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ABSTRACT
We consider the problem of implementing two-party interactive

quantum communication over noisy channels, a necessary endeavor

if we wish to fully reap quantum advantages for communication.

For an arbitrary protocol with n messages, designed for noiseless
qudit channels (where d is arbitrary), our main result is a simulation

method that fails with probability less than 2
−Θ(nϵ )

and uses a qudit

channel n
(
1 + Θ

(√
ϵ
) )

times, of which an ϵ fraction can be cor-

rupted adversarially. The simulation is thus capacity achieving to

leading order, and we conjecture that it is optimal up to a constant

factor in the

√
ϵ term. Furthermore, the simulation is in a model that

does not require pre-shared resources such as randomness or entan-

glement between the communicating parties. Perhaps surprisingly,

this outperforms the best known overhead of 1 +O

(√
ϵ log log 1

ϵ

)
in the corresponding classical model, which is also conjectured to

be optimal [Haeupler, FOCS’14]. Our work also improves over the

best previously known quantum result where the overhead is a

non-explicit large constant [Brassard et al., FOCS’14] for low ϵ .

CCS CONCEPTS
• Mathematics of computing → Coding theory; • Theory of
computation → Quantum communication complexity; In-
teractive computation;
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1 INTRODUCTION
1.1 Motivation

1.1.1 The Main Questions. Quantum communication offers the

possibility of distributed computation with extraordinary provable
savings in communication as compared with classical communica-

tion (see, e.g., [51] and the references therein). Most often, if not

always, the savings are achieved by protocols that assume access

to noiseless communication channels. In practice, though, imperfec-

tion in channels is inevitable. Is it possible to make the protocols

robust to noise while maintaining the advantages offered by quan-

tum communication? If so, what is the cost of making the protocols

robust, and how much noise can be tolerated? In this article, we

address these questions in the context of quantum communication

protocols involving two parties, in the low noise regime. Following

convention, we call the two parties Alice and Bob.

1.1.2 Channel Coding Theory as a Special Case. In the special

case when the communication is one-way (say, from Alice to Bob),

techniques for making the message noise-tolerant, via error cor-

recting codes, have been studied for a long time. Coding allows

us to simulate a noiseless communication protocol using a noisy

channel, under certain assumptions about the noise process (such

as having a memoryless channel). Typically, such simulation is pos-

sible when the error rate (the fraction of the messages corrupted) is

lower than a certain threshold. A desirable goal is to also maximize

the communication rate (also called the information rate), which
is the length of the original message, as a fraction of the length

of its encoding. In the classical setting, Shannon established the

capacity (i.e., the optimal communication rate) of arbitrarily accu-
rate transmission, in the limit of asymptotically large number of

channel uses, through the Noisy Coding Theorem [56]. Since then,

researchers have discovered many explicit codes with desirable
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properties such as good rate, and efficient encoding and decoding

procedures (see, for example, [2, 60]). Analogous results have been

developed over the past two decades in the quantum setting. In

particular, capacity expressions for a quantum channel transmit-

ting classical data [40, 55] or quantum data [25, 49, 58] have been

derived. Even though it is not known how we may evaluate these

capacity expressions for a general quantum channel, useful error

correcting codes have been developed for many channels of inter-

est (see, for example, [7, 10, 21, 22]). Remarkably, quantum effects

give rise to surprising phenomena without classical counterparts,

including superadditivity [27, 39], and superactivation [59]. All of

these highlight the non-trivial nature of coding for noisy quantum

channels.

1.1.3 Communication Complexity as a Special Case. In general

two-party protocols, data are transmitted in each direction alter-

nately, potentially over a number of rounds. In a computation prob-

lem, the number of rounds may grow as a function of the input size.

Such protocols are at the core of several important areas including

distributed computation, cryptography, interactive proof systems,

and communication complexity. For example, in the case of the Dis-

jointness function, a canonical task in the two-party communication

model, an n-bit input is given to each party, who jointly compute

the function with as little communication as possible. The optimal

quantum protocol for this task consists ofΘ
(√
n
)
rounds of commu-

nication, each with a constant length message [1, 20, 41], and such a

high level of interaction has been shown to be necessary [17, 42, 43].

Furthermore, quantum communication leads to provable advan-

tages over the classical setting, without any complexity-theoretic

assumptions. For example, some specially crafted problems (see,

for example, [50, 51]) exhibit exponential quantum advantages,

and others display the power of quantum interaction by showing

that just one additional round can sometimes lead to exponential

savings [43].

1.1.4 The Problem, and Motivation for the Investigation. In this

paper, we consider two-party interactive communication protocols

using noisy communication. The goal is to effectively implement an

interactive communication protocol to arbitrary accuracy despite

noise in the available channels. We want to minimize the number

of uses of the noisy channel, and the complexity of the coding oper-

ations. The motivation is two-fold and applies to both the classical

and the quantum setting. First, this problem is a natural generaliza-

tion of channel coding from the 1-way to the 2-way setting, with

the “capacity” being the best ratio of the number of channel uses in

the original protocol divided by that needed in the noisy implemen-

tation. Here, we consider the combined number of channel uses in

both directions. Note that this scenario is different from “assisted

capacities” where some auxiliary noiseless resources such as a clas-

sical side channel for quantum transmission are given to the parties

for free. Second, we would like to generalize interactive protocols

to the noisy communication regime. If an interactive protocol can

be implemented using noisy channels while preserving the com-

plexity, then the corresponding communication complexity results

become robust against channel noise. In particular, an important

motivation is to investigate whether the quantum advantage in

interactive communication protocols is robust against quantum

noise. Due to the ubiquitous nature of quantum noise and fragility

of quantum data, noise-resilience is of fundamental importance for

the realization of quantum communication networks. The coding

problem for interactive quantum communication was first studied

in [15]. In Section 1.3, we elaborate on this work and the questions

that arise from it.

1.2 Fundamental Difficulties in Coding for
Quantum Interactive Communication

For some natural problems the optimal interactive protocols require

a lot of interaction. For example, distributed quantum search over

n items [1, 20, 41] requires Θ
(√
n
)
rounds of constant-sized mes-

sages [17, 42, 43]. How can we implement such highly interactive

protocols over noisy channels? What are the major obstacles?

1.2.1 Standard Error Correcting Codes Are Inapplicable. In both

the classical and quantum settings, standard error correcting codes

are inapplicable. To see this, first suppose we encode each message

separately. Then the corruption of even a single encoded message

can already derail the rest of the protocol. Thus, for the entire

protocol to be simulated with high fidelity, we need to reduce the

decoding error for each message to be inversely proportional to

the length of the protocol, say n. For constant size messages, the

overhead of coding then grows with the problem size n, increasing
the complexity and suppressing the rate of simulation to 0 as n
increases. The situation is even worse with adversarial errors: the

adversary can invest the entire error budget to corrupt the shortest

critical message, and it is impossible to tolerate an error rate above

≈ 1/number of rounds, no matter what the rate of communication

is. To circumvent this barrier, one must employ a coding strategy

acting collectively over many messages. However, most of these are

generated dynamically during the protocol and are unknown to the

sender earlier. Furthermore, error correction or detection may re-

quire communication between the parties, which is also corruptible.

