
1

Capacity Approaching Coding for Low Noise
Interactive Quantum Communication

Part I: Large Alphabets
Debbie Leung, Ashwin Nayak, Ala Shayeghi, Dave Touchette, Penghui Yao, and Nengkun Yu

Abstract—We consider the problem of implement-
ing two-party interactive quantum communication over
noisy channels, a necessary endeavor if we wish to
fully reap quantum advantages for communication. For
an arbitrary protocol with n messages, designed for a
noiseless qudit channel over a poly (n) size alphabet,
our main result is a simulation method that fails with
probability less than 2−Θ(nε) and uses a qudit channel
over the same alphabet n(1+Θ(

√
ε)) times, of which an

ε fraction can be corrupted adversarially. The simula-
tion is thus capacity achieving to leading order, and we
conjecture that it is optimal up to a constant factor in
the

√
ε term. Furthermore, the simulation is in a model

that does not require pre-shared resources such as ran-
domness or entanglement between the communicating
parties. Our work improves over the best previously
known quantum result where the overhead is a non-
explicit large constant [Brassard et al., SICOMP’19] for
low ε.

Index Terms—Channel coding, Interactive quantu
communication, Channel capacity, two-party computa-
tion.

I. Introduction
A. Motivation
1) The main questions: Quantum communication offers

the possibility of distributed computation with extraor-
dinary provable savings in communication as compared
with classical communication (see, e.g., [2] and the ref-
erences therein). Most often, if not always, the savings
are achieved by protocols that assume access to noiseless
communication channels. In practice, though, imperfection

An extended abstract of this paper appeared in the Proceedings of
the 50th Annual ACM Symposium on Theory of Computing [1].
D. Leung is with the Department of Combinatorics and Op-

timization, and Institute for Quantum Computing, University of
Waterloo, and the Perimeter Institute, Waterloo, ON, Canada (email:
wcleung@uwaterloo.ca).

A. Nayak is with the Department of Combinatorics and Optimiza-
tion, and Institute for Quantum Computing, University of Waterloo,
Waterloo, ON, Canada (email: anayak@uwaterloo.ca).

A. Shayeghi is with the Laboratoire de l’Informatique
du Parallélisme, ENS de Lyon, and Inria, Lyon, France
(email:ala.shayeghi@gmail.com).

D. Touchette is with the Department of Computer Science, and In-
stitut Quantique, Université de Sherbrooke, Sherbrooke, QC, Canada
(email:dave.touchette@usherbrooke.ca).

P. Yao is with the State Key Laboratory for Novel Software
Technology, and Nanjing University, China (email:pyao@nju.edu.cn).

N. Yu is with Centre for Quantum Software and Information,
Faculty of Engineering and Information Technology, University of
Technology Sydney, Sydney, Australia (email:nengkunyu@gmail.com).

in channels is inevitable. Is it possible to make the protocols
robust to noise while maintaining the advantages offered by
quantum communication? If so, what is the cost of making
the protocols robust, and how much noise can be tolerated?
In this article, we address these questions in the context of
quantum communication protocols involving two parties,
in the low noise regime. Following convention, we call the
two parties Alice and Bob.
2) Channel coding theory as a special case: In the special

case when the communication is one-way (say, from Alice
to Bob), techniques for making the message noise-tolerant,
via error correcting codes, have been studied for a long time.
Coding allows us to simulate a noiseless communication
protocol using a noisy channel, under certain assumptions
about the noise process (such as having a memoryless chan-
nel). Typically, such simulation is possible when the error
rate (the fraction of the messages corrupted) is lower than
a certain threshold. A desirable goal is to also maximize
the communication rate (also called the information rate),
which is the length of the original message, as a fraction of
the length of its encoding. In the classical setting, Shannon
established the capacity (i.e., the optimal communication
rate) of arbitrarily accurate transmission, in the limit of
asymptotically large number of channel uses, through the
Noisy Coding Theorem [3]. Since then, researchers have
discovered many explicit codes with desirable properties
such as good rate, and efficient encoding and decoding
procedures (see, for example, [4], [5]). Analogous results
have been developed over the past two decades in the
quantum setting. In particular, capacity expressions for
a quantum channel transmitting classical data [6], [7]
or quantum data [8], [9], [10] have been derived. Even
though it is not known how we may evaluate these capacity
expressions for a general quantum channel, useful error
correcting codes have been developed for many channels of
interest (see, for example, [11], [12], [13], [14]). Remarkably,
quantum effects give rise to surprising phenomena without
classical counterparts, including superadditivity [15], [16],
and superactivation [17]. All of these highlight the non-
trivial nature of coding for noisy quantum channels.
3) Communication complexity as a special case: In

general two-party protocols, data are transmitted in each
direction alternately, potentially over a number of rounds.
In a computation problem, the number of rounds may
grow as a function of the input size. Such protocols are at
the core of several important areas including distributed

mailto:wcleung@uwaterloo.ca
mailto:anayak@uwaterloo.ca
mailto:ala.shayeghi@gmail.com
mailto:dave.touchette@usherbrooke.ca
mailto:pyao@nju.edu.cn
mailto:nengkunyu@gmail.com

2

computation, cryptography, interactive proof systems, and
communication complexity. For example, in the case of
the Disjointness function, a canonical task in the two-
party communication model, an n-bit input is given to
each party, who jointly compute the function with as little
communication as possible. The optimal quantum protocol
for this task consists of Θ (

√
n) rounds of communication,

each with a constant length message [18], [19], [20], and
such a high level of interaction has been shown to be
necessary [21], [22], [23]. Furthermore, quantum commu-
nication leads to provable advantages over the classical
setting, without any complexity-theoretic assumptions.
For example, some specially crafted problems (see, for
example, [24], [2]) exhibit exponential quantum advantages,
and others display the power of quantum interaction by
showing that just one additional round can sometimes lead
to exponential savings [21].
4) The problem, and motivation for the investigation:

In this paper, we consider two-party interactive commu-
nication protocols using noisy communication. The goal
is to effectively implement an interactive communication
protocol to arbitrary accuracy despite noise in the available
channels. We want to minimize the number of uses of the
noisy channel, and the complexity of the coding operations.
The motivation is two-fold and applies to both the classical
and the quantum setting. First, this problem is a natural
generalization of channel coding from the 1-way to the
2-way setting, with the “capacity” being the best ratio
of the number of channel uses in the original protocol
divided by that needed in the noisy implementation. Here,
we consider the combined number of channel uses in both
directions. Second, we would like to generalize interactive
protocols to the noisy communication regime. If an inter-
active protocol can be implemented using noisy channels
while preserving the complexity, then the corresponding
communication complexity results become robust against
channel noise. In particular, an important motivation is to
investigate whether the quantum advantage in interactive
communication protocols is robust against quantum noise.
Due to the ubiquitous nature of quantum noise and
fragility of quantum data, noise-resilience is of fundamental
importance for the realization of quantum communication
networks. The coding problem for interactive quantum
communication was first studied in [25]. In Section I-C,
we elaborate on this work and the questions that arise
from it.

B. Fundamental difficulties in coding for quantum interac-
tive communication

For some natural problems, the optimal interactive pro-
tocols require a lot of interaction. For example, distributed
quantum search over n items [18], [19], [20] requires Θ (

√
n)

rounds of constant-sized messages [21], [22], [23]. How can
we implement such highly interactive protocols over noisy
channels? What are the major obstacles?
1) Standard error correcting codes are inapplicable: In

both the classical and quantum settings, standard error

correcting codes are inapplicable. To see this, first, suppose
we encode each message separately. Then the corruption
of even a single encoded message can already derail the
rest of the protocol. Thus, for the entire protocol to be
simulated with high fidelity, we need to reduce the decoding
error for each message to be inversely proportional to the
length of the protocol, say n. For constant size messages,
the overhead of coding then grows with the problem size
n, increasing the complexity and suppressing the rate of
simulation to 0 as n increases. The situation is even worse
with adversarial errors: the adversary can invest the entire
error budget to corrupt the shortest critical message, and
it is impossible to tolerate an error rate above ≈ 1/number
of rounds, no matter what the rate of communication is. To
circumvent this barrier, one must employ a coding strategy
acting collectively over many messages. However, most
of these are generated dynamically during the protocol
and are unknown to the sender earlier. Furthermore, error
correction or detection may require communication be-
tween the parties, which is also corruptible. The problem is
thus reminiscent of fault-tolerant computation in that the
steps needed to implement error correction are themselves
subject to errors.
2) The no-cloning quantum problem: A fundamental

property of quantum mechanics is that learning about an
unknown quantum state from a given specimen disturbs
the state [26]. In particular, an unknown quantum state
cannot be cloned [27], [28]. This affects our problem in two
fundamental ways. First, any logical quantum data leaked
into the environment due to the noisy channel cannot
be recovered by the communicating parties. Second, the
parties hold a joint quantum state that evolves with the
protocol, but they cannot make copies of the joint state
without corrupting it.

C. Prior classical and quantum work
Despite the difficulties in coding for interactive communi-

cation, many interesting results have been discovered over
the last 25 years, with a notable extension in the quantum
setting.
1) Classical results showing positive rates: Schulman

first raised the question of simulating noiseless interactive
communication protocols via noisy channels in the classical
setting [29], [30], [31]. He developed tree codes to work
with messages that are determined one at a time, and
generated dynamically during the course of the interaction.
These codes have constant overhead, and the capacity is
thus a positive constant. Furthermore, these codes protect
data against adversarial noise that corrupts up to a 1

240
fraction of the channel uses. This tolerable noise rate
was improved by subsequent work, culminating to the
results by Braverman and Rao [32]. They showed that
< 1

4 adversarial errors can be tolerated provided one can
use large constant alphabet sizes and that this bound on
noise rate is optimal.
2) Classical results with efficient encoding and decoding:

The aforementioned coding schemes are not known to be

3

computationally efficient, as they are built on tree codes;
the computational complexity of encoding and decoding
tree codes is unknown. Other computationally efficient
encoding schemes have been developed [33], [34], [35], [36],
[37], [38]. The communication rates under various scenarios
have also been studied [39], [40], [41], [42]. However, the
rates do not approach the capacity expected of the noise
rate.

3) Classical results with optimal rates: Kol and Raz [43]
first established coding with rate approaching 1 as the noise
parameter goes to 0, for the binary symmetric channel. Hae-
upler [44] extended the above result to adversarial binary
channels corrupting at most an ε fraction of the symbols,
with communication rate 1 − O

(√
ε log log

(1
ε

))
, which

is conjectured to be optimal. For oblivious adversaries,
this increases to 1 − O(

√
ε). Further studies of capacity

have been conducted, for example, in [45], [46]. For further
details about recent results on interactive coding, see the
extensive survey by Gelles [47].

4) Quantum results showing positive rates: All coding
for classical interactive protocols relies on “backtracking”:
if an error is detected, the parties go back to an earlier
stage of the protocol and resume from there. Backtracking
is impossible in the quantum setting due to the no-cloning
principle described in the previous subsection. There is no
generic way to make copies of the quantum state at earlier
stages without restarting the protocol. Brassard, Nayak,
Tapp, Touchette, and Unger [25] provided the first coding
scheme with constant overhead by using two ideas. The
first idea is to teleport each quantum message. This splits
the quantum data into a protected quantum share and
an unprotected classical share that is transmitted through
the noisy channels using tree codes. Second, backtracking
is replaced by reversing of steps to return to a desirable
earlier stage; i.e., the joint quantum state is evolved back to
that of an earlier stage, which circumvents the no-cloning
theorem. This is possible since local operations can be
made unitary, and communication can be reversed (up
to more noise). Together, a positive simulation rate (or
constant overhead) can be achieved. Brassard et al. aim
at achieving a high noise tolerance with a non-vanishing
communication rate. In contrast, here we focus on opti-
mizing the communication rate in the low-noise regime. In
the noisy analogue to the Cleve-Buhrman communication
model where entanglement is free, Brassard et al. show
that any error rate strictly less than 1/2 can be tolerated.
Moreover, in the noisy analogue to the Yao (plain) model,
a noisy quantum channel with one-way quantum capacity
Q > 0 can be used to simulate an n-message protocol given
O
(

1
Qn
)
uses. However, the rate can be suboptimal and the

coding complexity is unknown due to the use of tree codes.
The rate is further reduced by a large constant in order
to match the quantum and classical data in teleportation,
and in coordinating the action of the parties (advancing
or reversing the protocol).

D. Results in this paper, overview of techniques, and our
contributions

Inspired by the recent results on rate optimal coding
for the classical setting [43], [44] and the rate suboptimal
coding in the quantum setting [25], a fundamental question
is: can we likewise avoid the loss of communication rate
for interactive quantum protocols? In particular, is it
possible to protect quantum data without pre-shared free
entanglement, and if we have to generate it at a cost,
can we still achieve a communication rate approaching
1 as the error rate vanishes? Further, can erroneous steps
be reversed with noisy resources, and with a negligible
overhead as the error rate vanishes? What is the complexity
of rate optimal protocols, if one exists? Are there other
new obstacles? To address all these questions, in this paper
we start by studying a simpler setting where the input
protocol Π and the noisy communication channel operate
on the same communication alphabet of polynomial size
in the length of Π. This simplifies the algorithm while still
capturing the main challenges we need to address. The
analysis is easier to follow and shares the same outline
and structure with our main result, namely simulation
of noiseless interactive communication over constant-size
alphabets, which we will present in an upcoming paper.
The framework we develop in this work, sets the stage for
a smooth transition to the small alphabet case. We focus
on alternating protocols, in which Alice and Bob exchange
qudits back and forth in alternation. Our main result in
this paper is the following:

Theorem I.1. Consider any alternating communication
protocol Π in the plain quantum model, communicating
n messages over a noiseless channel with an alphabet
Σ of bit-size Θ (logn). We provide a simulation protocol
Π′ which given Π, simulates it with probability at least
1 − 2−Θ(nε), over any fully adversarial error quantum
channel with alphabet Σ and error rate ε. The simulation
uses n (1 + Θ (

√
ε)) rounds of communication, and therefore

achieves a communication rate of 1−Θ (
√
ε). Furthermore,

the computational complexity of the coding operations
is O

(
n2)

Our rate optimal protocol requires a careful combination
of ideas to overcome various obstacles. Some of these ideas
are well-established, some are not so well known, some
require significant modifications, and some are new. A
priori, it is not clear whether these previously developed
tools would be useful in the context of the problem. For
clarity of presentation, we first introduce our main ideas
in a simpler communication model, where Alice and Bob
have access to free entanglement and communicate over
a fully adversarial error classical channel. We introduce
several key ideas while developing a basic solution to
approach the optimal rate in this scenario. Inspired by [25],
we use teleportation to protect the communication and
the simulation is actively rewound whenever an error is
detected. We develop a framework that allows the two
parties to obtain a global view of the simulation by locally

4

maintaining a classical data structure. We adapt ideas due
to Haeupler [44] to efficiently update this data structure
over the noisy channel and evolve the simulation. Then, we
extend these ideas to the plain model of quantum commu-
nication with large alphabets. In the plain quantum model,
Alice and Bob communicate over a fully adversarial error
quantum channel and do not have access to any pre-shared
resources such as entanglement or shared randomness. As a
result, any such resources need to be established through
extra communication. This in particular makes it more
challenging to achieve a high communication rate in this
setting. Surprisingly, an adaptation of an old technique
called the Quantum Vernam Cipher (QVC) [48] turns out
to be the perfect method to protect quantum data in our
application. QVC allows the two parties to recycle and
reuse entanglement as needed throughout the simulation.
Building on the ideas introduced in the teleportation-based
protocol, one of our main contributions in this model is
developing a mechanism to reliably recycle entanglement
in a communication efficient way.

