is an algorithm that uses only efficient, single-copy measurements and

O(dmin{d2, log(M)}/ε2)

samples and solves the classical shadows and single-copy shadow tomography problems for arbitrary B.

Proof. The upper bound is achieved by the following procedure: use the random Clifford operator-
based classical shadows algorithm from Ref. [HKP20, Theorem 1] if M ≤ ed2

, and the random
Clifford operator-based state tomography algorithm of Ref. [KRT17] otherwise. The former has
sample complexity of the order of d log(M)/ε2, and the latter d3/ε2.

6.3 Sample means suffice for single-copy shadow tomography

We turn our attention to the case of nonadaptive — but otherwise arbitrary — single-copy mea-
surements on an unknown state ρ ∈ D(d). As can be seen from Table 2, the median-of-means
algorithm due to Ref. [HKP20] is optimal up to log factors for shadow tomography in this set-
ting. Their proposal employs random Clifford operations to perform random basis measure-
ments. However, we may take an even simpler approach using the same measurement scheme,
which also turns out to be optimal. Specifically, we show that taking the sample means using the
classical shadow reproduces the same upper bound on the overall sample complexity, which is
n ∈O(min{d, M} log(M)/ε2), assuming M ≤ ed2

.
We first handle the case when M > d. Suppose we apply a random Clifford operator U ∈ U(d)

and then measure in the standard basis {|j〉}d
j=1 ⊂ Cd. For a fixed Clifford operator U ∈ U(d) we

may write the operators for this measurement as {U|j〉〈j|U†}d
j=1. It is well-known that this random

projective measurement is closely related to state t-designs, as explained in Appendix 6.3. Define
the random variable ρ̂(U, j) = (d + 1)U|j〉〈j|U† − 1 where j ∈ [d] is the random measurement
outcome in the standard basis. By Proposition B.1 in Appendix B we have E ρ̂(U, j) = ρ. We also
make use of the following property.

Proposition 6.6 (Prop. S1, Sec. 5 in the supplementary materials for Ref. [HKP20]). Let X be a
Hermitian operator with −1� X � 1 acting on Cd, and let ρ̂(U, j) be as defined above. It holds that

Var [Tr(X ρ̂(U, j))] ≤ 3Tr(X2).
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Finally, we require a concentration of measure property of bounded random variables known
as Bernstein’s inequality. This is stronger than Hoeffding’s inequality when the variances of the
random variables are sufficiently small. This version of Bernstein’s inequality can be found in
Ref. [Ver18], for example.

Theorem 6.7 (Theorem 2.8.4 in Ref. [Ver18]). Let x1, . . . , xn be independent, mean zero random variables
such that |xi| ≤ K with probability 1 for all i ∈ [n]. Then, for every ε ≥ 0, we have

Pr

[∣∣∣∣∣ n

∑
i=1

xi

∣∣∣∣∣ ≥ ε

]
≤ 2exp

(
−ε2/2

σ2 + Kε/3

)
where σ2 := ∑n

i=1 E x2
i .

Now suppose that the observables given as input to the shadow tomography algorithm are Oi,
with 0�O1, . . . ,OM � 1. Define the random variables fi(U, j) := Tr(Oi ρ̂(U, j)) for each i ∈ [M]. It
holds that

E fi(U, j) = Tr(Oi E ρ̂(U, j)) = Tr(Oiρ) , (32)

so that fi(U, j) is an unbiased estimator for Tr(Oiρ). If we perform the random measurement
described above on n separate copies of ρ, we obtain i.i.d. random variables (U1, j1), . . . , (Un, jn).
These define the classical shadow of the state as

1
n

n

∑
k=1

ρ̂(Uk, jk) .