The problem is thus reminiscent of fault-tolerant computation in

that the steps needed to implement error correction are themselves

subject to errors.

1.2.2 The No-Cloning Quantum Problem. A fundamental prop-

erty of quantum mechanics is that learning about an unknown

quantum state from a given specimen disturbs the state [5]. In par-

ticular, an unknown quantum state cannot be cloned [26, 61]. This

affects our problem in two fundamental ways. First, any logical

quantum data leaked into the environment due to the noisy channel

cannot be recovered by the communicating parties. Second, the

parties hold a joint quantum state that evolves with the protocol,

but they cannot make copies of the joint state without corrupting

it.

1.3 Prior Classical and QuantumWork
Despite the difficulties in coding for interactive communication,

many interesting results have been discovered over the last 25 years,

with a notable extension in the quantum setting.

1.3.1 Classical Results Showing Positive Rates. Schulman first

raised the question of simulating noiseless interactive communica-

tion protocols using noisy channels in the classical setting [52–54].

He developed tree codes to work with messages that are determined

one at a time, and generated dynamically during the course of the
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interaction. These codes have constant overhead, and the capacity

is thus a positive constant. Furthermore, these codes protect data

against adversarial noise that corrupts up to a
1

240
fraction of the

channel uses. This tolerable noise rate was improved by subsequent

work, culminating to the results by Braverman and Rao [19]. They

showed that < 1

4
adversarial errors can be tolerated provided one

can use large constant alphabet sizes and that this bound on noise

rate is optimal.

1.3.2 Classical Results with Efficient Encoding and Decoding.
The aforementioned coding schemes are not known to be compu-

tationally efficient, as they are built on tree codes; the computa-

tional complexity of encoding and decoding tree codes is unknown.

Other computationally efficient encoding schemes have been devel-

oped [12–14, 31, 32, 34]. The communication rates under various

scenarios have also been studied [16, 28, 29, 35]. However, the rates

do not approach the capacity expected of the noise rate.

1.3.3 Classical Results with Optimal Rates. Kol and Raz [44]

first established coding with rate approaching 1 as the noise pa-

rameter goes to 0, for the binary symmetric channel. Haeupler [36]

extended the above result to adversarial binary channels corrupting

at most an ϵ fraction of the symbols, with communication rate

1 − O

(√
ϵ log log

(
1

ϵ

))
, which is conjectured to be optimal. For

oblivious adversaries, this increases to 1−O(
√
ϵ). Further studies of

capacity have been conducted, for example, in [3, 38]. For further

details about recent results on interactive coding, see the extensive

survey by Gelles [30].

1.3.4 Quantum Results Showing Positive Rates. All coding for

classical interactive protocols relies on “backtracking”: if an error

is detected, the parties go back to an earlier stage of the protocol

and resume from there. Backtracking is impossible in the quantum

setting due to the no cloning principle described in the previous

subsection. There is no generic way to make copies of the quantum

state at earlier stages without restarting the protocol. Brassard,

Nayak, Tapp, Touchette, and Unger [15] provided the first coding

scheme with constant overhead by using two ideas. The first idea

is to teleport each quantum message. This splits the quantum data

into a protected quantum share and an unprotected classical share

that is transmitted through the noisy channels using tree codes.

Second, backtracking is replaced by reversing of steps to return to

a desirable earlier stage; i.e., the joint quantum state is evolved

back to that of an earlier stage, which circumvents the no-cloning

theorem. This is possible since local operations can be made unitary,

and communication can be reversed (up to more noise). Together, a

positive simulation rate (or constant overhead) can be achieved. In

the noisy analogue to the Cleve-Buhrman communication model

where entanglement is free, error rate < 1

2
can be tolerated. In the

noisy analogue to the Yao (plain) model, a noisy quantum channel

with one-way quantum capacity Q > 0 can be used to simulate

an n-message protocol given O
(
1

Q n
)
uses. However, the rate can

be suboptimal and the coding complexity is unknown due to the

use of tree codes. The rate is further reduced by a large constant in

order to match the quantum and classical data in teleportation, and

in coordinating the action of the parties (advancing or reversing

the protocol).

1.4 Results in This Paper, Overview of
Techniques, and Our Contributions

Inspired by the recent results on rate optimal coding for the classical

setting [36, 44] and the rate suboptimal coding in the quantum

setting [15], a fundamental question is: can we likewise avoid the

loss of communication rate for interactive quantum protocols? In

particular, is it possible to protect quantum data without pre-shared

free entanglement, and if we have to generate it at a cost, can

we still achieve rate approaching 1 as the error rate vanishes?

Further, can erroneous steps be reversed with noisy resources, and

with negligible overhead as the error rate vanishes? What is the

complexity of rate optimal protocols, if one exists? Are there other

new obstacles?

Our main result addresses all these questions. We focus on alter-

nating protocols, in which Alice and Bob exchange qudits back and

forth in alternation.

Theorem 1. Consider an interactive two-party communication
protocol Π with n messages of size one qubit each. We provide a
simulation protocol Π′ using n

(
1 + Θ

(√
ϵ
) )

messages over a fully
adversarial binary quantum channel corrupting at most an ϵ fraction
of these messages. (In other words, the simulation achieves a commu-
nication rate of 1−Θ

(√
ϵ
)
.) The probability of a successful simulation

is at least 1−2
−Θ(nϵ ) and the computational complexity of the coding

operations is O
(
n2

)
. Similar results hold for other alphabet sizes.

1.4.1 Remarks on Our Main Result. Besides resolving the ques-

tion concerning rate optimal coding for quantum interactive com-

munication in the low-noise regime, our work achieves a few addi-

tional goals. First, the above result is achieved in the plain quantum

model, where the two parties have no pre-shared resource (such

as secret key or entanglement). Remarkably, our rate outperforms

the conjectured optimal bound in the corresponding plain classical

model! Intuitively, this is possible in the quantum setting because a

secret key can be obtained from low noise quantum communica-

tion (or from entanglement) and then more efficient hashing can

be performed. Second, our work provides the first computationally

efficient interactive coding scheme in the quantum setting. Third,

our result is the first of its kind for establishing the capacity for a

noisy quantum channel used in both directions to leading order.

1.4.2 Outline of the Ideas and Our Contributions. Our rate opti-
mal protocol requires a careful combination of ideas to overcome

various obstacles. Some of these ideas are well-established, some

are not so well known, some require significant modifications, and

some are new. A priori, it is not clear whether these ideas would be

useful in the context of the problem. For the clarity of presentation,

we start with two simplifications, namely free entanglement and

large alphabet size d = poly (n). We introduce several key ideas

while developing a basic solution to approach the optimal rate in

this scenario. Then, we extend these ideas to the plain model with

large alphabet size. Finally, we adapt our protocols to the binary al-

phabet in both settings. In the process, we solve the coding problem

in all 4 scenarios.
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A priori, there is little reason to expect that the simulation frame-

work and the tools developed for each successive case extend to the

next. However, the extensions are surprisingly seamless and with-

out serious obstacles, culminating in the final result. This testifies

to the power of the framework and choice of tools we deploy.