Acknowledgments
D. Leung’s research supported in part by an NSERC

Discovery grant and a CIFAR research grant via the
Quantum Information Science program; A. Nayak’s re-
search supported in part by NSERC Canada; A. Shayeghi’s
research supported in part by NSERC Canada and OGS;
D. Touchette’s research supported in part by NSERC,
partly via PDF program, CIFAR and by Industry Canada;
P. Yao’s research is supported by the National Key R&D
Program of China 2018YFB1003202, National Natural
Science Foundation of China (Grant No. 61972191), the
Fundamental Research Funds for the Central Universities
and Anhui Initiative in Quantum Information Technolo-
gies Grant No. AHY150100; N. Yu’s research supported
in part by the Australian Research Council (Grant No:
DE180100156, DP210102449). This project was done while
A. Shayeghi was a Ph.D. candidate at University of Water-
loo. Part of this project was done while D. Touchette was
a postdoctoral fellow at Institute for Quantum Computing
(IQC) and Perimeter Institute for Theoretical Physics (PI).
Part of the work was done while P. Yao visited PI, and
P. Yao thanks PI for its hospitality. Part of the work was
done while N. Yu visited IQC, and N. Yu thanks IQC for
its hospitality. IQC and PI are supported in part by the
Government of Canada and the Province of Ontario.

II. Preliminaries
We assume that the reader is familiar with the quantum

formalism for finite dimensional systems; for a thorough
treatment, we refer the interested reader to good introduc-
tions in a quantum information theory context [49, Chapter
2], [50, Chapter 2] [51, Chapters 3, 4, 5].

A. Mathematical notation
Let r, s ∈ N with r ≤ s. We use [s] to denote the set

{1, . . . , s}. The notation r : s is used to denote the string of

consecutive integers from r to s. Let A be a d-dimensional
Hilbert space with computational basis {|0〉 , . . . , |d− 1〉}.
Let X and Z be the operators such that X |k〉 := |k + 1〉
and Z |k〉 := ei·2π kd |k〉. The generalized Pauli operators,
also known as the Heisenberg-Weyl operators, are defined
as
{

XjZk
}

0≤j,k≤d−1. Let Σ = {0, . . . , d− 1}. For N ∈ N,
the operators in

Pd,N := {Xj1Zk1 ⊗ · · · ⊗XjNZkN }jl,kl∈Σ , l∈[N] (1)

form a basis for the space of operators on A⊗N . For E ∈
Pd,N , we denote by wt (E) the weight of E, i.e., the number
of A subsystems on which E acts non-trivially. We use Σr
to denote the set of strings of length r over the alphabet
Σ. We represent the single qudit Pauli error XjZk by the
string jk ∈ Σ2. Similarly, a Pauli error on multiple qudits
is represented by a string in

(
Σ2)∗. The Fourier transform

operator F is defined to be the operator such that F |j〉 :=
1√
d

∑d−1
k=0 e

i·2π jkd |k〉.

Proposition II.1. Let
{

XjZk
}

0≤j,k≤d−1 be the set of
generalized Pauli operators on a d-dimensional Hilbert
space. It holds that XjZk = e−i·2π jkd ZkXj, FXjF† = Zj
and FZjF† = X−j for every j, k ∈ {|0〉 , . . . , |d− 1〉}.

Definition II.2. Let A,B be d-dimensional Hilbert
spaces with computational bases {|i〉A}0≤i≤d−1
and {|i〉B}0≤i≤d−1, respectively. The set of Bell states in
A⊗ B is defined as{∣∣φj,k〉

AB
:=
(

Xj
AZkA ⊗ 1

)
|φ〉AB : 0 ≤ j, k ≤ d− 1

}
,

where |φ〉AB := 1√
d

∑d−1
i=0 |i〉A |i〉B. We extend the defini-

tion of
∣∣φj,k〉 to all j, k ∈ Z, as∣∣φj,k〉 :=

∣∣∣φj (mod d),k (mod d)
〉
.

By a (d-dimensional) maximally entangled state (MES),
we mean the state |φ〉 even though all the Bell states are
maximally entangled.

We may verify that
∣∣φj,k〉 = 1√

d

∑d−1
t=0 e

2πi tkd |t+ j, t〉.

Proposition II.3. The Bell states
{∣∣φj,k〉}0≤j,k≤d−1 form

an orthonormal basis in A⊗ B.

Proposition II.4. For any unitary operator U on register
A, it holds that

(U ⊗ 1) |φ〉AB = (1⊗ U>) |φ〉AB ,

where U> =
∑
j,k 〈j|U |k〉 |k〉〈j|. In particular,

(F⊗ 1) |φ〉AB = (1⊗ F) |φ〉AB .

A quantum instrument is a generalized notion of a non-
destructive quantum measurement defined by a collection
of completely positive maps {Ma}a∈Γ, where Γ is the set of
measurement outcomes and

∑
a∈ΓMa defines a quantum

channel, i.e., a completely positive and trace preserving
map. The outcome of the measurement on a state ρ is
a ∈ Γ with probability Tr [Ma(ρ)] and the output state
after the measurement conditioned on outcome a is given

5

by Tr [Ma (ρ)]−1
Ma (ρ). The action of such a quantum

instrument is expressed as a quantum channel of the form

M(ρ) =
∑
a∈Γ

Ma(ρ)⊗ |a〉〈a| ,

where the second (classical) register contains the outcome
of the measurement.

B. Quantum Communication Model
The definitions for the noiseless and noisy quantum

communication models are copied from Ref. [25]. We refer
the reader to this reference for a more detailed discussion of
the relationship of the noiseless quantum communication
model to well-studied quantum communication complexity
models such as Yao model and the Cleve-Buhrman model.
1) Noiseless Communication Model: In the noiseless

quantum communication model that we want to simulate,
there are five quantum registers: the A register held by
Alice, the B register held by Bob, the C register, which
is the communication register exchanged back-and-forth
between Alice and Bob and initially held by Alice, the E
register held by a potential adversary Eve, and finally the
R register, a reference system which purifies the state of the
ABCE registers throughout the protocol. The initial state
|ψinit〉ABCER ∈ H(A⊗B⊗C⊗E⊗R) is chosen arbitrarily
from the set of possible inputs, and is fixed at the outset
of the protocol, but possibly unknown (totally or partially)
to Alice and Bob. Note that to allow for composition
of quantum protocols in an arbitrary environment, we
consider arbitrary quantum states as input, which may be
entangled with systems RE. A protocol Π is then defined
by the sequence of unitary operations U1, U2, · · · , Un+1,
with Ui for odd i known at least to Alice (or given to
her in a black box) and acting on registers AC, and Ui
for even i known at least to Bob (or given to him in a
black box) and acting on registers BC. For simplicity,
we assume that n is even. We can modify any protocol
to satisfy this property, while increasing the total cost
of communication by at most one communication of the
C register. The unitary operators of protocol Π can be
assumed to be public information, known to Eve. On a
particular input state |ψinit〉, the protocol generates the
final state |ψfinal〉ABCER = Un+1 · · ·U1 |ψinit〉ABCER, for
which at the end of the protocol the A and C registers
are held by Alice, the B register is held by Bob, and
the E register is held by Eve. The reference register R
is left untouched throughout the protocol. The output of
the protocol resides in systems ABC, i.e., Π(|ψinit〉) =
TrER

(
|ψfinal〉〈ψfinal|ABCER

)
, and by a slight abuse of nota-

tion we also represent the induced quantum channel from
ABCE to ABC simply by Π. This is depicted in Fig. 1.
Note that while the protocol only acts on ABC, we wish to
maintain correlations with the reference system R, while we
simply disregard what happens on the E system assumed
to be in Eve’s hand. Since we consider local computation
to be free, the sizes of A and B can be arbitrarily large,
but still of finite size, say mA and mB qubits, respectively.

Since we are interested in a high communication rate, we
do not want to restrict ourselves to the case of a single-
qubit communication register C, since converting a general
protocol to one of this form can incur a factor of two
overhead. We thus consider alternating protocols in which
the register C is of fixed size, say d dimensions, and is
exchanged back-and-forth. We believe that non-alternating
protocols can also be simulated by adapting our techniques,
but we leave this extension to future work. Note that
both the Yao and the Cleve-Buhrman models of quantum
communication complexity can be recast in this framework;
see Ref. [25].

We later embed length n protocols into others of larger
length ñ > n. To perform such noiseless protocol embed-
ding, we define some dummy registers Ã, B̃, C̃ isomorphic
to A, B, C, respectively. Ã and C̃ are part of Alice’s
scratch register and B̃ is part of Bob’s scratch register.
Then, for any quantum registers D, D̃ associated with iso-
morphic Hilbert spaces, let SWAPD↔D̃ denote the unitary
operation that swaps the D, D̃ registers. Recall that n is
assumed to be even. In a noiseless protocol embedding, for
i ∈ {1, 2, · · ·n − 1}, we leave Ui untouched. We replace
Un by (SWAPB↔B̃Un) and Un+1 by (SWAPAC↔ÃC̃Un+1).
Finally, for i ∈ {n+ 2, n+ 3, · · · ñ+ 1}, we define Ui = 1,
the identity operator. This embedding is important in the
setting of interactive quantum coding for the following
reasons. First, a robust protocol against transmission
noise may require more than n rounds of interaction to
successfully simulate an input protocol of length n. Adding
these Ui for i > n makes the protocol well defined for
ñ+ 1 steps. Therefore, ensuring that we never run out of
steps of the input protocol to simulate. Then, swapping the
important registers into the safe registers Ã, B̃, C̃ ensures
that the important registers are never affected by noise
arising after the first n+ 1 steps have been applied. Hence,
in our simulation, as long as we succeed in implementing
the first n + 1 steps without errors, the simulation will
succeed since the Ã, B̃, C̃ registers will then contain the
output of the simulation, with no error acting on these
registers.
We also consider another communication model, which

we refer to as the teleportation-based communication model.
In this model, Alice and Bob share an unlimited number
of copies of the maximally entangled state |φ〉 before the
protocol begins. The structure of a protocol in this model
is the same as the noiseless quantum communication model
discussed above, except in each communication round, the
message is communicated over a noiseless classical channel
using quantum teleportation.
2) Noisy Communication Model: There are many possi-

ble models for noisy communication. For our main results,
we focus on one in particular, analogous to the Yao
model with no shared entanglement but noisy quantum
communication, which we call the plain quantum model.
In Section III, we consider and define an alternative model.

For simplicity, we formally define in this section what we
sometimes refer to as alternating communication models,
in which Alice and Bob take turns in transmitting the

6

𝐴

𝐶

𝑅

𝐵

𝐸

|𝜓init⟩ |𝜓final⟩

𝐴 𝐴 𝐴 𝐴

𝐶 𝐶 𝐶 𝐶

𝐶 𝐶

𝐵 𝐵 𝐵

𝑈𝑛+1

Reference

Alice

Bob

Eve

𝑈3𝑈1

𝑈2 𝑈𝑛

⋯

Fig. 1. Depiction of a quantum protocol in the noiseless communication model.

communication register to each other, and this is the model
in which most of our protocols are defined. Our definitions
easily adapt to somewhat more general models which we
call oblivious communication models, following Ref. [32].
In these models, Alice and Bob do not necessarily transmit
their messages in alternation, but nevertheless in a fixed
order and of fixed sizes known to all (Alice, Bob and Eve)
depending only on the round, and not on the particular
input or the actions of Eve. Communication models with a
dependence on inputs or actions of Eve are called adaptive
communication models.

a) Plain Quantum Model: In the plain quantum model,
input registers ABCE are shared between Alice (AC), Bob
(B), and Eve (E), and the reference register R contains the
purification of the input. These registers are initially in the
|ψinit〉 state which is the initial state of the input protocol
to be simulated. The output registers ÃB̃C̃ are shared
between Alice (ÃC̃) and Bob (B̃). These are the registers
introduced in the noiseless protocol embedding described
above and at the end of the simulation contain the output
state. The reference register R is left untouched throughout.
In additions to these registers, Alice has workspace A′,
Bob has workspace B′, the adversary Eve has workspace
E′, and there is some quantum communication register
C ′ of some fixed size d′ dimensions (we will consider
only d′ = d in this work), exchanged back and forth
between them n′ times, passing through Eve’s hand each

time. Alice and Bob can perform arbitrary local processing
between each transmission, whereas Eve’s processing when
the C ′ register passes through her hand is limited by
the noise model as described below. Alice and Bob also
possess registers CA and CB, respectively, acting as virtual
communication register C from the original protocol Π of
length n to be simulated. The communication rate of the
simulation is given by the ratio n log d

n′ log d′ .
We are interested in two models of errors, adversarial

and random noise. In the adversarial noise model, we are
mainly interested in an adversary Eve with a bound εn′ on
the number of errors that she introduces on the quantum
communication register C ′ that passes through her hand.
The fraction ε of corrupted transmissions is called the error
rate. More formally, an adversary in the quantum model is
specified by a sequence of instruments NE′C′1

1 , . . . ,NE′C′
n′

n′

acting on register E′ of arbitrary dimension d′′ and the
communication register C ′ of dimension d′ in protocols of
length n′. For any such sequence of quantum instruments
and any density operator ρ on H(E′⊗C ′⊗n′), we can write

NE′C′1
1 · · · NE′C′

n′
n′ (ρ) =

∑
i

GiρG
†
i , (2)

for i ranging over some finite set, subject to
∑
iG
†
iGi =

1E
′C′⊗n

′

. For an adversary with error rate bounded by ε ∈

7

[0, 1] in this model, each Gi is restricted to be of the form

Gi =
∑

F∈Pd′′,1

∑
H∈Pd′,n′
wt(H)≤εn′

αiF,HF
E′ ⊗HC′⊗n

′

. (3)

This definition allows us to correctly count the number
of (Pauli) errors introduced by the adversary’s operations
over all of the messages. For example, suppose that con-
ditional on a qubit in E′ being in zero, the adversary
introduces 0, 0, 3 errors, respectively, in the first three
messages, and conditional on the qubit being in state
one, the adversary introduces 1, 2, 0 errors, respectively, in
those messages. The total number of errors introduced is
then 3 over the three messages. If we considered the Kraus
operators for the adversary’s operation for each message
separately, we would overestimate the number of errors
as 9.