The expectation value for Oi predicted by the classical shadow is the sample mean of the ith esti-
mator fi. For any ε > 0, by Bernstein’s inequality we have that

Pr

[∣∣∣∣∣ 1n n

∑
k=1

fi(Uk, jk)− Tr(Oiρ)

∣∣∣∣∣ > ε

]
≤ 2exp

(
−ε2/2

σ2 + εK/(3n)

)
where σ2 := 1

n2 ∑n
k=1 Var[ fi(Uk, jk)] and K is such that | fi(Uk, jk)− Tr(Oiρ)| ≤ K with probability 1

for all k ∈ [n]. By definition ‖ fi‖∞ ≤ d + 1 so K can be taken to be O(d), and by Proposition 6.6
we have σ2 ≤ 3d/n. Taking n ∈ O(d log(M)/ε2), the probability above is at most 1/3M. By the
union bound, we may estimate Tr(Oiρ) for all i ∈ [M] to additive error ε using these n samples,
with failure probability at most 1/3. We remark that in the setting where the measurements used
by the algorithm are efficient, this describes the optimal procedure.

Consider M ≤ d. In this case, we perform the two-outcome measurement with operators
{Oi,1−Oi} a total of O(log(M)/ε2) times for each i ∈ [M]. The sample means are then within ε of
the corresponding expectation values. The procedure uses O(M log(M)/ε2) samples of the state,
and matches the information-theoretic lower bound proved in Ref. [CCHL22] up to a factor of
log2(M) (see the second column of Table 2).

7 Open problems

We conclude with some directions for future work arising from the lower bounds in Sections 5
and 6. In Theorem 5.7 we incur a polylog(d) factor in the denominator of the lower bound
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for tomography with efficient, constant-outcome, single-copy measurements. Can this be im-
proved? Note that such a factor also appears in the denominator of the lower bound for binary
Pauli measurements in Ref. [FGLE12]. Is there a way to incorporate rank-dependence into the
lower bounds appearing in Section 5 for adaptive tomography with limited measurement set-
tings? The approach we took to incorporate the dependence on the norm parameter B into the
lower bounds for classical shadows does not carry over well to the setting of rank-dependent
quantum tomography, since the packing we constructed has states with rank up to d. Finally, are
there simpler information-theoretic arguments that yield the unconditional bounds obtained in
Refs. [CHLL22, CHL+22]?
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A Haar integrals

The Haar measure µ is the unique unitarily invariant probability measure on the space of unitary
operators, U(d). Using this measure, one may define channels Φk : (Cd×d)⊗k → (Cd×d)⊗k of the
form

Φk(X) =
∫
U(d)

U⊗kX(U†)⊗kdµ(U), (33)

which are referred to as “twirl” operations. In the rest of this section, we evaluate this channel
explicitly in the case where the operator X is a tensor product of orthogonal projectors onto sub-
spaces of Cd. Following the presentation in Ref. [Wat18], we make use of an important result on the
structure of permutation-invariant operators. Recall from Section 2 that Sk is the symmetric group
on {1, . . . ,k} and Wπ is the operator on (Cd×d)⊗k that permutes the k tensor factors according to
the permutation π ∈ Sk.

Theorem A.1 (Theorem 7.15 in Ref. [Wat18]). Let k > 0 be a positive integer and X ∈ (Cd×d)⊗k be an
operator. The following are equivalent:

1. [X,U⊗k] = 0 ∀U ∈ U(d).

2. X = ∑π∈Sk
v(π)Wπ for some choice of v ∈ C|Sk |.

Since Φk(X) satisfies the first condition, we can apply the theorem to write the output of the
channel as a linear combination of permutation operators. This helps us evaluate the Haar inte-
grals which arise in this work.

Proposition A.2. Let d > 1 be a positive integer, Q ∈ Psd(d) a rank-r orthogonal projection operator, and
U ∈ U(d) a Haar-random unitary operator. It holds that

EUQU† =
r1
d

.
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Proof. We can write the expectation as∫
U(d)

UQU†dµ(U) = Φ1(Q).

By Theorem A.1 we have

E UQU† = κ1

where κ ∈ C is some coefficient depending on Q. Recalling that Q is a rank-r orthogonal projection
operator, taking the trace of both sides and solving for κ yields κ = r/d.

Proposition A.3. Let d > 1 be a positive integer. Let Π1,Π2 ∈ Psd(d) be orthogonal projection operators
of rank r1,r2, respectively, such that the image of Π1 is contained in that of Π2. For U ∈ U(d) a Haar-
random unitary operator it holds that

E U⊗2(Π1 ⊗Π2)(U†)⊗2 =
r1

d(d2 − 1)
[(r2d− 1)1+ (d− r2)W]

where W is the swap operator acting on (Cd)⊗2.