In this extended abstract, we focus on the simplest model we

study, teleportation-based protocols via noisy classical channels

with large alphabet. This is the focus of Section 2. We then briefly

discuss in Section 3 the ideas required to extend this to the noisy

quantum communication setting without pre-shared entanglement.

Section 4 then briefly discusses how to extend to the small alphabet

setting. All of these are discussed in greater details in the full version

of this work [47]. We conclude by discussing the implication of our

work as well as related open questions.

1.5 Preliminaries
1.5.1 Teleportation [4]. Suppose two parties Alice and Bob share

entanglement in the form of a maximally entangled state (MES)

over two d-dimensional systems, and Alice has a d-dimensional

quantum message. She can perform a simple joint measurement on

the message and her half of the MES, and upon getting one of d2

possible outcomes k , Bob’s half of the MES will be in the quantum

state which is the original quantum message rotated by a Pauli
unitary operation labeled by k . If Alice transmits k to Bob, he can

reverse the unitary operation to obtain the message. (Similarly Bob

can teleport a d-dimensional message to Alice. They have to agree

beforehand who is teleporting to whom.)

1.5.2 The Cleve-Burhman Model and the Yao Model. In the

Cleve-Buhrman communication complexity model [24], the parties

have access to free entanglement and a two-way noiseless classi-

cal channel. The parties may simulate quantum communication

through teleportation. In the Yao model [62], the parties have access

to noiseless quantum channels, but no pre-shared entanglement.

1.5.3 Adversarial Noise Model. In the noisy analogue to the

Cleve-Burhman model, adversarial noise with noise parameter δ
corrupts up to a fraction δ of the classical messages. The location of

the errors can be chosen by the adversary, even adaptively depend-

ing on the earlier messages. In the noisy analogue to the Yao model

(plain model), a strongly adversarial noise model with noise param-

eter δ includes malicious adaptative channel attacks, as long as the

overall noisy evolution has Kraus operators acting nontrivially on

at most a fraction δ of all messages.

1.5.4 The Large Alphabet Assumption. Following Haeupler [36],
we first consider the “large alphabet case” which allows the message

size to grow with n (the number of messages in the interactive

protocol Π we wish to implement). In particular, the message has a

poly (n)-sized alphabet (which is equivalent to a message block of

O (logn) qubits). This simplifies the problem in several ways. First,

adversarial noise is reduced to corruption of blocks of O (logn)
qubits. Second, the given communication protocol Π is in effect

less interactive. Third, simpler synchronisation (detailed below)

between Alice and Bob is possible, since a constant number of

symbols are sufficient to exchange position information (how far

each party has simulated Π in his/her view). Similarly a constant

number of messages allows for the exchange of sufficient key to

perform hashing and to compare hashes.

2 TELEPORTATION-BASED PROTOCOLS VIA
CLASSICAL CHANNEL WITH LARGE
ALPHABET

2.1 Main Ideas
We adapt from [15] the ideas to teleport each quantum message

and to reverse the protocol instead of backtracking.

We also adapt Haeupler’s template [36] to make a conversation

robust to noise: Both parties conduct their original conversation as

if there were no noise, except for the following:

• At regular intervals they exchange concise summaries (a

Θ (1) or Θ (log logn)-bit hash value) of the conversation up

to the point of the exchange.

• If the summary is consistent, they continue the conversation.

• If the summary is inconsistent, an error is detected. The

parties backtrack to an earlier stage of the conversation and

resume from there.

This template can be interpreted as an error correcting code over

many messages, with trivial (and most importantly message-wise)
encoding. The 2-way summaries measure the error syndromes over

a large number of messages, thereby preserving the rate. It works

(in the classical setting) by limiting the maximum amount of com-

munication wasted by a single error toOϵ (1). The worst case error

disrupts the consistency checks, but Alice and Bob agree to back-

track a constant amount when an inconsistency is detected. As the

error fraction vanishes, the communication rate goes to 1. In addi-

tion, these consistency tests are efficient, consisting of evaluation

of hash functions.

2.1.1 Insufficiency of Simply Combining [15] and [36]. Suppose
we have to simulate an interactive protocol Π that uses noiseless

classical channels in the teleportation-based model. When imple-

menting Π with noisy classical channels, it is not sufficient to apply

Haeupler’s template to the classical messages used in teleportation,

and reverse as in [15] when an error is detected. The reason is

that, in [15], each message is expanded to convey different types of

actions in one step (simulating the protocol forward or reversing

it). This also maintains the matching between classical data with

the corresponding MES, and the matching between systems con-

taining MESs. However, this method incurs a large constant factor

overhead which we cannot afford to incur.

2.1.2 New Difficulties in Rate-Optimal Simulations. Due to er-
rors in communication, the parties need to actively rewind the

simulation to correct errors on their joint quantum state. This itself

can lead to a situation where the parties may not agree on how they

proceed with the simulation (to rewind simulation or to proceed

forward). In order to move on, both parties first need to know what

the other party has done so far in the simulation. This allows them

to obtain a global view of the current joint state and decide on their

next action. In Ref. [15], this reconciliation step was facilitated by

the extra information sent by each party and the use of tree codes.

This mechanism is not available to us.
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2.1.3 Framework. Our first new idea is to introduce sufficient

yet concise data structures so that the parties can detect inconsis-

tencies in (1) the stage in which they are in the protocol, (2) what

type of action they should be taking, (3) histories leading to the

above, (4) histories of measurement outcomes generated by one

party versus the potentially different (corrupted) received instruc-

tion for teleportation decoding, (5) which system contains the next

MES to be used, (6) a classical description of the joint quantum

state, which is only partially known to each party. Each of Alice

and Bob maintain her/his data (we collectively call these DA,DB
respectively, here), and also an estimate of the other party’s data

(D̃B, D̃A respectively). Without channel noise, these data are equal

to their estimates.

2.1.4 A Major New Obstacle: Out-of-Sync Teleportation. Now, at
every step in the simulation protocol Π′

, Alice and Bob may engage

in one of three actions: a forward step in Π, step in reverse, or the

exchange of classical summaries. However, the summaries can also

be corrupted. This leads to a new difficulty: errors in the summaries

can trigger Alice and Bob to engage in different actions. In particular,

it is possible that one party tries to teleport while the other expects

classical communication, with only one party consuming his/her

half of an MES. They then become out-of-sync over which MESs

to use. This kind of problem, to the best of our knowledge, has not

been encountered before, and it is not clear if quantum data can be

protected from such error. (For example, Alice may try to teleport

a message into an MES that Bob already “used” earlier.) One of

our main technical contributions is to show that the quantum data

can always be located and recovered when Alice and Bob resolve

the inconsistencies in their data (DA, D̃B) and (D̃A,DB) in the low

noise regime. This is particularly surprising since quantum data can

potentially leak irreversibly to the environment (or the adversary):

Alice and Bob potentially operate in an open system due to channel

noise, and out-of-sync teleportation a priori does not protect the

messages so sent.

2.1.5 Tight Rope Between Robustness and Rate. The simulation

maintains sufficient data structures to store information about each

party’s view so that Alice and Bob can overcome all the obsta-

cles described above. The simulation makes progress so long as

Alice’s and Bob’s views are consistent. The robustness of the simula-

tion requires that the consistency checks be frequent and sensitive

enough so that errors are caught quickly. On the other hand, to

optimize interactive channel capacity, the checks have to remain

communication efficient and not too frequent neither. This calls for

delicate analysis in which we balance the two. We also put in some

redundancy in the data structures to simplify the analysis.