In the random noise model, we consider n′ independent
and identically distributed uses of a noisy quantum channel
acting on register C ′, half the time in each direction. Eve’s
workspace register E′ (including her input register E)
can be taken to be trivial in this noise model. We only
analyze the protocols in this paper against adversarial
noise, however, using concentration of measure arguments,
it is straightforward to show that the same protocols can
be used to obtain similar results in the random noise model
as well.
For both noise models, we say that the simulation

succeeds with error δ if for any input, the output in register
ÃB̃C̃ at the end of the simulation is the same as the output
obtained by running the protocol Π on the same input,
while also maintaining correlations with system R, up to
error δ in trace distance.
Note that adversaries in the quantum model can inject

fully quantum errors since the messages are quantum, in
contrast to adversaries corrupting classical messages which
are restricted to be modifications of classical symbols. On
the other hand, for classical messages, the adversary can
read all the messages without the risk of corrupting them,
whereas, in the quantum model, any attempt to “read”
messages will result in an error in general on some quantum
message.

C. Protocols over qudits
In this section, we revisit two quantum communication

protocols, both of which are essential to our simulation
algorithms, and analyze the effect of noise on these proto-
cols.
1) Quantum teleportation over noisy qudit channels:

The protocol given here is an extension of quantum
teleportation to qudits. Readers may refer to Chapter 6 in
Ref. [51] for more details.

Definition II.5. (Quantum teleportation protocol)
Alice possesses an arbitrary d-dimensional qudit in state

|ψ〉A, which she wishes to communicate to Bob. They share
a maximally entangled state (MES) in the state |φ〉A1B1

.

1) Alice performs a measurement on registers AA1 with
respect to the Bell basis

{∣∣φj,k〉}
j,k

.
2) She transmits the measurement outcome (j, k) to

Bob.
3) Bob applies the unitary transformation ZkB1

Xj
B1

on
his state to recover |ψ〉.

In the rest of the paper, the measurements implemented
in Definition II.5 are referred to as the teleportation
measurements and the receiver’s unitary transformation
to recover the target state is referred to as teleportation
decoding operation.

If Bob receives (j′, k′) due to a corruption on Alice’s
message, the state he gets after decryption will be the
following:

Zk
′

BXj′

BXd−j
B Zd−kB |ψ〉 = ei· 2πd (j′−j)k′Xj′−jZk

′−k |ψ〉 . (4)

2) Quantum Vernam cipher over noisy qudit channels:
In this section, we revisit quantum Vernam cipher (QVC)
introduced by Leung [48], which is a quantum analog of
Vernam cipher (one-time-pad). For a unitary operation U ,
the controlled gate c-U is defined as

(c-U)AB |j〉A |k〉B := |j〉U j |k〉 .

The extension of quantum Vernam cipher to qudit
systems goes as follows.

Definition II.6. (Quantum Vernam cipher)
Alice possesses an arbitrary d-dimensional qudit in state
|ψ〉A, which she wishes to communicate to Bob. They share
an MES pair in the state |φ〉A1B1

|φ〉A2B2
, with Alice and

Bob holding registers A1A2 and B1B2, respectively.

1) Alice applies the unitary transformation
(c-Z)A2A

(c-X)A1A
.

2) She transmits the register A to Bob.
3) Bob applies the unitary transformation(

c-X−1)
B1B

(
c-Z−1)

B2B
.

Quantum Vernam cipher uses entanglement as the key
to encrypt quantum information sent through an insecure
quantum channel. In sharp contrast with the classical
Vernam cipher, the quantum key can be recycled securely.
Note that if no error occurs on Alice’s message, then Bob
recovers the state |ψ〉 perfectly, and at the end of the
protocol the MES pair remain intact. The scheme detects
and corrects for arbitrary transmission errors, and the
procedure for error detection and correction only requires
local operations and classical communication between the
sender and the receiver.

In particular, if Alice’s message is corrupted by the Pauli

8

Fig. 2. Sending one qudit through quantum channel E using quantum
Vernam cipher.

error XjZk, the joint state after Bob’s decryption is(
c-X−1)

B1A

(
c-Z−1)

B2A
XjZk (c-Z)A2A

(c-X)A1A

|φ〉A1B1
|φ〉A2B2

|ψ〉A

= 1
d

d−1∑
t,t′=0

(
c-X−1)

B1A

(
c-Z−1)

B2A
XjZk (c-Z)A2A

(c-X)A1A
|t〉A1

|t〉B1
|t′〉A2

|t′〉B2
|ψ〉A

= 1
d

d−1∑
t,t′=0

|t〉A1
|t〉B1
|t′〉A2

|t′〉B2
X−tZ−t

′
XjZkZt

′
Xt |ψ〉A

= 1
d

d−1∑
t,t′=0

ei· 2πd (kt−jt′)|t〉A1
|t〉B1

|t′〉A2
|t′〉B2

XjZk|ψ〉

=
∣∣φ0,k〉

A1B1

∣∣φ0,−j〉
A2B2

⊗XjZk |ψ〉 . (5)

Note that by Eq. (5), there is a one-to-one correspon-
dence between the Pauli errors and the state of the
maximally entangled pair. An Xj error on the cipher-text
is reflected in the state of the second MES as a Z−j error
and a Zk error on the cipher-text is reflected in the state
of the first MES as a Zk error. Note that for every integer
s we have(

F⊗ F†
) ∣∣φ0,s〉 =

(
FZs ⊗ F†

)
|φ〉 =

(
FZsF† ⊗ 1

)
|φ〉

=
(
X−s ⊗ 1

)
|φ〉 .

Therefore, in order to extract the error syndrome, it suffices
for Alice and Bob to apply F and F†, respectively, on
their marginals of the MESs and measure them in the
computational basis. By comparing their measurement
outcomes they can determine the Pauli error.

When quantum Vernam cipher is used for the communi-
cation of multiple messages, it is possible to detect errors
without disturbing the state of the MES pairs at the cost
of an additional fresh MES. This error detection procedure
allows for the recycling of MESs which is crucial in order
to achieve a high communication rate, as explained in
Section IV-C2. Here we describe a simplified version of
the detection procedure. First, we need the following two
lemma.

Proposition II.7. It holds that

(c-X)A1A2
· (c-X)B1B2

∣∣φj1,k1
〉
A1B1

∣∣φj2,k2
〉
A2B2

=
∣∣φj1,k1−k2

〉
A1B1

∣∣φj1+j2,k2
〉
A2B2

.

In particular,

(c-X)A1A2
· (c-X)B1B2

∣∣φ0,k1
〉
A1B1

∣∣φ0,k2
〉
A2B2

=
∣∣φ0,k1−k2

〉
A1B1

∣∣φ0,k2
〉
A2B2

.

Proof.

(c-X)A1A2
· (c-X)B1B2

∣∣φj1,k1
〉
A1B1

∣∣φj2,k2
〉
A2B2

= 1
d

d−1∑
t1,t2=0

(c-X)A1A2
· (c-X)B1B2

ei· 2πd (t1k1+t2k2)

|t1 + j1〉A1
|t1〉B1

|t2 + j2〉A2
|t2〉B2

= 1
d

d−1∑
t1,t2=0

ei· 2πd (t1k1+t2k2) |t1 + j1〉A1
|t1〉B1

|t2 + j2 + t1 + j1〉A2
|t2 + t1〉B2

=
∣∣φj1,k1−k2

〉
A1B1

∣∣φj1+j2,k2
〉
A2B2

.

Suppose that Alice and Bob start with m copies of
the MES |φ〉 and use them in pairs to communicate
messages using QVC over a noisy channel. By Eq. (5)
all the MESs remain in span

{∣∣φ0,k〉 : 0 ≤ k ≤ d− 1
}
. This

invariance is crucial to the correctness of our simulation.
Let

∣∣φ0,ki
〉
AiBi

be the state of the i-th MES after the
communication is done. In order to detect errors, Alice
and Bob use an additional MES |φ〉A0B0

. For i = 1, ...,m,
Alice and Bob apply (c-X)A0Ai

and (c-X)B0Bi
, respectively.

By Proposition II.7, the joint state of the register A0B0 will
be
∣∣∣φ0,−

∑m

i=1
ki
〉
A0B0

. Now, all Alice and Bob need to do is
to apply F and F† on registers A0 and B0, respectively, and
measure their marginal states in the computational basis.
By comparing their measurement outcomes they can decide
whether any error has occurred. In this procedure, the
MESs used as the keys in QVC are not measured. Note that
if the corruptions are chosen so that

∑m
i=1ki = 0 mod d

then this procedure fails to detect the errors. We will
analyze a modified version of this error detection procedure
in detail in Section IV-C2 which allows error detection with
a high probability independent of the error syndrome.

D. Small-bias and k-wise independence
Definition II.8. Let X = X1 . . . Xn be a random variable
distributed over {0, 1}n and J ⊆ [n] be a non-empty set.
The bias of J with respect to distribution X, denoted
biasJ (X), is defined as

biasJ (X) :=

∣∣∣∣∣Pr
(∑
i∈J

Xi = 1
)
− Pr

(∑
i∈J

Xi = 0
)∣∣∣∣∣ ,

where the summation is mod 2. For J = ∅, bias is defined
to be zero, i.e., bias∅ (X) = 0.

9

Definition II.9 (small-bias probability space). Let
δ ∈ [0, 1]. A distribution X over {0, 1}n is called a δ-biased
probability space if biasJ (X) ≤ δ, for all non-empty subsets
J ⊆ [n].

Definition II.10. Let p and q be probability distributions
over the same (countable) set Ω. The L1-distance between
p and q is defined as

‖p− q‖1 :=
∑
x∈Ω
|p(x)− q(x)| , (6)

and the L2-distance between p and q is defined as

‖p− q‖2 :=
√∑
x∈Ω

(p(x)− q(x))2
. (7)

We say p and q are δ-close in L1-distance if ‖p−q‖1 ≤ δ.
Similarly, p and q are said to be δ-close in L2-distance if
‖p− q‖2 ≤ δ.

We will make use of the following proposition providing
an alternative characterization of the L1-distance between
two probability distributions.

Proposition II.11 ([50]). Let p and q be probability
distributions over some (countable) set Z, then

‖p− q‖1 = 2 sup
A⊆Z
|p(A)− q(A)| .

Intuitively, a small-bias random variable is statistically
close to being uniformly distributed. The following lemma
quantifies this statement.

Proposition II.12 ([52]). Let X be an arbitrary distribu-
tion over {0, 1}n and let U denote the uniform distribution
over {0, 1}n. Then X is δ-close in L2-distance and

(
2n/2δ

)
-

close in L1-distance to U .

Definition II.13 (k-wise independence). A distribu-
tion X over {0, 1}n is called k-wise independent if for any
subset J ⊆ [n] such that |J | = k, XJ , the restriction of X
to the subset J is uniformly distributed.

The following is a direct corollary of Proposition II.12.

Proposition II.14 ([52]). Any δ-biased random variable
X ∈ {0, 1}n is ε-close in L1-distance to being k-wise
independent for ε = 2k/2δ.

We use the following lemma in our algorithms to
stretch uniformly random strings to much longer small-
bias pseudo-random strings.

Lemma II.15 ([53]). For every δ ∈ (0, 1), there
exists an efficient deterministic algorithm which given
O
(
logn+ log 1

δ

)
uniformly random bits outputs a δ-biased

pseudo-random string of n bits.

III. Coding for teleportation-based
communication with a large alphabet

In this section, we focus on the teleportation-based
quantum communication model with a polynomial-size
alphabet (see Section II-B). In this model, Alice and Bob
share an unlimited number of copies of the maximally

entangled state (MES) |φ〉 before the protocol begins. The
parties effectively send each other qudit messages by using
an MES and then sending two classical symbols from
the communication alphabet per qudit. The complexity
of the protocol is the number of classical symbols ex-
changed, while the MESs are available for free. We call
this model noiseless if the classical channel is noiseless. A
large communication alphabet allows the parties to send
a logarithmic amount of information by communicating
only a constant number of symbols from the alphabet.
This simplifies our algorithm while allowing us to address
the main challenges of interactive communication in this
setting. In Part II of our paper, we extend the framework
developed in this section to constant-size communication
alphabets by carefully adapting the existing machinery in
the classical setting.