Proof. We can write the expectation as∫
U(d)

U⊗2(Π1 ⊗Π2)(U†)⊗2dµ(U) = Φ2(Π1 ⊗Π2).

By Theorem A.1 we have

E U⊗2(Π1 ⊗Π2)(U†)⊗2 = α1⊗ 1+ βW

where W is the swap operator and α, β ∈ C are some coefficients depending on Q. Left-multiplying
by 1⊗ 1 or W and taking the trace of both sides yields

Tr(Π1 ⊗Π2) = r1r2 = αd2 + βd, Tr(W(Π1 ⊗Π2)) = r1 = αd + βd2 ,

as Π1Π2 = Π1. This allows us to solve for α, β:

α =
r1(r2d− 1)
d(d2 − 1)

, β =
r1(d− r2)

d(d2 − 1)
. (34)

This concludes the proof of the proposition.

We also make use of the expectations of operators of the following form.

Proposition A.4. Let d ≥ 1 and U be a Haar-random unitary operator over Cd. For any i, j ∈ [d], we have

E
U

U|i〉 ⊗U|j〉 = 0 ,

E
U
〈i|U† ⊗ 〈j|U† = 0 ,

E
U

U|i〉 ⊗ 〈j|U† =
δij

d

d

∑
k=1
|k〉 ⊗ 〈k| , and

E
U
〈j|U† ⊗U|i〉 =

δij

d

d

∑
k=1
〈k| ⊗ |k〉 ,

where δij = 1 if i = j and 0 otherwise.
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Proof. The second identity follows from the first by taking the adjoint, which commutes with
taking the expectation over U. Similarly, the fourth identity follows from the third by conjugating
with the swap operator on Cd ⊗Cd.

The first identity follows from the invariance of the Haar measure under multiplication by i1;
we have

E
U

U|i〉 ⊗U|j〉 = i2 E
U

U|i〉 ⊗U|j〉 = 0 .

Similarly, if i , j, then by the invariance of the Haar-measure under multiplication on the right by
the unitary operator 1− 2|j〉〈j|, the third identity holds.

Let A be the left hand side of the third identity when i = j. Then 〈k|A|l〉 = 0 if k , l, by
the invariance of the Haar-measure under multiplication on the right by the operator 1− 2|l〉〈l|.
Furthermore, 〈k|A|k〉 = EU |〈k|U|i〉|2 = 1/d, by the invariance of the Haar measure under permu-
tations of the standard basis elements.

B Algorithms for quantum tomography

B.1 Tomography with entangled measurements

In the entangled measurement model, it has been shown by O’Donnell and Wright [OW16] and
Haah et al. [HHJ+17] that O(d2/ε2) copies of the state suffice to estimate it to ε-accuracy in trace
distance with high probability2. At the same time, a matching lower bound was also shown
in [HHJ+17]. So the sample complexity of tomography in the entangled measurement setting
is known up to a constant factor, for constant probability of success. A full description of these
algorithms is outside the scope of this work, requiring ideas from representation theory and in
particular the relationship between certain representations on (Cd)⊗n. We refer the interested
reader to Chapters 2 and 5 of the Wright’s PhD thesis [Wri16].

B.2 Tomography with random basis measurements

For completeness we describe an algorithm which achieves a sample complexity of O(d3/ε2) for
ε-accurate tomography (in trace distance) using efficiently implementable, nonadaptive measure-
ments. The analysis we present is due to Wright [Wri16, Section 5.1], with minor differences. We
also point out that measurement based on a state 2-design suffices. These may be derived from a
spherical 4-design or a unitary 2-design.