2.2 Results
In this section, we focus on the teleportation-based quantum com-

munication model. In more detail, Alice and Bob share an unlimited

number of EPR pairs (MESs) before the protocol begins. The parties

effectively send each other a qubit (or a qudit) using an EPR-pair

(or an MES) and two classical bits (or dits) of communication. The

complexity of the protocol is the number of classical bits (or dits)

exchanged, while the the number of EPR-pairs (or MESs) used

are available for free. We call this model noiseless if the classical

channel is noiseless.

Our main result about this model is the simulation of an n-
message noiseless communication protocol over an adversarial

channel that corrupts any ϵ fraction of the transmitted symbols.

First, we state the result for large alphabets.

Theorem 2. Consider teleportation-based noiseless communica-
tion protocols of length n defined over a channel with a Θ(logn)-bit
alphabet, and the problem of simulating them with a noisy version of
the channel over the same alphabet.

There is a protocol that with probability at least 1 − 2
−Ω(ϵn), sim-

ulates any n-symbol teleportation-based noiseless communication
protocol using n(1 + Θ(

√
ϵ)) symbols over any fully adversarial er-

ror channel with error rate at most ϵ . In other words, the simulation
achieves information rate 1 − Θ(

√
ϵ).

The simulation of channels over constant-size alphabets is more

challenging. Nonetheless, we show that a similar simulation is

possible in this case as well.

Theorem 3. Consider teleportation-based noiseless communica-
tion protocols of length n defined over a channel with a constant-size
alphabet, and the problem of simulating them with a noisy version of
the channel over the same alphabet.

There is a protocol that with probability at least 1 − 2
−Ω(ϵn), sim-

ulates any n-symbol teleportation-based noiseless communication
protocol using n(1 + Θ(

√
ϵ)) symbols over any fully adversarial er-

ror channel with error rate at most ϵ . In other words, the simulation
achieves information rate 1 − Θ(

√
ϵ).

2.3 Description of Simulation
In the teleportation-based quantum communication model, Alice

and Bob implement a protocol Π0 with prior shared entanglement

and quantum communication by substituting teleportation for quan-

tum communication. For simplicity, we assume that Π0 is alternat-

ing, and begins with Alice. It acts on input state |ψinit⟩
ABCER

, with

the A register held by Alice, the B register held by Bob, the C reg-

ister a qudit communication register exchanged back-and-forth

between Alice and Bob, and held by Alice at both the beginning

and the end of the protocol, the E register held by Eve, a potential

adversary, and the ABCE registers are purified by a reference regis-

ter R, untouched throughout. In the implementation Π of Π0, the

message register C from Π0 has two counterparts, CA and CB, held

by Alice and Bob, respectively. The unitary operations on AC in Π0

are applied by Alice on ACA in Π. When Alice sends the qudit in C
to Bob in Π0, she applies the teleportation measurement to CA and

her share of the next available MES, and sends the measurement

outcome to Bob in Π. Then Bob applies a decoding operation on

his share of the MES, based on the message received, and swaps

the MES register with CB. Bob and Alice’s actions in Π when Bob

wishes do a local operation and send a qudit to Alice in Π0 are anal-

ogously defined. For ease of comparison with the joint state in Π0,

we describe the joint state of the registers in Π (or its simulation

over a noisy channel) in terms of registers ABC . There, C stands

for CA if Alice is to send the next message or all messages have

been sent, and for CB if Bob is to send the next message.
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Starting with such a protocol Π in the teleportation-based model,

we design a simulation protocol Π′
which uses a noisy classical

channel. The simulation works with blocks of even number of mes-

sages. By a block of size r (for even r ) of Π, we mean a sequence

of r local operations and messages alternately sent in Π by Alice

and Bob, starting with Alice.

Roughly speaking, Alice and Bob run the steps of the original

protocol Π as is, in blocks of size r B Θ( 1√
ϵ
), with r even. They

exchange summary information between these blocks, in order to

check whether they agree on the operations that have been applied

to the quantum registers ABC in the simulation. The MESs used for

teleportations are correspondingly divided into blocks of r MESs,

implicitly numbered from 1 to r : the odd numbered ones are used

to simulate quantum communication from Alice to Bob, and the

even numbered ones from Bob to Alice. If either party detects an

error in transmission, they may run a block of Π in reverse, or

simply communicate classically to help recover from the error. The

classical communication is also conducted in sequences equal in

length to the ones involving a block of Π. A block of Π′
refers to

any of these types of sequences.

2.3.1 Meta Data. In more detail, Alice uses an iteration in Π′

for one out of four different types of operations: evolving the simu-

lation by running a block of Π in the forward direction (denoted a

“+1” block); reversing the simulation by applying inverses of unitary

operations of Π (denoted a “−1” block); synchronizing with Bob

on the number of MESs used so far by applying identity operators

between rounds of teleportation (denoted a “0” block, with 0 stand-

ing for the application of unitary operationsU 0

i which are IAC ”);
catching up on the description of the protocol so far by exchang-

ing classical data with Bob (denoted a “C” block, with C standing

for “classical”). Alice records the sequence of types of blocks as

her “metadata” in the string FullMA ∈ {±1, 0,C}∗. FullMA gets

extended by one symbol for each new block of the simulation pro-

tocol Π′
. The number of blocks of r MESs Alice has used is denoted

qMA which corresponds to the number of non-C symbols in FullMA.

Similarly, Bob maintains data FullMB and qMB.

FullMA and FullMBmay not agree due to the transmission errors.

To counter this, the two players exchange information about their

metadata at the end of each block. Hence, Alice also holds M̃B

and q
M̃B

as her best estimation of Bob’s metadata and the number

of MESs he has used, respectively. Similarly, Bob holds M̃A and

q
M̃A

. We use these data to control the simulation; before taking any

action in Π′
, Alice checks if her guess M̃B equals FullMB. Bob does

the analogous check for his data.

2.3.2 Number of MESs Used. Once the two parties reconcile

their view of the other’s metadata with the actual metadata, they

might detect a discrepancy in the number of MESs they have used.

The three drawings in Figure 1 represent the ⌈nr (1+O(rϵ))⌉ blocks

of r = O(
√
1/ϵ)MESs at different points in the protocol: first, before

the protocol begins; second, when Alice and Bob have used the

same number of MESs; and third, when they are not synchronized,

say, Alice has used more blocks of MESs than Bob. A difference

in qMA and qMB indicates that the joint state of the protocol Π
can no longer be recovered from registers ACACBB alone. Since

one party did not correctly complete the teleportation operation,

the (possibly erroneous) joint state may be thought of as having

“leaked” into the partially measured MESs which were used by only

one party.

2.3.3 Pauli Data. The last piece of information required to com-

plete the description of what has happened so far on the quantum

registers ABC is about the Pauli operators corresponding to tele-

portation, which we call the “Pauli data”. These Pauli data contain

information about the teleportation measurement outcomes as well

as about the teleportation decoding operations. Since incorrect tele-

portation decoding may arise due to the transmission errors, we

must allow the parties to apply Pauli corrections at some point.