A. Overview
At a high level, we adapt ideas due to Brassard et

al. [25] and Haeupler [44] to design the simulation protocol.
Namely, the simulation protocol Π′ tries to construct the
joint quantum state of the parties in the original protocol Π
by evolving Π. When a transmission error is detected, we
actively reverse earlier local operations in Π′, as in Ref. [25].
In addition, we make communication robust to noise as
in Ref. [44]. In the simulation protocol Π′, both parties
conduct the original conversation from Π as if there were
no noise, except for the following:
• At regular intervals, they exchange concise “sum-
maries” of their (potentially different) views of the
conversation up that point.

• If the summaries are consistent, they continue the
conversation.

• If the summaries are inconsistent, a transmission error
is presumed to have occurred at some point in the
simulation. The parties then reverse the simulation to
an earlier stage of the conversation and resume from
there.

This template can be interpreted as an error-correcting
code over many messages, with trivial, and most impor-
tantly, message-wise encoding. The two-way summaries
correspond to error syndromes for a large number of
messages, thereby preserving the rate.
Next, we provide a more detailed description of the

classical protocol of Ref. [44] for noisy interactive communi-
cation which can be helpful in understanding our algorithm.
Following the template above, the input protocol is divided
into smaller blocks of r = Θε(1) messages. At any point
in the simulation, each party has a partial transcript
corresponding to their view of the conversation so far. Let
TA and TB denote Alice’s and Bob’s partial transcripts,
respectively. Starting from empty strings TA and TB, at the
beginning of each iteration, the two parties compare their
partial transcripts through hashing. As described above,
if their hash values do match, they continue their original
conversation for another block of length r. Otherwise, they
need to backtrack to a common prefix of TA and TB. One

10

way to achieve this is to discard the last block of their
transcripts when they suspect that an error has occurred.
However, TA and TB are not necessarily of the same
length and this simple strategy may lead to backtracking
all the way to empty strings TA and TB. In the large
alphabet setting, Alice and Bob can send logarithmic
transcript length information by communicating only a
constant number of symbols from the alphabet. In the
scenario above, after exchanging the transcript lengths, the
party with the longer transcript keeps backtracking until
both transcripts are equally long and then both parties
backtrack until they reach a common prefix.

In the classical setting, the simulation works by limiting
the maximum amount of communication that is rendered
useless by a single error to Oε(1), where ε is the error-
rate. As the error-rate vanishes, the communication rate
goes to 1. In addition, the consistency tests are efficient,
consisting of evaluation of simple hash functions.

Before we describe the simulation protocol in more detail
(in Section III-C), we discuss some of its important aspects.

1) Insufficiency of simply combining [25] and [44] :
Suppose we wish to simulate an interactive protocol Π
that uses noiseless classical channels in the teleportation-
based model. When implementing Π with noisy classical
channels, it is not sufficient to apply the Haeupler template
to the classical messages used in teleportation, and rewind
as in Ref. [25] when an error is suspected. The reason
is that, in Ref. [25], each message is expanded to convey
different types of actions in one step (for example, whether
the parties are evolving the original protocol forward
or reversing it). This also helps maintain the matching
between the classical messages and the corresponding MES,
and the matching between the registers containing the two
halves of the MESs. However, this method incurs a large
constant factor overhead in the communication which we
wish to avoid.

2) New difficulties in rate-optimal simulations: Due
to errors in communication, the parties need to actively
rewind the simulation to correct errors on their joint
quantum state. This itself can lead to a situation where
the parties may not agree on how they proceed with the
simulation (to rewind simulation or to proceed forward). In
order to move on, both parties first need to know what the
other party has done so far in the simulation. This allows
them to obtain a global view of the current joint state and
decide on their next action. In Ref. [25], this reconciliation
step was facilitated by the extra information sent by each
party and the use of tree codes. This mechanism is not
available to us.
3) Framework: Our first new idea is to introduce suffi-

cient yet concise data structures so that the parties can
detect inconsistencies in (1) the stage in which they are
in the protocol, (2) what type of action they should be
taking, (3) histories leading to the above, (4) histories
of measurement outcomes generated by one party versus
the potentially different (corrupted) received instruction
for teleportation decoding, (5) which system contains the
next MES to be used, (6) a classical description of the

joint quantum state, which is only partially known to
each party. Each of Alice and Bob maintains her/his
data (we collectively call these DA, DB respectively, here),
and also an estimate of the other party’s data (D̃B, D̃A
respectively). Without channel noise, these data are equal
to their estimates.

4) A major new obstacle: out-of-sync teleportation:
At every step in the simulation protocol Π′, Alice and
Bob may engage in one of three actions based on their
current view of the simulation: a forward step in Π, step in
reverse, or the exchange of classical information. However,
due to the adversary’s corruptions, Alice and Bob may
have inconsistent views of the simulation. This leads to a
new difficulty: errors in the summaries can trigger Alice
and Bob to engage in different actions. In particular,
it is possible that one party tries to teleport while the
other expects classical communication, with only one party
consuming his/her half of an MES. They then become out-
of-sync over which MESs to use. This kind of problem,
to the best of our knowledge, has not been encountered
before, and it is not clear if quantum data can be protected
from such error. (For example, Alice may try to teleport
a message into an MES that Bob already “used” earlier.)
One of our main technical contributions is to show that the
quantum data can always be located and recovered when
Alice and Bob resolve the inconsistencies in their data
(DA, D̃B) and (D̃A, DB) in the low noise regime. This is
particularly surprising since quantum data can potentially
leak irreversibly to the environment (or the adversary):
Alice and Bob potentially operate in an open system due
to channel noise, and out-of-sync teleportation a priori
does not protect the messages so sent.

5) Tight rope between robustness and rate: The simula-
tion maintains sufficient data structures to store informa-
tion about each party’s view so that Alice and Bob can
overcome all the obstacles described above. The simulation
makes progress so long as Alice’s and Bob’s views are con-
sistent. The robustness of the simulation requires that the
consistency checks be frequent and sensitive enough so that
errors are caught quickly. On the other hand, to optimize
interactive channel capacity, the checks have to remain
communication efficient and not too frequent neither. We
also put in some redundancy in the data structures to
simplify the analysis. This calls for delicate analysis in
which we balance the two. In more detail, let c denote the
number of communicated symbols for consistency checks
in each iteration. Roughly speaking, for every r symbols
of Π, r + c symbols are communicated in the simulation
protocol. The other source of losing the simulation rate
is the communication wasted by transmission errors. A
single error is sufficient to waste r + c communicated
symbols in at least one iteration. This informal argument
suggests that any such successful coding scheme would
require communication of at least

n

r
(r + c) + nε (r + c)

11

symbols. This expression is minimized when r ≈
√
c/ε.

This also implies that the communication rate of 1−Θ (
√
ε)

is the best we can hope to achieve using protocols based
on the rewind-if-error paradigm above.

B. Result
The following is our main result in the teleportation-

based model for simulation of any n-round noiseless
communication protocol over an adversarial channel that
corrupts any ε fraction of the transmitted symbols.

Theorem III.1. Consider any n-round alternating com-
munication protocol Π in the teleportation-based model,
communicating messages over a noiseless channel with an
alphabet Σ of bit-size Θ (logn). Algorithm 2 is a computa-
tionally efficient coding scheme which given Π, simulates it
with probability at least 1− 2−Θ(nε), over any fully adver-
sarial error channel with alphabet Σ and error rate ε. The
simulation uses n (1 + Θ (

√
ε)) rounds of communication,

and therefore achieves a communication rate of 1−Θ (
√
ε).

Furthermore, the computational complexity of the coding
operations is O

(
n2).

C. Description of Protocol
We follow the notation associated with quantum com-

munication protocols introduced in Section II-B in the
description below.

Recall that in the teleportation-based quantum commu-
nication model, Alice and Bob implement a protocol Π0
with prior shared entanglement and quantum communica-
tion by substituting teleportation for quantum communi-
cation. For simplicity, we assume that Π0 is alternating,
and begins with Alice. In the implementation Π of Π0,
the message register C from Π0 has two counterparts, CA
and CB, held by Alice and Bob, respectively. The unitary
operations on AC in Π0 are applied by Alice on ACA in Π.
When Alice sends the qudit in C to Bob in Π0, she applies
the teleportation measurement to CA and her share of the
next available MES, and sends the measurement outcome
to Bob in Π. Then Bob applies a decoding operation on
his share of the MES, based on the message received, and
swaps the MES register with CB. Bob and Alice’s actions
in Π when Bob wishes to do a local operation and send a
qudit to Alice in Π0 are analogously defined. For ease of
comparison with the joint state in Π0, we describe the joint
state of the registers in Π (or its simulation over a noisy
channel) in terms of registers ABC. There, C stands for CA
if Alice is to send the next message or all messages have
been sent, and for CB if Bob is to send the next message.
Starting with such a protocol Π in the teleportation-

based model, we design a simulation protocol Π′ which
uses a noisy classical channel. The simulation works with
blocks of even number of messages. By a block of size r (for
even r) of Π, we mean a sequence of r local operations and
messages alternately sent in Π by Alice and Bob, starting
with Alice.

Roughly speaking, Alice and Bob run the steps of the
original protocol Π as is, in blocks of size r := Θ(1√

ε
),

with r even. They exchange summary information between
these blocks, in order to check whether they agree on
the operations that have been applying to the quantum
registers ABC in the simulation. The MESs used for
teleportations are correspondingly divided into blocks of r
MESs, implicitly numbered from 1 to r: the odd numbered
ones are used to simulate quantum communication from
Alice to Bob, and the even numbered ones from Bob to
Alice. If either party detects an error in transmission, they
may run a block of Π in reverse, or simply communicate
classically to help recover from the error. The classical
communication is also conducted in sequences equal in
length to the ones involving a block of Π. A block of Π′
refers to any of these types of sequences.
1) Metadata: Alice uses an iteration in Π′ for one

out of four different types of operations: evolving the
simulation by running a block of Π in the forward direc-
tion (denoted a “+1” block); reversing the simulation by
applying inverses of unitary operations of Π (denoted a
“−1” block); synchronizing with Bob on the number of
MESs used so far by applying identity operators between
rounds of teleportation or reversing such an iteration
(denoted a “0” block, with 0 standing for the application of
unitary operations U0

i which are 1AC); catching up on the
description of the protocol so far by exchanging classical
data with Bob (denoted a “C” block, with C standing for
“classical”). Alice records the sequence of types of iterations
as her “metadata” in the string FullMA ∈ {±1, 0,C}∗.
FullMA gets extended by one symbol for each new iteration
of the simulation protocol Π′. The number of blocks of r
MESs Alice has used is denoted qMA which corresponds to
the number of non-C symbols in FullMA. Similarly, Bob
maintains data FullMB and qMB.

FullMA and FullMB may not agree due to the trans-
mission errors. To counter this, the two players exchange
information about their metadata at the end of each block.
Hence, Alice also holds M̃B and qM̃B as her best estimation
of Bob’s metadata and the number of MESs he has used,
respectively. Similarly, Bob holds M̃A and qM̃A. We use
these data to control the simulation; before taking any
action in Π′, Alice checks if her guess M̃B equals FullMB.
Bob does the analogous check for his data.
2) Number of MESs used: Once both parties reconcile

their view of each other’s metadata with the actual data,
they might detect a discrepancy in the number of MESs
they have used. The three drawings in Fig. 3 represent the
d n2r (1 + O(rε))e blocks of r = O(

√
1/ε) MESs at different

points in the protocol: first, before the protocol begins;
second, when Alice and Bob have used the same number
of MESs; and third, when they are not synchronized, say,
Alice has used more blocks of MESs than Bob. A difference
in qMA and qMB indicates that the joint state of the proto-
col Π can no longer be recovered from registers ACACBB
alone. Since one party did not correctly complete the
teleportation operations, the (possibly erroneous) joint
state may be thought of as having “leaked” into the
partially measured MESs which were used by only one
party. We will elaborate on this scenario in Section III-C5.

12

Fig. 3. These figures represent the MES blocks at different stages of the protocol. The systems depicted by circles have not been used yet
for teleportation, those depicted by squares have been used already. (either “Measured” or teleportation-decoded.) Figure (a) represents the
MES blocks at the beginning of the protocol, when none have been used. Figure (b) represents them when Alice and Bob have used the
same number of them; this is the desired situation. Figure (c) represents a situation when Alice and Bob are out of sync; e.g., Alice has used
more MES blocks than Bob. They then work to get back in sync before resuming the simulation.

3) Pauli data: The last piece of information required
to complete the description of what has happened so
far on the quantum registers ABC is about the Pauli
operators corresponding to teleportation, which we call
the “Pauli data”. These Pauli data contain information
about the teleportation measurement outcomes as well
as about the teleportation decoding operations. Since
incorrect teleportation decoding may arise due to the
transmission errors, we must allow the parties to apply
Pauli corrections at some point. We choose to concentrate
such Pauli corrections on the receiver’s side at the end of
each teleportation. These Pauli corrections are computed
from the history of all classical data available, before
the evolution or reversal of Π in a block starts. The
measurement data are directly transmitted over the noisy
classical communication channel and the decoding data
are directly taken to be the data received over the noisy
channel. If there is no transmission error, the decoding
Pauli operation should correspond to the inverse of the
effective measurement Pauli operation and cancel out to
yield a noiseless quantum channel. Fig. 4 depicts the
different types of Pauli data in a block corresponding to
type +1 for Alice and −1 for Bob. The Pauli operations
applied on Alice’s side are in the following order:

teleportation measurement for the first qudit she
sends,
decoding operation for the first qudit she receives,
correction operation for the same qudit (the first
qudit she receives);

teleportation measurement for the second qudit
she sends,
decoding operation for the second qudit she
receives,
correction operation for the same qudit (the
second qudit she receives);
and so on.

The Pauli operations applied on Bob’s side are in a different
order:

decoding operation for the first qudit he receives,
correction operation for the same qudit (the first
qudit he receives),
teleportation measurement for the first qudit he
teleports;
decoding operation for the second qudit he re-
ceives,
correction operation for the same qudit (the
second qudit he receives),
teleportation measurement for the second qudit
he sends;
and so on.

Alice records as her Pauli data in the string FullPA ∈
(Σ3r)∗, the sequence of Pauli operators that are applied
on the quantum register on her side. Each block of FullPA
is divided into 3 parts of r symbols from the alphabet
set Σ. The first part corresponds to the r

2 teleportation
measurement outcomes with two symbols for each mea-
surement outcome. Each of the r

2 teleportation decoding
operations is represented by two symbols in the second part.