An algorithm for the bounded-rank case follows from Ref. [KRT17, Theorem 2]. Haah et al.
sketch the details of this algorithm in Ref. [HHJ+17, Section II.A]. They invoke an “operator Cher-
noff bound” due to Ahlswede and Winter [AW02] to conclude that the sample average of m i.i.d.
standard normal vectors |ψi〉 ∈ Cd with |ψi〉 ∼N(0,1) approximates the identity operator 1. For-
mally, we have ∥∥∥∥∥ 1

m

m

∑
i=1
|ψi〉〈ψi| − 1

∥∥∥∥∥ ≤ α , (35)

for a constant α > 0, with probability at least 3/4, provided m ∈ Ω(d(lnd)/α2). This leads to
a sample complexity of O(r2d/ε2) for r ≥ lnd, and O(rd(lnd)/ε2) for r ≤ lnd. A stronger tail
inequality [Ver18, Theorem 4.6.1] guarantees that Eq. (35) holds for a suitable constant α, with

2Originally, the upper bound presented in Haah et al. [HHJ+17] had an additional factor of log(d/ε), which was
subsequently removed in the thesis of Wright [Wri16].
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probability at least 1− 2exp(−m) as long as m ≥ d. This gives us the optimal bound of O(r2d/ε2)
on the sample complexity of the algorithm. Guţă, Kahn, Kueng, and Tropp [GKKT20, Theorem 2]
give a different algorithm that also achieves the optimal sample complexity.

Let ρ ∈ D(d) be the state to be learned, and {|j〉}d
j=1 be the standard basis. Consider sampling a

random unitary operator U comprising a unitary 2-design and then performing the basis measure-
ment corresponding to the measurement operators {U|j〉〈j|U†}d

j=1, obtaining outcome j. Suppose
we do this on n separate copies of the state, resulting in iid random variables (U1, j1), . . . , (Un, jn)
where U i is the ith random unitary operator and ji is the outcome from the ith measurement. De-
fine ρ̂(U, j) := (d + 1)U|j〉〈j|U† − 1 for U ∈ U(d) and j ∈ [d].

Proposition B.1. It holds that

E ρ̂(U, j) = ρ.

Proof. Let pU denote the distribution of U and pj|U(j) the probability of obtaining outcome j given
that U is drawn. We have

EU|j〉〈j|U† =
d

∑
j=1

E
U∼pU

pj|U(j) U|j〉〈j|U†

=
d

∑
j=1

E
U∼pU

〈j|UρU†|j〉U|j〉〈j|U†. (36)

Consider the jth term in the sum above. We may write that term equivalently as

E
U∼pU

Tr2

(
(U|j〉〈j|U†)⊗2(1⊗ ρ)

)
= Tr2

(
E

V∼Haar
(V |j〉〈j|V †)⊗2(1⊗ ρ)

)
(37)

where the equality follows from linearity of trace and the choice of U as a 2-design. Note that it
suffices that the measurement operators be derived from a state 2-design (see, e.g., Ref. [AE07]).
Proposition A.3 gives an explicit solution to the Haar integral inside the partial trace for the gen-
eral case of a rank-r projector rather than |j〉〈j|. Taking r = 1, we find that

E
V∼Haar

(V |j〉〈j|V †)⊗2 =
1

d(d + 1)
[1⊗ 1+ W] .

Substituting into the right-hand side of Eq. (37) and making use of the identities Tr2(W(1⊗ ρ)) = ρ
and Tr(ρ) = 1 we find that it is equal to 1

d(d+1) (1+ ρ). Using the property that this holds for

any j ∈ [d] and substituting into Eq. (36) we obtain the relation EV |j〉〈j|V † = 1
d+1 (1+ ρ). The

proposition then follows from the definition of ρ̂(U, j).

In other words, ρ̂(U, j) is an unbiased estimator of ρ. We take the empirical average of the n
independent samples of this estimator 1

n ∑n
i=1 ρ̂(U i, ji) which we obtained by measuring n separate

copies of the state. Then the squared distance between the estimator and the true state in terms of
the metric induced by the Frobenius norm is

E

∥∥∥∥∥ 1
n

n

∑
i=1

ρ̂(U i, ji)− ρ

∥∥∥∥∥
2

F

=
1
n2 E

∥∥∥∥∥ n

∑
i=1

(ρ̂(U i, ji)− ρ)

∥∥∥∥∥
2

F

=
1
n2 Tr

E

[
n

∑
i=1

(ρ̂(U i, ji)− ρ)

]2
 .
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It is straightforward to show that for a sum of n mean-zero, independent random matrices Ai it
holds that E [∑n

i=1 Ai]
2 = ∑n

i=1 E A2
i , which entails that the right-hand side of the above is

1
n2

n

∑
i=1

Tr
(
E(ρ̂(U i, ji)− ρ)2) = 1

n2

n

∑
i=1

(
ETr(ρ̂(U i, ji)