We choose to concentrate such Pauli corrections on the receiver’s

side at the end of each teleportation. These Pauli corrections are

computed from the history of all classical data available, before

the evolution or reversal of Π in a block starts, whereas the mea-

surement and decoding Pauli data are exchanged online during the

computation. The measurement data are directly transmitted over

the noisy classical communication channel and the decoding data

are directly taken to be the data received over the noisy channel. If

there is no transmission error, the decoding Pauli operation should

correspond to the inverse of the effective measurement Pauli oper-

ation and cancel out to yield a noiseless quantum channel. Figure 2

depicts the different types of Pauli data in a block corresponding to

type +1 for Alice and −1 for Bob. Alice records as her Pauli data

in the string FullPA ∈ (Σ3r )∗, the sequence of Pauli operators that
are applied on the quantum register on her side. Alice records her

Pauli data in the following order:

measurement outcome for the first qudit she teleports,

decoding operation for the first qudit she receives,

correction operation for the same qudit (the first qudit

she receives);

measurement outcome for the second qudit she sends,

decoding operation for the second qudit she receives,

correction operation for the same qudit (the second

qudit she receives);

and so on.

Similarly Bob records as his Pauli data in FullPB, the sequence of

Pauli operators applied on his side, but in a different order:

decoding operation for the first qudit he receives,

correction operation for the same qudit (the first qudit

he receives),

measurement outcome for the first qudit he teleports;

decoding operation for the second qudit he receives,

correction operation for the same qudit (the second

qudit he receives),

measurement outcome for the second qudit he sends;

and so on.

Notice that the 3r symbols in the alphabet set Σ corresponding to

Alice’s Pauli operations in a block can be decomposed as
r
2
pieces

of six symbols in Σ: two for each measurement outcome, two for

each teleportation decoding and two for each Pauli correction. As

described above, the measurement outcome and the decoding Pauli

operations are available to the sender and the receiver, respectively.

Based on the message transcript in Π′
so far, Alice maintains her

best guess P̃B for Bob’s Pauli data and Bob maintains his best guess
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Figure 1: These figures represent the blocks of MES pairs at different stages of the protocol. Those depicted as dots have
not been used yet for teleportation, those depicted by squares have been used already. The figure (a) represents them at the
beginning of the protocol, when none have been used. The figure (b) represents them when Alice and Bob have used the same
number of them; this is the desired situation. The figure (c) represents a situation when Alice and Bob are out of sync; here
Alice has used more MES pairs than Bob. They then work to get back in sync before resuming the simulation.

P̃A for Alice’s Pauli data. These data also play an important role in

the simulation. Before taking any action in Π′
, Alice checks if her

guess P̃B equals FullMB. Bob does the analogous check for his data.

Alice and Bob check and synchronize their classical data, i.e.,

the metadata and Pauli data by employing the ideas underlying the

Haeupler algorithm [36]. Once they agree on each other’s metadata

and Pauli data, they both possess enough information to compute

the content of the quantum register (to their best knowledge).

2.3.4 First Representation of the Quantum Register. A first rep-

resentation for the content of the quantum registers ABC in Π′

can be obtained directly and explicitly from the metadata and the

Pauli data, and is denoted JS1, as in Eq. (1) below, with JS standing

for “joint state”. We emphasize that this is the state conditioned

on the outcomes of the teleportation measurements as well as the

transcript of classical messages received by the two parties. How-

ever, the form JS1 is essentially useless for deciding the next action

that the simulation protocol Π′
should take, but it can be simplified

into a more useful representation. This latter form, denoted JS2,

as in Eq. (2) below, directly corresponds to the further actions we

may take in order to evolve the simulation of the original protocol

or to actively reverse previous errors. For the description of the

algorithm, we first consider JS1 or JS2 in the case when qMA = qMB.

Later we also consider the remedial actions the parties take in the

case when the two numbers are different, i.e., when Alice and Bob

are not synchronized in the number of MESs used.

We sketch how to obtain JS1 from FullMA, FullMB, FullPA and

FullPB (when qMA = qMB). Each block of r MESs which have

been used by both Alice and Bob is represented by a bracketed

expression [∗i] for some content “∗i” corresponding to the ith block

that we describe below. The content of the quantum registers is

then the ABC part of

JS1 = [∗qMA] · · · [∗2][∗1] |ψinit⟩
ABCER , (1)

with |ψinit⟩
ABCER

being the initial state of the original protocol. It

remains to describe the content ∗i of the ith bracket. It contains

from right to left
r
2
iterations of the following:

Alice’s unitary operation - Alice’s teleportation mea-

surement outcome -

Bob’s teleportation decoding - Bob’s Pauli correction

- Bob’s unitary operation - Bob’s teleportation mea-

surement outcome -

Alice’s teleportation decoding - Alice’s Pauli correc-

tion.

It also allows for an additional unitary operation of Alice on the

far left when she is implementing a block of type −1; we elaborate

on this later. If Alice’s block type is +1, all her unitary operations

are consecutive unitary operations from the original protocol (with

the index of the unitary operations depending on the number of

±1 in FullMA), while if it is −1, they are inverses of such unitary

operations. If Alice’s block type is 0, all unitary operations are equal

to the identity on registers ACA. Similar properties hold for Bob’s

unitary operations on registers BC . Alice’s block type corresponds

to the content of the ith non-C element in FullMA, and Bob’s to

the content of the ith non-C element in FullMB. Alice’s Pauli data

corresponds to the content of the ith block in FullPA, and Bob’s to

the content of the ith block in FullPB. The precise rules by which

Alice and Bob determine their respective types for a block in Π′
,

and which blocks of Π (if any) are involved, are deferred to the the

full version.

To give a concrete example, suppose from her classical data, Al-

ice determines that in her ith non-C block of Π′
, she should actively

reverse the unitary operations of block k of Π to correct some er-

ror in the joint state. So her ith non-C block of Π′
is of type −1.

Suppose Alice’s Pauli data in the ith block of FullPA correspond to

Pauli operators pA,1pA,2 · · ·pA,3r/2. Consider Bob’s ith non-C block

of Π′
. Note that this may be a different block of Π′

than Alice’s ith
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Figure 2: Representation of the teleportation scheme for a size r block. The figure on the left corresponds to Alice and Bob
having blocks of type +1, the most common block type, and the one on the right to a block of type −1 for both. The large
rectangles correspond to unitary operations or their inverses, or even an identity, of the original protocol being applied by
Alice or by Bob to AC or BC, respectively. Bob has r/2 rectangles and applies a unitary operation or an inverse in each of them
whenever he has a block of type ±1. Alice has r/2 + 1 rectangles and uses the first r/2 to apply unitary operations in a block of
type +1 and apply an identity on the last one, while she applies an identity in the first one and inverses of unitary operations
in the r/2 last ones in a block of type −1. This is so that a −1 block for Alice can be the inverse of a +1 block for Alice, and
vice-versa. The small circles correspond to the Pauli operations due to teleportationmeasurement and teleportation decoding,
with the teleportation being from Alice to Bob on odd MES pairs and from Bob to Alice on even MES pairs. The small squares
on the receiver side right after the teleportation decoding circle corresponds to the Pauli corrections made in order to try to
correct errors in previous blocks.