13

Fig. 4. Representation of the teleportation scheme for a size r block. The figure on the left corresponds to Alice and Bob having blocks of
type +1, the most common block type, and the one on the right to a block of type −1 for both. The large rectangles correspond to unitary
operations of the original protocol or their inverses, or even an identity operator, being applied by Alice or by Bob to AC or BC, respectively.
Bob has r/2 rectangles and applies a unitary operation or an inverse in each of them whenever he has a block of type ±1. Alice has r/2 + 1
rectangles and uses the first r/2 to apply unitary operations in a block of type +1 and apply an identity on the last one, while she applies an
identity in the first one and inverses of unitary operations in the r/2 last ones in a block of type −1. This is so that a −1 block for Alice can
be the inverse of a +1 block for Alice, and vice-versa. The small circles correspond to the Pauli operations due to teleportation measurement
and teleportation decoding, with the teleportation being from Alice to Bob on odd numbered MESs and from Bob to Alice on even numbered
MESs. The small squares on the receiver side right after the teleportation decoding circle corresponds to the Pauli corrections made in order
to try to correct errors in previous blocks.

Finally, the third part contains two symbols for each of the
r
2 Pauli corrections. Similarly, Bob records the sequence of
Pauli operators applied on his side in FullPB. As described
above, the measurement outcomes and the decoding Pauli
operations are available to the sender and the receiver,
respectively. Based on the message transcript in Π′ so far,
Alice maintains her best guess P̃B for Bob’s Pauli data
and Bob maintains his best guess P̃A for Alice’s Pauli data.
These data also play an important role in the simulation.
Before taking any action in Π′, Alice checks if her guess P̃B
equals FullPB. Bob does the analogous check for his data.

Alice and Bob check and synchronize their classical data,
i.e., the metadata and Pauli data, by employing the ideas
underlying the Haeupler algorithm [44]. Once they agree
on each other’s metadata and Pauli data, they both possess
enough information to compute the content of the quantum
register (to the best of their knowledge).

4) Hashing for string comparison: We use randomized
hashes to compare strings and catch disagreements proba-
bilistically. The hash values can be viewed as summaries of

the strings to be compared. Usually, a random bit string
called the seed is used to select a function from the family
of hash functions. We say a hash collision occurs when
a hash function outputs the same value for two unequal
strings. In the large alphabet case (Sections III and IV),
we use the following family of hash functions based on the
ε-biased probability spaces constructed in [53].

Lemma III.2 (from [53]). For any l, any alphabet Σ, and
any probability 0 < p < 1, there exist s = Θ(log(l log |Σ|) +
log 1

p), o = Θ(log 1
p), and a simple function h, which given

an s-bit uniformly random seed S maps any string over
Σ of length at most l into an o-bit output, such that the
collision probability of any two l-symbol strings over Σ is
at most p. In short:

∀l,Σ, 0 < p < 1 : ∃ s = Θ(log(l log |Σ|) + log 1
p

) ,

o = Θ(log 1
p

) ,

h : {0, 1}s × Σ≤l 7→ {0, 1}o ,

14

s.t.

∀X, Y ∈ Σ≤l, X 6=Y, S ∈ {0, 1}s i.i.d. Bernoulli(1/2) :
P [hS(X) = hS(Y)] ≤ p .

In our application, the hash family of Lemma III.2 is
used to compare Θ (n)-symbol strings, where n is the
length of the input protocol. Therefore, in the large
alphabet setting, the collision probability can be chosen
to be as low as p = 1/poly (n), while still allowing the
hash values to be exchanged using only a constant number
of symbols. In the teleportation-based model, where Alice
and Bob have access to free pre-shared entanglement, they
generate the seeds by measuring the MESs they share in
the computational basis.
5) Out-of-Sync Teleportation:
Basic out-of-sync scenario: Consider an iteration in

which Alice believes she should implement a +1 block,
while Bob believes he has to resolve an inconsistency in
their classical data. Alice will simulate one block of the
input protocol Π, consuming the next block of MESs. On
the other hand, Bob will try to resolve the inconsistency
through classical communication alone, and not access the
quantum registers. Thus Alice will treat Bob’s messages as
the outcomes of his teleportation measurements, and she
performs the teleportation decoding operations according
to these messages. The situation is even worse, since Alice
sends quantum information to Bob through teleportation
of which Bob is unaware, and Bob views the telepor-
tation measurement outcomes sent by Alice as classical
information about Alice’s local Pauli data and metadata
corresponding to previous iterations. Note that at this
point the quantum state in registers ABC may potentially
be lost. This scenario could continue for several iterations
and derail the simulation completely. To recover from such
a situation, especially to retrieve the quantum information
in the unused MESs at his end, it would seem that Alice
and Bob would have to rewind the simulation steps in Π′
(and not only the steps of the original protocol Π) to
an appropriate point in the past. This rewinding itself
would be subject to error, and the situation seems hopeless.
Nonetheless, we provide a simple solution to address this
kind of error, which translates out-of-sync teleportation to
errors in implementing the forward simulation or rewinding
of the original protocol Π.
As explained earlier, Alice and Bob first reconcile their

view of the history of the simulation stored in their
metadata. Through this, suppose they both discover the
discrepancy in the number of MESs used. (There are
other scenarios as well; for example, they may both think
that qMA = qMB. These scenarios lead to further errors,
but the simulation protocol Π′ eventually discovers the
difference in MESs used.) In the scenario in which Alice
and Bob both discover that qMA 6= qMB, they try to
“gather” the quantum data hidden in the partially used
MESs back into the registers ABC. In more detail, suppose
Bob has used fewer MESs than Alice, and he discovers
this at the beginning of the i-th iteration. Let E1E2 · · ·Er

be registers with Bob that hold the halves of the first
block of MESs that Alice has used but Bob has not.
Note that E1, E3, . . . , Er−1 contain quantum information
teleported by Alice, and E2, E4, . . . , Er are MES-halves
intended for teleportation by Bob. The MES-halves cor-
responding to E2, E4, . . . , Er have already been used by
Alice to “complete” the teleportations she assumed Bob has
performed. Say Alice used this block of MESs in the i′-th
iteration. In the i-th iteration, Bob teleports the qudit E1
using the MES-half E2, E3 with E4, and so on. That is, Bob
teleports qudit Ej using the MES-half Ej+1 in increasing
order of j, for all odd j ∈ [r], as if the even numbered MESs
had not been used by Alice. The effect of this teleportation
is the same as if Alice and Bob had both tried to simulate
the local operations and communication from the original
protocol in the i′-th iteration (in the forward direction or
to correct the joint state), except that the following also
happened independently of channel error :

1) the Pauli operations used by Bob to
decode E1, E3, . . . , Er−1 were all the identity,

2) the unitary operations used by Bob on the regis-
ters BC were all the identity, and

3) the Pauli operations applied by Alice for decoding
Bob’s teleportation were unrelated to the outcome
of Bob’s teleportation measurements.

This does not guarantee the correctness of the joint state
in ABC, but has the advantage that quantum information
in the MES-halves E1, E3, . . . , Er−1 that is required to re-
store correctness is redirected back into the registers ABC.
In particular, the difference in the number of MESs used
by the two parties is reduced, while the errors in the joint
quantum state in ABC potentially increase. The errors
in the joint state are eventually corrected by reversing
the incorrect unitary operations, as in the case when the
teleportations are all synchronized.
To understand the phenomenon described above, con-

sider a simpler scenario where Bob wishes to teleport
a qudit |ξ〉 in register B1 to Alice using an MES in
registers E′1E1, after which Alice applies the unitary
operation V to register E′1. If they follow the corresponding
sequence of operations, the final state would be V |ξ〉,
stored in register E′1. Instead, suppose they do the fol-
lowing. First, Alice applies V to register E′1, then Bob
measures registers B1E1 in the generalized Bell basis and
gets measurement outcome (j, k). He sends this outcome to
Alice. We may verify the state of register E′1 conditioned
on the outcome is V (XjZk) |ξ〉. Thus, the quantum infor-
mation in ξ is redirected to the correct register, albeit
with a Pauli error (that is known to Alice because of
his message). In particular, Alice may later reverse V
to correctly decode the teleported state. The chain of
teleportation steps described in the previous paragraph
has a similar effect.
6) First representation of the quantum registers: A

first representation for the content of the quantum reg-
isters ABC in Π′ can be obtained directly and explicitly
from the metadata and the Pauli data, and is denoted JS1,
as in Eq. (8) below, with JS standing for “joint state”.

15

We emphasize that this is the state conditioned on the
outcomes of the teleportation measurements as well as the
transcript of classical messages received by the two parties.
However, the form JS1 is essentially useless for deciding
the next action that the simulation protocol Π′ should take,
but it can be simplified into a more useful representation.
This latter form, denoted JS2, as in Eq. (9) below, directly
corresponds to the further actions we may take in order to
evolve the simulation of the original protocol or to actively
reverse previous errors. We first consider JS1 and JS2 in
the case when qMA = qMB.
We sketch how to obtain JS1 from FullMA, FullMB,

FullPA and FullPB (when qMA = qMB). Each block of
r MESs which have been used by both Alice and Bob
corresponds to a bracketed expression [∗j] for some content
“∗j” corresponding to the j-th block that we describe below.
The content of the quantum registers is then the ABC part
of

JS1 = [∗qMA] · · · [∗2][∗1] |ψinit〉ABCER , (8)

with |ψinit〉ABCER being the initial state of the original
protocol. (To be accurate, the representation corresponds
to the sequence of operations that have been applied to
|ψinit〉, and knowledge of |ψinit〉 is not required to compute
the representation.) It remains to describe the content ∗j of
the j-th bracket. It contains from right to left r

2 iterations
of the following:

Alice’s unitary operation - Alice’s teleportation
measurement outcome -
Bob’s teleportation decoding - Bob’s Pauli cor-
rection - Bob’s unitary operation - Bob’s telepor-
tation measurement outcome -
Alice’s teleportation decoding - Alice’s Pauli cor-
rection.

It also allows for an additional unitary operation of Alice
on the far left when she is implementing a block of type −1;
we elaborate on this later. If Alice’s block type is +1, all
her unitary operations are consecutive unitary operations
from the original protocol (with the index of the unitary
operations depending on the number of ±1 in FullMA),
while if it is−1, they are inverses of such unitary operations.
If Alice’s block type is 0, all unitary operations are equal
to the identity on registers ACA. Similar properties hold
for Bob’s unitary operations on registers BC. Alice’s block
type corresponds to the content of the j-th non-C element
in FullMA, and Bob’s to the content of the j-th non-C
element in FullMB. Alice’s Pauli data corresponds to the
content of the j-th block in FullPA, and Bob’s to the
content of the j-th block in FullPB. The precise rules by
which Alice and Bob determine their respective types for a
block in Π′, and which blocks of Π (if any) are involved, are
deferred to the next section. Note that when qMA = qMB,
the first qMA MES blocks have been used by both parties
but not necessarily in the same iterations. Nevertheless, the
remedial actions the parties have taken to recover from
out-of-sync teleportation have reduced the error on the
joint state to transmission errors as if all the teleportations

were synchronized and the adversary had introduced those
additional errors; see Section III-C5.
To give a concrete example, suppose from her classical

data, Alice determines that in her j-th non-C block
of Π′, she should actively reverse the unitary operations
of block k of Π to correct some error in the joint
state. So her j-th non-C block of Π′ is of type −1.
Suppose Alice’s Pauli data in the j-th block of FullPA
correspond to Pauli operators pA,1pA,2 · · · pA,3r/2 in the
order affecting the joint state; that is, the Pauli oper-
ators pA,1 , pA,4 , . . . , pA,3(r/2−1)+1 correspond to the se-
quence of Alice’s teleportation measurement outcomes, the
Pauli operators pA,2 , pA,5 , . . . , pA,3(r/2−1)+2 are her tele-
portation decoding operations and pA,3 , pA,6 , . . . , pA,3r/2
are her Pauli corrections, respectively. Consider Bob’s j-th
non-C block of Π′. Note that this may be a different block
of Π′ than Alice’s j-th non-C block. Suppose from his classi-
cal data, Bob determines that in his j-th non-C block of Π′,
he should apply the unitary operations of block l of Π to
evolve the joint state further. So his j-th non-C block of Π′
is of type +1. Suppose Bob’s Pauli data in the j-th block of
FullPB correspond to Pauli operators pB,1pB,2 · · · pB,3r/2,
in the order affecting the joint state; that is, the Pauli
operators pB,1 , pB,4 , . . . , pB,3(r/2−1)+1 are Bob’s decoding
operations and pB,2 , pB,5 , . . . , pB,3(r/2−1)+2 are his Pauli
corrections and pB,3 , pB,6 , . . . , pB,3r/2 correspond to his
teleportation measurement outcomes, respectively. Then
from FullMA,FullMB,FullPA,FullPB, we can compute a
description of the joint state as in Eq. (8), with ∗j equal
to

U−1
kr+1

×
(
pA,3(r/2−1)+3 pA,3(r/2−1)+2

)(
pB,3(r/2−1)+3 Ulr+r pB,3(r/2−1)+2 pB,3(r/2−1)+1

)(
pA,3(r/2−1)+1 U−1

kr+3
)

× · · ·
×
(
pA,3(s−1)+3 pA,3(s−1)+2

)(
pB,3(s−1)+3 Ulr+2s pB,3(s−1)+2 pB,3(s−1)+1

)(
pA,3(s−1)+1 U−1

kr+(r−2s+3)

)
× · · ·

× (pA,6 pA,5) (pB,6 Ulr+4 pB,5 pB,4)
(
pA,4 U

−1
kr+(r−1)

)
× (pA,3 pA,2) (pB,3 Ulr+2 pB,2 pB,1) (pA,1 1) .