2)− Tr(ρ2)
)

≤ 1
n2

n

∑
i=1

ETr(ρ̂(U i, ji)
2)

=
d2 + d− 1

n

where the inequality used Tr(ρ2) ≥ 0 and the final line comes from the following calculation. For
a Hermitian matrix A, we have Tr(A2) = ∑d

i=1 λi(A)2. In our case, all eigenvalues of the operator
(d + 1)U|j〉〈j|U† − 1 except one are −1, and one eigenvalue is d. Using the matrix inequality
‖·‖1 ≤

√
d‖·‖F, we obtain the inequality

E

∥∥∥∥∥ 1
n

n

∑
i=1

ρ̂(U i, ji)− ρ

∥∥∥∥∥
2

1

≤ d(d2 + d− 1)
n

.

Substituting n ∈ O(d3/ε2) gives us the desired upper bound on error in expectation. We can
achieve error at most ε with high (constant) probability using Markov’s inequality, with a constant
factor increase in the number of samples.

B.3 Tomography with binary Pauli measurements

In the setting of binary Pauli measurements there exists perhaps the most straightforward tomog-
raphy algorithm, to the point where its O(d4/ε2) sample complexity is folklore. However, since
we show that this is the information-theoretically optimal algorithm for a class of nonadaptive
measurement scenarios, it may be worth reviewing. The general q-qubit Pauli matrices are the
various Hermitian, unitary, and traceless q-fold tensor products of the set of single-qubit Pauli
matrices {1,σx,σy,σz} ⊂ C2×2. This means that there are 4q = d2 different q-qubit Pauli matrices
Pd = {P1, . . . , Pd2}, where we let d = 2q. These operators form an orthogonal basis for the set of
d-dimensional Hermitian matrices H(d) so that an arbitrary ρ ∈ D(d) can be written

ρ =
1
d

d2

∑
i=1

Tr(Piρ)Pi.

The straightforward algorithm here is then to estimate each of the coefficients Tr(Piρ) with suffi-
cient accuracy, which will serve as a complete description of the estimate of ρ. Consider the d2

POVMsMi with corresponding measurement operators { 1
2 (1± Pi)} for each i ∈ [d2], with possi-

ble outcomes zi ∈ {±1} defined in the obvious way. Then zi is an unbiased estimator for the ith

Pauli coefficient, and performing this measurement s ∈ Z+ times results in iid random variables
{zi,j}s

j=1. Let us then take the empirical average of the s samples corresponding to the ith Pauli
measurement µi := 1

s ∑s
j=1 zi,j, for each i ∈ [d2], which requires a total of sd2 measurements on sep-

arate copies of ρ. We then consider our estimate of the state to be ρ̂ := 1
d ∑d2

i=1 µiPi, which clearly
satisfies E ρ̂ = ρ. We may then compute

E‖ρ̂− ρ‖2
F =

1
d

d2

∑
i=1

E |µi − Tr(Piρ)|2
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=
1
d

d2

∑
i=1

Var[µi]

=
1

ds2

d2

∑
i=1

s

∑
j=1

Var[zi,j]

≤ d
s

where in the third line we used the property Var[ax] = a2 Var[x] for a random variable x, as well as
the fact that the variance is additive for independent random variables. The final line follows since
|zi,j| = 1. Using the inequality ‖·‖1 ≤

√
d‖·‖F, we find for s = d2/ε2, it holds that E‖ρ̂− ρ‖1 ≤

ε. We can once again convert this statement about convergence in expectation to convergence
with high probability using Markov’s inequality, which leads to the conclusion that ε-accurate
tomography in trace distance is achievable using at most sd2 = d4/ε2 binary Pauli measurements
on separate copies of ρ.

C Measurements with polynomial-size circuits

Theorems 5.6, 5.7, and 6.3 give lower bounds for quantum learning tasks in the setting of adap-
tive measurements, when they are drawn from a finite set of possible measurements. These re-
sults thus also limit the power of adaptivity using measurements that can be implemented with
polynomial-size circuits. This includes efficiently implementable measurements, i.e., measure-
ments whose circuits are also uniformly generated. In this section, we explain what it means for
a family of measurements to have polynomial-size circuits. Fix a (possibly infinite) universal gate
set G consisting of constant-arity gates (e.g., one- and two-qubit gates).