non-C block. Suppose from his classical data, Bob determines that

in his ith non-C block of Π′
, he should apply the unitary operations

of block j of Π to evolve the joint state further. So his ith non-C
block of Π′

is of type +1. Suppose Bob’s Pauli data in the ith block

of FullPB correspond to Pauli operators pB,1pB,2 · · ·pB,3r/2, respec-
tively. Then from FullMA, FullMB, FullPA, FullPB, we can compute

a description of the joint state as in Eq. (1), with ∗i equal to

U −1
kr+1

×

(
pA,3(r/2−1)+3 pA,3(r/2−1)+2

)
×

(
pB,3(r/2−1)+3 Ujr+r pB,3(r/2−1)+2 pB,3(r/2−1)+1

)
×

(
pA,3(r/2−1)+1 U −1

kr+3

)
× · · ·
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×

(
pA,3(s−1)+3 pA,3(s−1)+2

)
×

(
pB,3(s−1)+3 Ujr+2s pB,3(s−1)+2 pB,3(s−1)+1

)
×

(
pA,3(s−1)+1 U −1

kr+(r−2s+3)

)
× · · ·

×
(
pA,6 pA,5

) (
pB,6 Ujr+4 pB,5 pB,4

) (
pA,4 U −1

kr+(r−1)

)
×
(
pA,3 pA,2

) (
pB,3 Ujr+2 pB,2 pB,1

) (
pA,1 I

)
.

Note that Alice and Bob are not necessarily able to compute the

state JS1. However, they compute analogous states using their best

guess for the other party’s meta data and Pauli data. They use

these best-guess states to compute states analogous to JS2 using

the process below. These in turn determine their course of action

in the simulation.

2.3.5 Second Representation. To obtain JS2 from JS1, we first

look inside each bracket and recursively cancel consecutive Pauli

operators inside the bracket. In case a bracket evaluates to the

identity operator on registers A′B′C ′
, we remove it. Once each

bracket has been cleaned up in this way, we recursively try to cancel

consecutive brackets if their contents correspond to the inverse of

one another (assuming that no two Ui of the original protocol are
the same or inverses of one another). Once no such cancellation

works out anymore, what we are left with is representation JS2,

which is of the following form:

JS2 = [#b] · · · [#1][Uдr · · ·U(д−1)r+2U(д−1)r+1] · · · (2)

[Ur · · ·U2U1] |ψinit⟩
ABCER .

(3)

Here, the first д brackets starting from the right correspond to the

“good” part of the simulation, while the last b brackets correspond

to the “bad” part of the simulation, the part that Alice and Bob have

to actively rewind later. The integerд is determined by the left-most

bracket such that along with its contents, those of the brackets to

the right equal the sequence of unitary operationsU1,U2, . . . ,Uдr
from the original protocol Π in reverse. The brackets to the left of

the last д brackets are all considered bad blocks. Thus, the content

of [#1] is not [U(д+1)r · · ·Uдr+1], while the contents of [#2] to [#b]
are arbitrary and have to be actively rewound before Alice and Bob

can reverse the content of [#1].

Once Alice and Bob synchronize each other’s metadata and Pauli

data and compute their best guesses for JS2, if b > 0, they actively

reverse the incorrect unitary operators in the bad blocks. They start

by applying the inverse of [#b], choosing appropriately whether

to have a type ±1 or 0 block, and also choosing appropriate Pauli

corrections. Else, if b = 0, they continue implementing unitary

operationsUдr+1 toU(д+1)r of the original noiseless protocol Π to

evolve the simulation. (Actually, each player has their independent

view of the joint state, and takes actions assuming that their view

is correct.)

We describe a few additional subtleties on how the parties access

the quantum register in a given block, as represented in Figure 2.

First, each block begins and ends with Alice holding register C and

being able to perform a unitary operation. In +1 blocks, she applies

a unitary operation at the beginning and not at the end, whereas

in −1 blocks she applies the inverse of a unitary operation at the

end and not at the beginning. This is in order to allow a −1 block

to be the inverse of a +1 block, and vice-versa. Second, whenever

Alice and Bob are not synchronized in the number of MESs they

have used so far, the party who has used more will wait for the

other to catch up by creating a new type C block while the party

who has used less will try to catch up by creating a type 0 block,

sequentially feeding the C register at the output of a teleportation

decoding to the input of the next teleportation measurement. (We

elaborate on this in Section 2.4 below.) Notice that due to errors in

communication, it might happen that +1 blocks are used to correct

previous erroneous −1 blocks and 0 blocks are used to correct

previous erroneous 0 blocks. As illustrated in Figure 2, the block on

the right is the inverse of the one on the left if the corresponding

Pauli operators are inverses of each other.

2.3.6 Summary of Main Steps. We now summarize the different

steps that Alice and Bob follow in the simulation protocol Π′
. (Each

of them runs the simulation algorithm based on their view of the

communication transcript.) In one iteration of the simulation, only

one step involving communication is conducted (and this consti-

tutes one block of operations). We proceed from one step to the

next only if the goal of the step has been achieved through the

previous iterations. The algorithms mentioned in this summary are

presented in the full version.

Algorithm 1:Main steps in one iteration of the simulation for
the large alphabet teleportation-based model

(1) Agree on the history of the simulation contained in the

metadata, i.e., ensure FullMA = M̃A and FullMB = M̃B.

This involves Algorithm rewindMD, and Algorithm

extendMD.
(2) Synchronize the number of MES pairs used, in

particular, ensure qMA = q
M̃B

and qMB = q
M̃A

.

This involves Algorithm syncMES.
(3) Agree on Pauli data for all the teleportation steps and

additional Pauli corrections for addressing channel

errors, i.e., ensure FullPA = P̃A and FullPB = P̃B.

This is done via Algorithm rewindPD and Algorithm

extendPD.
(4) Compute the best guess for JS1 and JS2. If there are any

“bad” blocks in the guess for JS2, reverse the last bad

block of unitary operations. I.e., implement quantum

rewinding so that b = 0 in JS2.

This is done in Algorithm Q-simulate.
(5) If no “bad” blocks remain, implement the next block of

rounds of the original protocol. This results in an

increase in д in JS2, and is also done through Algorithm

Q-simulate.

This is also summarized in flowchart form in Figure 3.

Notice that unless there is a transmission error or a hash collision

in comparing a given type of data (as in Ref. [36]), Alice and Bob

cycle through these steps in tandem.
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Figure 3: Flowchart of the teleportation-based scheme for high rate noisy interactive quantum communication. Most of the
communication is spent actually trying to simulate the protocol, in the Q-simulate part.

2.4 Out-of-Sync Teleportation
Consider an iteration in which Alice believes she should implement

a +1 block, while Bob believes he has to resolve an inconsistency

in their classical data. Alice will simulate one block of the noiseless

protocol Π, consuming the next block of MESs. On the other hand,

Bob will try to resolve the inconsistency through classical commu-

nication alone, and not access the quantum registers. Thus Alice

will treat Bob’s messages as the outcomes of his teleportation mea-

surements, and she performs the teleportation decoding operations

according to these messages. The situation is even worse, since

Alice sends quantum information to Bob through teleportation of

which Bob is unaware, and Bob views the teleportation measure-

ment outcomes sent by Alice as classical information about Alice’s

local Pauli data and metadata corresponding to previous iterations.