Note that Alice and Bob are not necessarily able to com-
pute the state JS1. Instead, they use their best guess for
the other party’s metadata and Pauli data in the procedure
described in this section to compute their estimates JS1A

and JS1B of JS1, respectively. Note that Alice and Bob
will not compute their estimates of JS1 unless they believe
that they both know each other’s metadata and Pauli data
and have used the same number of MES blocks.
7) Second representation of the quantum registers: To

obtain JS2 from JS1, we first look inside each bracket and
recursively cancel consecutive Pauli operators inside the
bracket. In case a bracket evaluates to the identity operator

16

on registers ABC, we remove it. Once each bracket has
been cleaned up in this way, we recursively try to cancel
consecutive brackets if their contents correspond to the
inverse of one another (assuming that no two Ui of the
original protocol are the same or inverses of one another).
Once no such cancellation works out anymore, what we are
left with is representation JS2, which is of the following
form (when qMA = qMB):

JS2 =[#b] · · · [#1][Ugr · · ·U(g−1)r+2U(g−1)r+1]
· · · [Ur · · ·U2U1] |ψinit〉ABCER . (9)

Here, the first g brackets starting from the right correspond
to the “good” part of the simulation, while the last b brack-
ets correspond to the “bad” part of the simulation, the
part that Alice and Bob have to actively rewind later. The
integer g is determined by the left-most bracket such that
along with its contents, those of the brackets to the right
equal the sequence of unitary operations U1, U2, . . . , Ugr
from the original protocol Π in reverse. The brackets to
the left of the last g brackets are all considered bad blocks.
Thus, the content of [#1] is not [U(g+1)r · · ·Ugr+1], while
the contents of [#2] to [#b] are arbitrary and have to be
actively rewound before Alice and Bob can reverse the
content of [#1].
Once the two parties synchronize their metadata, the

number of MESs they have used and their Pauli data,
they compute their estimates of JS1. Alice uses JS1A in
the above procedure to compute her estimate JS2A of
JS2. Similarly, Bob computes JS2B from JS1B. These in
turn determine their course of action in the simulation as
described next. If b > 0, they actively reverse the incorrect
unitary operators in the last bad block, while assuming
the other party does the same. They start by applying the
inverse of [#b], choosing appropriately whether to have a
type ±1 or 0 block, and also choosing appropriate Pauli
corrections. Else, if b = 0, they continue implementing
unitary operations Ugr+1 to U(g+1)r of the original input
protocol Π to evolve the simulation. Note that each player
has their independent view of the joint state, and takes
actions assuming that their view is correct. In this process,
Alice and Bob use their view of the joint state to predict
each other’s next action in the simulation and extend
their estimates of each other’s metadata and Pauli data
accordingly.
We describe a few additional subtleties on how the

parties access the quantum register in a given block, as
represented in Fig. 4. First, each block begins and ends
with Alice holding register C and being able to perform
a unitary operation. In +1 blocks, she applies a unitary
operation at the beginning and not at the end, whereas in
−1 blocks she applies the inverse of a unitary operation at
the end and not at the beginning. This is in order to allow
a −1 block to be the inverse of a +1 block, and vice-versa.
Second, whenever Alice and Bob are not synchronized in
the number of MESs they have used so far, as explained
in Section III-C5, the party who has used more will wait
for the other to catch up by creating a new type C block

while the party who has used less will try to catch up by
creating a type 0 block, sequentially feeding the C register
at the output of a teleportation decoding to the input of
the next teleportation measurement. Notice that due to
errors in communication, it might happen that +1 blocks
are used to correct previous erroneous −1 blocks and 0
blocks are used to correct previous erroneous 0 blocks. As
illustrated in Fig. 4, the block on the right is the inverse
of the one on the left if the corresponding Pauli operators
are inverses of each other.
8) Representations of quantum registers while out-of-

sync: We now define the JS1 and JS2 representations of
the joint state in the case when qMA 6= qMB. Note that in
this case, conditioned on the classical data with the two
parties, JS1 and JS2 represent a pure state. However, in
addition to the ABCER registers, we must also include
the half-used MES registers in the representation. Let u :=
|qMA − qMB|. For concreteness, suppose that qMA > qMB.
Then the JS1 representation is of the following form:

JS1 = [∗qMA] · · · [∗qMB] · · · [∗2][∗1] |ψinit〉ABCER . (10)

The content of the first qMB brackets from the right,
corresponding to the MES blocks which have been used by
both parties are obtained as described in Subsection III-C6.
The leftmost u brackets correspond to the MES blocks
which have been used only by Alice. We refer to these
blocks as the ugly blocks. These brackets contain Alice’s
unitary operations from the input protocol, her teleporta-
tion decoding operations and Pauli correction operations
in her last u non-classical iterations of the simulation.
Additionally, they contain the u blocks of MES registers
used only by Alice. In each of these blocks, the registers
indexed by an odd number have been measured on Alice’s
side and the state of the MES register has collapsed to a
state which is obtained from Alice’s Pauli data.
The representation JS2 is obtained from JS1 as fol-

lows: We denote by [@u] · · · [@1] the leftmost u brackets
corresponding to the ugly blocks. We use the procedure
described in Subsection III-C7 on the rightmost qMB
brackets in JS1 to obtain JS2 of the following form:

JS2 =
[@u] · · · [@1][#b] · · · [#1][Ugr · · ·U(g−1)r+2U(g−1)r+1]
· · · [Ur · · ·U2U1] |ψinit〉ABCER , (11)

with g good blocks, and b bad blocks, for some non-negative
integers g, b.
Thus, in the rest of this section, we assume that JS2

is of the form of Eq. (11) at the end of each iteration for
some non-negative integers g, b, u which are given by

g := number of good unitary blocks in JS2, (12)
b := number of bad unitary blocks in JS2, (13)
u := |qMA − qMB|. (14)

We point out that Alice and Bob compute their esti-
mates of JS1 and JS2 only if, based on their view of the
simulation so far, they believe that they have used the

17

same number of MES blocks. Therefore, whenever com-
puted, JS1A, JS1B and JS2A, JS2B are always of the forms
described in Subsections III-C6 and III-C7, respectively.
Notice that if there are no transmission errors or hash

collisions and Alice and Bob do as described earlier in
this section after realizing that qMA > qMB, then the ugly
blocks [@u] · · · [@2] remain as they were while block [@1]
becomes a standard block of unitary operations acting
on registers ABC only, quite probably being a new bad
block, call it [#b + 1]. More generally, if there is either
a transmission error or a hash collision, Bob might not
realize that qMA > qMB. Then he might either have a C
type of iteration in which case block [@1] also remain as
is, or else it is a +1, −1 or 0 (non-C) type of iteration
and then he may apply non-identity Pauli operations and
unitary operations on registers BC, which still results in
block [@1] becoming a standard block of unitary operations
acting on registers ABC only. Similarly, if there is either
a transmission error or a hash collision, Alice might not
realize that qMA > qMB. Then she might have a non-C
type of iteration in which case a new ugly block, call it
[@u+ 1], would be added to the left of [@u].
9) Summary of main steps: The different steps that

Alice and Bob follow in the simulation protocol Π′ are
summarized in Algorithm 1. Recall that each party runs
the simulation algorithm based on their view of the
simulation so far.

Algorithm 1: Main steps in one iteration of the
simulation for the large alphabet teleportation-
based model

1 Agree on the history of the simulation contained in
the metadata, i.e., ensure FullMA = M̃A and
FullMB = M̃B. This involves Algorithm
4—rewindMD, and Algorithm 5—extendMD.

2 Synchronize the number of MESs used, in
particular, ensure qMA = qM̃B and qMB = qM̃A.
This involves Algorithm 6—syncMES.

3 Agree on Pauli data for all the teleportation steps
and additional Pauli corrections for addressing
channel errors, i.e., ensure FullPA = P̃A and
FullPB = P̃B. This is done via Algorithm
7—rewindPD and Algorithm 8—extendPD.

4 Compute the best guess for JS1 and JS2. If there
are any “bad” blocks in the guess for JS2, reverse
the last bad block of unitary operations. I.e.,
implement quantum rewinding so that b = 0 in
JS2. This is done in Algorithm 10—simulate.

5 If no “bad” blocks remain, implement the next
block of the original protocol. This results in an
increase in g in JS2, and is also done through
Algorithm 10—simulate.

The algorithms mentioned in each step are presented
in the next section. Fig. 5 summarizes the main steps in
flowchart form.

In every iteration, exactly one of the steps listed in
Algorithm 1 is conducted. Alice and Bob skip one step
to the next only if the goal of the step has been achieved
through the previous iterations. The simulation protocol
is designed so that unless there is a transmission error or
a hash collision in comparing a given type of data, Alice
and Bob will go down these steps in tandem, while never
returning to a previous step. For instance, once Alice and
Bob achieve the goal of step 1, as long as no transmission
error or hash collision occurs, their metadata will remain
synchronized while they are conducting any of the next
steps. This is in fact a crucial property that we utilize in
the analysis of the algorithm. In particular, to ensure this
property, Alice and Bob need to synchronize the number
of MESs they have used before synchronizing their Pauli
data.

D. Algorithm
In this section, we present our simulation protocol Π′

in the teleportation-based model when the communication
alphabet is polynomial-size. We first introduce the data
structure used in our algorithm in this model, which
summarizes the definition of the variables appearing in
the pseudo-code.
1) Data structure:
• Metadata: In every iteration NewMetaA ∈
{±1, 0,C} corresponds to Alice’s block type which
determines how the simulation of the input protocol
proceeds locally on Alice’s side. NewMetaA = C
corresponds to a classical iteration, in which
Alice does not access the quantum registers.
NewMetaA ∈ {±1, 0} determines the exponent of
the unitary operators from the input protocol Π
applied by Alice in the current iteration of the
simulation. Alice records her metadata in FullMA
which is concatenated with NewMetaA in every
iteration and has length i after i iterations. Her best
guess of Bob’s block type in the current iteration
is denoted by ˜NewMetaB. Alice maintains a guess
for Bob’s metadata in M̃B which gets modified or
corrected as she gains more information through
interaction with Bob. Note that M̃B is not necessarily
full-length in every iteration and its length may
decrease. `M̃B denotes the length of M̃B. Bob’s local
data, NewMetaB, FullMB, ˜NewMetaA, M̃A and `M̃A
are defined similarly.
Alice maintains a guess `MA for the length of M̃A,
which is with Bob. We define MA to be the prefix of
FullMA of length `MA, i.e., MA := FullMA [1 : `MA].
When MA appears in any of the algorithms in this sec-
tion, it is implicitly computed by Alice from FullMA
and `MA. The number of MES blocks used by Alice
for teleportation is denoted by qMA. We use qM̃B to
denote Alice’s guess of the number of MES blocks
used by Bob. Note that qMA and qM̃B are the number
of 0, 1 and −1 symbols in MA and M̃B, respectively.
Bob’s MB, `MB, qMB and qM̃A are defined similarly.

18

Fig. 5. Flowchart of the teleportation-based scheme for high rate noisy interactive quantum communication. Most of the communication is
spent actually trying to simulate the protocol, in the simulate subroutine.

• Pauli data: In every iteration NewPauliA ∈ (Σr)3

consists of three parts: The first part corresponds to
the outcomes of Alice’s teleportation measurements
in the current iteration; the second part corresponds
to the received transmissions which determine the
teleportation decoding operation and the last part
which corresponds to Pauli corrections.
The Pauli data are recorded locally by Alice in
FullPA. Starting from the empty string, FullPA is
concatenated with NewPauliA whenever Alice imple-
ments a non-C iteration. Alice’s best guess for Bob’s
NewPauliB in each iteration is denoted by ˜NewPauliB.
She maintains a string P̃B as an estimate of Bob’s
Pauli data. The length of P̃B is denoted by `P̃B. Alice
also maintains `PA, her estimate for the length of
P̃A, which is with Bob. PA denotes the prefix of
FullPA of length `PA, i.e., PA := FullPA [1 : `PA].
When PA appears in any of the algorithms in this
section, it is implicitly computed by Alice from FullPA
and `PA. Bob’s local Pauli data NewPauliB, FullPB,

˜NewPauliA, P̃A, `P̃A, `PB, PB are defined similarly.
A critical difference between the metadata and the
Pauli data is that the metadata assigns one symbol

for each block while the Pauli data assigns 3r symbols
for each block.

• We use H with the corresponding data as subscript to
denote the hashed data, e.g., HMA denotes the hash
value of the string MA.

• The data with ′ denote the received data after
transmission over the noisy channel, e.g., `′MB denotes
what Alice receives when Bob sends `MB.

• The variable Itertype ∈ {MD,PD,MES,SIM} deter-
mines the iteration type for the party: MD and PD
correspond to iterations where metadata and Pauli
data are processed or modified, MES is used for
iterations where the party is trying to catch up on
the number of used MESs, and SIM corresponds to
iterations where the party proceeds with evolving
the simulation of Π by applying a block of unitary
operators from Π or the inverse of such a block of
unitary operators in order to fix an earlier error.

• The variable RewindExtend ∈ {R,E} determines in
classical iterations if a string of the local metadata
or Pauli data is extended or rewound in the current
iteration.

2) Pseudo-code: This section contains the pseudo-codes
for the main algorithm and the subroutines that each party

19

runs locally in the simulation protocol. The subroutines
are the following: Preprocess, which determines what will
happen locally to the classical and quantum data in the cur-
rent iteration of the simulation; rewindMD and extendMD,
which process the local metadata; syncMES which handles
the case when the two parties do not agree on the number
of MES blocks they have used; rewindPD and extendPD
process the local Pauli data; and finally, simulate, in which
the player moves on with the simulation of the input
protocol according to the information from subroutine
Computejointstate of Preprocess. When a party believes
that the classical data are fully synchronized, he or she uses
the subroutine Computejointstate to extract the necessary
information to decide how to evolve the joint quantum
state next. This information includes estimates of JS1 and
JS2 defined in Eqs. (8) and (9), respectively, NewMetaA,
RewindExtend, ˜NewMetaB, Block which represents the
index of the block of unitary operations from the input
protocol Π the party will perform, PCorr representing
Alice’s Pauli corrections and P̃Corr representing Alice’s
guess of Bob’s Pauli corrections.