Definition C.1 (Measurements with polynomial-size circuits, constant number of outcomes). For
any q ≥ 1, suppose Aq is a collection of measurements acting on q-qubit quantum states. We say
the family of measurements (Aq : q ≥ 1) has polynomial-size if there exist polynomials p1, p2 such
that for each q and measurementM ∈ Aq there is a quantum circuit on q + p1(q) qubits with at
most p2(q) gates from G that implementsM. I.e., the measurementM has the action

M : ρ 7→ ∑
y∈{0,1}S

〈y|Tr[`]\S
(

U(ρ⊗ |0〉〈0|)U†
)
|y〉 |y〉〈y|

for any state ρ ∈ D(2q), where S ⊆ [`], `B q + p1(q), |0〉 ∈ (C2)⊗p1(q) is the all-zero state for p1(q)
ancilla qubits and U ∈ U(2q+p1(q)) is the unitary operator given by the composition of the gates in
the circuit.

We say that the measurements in the family have a constant number of outcomes if there is a
positive integer r such that for all measurementsM∈Aq and for all q ≥ 1, we have rank(M) ≤ r.

In the case where G is finite, by a counting argument we may verify that the number of dis-
tinct measurements m in Aq for any family with polynomial size is at most poly(q)poly(q) which
is in exp(o(d)), where d B 2q is the dimension of the system. It follows immediately from Theo-
rem 5.6 and this bound that Ω(d3/ε2) single-copy, possibly adaptive, efficient measurements are
necessary to perform tomography. (Note that efficient measurements are also required to be uni-
formly generated, in addition to having polynomial-size circuits.) Similarly, we may infer a bound
for shadow tomography using only efficient single-copy measurements from Theorem 6.3 (see the
remark after the theorem).
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We may extend this reasoning to the case where G has infinite cardinality, but consists of gates
of constant arity — for example, when all single-qubit gates are included in the set. This comes
at the cost of the loss of a multiplicative factor of at most polylog(1/ε) in the lower bounds.
This is accomplished by an application of the Solovay-Kitaev theorem and adjusting the general
argument we have been using to prove the bounds. We replace each measurement with a suitably
accurate approximation with a circuit over a finite gate set, and show that the approximation
results in at most a small constant deviation from the original distribution over measurement
outcomes. In the sequel, we refer to the case where a learner performs measurements with circuits
over the gate set G as the original strategy. Fix any finite universal gate set G ′ that contains the
inverses of all the gates in it.

Proposition C.2. Let d B 2q for some q ≥ 1. Suppose a learner performs n ∈ O(d3/ε2) adaptive mea-
surements on single copies of quantum states in D(d), where each measurement can be implemented with
a circuit of size at most a polynomial t in q using an infinite set G of gates with constant arity. There
is an adaptive measurement strategy consisting of single-copy measurements with circuits of size of or-
der qt(logq + log(1/ε)) over G ′ such that for any state ρ ∈ D(d), the distribution over the n measurement
outcomes obtained from measuring ρ is 0.01-close in total variation distance to the corresponding distribu-
tion obtained with the original strategy.

Proof. Suppose learner performs measurements with circuits of size at most t over the gate set G
in the original strategy. Suppose that this learner obtains the outcomes y1, . . . ,yn using the original
strategy, and consider the ith measurement in the sequenceMy<i

i : D(2q)→ D(2u(q)) for some fixed
sequence of previous outcomes y<i, and polynomial u(q). By the Solovay-Kitaev Theorem, for any
δ ∈ (0,1) there is a measurement Φy<i

i : D(2q)→ D(2u(q)) which can be implemented using circuits
of size t′ B t · polylog(t/δ) gates from G ′ and which satisfies∥∥My<i

i −Φy<i
i

∥∥
� ≤ 2δ , (38)

where ‖·‖� is the completely bounded trace norm (some times also called the diamond norm). In
other words, for any fixed state ρ ∈ D(2q) the total variation distance between the distributions
over outcomes obtained by measuring ρ according to the two measurements is at most δ.