Note that at this point the quantum state in registers ABC may

potentially be lost. This scenario could continue for several itera-

tions and derail the simulation completely. To recover from such

a situation, especially to retrieve the quantum information in the

unused MESs at his end, it would seem that Alice and Bob would

have to rewind the simulation steps in Π′
(and not only the steps

of the original protocol Π) to an appropriate point in the past. This

rewinding itself would be subject to error, and the situation seems

hopeless. Nonetheless, we provide a simple solution to address this

kind of error, which translates out-of-sync teleportation to errors in

implementing the forward simulation or rewinding of the original

protocol Π.
As explained in the previous subsection, Alice and Bob first rec-

oncile their view of the history of the simulation stored in their

metadata. Through this, suppose they both discover the discrepancy

in the number of MESs used. (There are other scenarios as well; for

example, they may both think that qMA = qMB. These scenarios

lead to further errors, but the simulation protocol Π′
eventually

discovers the difference in MESs used.) In the scenario in which

Alice and Bob both discover that qMA , qMB, they try to “gather”

the quantum data hidden in the partially used MESs back into the

registers ABC . In more detail, suppose Bob has used fewer MESs

than Alice, and he discovers this at the beginning of the ith itera-

tion. Let E1E2 · · · Er be registers with Bob that hold the halves of

the first block of MESs that Alice has used but Bob has not. Note

that E1,E3, . . . ,Er−1 contain quantum information teleported by

Alice, and E2,E4, . . . ,Er are MES-halves intended for teleportation

by Bob. The MES-halves corresponding to E2,E4, . . . ,Er have al-
ready been used by Alice to “complete” teleportation she assumed

Bob has performed. Say Alice used this block of MESs in the i ′-th
iteration. In the i-th iteration, Bob teleports the qudit E1 using the

MES-half E2, E3 with E4, and so on. That is, Bob teleports qudit Ej
using the MES-half Ej+1 in increasing order of j , for all odd j ∈ [r ],
as if the even numbered MESs had not been used by Alice. The

effect of this teleportation is the same as if Alice and Bob had both
tried to simulate the local operations and communication from the

original protocol in the i ′-th iteration (in the forward direction or

to correct the joint state), except that the following also happened
independently of channel error :

(1) the Pauli operations used by Bob to decode E1,E3, . . . ,Er−1
were all the identity,

(2) the unitary operations used by Bob on the registers BC were

all the identity, and
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(3) the Pauli operations applied by Alice for decoding Bob’s

teleportation were unrelated to the outcome of Bob’s tele-

portation measurements.

This does not guarantee correctness of the joint state in ABC , but
has the advantage that quantum information in the MES-halves

E1,E3, . . . ,Er−1

that is required to restore correctness is redirected back into the reg-

istersABC . In particular, the difference in the number of MESs used

by the two parties is reduced, while the errors in the joint quantum

state in ABC potentially increase. The errors in the joint state are

eventually corrected by reversing the incorrect unitary operations,

as in the case when the teleportations are all synchronized.

To understand the phenomenon described above, consider a sim-

pler scenario where Bob wishes to teleport a qudit |ξ ⟩ in register B1
to Alice using an MES in registers E ′

1
E1, after which Alice applies

the unitary operation V to register E ′
1
. If they follow the corre-

sponding sequence of operations, the final state would be V |ξ ⟩,
stored in register E ′

1
. Instead suppose they do the following. First,

Alice applies V to register E ′
1
, then Bob measures registers B1E1 in

the generalized Bell basis and gets measurement outcome (j,k). He
sends this outcome to Alice. We may verify the state of register E ′

1

conditioned on the outcome is V (X jZk ) |ξ ⟩. Thus, the quantum

information in ξ is redirected to the correct register, albeit with a

Pauli error (that is known to Alice because of his message). In par-

ticular, Alice may later reverseV to correctly decode the teleported

state. The chain of teleportation steps described in the previous

paragraph has a similar effect.

3 OVERVIEW OF RECYCLING-BASED
PROTOCOL VIA QUANTUM CHANNEL
WITH LARGE ALPHABET

3.1 Overview
3.1.1 Teleportation is Inapplicable. Switching from the Cleve-

Burhman model to the Yao model, suppose we are given a protocol

Π using noiseless quantum communication, and we are asked to

provide a protocol Π′
using noisy quantum channels under the

strongly adversarial model described earlier. In the absence of free

entanglement, how can we protect quantum data from leaking

to the environment without incurring a non-negligible overhead?

First, note that some form of protection is necessary, as discussed

in Section 1.2. Second, teleportation would be too expensive to use,

since it incurs an overhead of at least 3: we have to pay for the MES

as well as the classical communication required.

Surprisingly, an old and relatively unknown idea called the Quan-

tum Vernam Cipher (QVC) [48] turns out to be a perfect alternative

method to protect quantum data with negligible overhead as the

noise rate approaches 0.

3.1.2 TheQuantum Vernam Cipher (QVC) [48]. Suppose Alice
and Bob share two copies of MESs, each over two d-dimensional

systems. For Alice to send a message to Bob, she applies a controlled

Xk
Pauli operation with her half of the first MES as control (when

the control qudit is in state k), and the message as the target. She

applies a controlled Zk
Pauli operation from her half of the second

MES to the message. When Bob receives the message, he reverses

the controlled operations using his halves of the MESs. (The opera-

tions are similar for the opposite direction of communication). A

detailed description is provided in the full paper.

The QVC is designed so that if Alice and Bob have access to an

authenticated classical channel from Alice to Bob, they can deter-

mine and correct any error in the transmission. This can simply be

done by measuring Z l type changes to one half of the two MES.

They can also run the QVC many times, determine the errors in a

large block using a method called “random hashing”, and recycle

the MESs if the error rate (as defined in our adversarial model) is

low. This is a crucial property of QVC and leads to one of the earliest

(quantum) key recycling results known. In fact, this was the reason

why it was studied in Ref. [48]. What makes QVC particularly suit-

able for our problem is that encoding and decoding are performed

message-wise, while error detection can be done in large blocks,

and entanglement can be recycled if no error is detected. It may

thus be viewed as a natural quantum generalization to Haeupler’s

consistency checks.

3.1.3 Adaptations of QVC for the Current Problem. In the cur-

rent scenario, we have neither free MESs nor an authenticated

classical channel. Instead, Alice and Bob start the protocol by gen-

erating O
(√
ϵn

)
near-perfect MESs, using high rate quantum error

correcting codes over the low-noise channel, where n is the total

length of the original protocol Π, and ϵ is the noise parameter. Then,

they occasionally check for errors and recycle MESs in a commu-

nication efficient way, using noisy quantum channels instead of

an authenticated classical channel. If they detect an inconsistency,

they try to determine the error in a small block in the recent past,

and reverse to correct the error. Otherwise, they perform “quantum

hashing” [7, 48] to efficiently recycle the entanglement to be reused.