For the subroutines used in the simulation protocol, we
list all the global variables accessed by the subroutine as
the Input at the beginning of the subroutine. Whenever
applicable, the relation between the variables when the
subroutine is called is stated as the Promise and the
global variables which are modified by the subroutine are
listed as the Output.

Algorithm 2: Main algorithm (Alice’s side)

Input: n round protocol Π in teleportation-based
model over polynomial-size alphabet Σ

1 Initialize
r ← Θ (1/

√
ε) ;

Rtotal ← d n2r + Θ(nε)e ;
qMA, `MA, `M̃B, `PA, `P̃B ← 0 ;

MA, M̃B,PA, P̃B ← ∅ ;
2 h← hash function of Lemma III.2 with p = 1/n5

and o = s = Θ(logn) ;
3 Measure Θ (Rtotal) MESs in the computational

basis and record the binary representation of the
outcomes in S1, . . . , S4Rtotal ;

// 4Rtotal seeds of length s for the hash
function h

4 For i = 1→ Rtotal

B Preprocessing phase
5 HMA ← hS4i−3 (MA) ;

6 HM̃B ← hS4i−2

(
M̃B

)
;

7 HPA ← hS4i−1 (PA) ;

8 HP̃B ← hS4i

(
P̃B
)
;

Algorithm 2: Main algorithm (Alice’s side, cont.)

9 Send(
HMA, `MA, HM̃B, `M̃B, HPA, `PA, HP̃B, `P̃B

)
10 Receive(

H ′
M̃A

, `′
M̃A

, H ′MB, `
′
MB, H

′
P̃A
, `′

P̃A
, H ′PB, `

′
PB

)
11 Preprocess;
12 if Itertype 6= SIM then
13 Send msg;
14 Receive msg′;

// messages are communicated alternately

B Case i.A
15 if Itertype = MD and RewindExtend = R then
16 rewindMD;

B Case i.B
17 else if Itertype = MD and RewindExtend = E

then
18 extendMD;

B Case ii.A
19 else if Itertype = MES and NewMetaA = C

then
20 return;

B Case ii.B
21 else if Itertype = MES and NewMetaA = 0

then
22 syncMES;

B Case iii.A
23 else if Itertype = PD and RewindExtend = R

then
24 rewindPD;

B Case iii.B
25 else if Itertype = PD and RewindExtend = E

then
26 extendPD;

// Classical data are synchronized

B Case iv
27 else
28 simulate.

29 return Main algorithm;

Remark III.3. The amount of communication in each
iteration of Algorithm 2 is independent of the iteration
type.

20

Algorithm 3: Preprocess (Alice’s side)

Input:HMA, `MA, HM̃B, `M̃B, HPA, `PA, HP̃B, `P̃B
H ′

M̃A
, `′

M̃A
, H ′MB, `

′
MB, H

′
P̃A
, `′

P̃A
, H ′PB, `

′
PB

FullMA, M̃B,FullPA, P̃B, qMA


Output:(

Itertype,RewindExtend,NewMetaA,
FullMA, `MA, ˜NewMetaB, M̃B, `M̃B,msg

)

1 if
(
HMA, HM̃B

)
=
(
H ′

M̃A
, H ′MB

)
and `MA =

`′
M̃A

= `M̃B = `′MB = i− 1 then

2 Compute qM̃B;
B Processing metadata

B Case i.A

3 if
(
HMA, HM̃B, `MA, `M̃B

)
6=(

H ′
M̃A

, H ′MB, `
′
M̃A

, `′MB

)
then

4 Itertype ← MD;
5 RewindExtend ← R;
6 NewMetaA← C;
7 FullMA← (FullMA,NewMetaA);
8 msg ← dummy message of length r;

B Case i.B

9 else if (`MA < i− 1) or
(
`M̃B < i− 1

)
then

10 Itertype ← MD;
11 RewindExtend ← E;
12 NewMetaA← C;
13 FullMA← (FullMA,NewMetaA);
14 if `MA < i− 1 then
15 msg ←

encodeMD (FullMA [`MA + 1, `MA + 2]);
// Encode MD in Σr

16 else
17 msg ← dummy message of length r;

B Comparing number of used MES blocks

B Case ii.A

18 else if qMA > qM̃B then
19 Itertype ← MES;
20 NewMetaA← C;
21 FullMA← (FullMA,NewMetaA);
22 `MA ← `MA + 1;
23 ˜NewMetaB ← 0;
24 M̃B ←

(
M̃B, ˜NewMetaB

)
;

25 `M̃B ← `M̃B + 1;
26 msg ← dummy message of length r;

Algorithm 3: Preprocess (Alice’s side, cont.)
B Case ii.B

27 else if qMA < qM̃B then
28 Itertype ← MES;
29 NewMetaA← 0;
30 FullMA← (FullMA,NewMetaA);
31 `MA ← `MA + 1;
32 ˜NewMetaB ← C;
33 M̃B ←

(
M̃B, ˜NewMetaB

)
;

34 `M̃B ← `M̃B + 1;
35 msg ← dummy message of length r;

B Processing Pauli data

B Case iii.A
36 else if(

HPA, HP̃B, `PA, `P̃B

)
6=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
then

37 Itertype ← PD;
38 RewindExtend ← R;
39 NewMetaA← C;
40 FullMA← (FullMA,NewMetaA);
41 `MA ← `MA + 1;
42 ˜NewMetaB ← C;
43 M̃B ←

(
M̃B, ˜NewMetaB

)
;

44 `M̃B ← `M̃B + 1;
45 msg ← dummy message of length r;

B Case iii.B

46 else if (`PA < 3qMA · r) or
(
`P̃B < 3qM̃B · r

)
then

47 Itertype ← PD;
48 RewindExtend ← E;
49 NewMetaA← C;
50 FullMA← (FullMA,NewMetaA);
51 `MA ← `MA + 1;
52 ˜NewMetaB ← C;
53 M̃B ←

(
M̃B, ˜NewMetaB

)
;

54 `M̃B ← `M̃B + 1;
55 if `PA < 3qMA · r then
56 msg ← FullPA [`PA + 1, `PA + r]

B Processing joint quantum state

B Case iv
57 else
58 Itertype ← SIM;
59 computejointstate;
60 FullMA = (FullMA,NewMetaA);
61 `MA ← `MA + 1;
62 M̃B ←

(
M̃B, ˜NewMetaB

)
;

63 `M̃B ← `M̃B + 1;

64 return Preprocess;

21

Algorithm 4: rewindMD (Alice’s side)
Input:(

HMA, `MA, HM̃B, `M̃B, H
′
M̃A

, `′
M̃A

, H ′MB, `
′
MB

)
Promise:(
HMA,HM̃B, `MA, `M̃B

)
6=
(
H ′

M̃A
,H ′MB, `

′
M̃A

, `′MB

)
Output: (`MA, `

′
MB)

1 if `MA 6= `′
M̃A

or `M̃B 6= `′MB then

2 if `MA > `′
M̃A

then
3 `MA ← `MA − 1;
4 if `M̃B > `′MB then
5 `M̃B ← `M̃B − 1;

6 else
7 if HMA 6= H ′

M̃A
then

8 `MA ← `MA − 1;
9 if HM̃B 6= H ′MB then

10 `M̃B ← `M̃B − 1;

11 return rewindMD;

Algorithm 5: extendMD (Alice’s side)

Input:
(
`MA, `M̃B, M̃B,msg′, i

)
Promise:(
HMA,HM̃B, `MA, `M̃B

)
=
(
H ′

M̃A
,H ′MB, `

′
M̃A

, `′MB

)
`MA < i− 1 or `M̃B < i− 1

.
Output:

(
`MA, M̃B, `M̃B

)
1 if `MA < i− 1 then
2 `MA ← `MA + 2;
3 else if `MA = i− 1 then
4 `MA ← `MA + 1;
5 if `M̃B < i− 1 then
6 M̃B

[
`M̃B + 1, `M̃B + 2

]
←decodeMD(msg′);

// decode MD from Σr
7 `M̃B ← `M̃B + 2;
8 else if `M̃B = i− 1 then
9 M̃B ←

(
M̃B,C

)
;

10 `M̃B ← `M̃B + 1;
11 return extendMD;

Remark III.4. Since in every iteration of Algorithm 2 the
lengths of FullMA and FullMB increase by 1, in order to
be able to catch up on the metadata, Alice and Bob need
to communicate two symbols at a time when extending
the metadata. This is done by encoding the two symbols

into strings of length r of the channel alphabet Σ using
the mapping encodeMD in Algorithm 3 and decoding it
using the mapping decodeMD in Algorithm 5.

Algorithm 6: syncMES (Alice’s side)
Input: (FullPA, qMA)
Promise:

(
HMA, HM̃B, `MA, `M̃B

)
=(

H ′
M̃A

, H ′MB, `
′
M̃A

+ 1, `′MB + 1
)
,

`MA = `M̃B = i , qMA < qM̃B
Output: (qMA,NewPauliA,FullPA)

1 Recall that A′B′C ′ are the registers that are used
to generate the joint quantum state of the protocol
being simulated, and C ′ is the communication
register;

2 Let E1E2 · · ·Er be the r registers with Alice
containing halves of the block of r MESs with
indices in the interval (qMA · r, (qMA + 1) · r] ;

3 Teleport C ′ using E1; then teleport E2 using E3,
E4 using E5, and so on (i.e., teleport Ej using
Ej+1 for even j ∈ [r − 2]), and then store Er in
register C ′ ;

// See Section III-C5 for the rationale,
and Bob’s analogue of this step

4 Store the teleportation measurement outcomes in
m ∈ Σr;

5 NewPauliA← (m, 0r, 0r);
6 FullPA← (FullPA,NewPauliA);
7 qMA ← qMA + 1;
8 return syncMES;

Algorithm 7: rewindPD (Alice’s side)
Input:(

HPA, `PA, HP̃B, `P̃B, H
′
P̃A
, `′

P̃A
, H ′PB, `

′
PB

)
Promise:

(
HMA, HM̃B, `MA, `M̃B

)
=(

H ′
M̃A

, H ′MB, `
′
M̃A

+ 1, `′MB + 1
)
,

`MA = `M̃B = i , qMA = qM̃B ,(
HPA, HP̃B, `PA, `P̃B

)
6=(

H ′
P̃A
, H ′PB, `

′
P̃A
, `′PB

)
.

Output:
(
`PA, `P̃B

)
1 if `PA 6= `′

P̃A
or `P̃B 6= `′PB then

2 if `PA > `′
P̃A

then
3 `PA ← `PA − r;
4 if `P̃B > `′PB then
5 `P̃B ← `P̃B − r;

22

Algorithm 7: rewindPD (Alice’s side, cont.)
6 else
7 if HPA 6= H ′

P̃A
then

8 `PA ← `PA − r;
9 if HP̃B 6= H ′PB then

10 `P̃B ← `P̃B − r;

11 return rewindPD;

Algorithm 8: extendPD (Alice’s side)

Input:
(
`PA, `P̃B, P̃B, qMA, qM̃B,msg′

)
Promise:

(
HMA, HM̃B, `MA, `M̃B

)
=(

H ′
M̃A

, H ′MB, `
′
M̃A

+ 1, `′MB + 1
)
,

`MA = `M̃B = i , qMA = qM̃B ,(
HPA, HP̃B, `PA, `P̃B

)
=(

H ′
P̃A
, H ′PB, `

′
P̃A
, `′PB

)
,

`PA < 3qMA · r or `P̃B < 3qM̃B · r.

Output:
(
`PA, P̃B, `P̃B

)
1 if `PA < 3qMA · r then
2 `PA ← `PA + r;
3 if `P̃B < 3qM̃B · r then

4 P̃B
[
`P̃B + 1 : `P̃B + r

]
← msg′;

5 `P̃B ← `P̃B + r;
6 return extendPD;

Algorithm 9: Computejointstate (Alice’s side)

Input:
(

FullMA, M̃B,FullPA, P̃B
)

Promise:
(
HMA, HM̃B, `MA, `M̃B

)
=(

H ′
M̃A

, H ′MB, `
′
M̃A

, `′MB

)
,

`MA = `M̃B = i− 1 , qMA = qM̃B,(
HPA, HP̃B, `PA, `P̃B

)
=(

H ′
P̃A
, H ′PB, `

′
P̃A
, `′PB

)
,

`PA = `′
P̃A

= 3qMA · r ,
`P̃B = `′PB = 3qM̃B · r.

Output:
(
JS1A,JS2A,NewMetaA, ˜NewMetaB,

Block,RewindExtend,PCorr, P̃Corr

)
1 Compute JS1A;
2 Compute JS2A;

Algorithm 9: Computejointstate (Alice’s side,
cont.)