Suppose the learner adopts the modified strategy given by the measurements Φy<i
i for every

i ∈ [n], given the previously observed outcomes y<i. We show by induction that the deviation of
the resulting distribution from that of the original strategy grows linearly with n. For each i ∈ [n],
let y′i denote the measurement outcome from the ith measurement using the modified strategy.
Note that these random variables have the same set of possible outcomes, which are bit-strings of
length at most poly(q). Define the corresponding conditional distributions p and φ over outcomes
as

p(yk|y<k)B Pr
[
yk = yk|y<k = y<k

]
, φ(yk|y<k) = Pr

[
y′k = yk|y′<k = y<k

]
as well as marginal probabilities p(y<k), φ(y<k), for each k ∈ [1,n]. Let us also define the notation
y≤k B y<k+1. For the first measurement outcome, the total variation distance between the two
distributions is 1

2 ∑y1
|p(y1)− φ(y1)| ≤ δ, using Eq. (38). Now suppose that

∑
y<k

|p(y<k)− φ(y<k)| ≤ 2(k− 1)δ.

for some k > 1. Then we have

∑
y≤k

|p(y≤k)− φ(y≤k)| = ∑
yk

∑
y<k

|p(yk|y<k)p(y<k)− φ(yk|y<k)φ(y<k)|
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≤∑
yk

∑
y<k

|p(yk|y<k)p(y<k)− φ(yk|y<k)p(y<k)|

+ ∑
yk

∑
y<k

|φ(yk|y<k)p(y<k)− φ(yk|y<k)φ(y<k)|

= ∑
y<k

p(y<k)∑
yk

|p(yk|y<k)− φ(yk|y<k)|+ ∑
y<k

|p(y<k)− φ(y<k)|

≤ 2δ + 2(k− 1)δ
= 2kδ.

Hence, the total variation distance between the two distributions corresponding to all n outcomes
is at most nδ. Taking δ = 1/(100n) ensures that the total error from the modified strategy is at
most 0.01. Moreover, all measurements in the modified strategy are implemented with circuits
of size at most t · polylog(100nt) over the finite gate set G ′. Since t(q) is a polynomial in q and
n ∈O(d3/ε2), the total number of gates t′ is of order qt(logq + log(1/ε)).

Note that the total variation distance being equal to 0.01 is not significant — the point is that
this modified strategy only affects the success probability of the learning procedure by a small
constant. For example, consider the task of quantum state tomography with adaptive single-copy
measurements. Let x be distributed over D(d) and y = y1, . . . ,yn be the measurement outcomes
obtained using the original strategy on n ∈ O(d3/ε2) copies of x. Let y′ = y′1, . . . ,y′n be the out-
comes obtained using the modified strategy on n copies of x. Prop. C.2 says that for any value x
of the random variable x, ∥∥∥py|x − py′|x

∥∥∥
1
≤ 1/100 .

Therefore, if the original strategy succeeds in identifying the state to within accuracy ε with “high”
probability (say, ≥ 2/3) then the modified strategy succeeds with high probability as well. How-
ever, the modified strategy uses measurements drawn from a finite set of measurements, which
is the setting for which our lower bounds apply. By counting the number of distinct circuits of
size t′ we see that the total number of distinct measurements m used in the modified strategy is at
most poly(t′)t′ . So logm is of the order of

poly(q)(logq + log(1/ε)) .

By Theorem 5.6 and Prop. C.2 we have that

Ω
(

d3

ε2(1 + polylog(d)u(d,1/ε)/d)

)
(39)

samples are required, where

u(d,1/ε)B (loglogd + log(1/ε)) log(loglogd + log(1/ε)) .

Similarly, for the single-copy shadow tomography problem (cf. Def. 6.2), by Theorem 6.3

Ω
(

dmin{log(M), d2}
ε2(1 + polylog(d)u(d,1/ε)/d)

)
(40)

samples are required, even when the measurements are implemented efficiently using a constant
arity gate set of possibly infinite cardinality. Note that these bounds are asymptotically smaller
than those for finite gate sets only when the approximation parameter ε is exponentially small in
the dimension d.
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