3.1.4 Additional Out-of-Sync Problems. As in the case of the

teleportation-based protocol, it is also possible that, in the QVC-

based protocol, one of Alice and Bob can make a step forward, and

the other a step in reverse. They can also go out of sync about

which MESs they are using. Furthermore, the parties may not agree

on which MESs to recycle, how much to recycle, and whether they

can even recycle! In particular, corruptions that lead only one party

to recycle can cause a significant discrepancy in how many MESs

the two parties are holding. It is much more involved to analyse the

joint quantum state. To tackle these problems, we develop further

data structures and adapt the “quantum hashing” procedure of

Ref. [7, 48] to our setting.

Surprisingly, once again, the quantum data can be recovered

as Alice and Bob reconcile the differences in the data structures

developed for the task. This is in spite of the fact that there is no

reason to expect the out-of-sync QVC to be sufficient to protect

the potentially incorrectly encoded quantum data sent via noisy

quantum channels.

We note that entanglement generation of O
(√
ϵn

)
MES is suffi-

cient to last through the whole protocol. Intuitively, this amount

of MES is still much more than the number of adversarial errors

allowed, even after taking into account the entanglement lost due

to a single channel error.

A detailed solution to this case can be found in the full paper.
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4 TRANSITIONING TO SMALL ALPHABET
SIZE

4.1 Overview
We can witness the power of the framework when going from the

two previous cases to work with small alphabet size. Great care is

taken when establishing the framework in the large alphabet setting

so as to make the transition to small alphabet largely seamless.

One difficulty of applying the large alphabet coding scheme in the

small alphabet case is that O (logn) messages are now required to

exchange position information that is used for resynchronization.

Following [36], we instead use a meeting point mechanism.

4.1.1 Haeupler’s Meeting Point Mechanism. In Haeupler’s meet-

ing point mechanism, a set of positions (called meeting points) is

specified, and Alice and Bob can reverse to these. In the presence

of an observed inconsistency, the error is more likely to be recent

than far back in the past. So, accordingly, the meeting points are

spaced more closely near the current position, and are sparse back

in the past so Alice and Bob typically only reverse a small number

of steps (this is needed to limit the wasted communication caused

by one error, as in Haeupler’s general template described above).

At the same time, there are only two meeting points considered at

once by each party (with more distant ones considered iteratively

if closer ones are believed to be invalid), so, they can be compared

with O (1) hashes.

4.1.2 Combining the Meeting Point Mechanism with Our Frame-
work. Combining this meeting point idea with the framework we

developed to solve the large alphabet cases leads to solutions for

the small alphabet cases. The protocols for the noisy analogue to

the Cleve-Buhrman model and the Yao model with full analysis

are given in the full paper. When entanglement is free, we have

used the given entanglement to generate useful secret keys. In the

plain model, we adapt the protocol to prevent the adversary from

injecting too many collisions in the hashes.

5 CONCLUSION
Implications of Our Results. In this work, we have studied the

capacity of noisy quantum channels to implement two-way com-

munication. In particular, we studied the ability of memoryless

quantum channels to simulate interactive two-party communica-

tion, with the channel available in both directions, but without

any assistance by side resources, e.g. classical side channels. As

discussed in Section 1.1.4, this can be seen as a generalization of

channel coding (which is discussed in Section 1.1.2), which is then

the special case when all communication flows in one direction

only. As discussed in Section 1.2.1, coding seems much harder in the

interactive setting than in the one-way setting. Not much is known

about the two-way quantum capacity. Despite this, it is not the case

for all channels that the unassisted one-way capacity is at least as

large as the unassisted two-way capacity. For example, the qubit

erasure channel with erasure probability
1

2
has no 1-way quantum

capacity [6]. When the channel can be used in either direction,

noisy back classical communication becomes possible, and one can

lower bound the capacity by
1

10
[6, 46]. A similar effect happens to

the qubit depolarizing channel [7, 15]. Thus, comparing memory-

less channels in the classical and the quantum setting, the one-way

capacity of classical channels is always an upper bound on its two-

way capacity, while we see that this does not hold for all quantum

channels. For general memoryless quantum channels, the 2-way

capacity is only known to be upper bounded by the entanglement-

assisted quantum capacityQE [8, 9], which is equal to the quantum

feedback capacity [11]. This bound is not tight (for example, for

very noisy qubit depolarizing channel, 2-way capacity vanishes but

QE > 0). Moreover, for the qubit depolarizing channel with noise

rate ϵ , in the low noise regime,Q1 = 1−H (ϵ)+ϵ log 3+O
(
ϵ2
)
[45].

We have established an achievable rate for the interactive setting

of 1 − Θ
(√
ϵ
)
. If our conjectured optimality holds, the interactive

capacity will be lower then Q1 in the dependence on ϵ . Other po-
tential quantum advantage due to the interaction include secret

key expansion. These effects enrich the subject but also add to the

challenge of determining the interactive capacity, and our work

presents important progress in the low-noise regime.

A further implication of our result is that quantum communica-

tion complexity is very robust against transmission noise at low

error rate. In particular, for alternating protocols like those con-

sidered in this paper and in most known protocols for quantum

communication complexity, the overhead goes to one as the noise

goes to zero, allowing one to get the full quantum advantage when-

ever such an advantage can be obtained.

Open Questions. Two questions stem directly from our work.

First, we conjecture that a rate of 1 − O
(√
ϵ
)
is optimal. Is this

conjecture true, and if so, what is the constant hidden in the O
notation (up to leading order in ϵ)? Second, what is the optimal

rate of communication in the high noise regime, for large ϵ?
Another important direction is concerning the fact that our cod-

ing scheme assumes that the protocol to be simulated is alternating,

i.e., Alice and Bob alternate in sending qudits to each other. We

believe that a lot of the machinery that we have developed should

transpose well to study the more general setting where the proto-

col to be simulated has a more general structure, potentially with

messages constructed from different number of qudits in different

rounds. Once this is better understood, it would be important to

perform a deeper investigation of the relationship between the

different flavors of capacities for noisy quantum channels.

In the current work, we already have to deal with many types

of synchronization errors at the teleportation, Quantum Vernam

Cipher and quantum hashing level, for example. An interesting

question from this point is: what about synchronization errors

over the channel itself? There has been much interest in the clas-

sical interactive coding literature recently towards such type of

errors [18, 37, 57]. How useful would the data structures that we

develop here be to study the generalization of such errors to the

quantum setting.

Many other interesting directions of research in the quantum

setting stem from the other exciting directions that have been

pursued recently in the classical setting, for example [3, 12–14, 16,

28, 29, 31, 32, 34, 35, 38]. We believe that our framework should be

extendable to the study of many of these problems in the quantum

setting.
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Two other important questions that arise specifically in the

quantum setting are the following. First, considering a larger fault-

tolerant setting due to the inherently fragile nature of quantum data,

can we also perform high rate interactive quantum communication

when also the local quantum computation is noisy? Second, does

quantum communication allow one to evade the classical no-go

results obtained for interactive communication in a cryptographic

setting [23, 33]? As we have seen in this work, the unique properties

of quantum information can be helpful in the interactive communi-

cation setting, since we were able to achieve higher communication

rate over fully adversarial binary channels in the plain model than

the conjectured upper bound in the corresponding plain classical

setting.
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