3 Compute NewMetaA;
4 Compute RewindExtend;

5 Compute ˜NewMetaB;
6 Compute Block;
7 Compute PCorr;

8 Compute P̃Corr;
// Refer to Sections III-C6, III-C7 to see

how these variables are computed

9 return Computejointstate;

Algorithm 10: simulate (Alice’s side)
Input:(

qMA,FullPA, `PA,P̃B, `P̃B,NewMetaA,

RewindExtend,Block,PCorr, P̃Corr

)
Promise:

(
HMA, HM̃B, `MA, `M̃B, qMA

)
=(

H ′
M̃A

,H ′MB,`
′
M̃A

+ 1,`′MB + 1,qM̃B

)
,

`MA = `M̃B = i,(
HPA, HP̃B, `PA, `P̃B

)
=(

H ′
P̃A
, H ′PB, `

′
P̃A
, `′PB

)
,

`PA = `P̃B = 3qMA · r

Output:
(

FullPA, `PA, P̃B, `P̃B

)
1 Continue the simulation of the input protocol

according to Block, NewMetaA and PCorr;
2 Record all teleportation measurement outcomes in

α;
3 Record all received Bob’s teleportation

measurement outcomes in β;
4 NewPauliA← (α, β,PCorr);
5 FullPA← (FullPA,NewPauliA);
6 `PA ← `PA + 3r;

7 ˜NewPauliB ←
(
β, α, P̃Corr

)
;

8 P̃B ←
(

P̃B, ˜NewPauliB
)
;

9 `P̃B ← `P̃B + 3r;

10 qMA ← qMA + 1;
11 return simulate;

23

E. Analysis
Our analysis is inspired by a potential function argument

used in Ref. [44] to track the progress of the simulation. In
order to show the correctness of the above algorithm, we
condition on some view of the metadata and Pauli data,
i.e., FullMA, MA, M̃A, FullMB, MB, M̃B, FullPA, PA, P̃A,
FullPB, PB and P̃B. We define a potential function Φ as

Φ := ΦQ + ΦMD + ΦPD ,

where ΦMD and ΦPD measure the correctness of the two
parties’ current estimate of each other’s metadata and
Pauli data, respectively, and ΦQ measures the progress
in reproducing the joint state of the input protocol. We
define

mdA
+ := the length of the longest prefix where

MA and M̃A agree; (15)
mdB

+ := the length of the longest prefix where
MB and M̃B agree; (16)

mdA
− := max{`MA, `M̃A} −md

A
+; (17)

mdB
− := max{`MB, `M̃B} −md

B
+; (18)

pdA
+ :=b1

r
× the length of the longest prefix where

PA and P̃A agreec; (19)

pdB
+ :=b1

r
× the length of the longest prefix where

PB and P̃B agreec; (20)

pdA
− :=1

r
max{`PA, `P̃A} − pd

A
+; (21)

pdB
− :=1

r
max{`PB, `P̃B} − pd

B
+. (22)

Also, recall that

g := number of good unitary blocks in JS2, (23)
b := number of bad unitary blocks in JS2, (24)
u := |qMA − qMB| , (25)

with qMA and qMB the number of non-C iterations for Alice
and Bob, respectively.
Now we are ready to define the components of the

potential function. At the end of the i-th iteration, we
let

ΦQ := g − b− 5u , (26)
ΦMD := mdA

+ − 3mdA
− +mdB

+ − 3mdB
− − 2i , (27)

ΦPD := pdA
+ − pdA

− + pdB
+ − pdB

− − 3qMA − 3qMB , (28)
Φ := ΦQ + ΦMD + ΦPD . (29)

where g, b and and u are defined in Eqs. (23), (24), and
(25).

Lemma III.5. Throughout the algorithm, it holds that
• ΦMD ≤ 0 with equality if and only if Alice and Bob have
full knowledge of each other’s metadata, i.e., mdA

+ =
mdB

+ = i and mdA
− = mdB

− = 0.

• ΦPD ≤ 0 with equality if and only if Alice and Bob
have full knowledge of each other’s Pauli data, i.e.,
pdA

+ = 3qMA, pdB
+ = 3qMB and pdA

− = pdB
− = 0.

Proof. The first statement follows from the property that
mdA

+,md
B
+ ≤ i, and the second statement holds since

pdA
+ ≤ 3qMA and pdB

+ ≤ 3qMB.

Note that if g − b − u ≥ n/2r, the noiseless protocol
embedding described in Section II-B1, guarantees that
not only is the correct final state of the original protocol
produced and swapped into the safe registers Ã, B̃ and
C̃, but also they remain untouched by the bad and ugly
blocks of the simulation. Therefore, by Lemma III.5, for
successful simulation of an n-round protocol, it suffices to
have Φ ≥ n/2r, at the end of the simulation.
The main result of this section is the following:

Theorem III.1 (Restated). Consider any n-round alter-
nating communication protocol Π in the teleportation-based
model, communicating messages over a noiseless channel
with an alphabet Σ of bit-size Θ (logn). Algorithm 2 is
a computationally efficient coding scheme which given Π,
simulates it with probability at least 1− 2−Θ(nε), over any
fully adversarial error channel with alphabet Σ and error
rate ε. The simulation uses n (1 + Θ (

√
ε)) rounds of com-

munication, and therefore achieves a communication rate
of 1−Θ (

√
ε). Furthermore, the computational complexity

of the coding operations is O
(
n2).

Proof Outline. We prove that any iteration without
an error or hash collision increases the potential by at
least one while any iteration with errors or hash collisions
reduces the potential by at most some fixed constant. As in
Ref. [44], with a very high probability the number of hash
collisions is at most O(nε), the same order of magnitude
as the number of errors, therefore negligible. Finally, our
choice of the total number of iterations, Rtotal := dn/2r +
κnεe (for a sufficiently large constant κ), guarantees an
overall potential increase of at least n/2r. As explained
above, this suffices to prove the successful simulation of
the input protocol.

Lemma III.5. Each iteration of the Main Algorithm
(Algorithm 2) without a hash collision or error increases
the potential Φ by at least 1.

Proof. Note that in an iteration with no error or hash colli-
sion, Alice and Bob agree on the iteration type. Moreover,
if Itertype = MD or PD (Case i or iii), they also agree on
whether they extend or rewind the data (the subcase A
or B), and if Itertype = MES (Case ii), then exactly one
of them is in Case A and the other one is in Case B. We
analyze the potential function in each of the cases, keeping
in mind that we only encounter Case ii or later cases once
the metadata of the two parties are consistent and of full
length, and similarly, that we encounter Case iv once the
parties have used the same number of MESs and the Pauli
data with the two parties are consistent and of full length.
Lemma III.5 guarantees that ΦMD becomes 0 on entering
Case ii, and that ΦMD = ΦPD = 0 on entering Case iv.

24

• Alice and Bob are in Case i.A:
– ΦPD and ΦQ stay the same.
– i increases by 1.
– mdA

+ and mdB
+ stay the same.

– None of mdA
− and mdB

− increases, and at least one
decreases by 1.

Therefore, ΦMD increases at least by 3 − 2 = 1, and
so does Φ.

• Alice and Bob are in Case i.B:
– ΦPD and ΦQ stay the same.
– i increases by 1.
– mdA

− and mdB
− stay at 0.

– At least one of `MA or `MB is smaller than i− 1;
If only `MA < i−1, then mdA

+ increases by 2, and
mdB

+ by 1. The case where only `MB < i − 1 is
similar. If both are smaller than i− 1, then mdA

+
and mdB

+ both increase by 2.
Therefore, ΦMD increases by at least 3 − 2 = 1, and
so does Φ.

• Alice is in Case ii.A, Bob is in Case ii.B:
– ΦMD stays at 0.
– qMB increases by 1.
– qMA, pdA

+, pdA
−, pdB

+, pdB
− all stay the same.

– g remains the same, b increases by at most 1, and
u decreases by 1.

Therefore, ΦQ increases by at least 5 − 1 = 4, and
ΦPD decreases by 3. So Φ increases by at least 1.

• Alice is in Case ii.B, Bob is in Case ii.A: This case is
similar to the above one.

• Alice and Bob are in Case iii.A
– ΦMD stays at 0, and ΦQ stays the same
– pdA

+, pdB
+, qMA and qMB stay the same.

– None of pdA
− and pdB

− increases, and at least one
decreases by 1.

Therefore, ΦPD increases by at least 1, and so does Φ.
• Alice and Bob are in Case iii.B

– ΦMD stays at 0, and ΦQ stays the same.
– pdA

−, pdB
− stay at 0, and qMA, qMB stay the same.

– At least one of the following holds: `PA < 3qMA ·
r, in which case pdA

+ increases by 1 (otherwise
it remains unchanged), or `PB < 3qMB · r, and
then pdB

+ increases by 1 (otherwise it remains
unchanged).

Therefore, ΦPD increases by at least 1, and so does Φ.
• Alice and Bob are in Case iv

– ΦMD and ΦPD stay at 0.
– u stays at 0
– Either g stays the same and b decreases by 1

(when b 6= 0) or b stays at 0 and g increases by 1.
Therefore, ΦQ increases by 1, and so does Φ.

Hence Φ increases at least by 1 for each iteration of the
algorithm without a hash collision or error.

Lemma III.6. Each iterations of Algorithm 2, regardless
of the number of hash collisions and errors, decreases the
potential Φ by at most 45.

Proof. At each step, i increases by 1 while, in the worst
case, g, mdA

+,mdB
+, pdA

+ and pdB
+ decrease by at most 1,

b, u, qMA and qMB increase by at most 1, mdA
− and mdB

−
increase by at most 3 and pdA

− and pdB
− increase by at most

4. Hence, ΦQ, ΦMD and ΦPD decrease at most by 7, 22,
and 16, respectively. So in total, Φ decreases by at most
45.

The following lemma is from [44].

Lemma III.7. The number of iterations of Algorithm
2 suffering from a hash collision is at most 6nε with
probability at least 1− 2−Θ(εn).

Proof of Theorem III.1: Let Rtotal = d n2r e + 368nε. The
total number of iterations is less than 2n, so the total
number of iterations with an error is at most 2nε. By
Lemma III.7, with probability at least 1 − 2−Θ(εn), the
number of iterations with a hash collision is at most 6nε.
Therefore, by Lemma III.5, in the remaining Rtotal−8nε =
d n2r e+360nε iterations, the potential Φ increases by at least
one. The potential decreases only when there is an error
or hash collision and it decreases by at most 45. So at the
end of the simulation, we have

g − b− u ≥ ΦQ ≥ Φ ≥ Rtotal − 8nε− 45× 8nε ≥ n

2r .

Hence the simulation is successful. Furthermore, note
that the amount of communication in each iteration is
independent of the iteration type and is always 2r + Θ(1)
symbols: in every iteration each party sends Θ(1) sym-
bols to communicate the hash values and the lengths of
the metadata and Pauli data in line 9 of Algorithm 2;
each party sends another r symbols, either in line 13 of
Algorithm 2, if Itertype 6= SIM or in Algorithm 10 to
communicate the teleportation measurement outcomes. So
the total number of communicated symbols is

Rtotal·(2r + Θ(1)) =(
d n2r e+ Θ(nε)

)
(2r + Θ(1)) = n(1 + Θ(

√
ε)) ,

as claimed.

IV. Recycling-based coding scheme via large
alphabet quantum channels

A. Overview
1) Teleportation is inapplicable: Switching from the

teleportation-based model to the plain quantum model,
suppose we are given a protocol Π using noiseless quantum
communication, and we are asked to provide a protocol
Π′ using noisy quantum channels under the strongly
adversarial model described earlier. In the absence of
free entanglement, how can we protect quantum data
from leaking to the environment without incurring a
non-negligible overhead? First, note that some form of
protection is necessary, as discussed in Section I-B. Second,
teleportation would be too expensive to use, since it incurs
an overhead of at least 3: we have to pay for the MES as
well as the classical communication required.

25

Surprisingly, an old and relatively unknown idea called
the Quantum Vernam Cipher (QVC) [48] turns out to be a
perfect alternative method to protect quantum data with
negligible overhead as the noise rate approaches 0.
2) Quantum Vernam Cipher (QVC): Suppose Alice and

Bob share two copies of the MES
∣∣φ0,0〉, each over two d-

dimensional systems. For Alice to send a message to Bob,
she applies a controlled-X operation with her half of the
first MES as control, and the message as the target. She
applies a controlled-Z operation from her half of the second
MES to the message. When Bob receives the message, he
reverses the controlled operations using his halves of the
MESs. The operations are similar for the opposite direction
of communication. A detailed description is provided in
Section II-C2.

QVC is designed so that given access to an authenticated
classical channel from Alice to Bob, Bob can determine
and correct any error in the transmission of the quantum
message. This can simply be done by measuring Zl type
changes to one half of the two MES. They can also run
QVC many times to send multiple messages and determine
the errors in a large block using a method called “random
hashing”, and recycle the MESs if the error rate (as defined
in our adversarial model) is low. This is a crucial property
of QVC and leads to one of the earliest (quantum) key
recycling results known. What makes QVC particularly
suitable for our problem is that encoding and decoding
are performed message-wise, while error detection can be
done in large blocks, and entanglement can be recycled if
no error is detected. It may thus be viewed as a natural
quantum generalization to Haeupler’s consistency checks.
As an aside, in Appendix E of Ref. [48], the relative

merits of teleportation and QVC were compared, and it
was determined that entanglement generation over an in-
secure noisy quantum channel followed by teleportation is
more entanglement efficient than QVC with entanglement
recycling in some test settings. However, this difference
vanishes for low noise. Furthermore, the comparison as-
sumes authenticated noiseless classical communication to
be free. QVC requires an amount of classical commu-
nication for the consistency checks which vanishes with
the noise parameter (but this cost was not a concern in
that study). Furthermore, QVC was also proposed as an
authentication scheme, but the requirement for interaction
to authenticate and to recycle the key or entanglement was
considered a disadvantage, compared to non-interactive
schemes. (Those are only efficient for large block length,
and cannot identify the error when one is detected. So,
these authentication schemes are inapplicable). We thus
provide renewed insight into QVC when interaction is
natural (while it is considered expensive in many other
settings).
3) Entanglement recycling and adaptations of QVC for

the current problem: In the current scenario, we have
neither free MESs nor an authenticated classical channel.
Instead, Alice and Bob start the protocol by distributing
the MESs they need, using a high rate quantum error
correcting code over the low-noise channel. Then, they

run the input protocol Π as is over the noisy channel,
while frequently checking for errors by performing quantum
hashing [13], [48], using the same noisy quantum channel
instead of an authenticated classical channel. If they detect
an inconsistency, assuming that the errors are most likely
recent, they measure a small block of MESs in the recent
past to determine the errors. They continue this process
until they get matching quantum hash values indicating
(with constant probability) that they have located and
identified all the errors and the remaining MESs can be
recycled and reused to encrypt the messages. Frequent
quantum hashing allows Alice and Bob to boost their
confidence about the recyclability of the earlier MESs
and reuse MESs in a cyclic way. Note that for successful
simulation it is crucial to ensure that the recycled MESs are
indeed not corrupted and that Alice and Bob recycle the
same sequence of MESs. One of our main contributions
in this section is developing a framework for recycling
entanglement in a communication efficient way. We show
that entanglement generation of O (n

√
ε) MESs, where

n is the length of the input protocol Π and ε is the
noise parameter, is sufficient to last through the whole
simulation.
4) Framework: As in the case of the teleportation-based

protocols, due to transmission errors and collisions, Alice
and Bob do not necessarily always agree on their actions in
the simulation. Therefore, in every iteration, both parties
need to obtain a global view of the history of the simulation
so far to correctly decide their next actions. They achieve
this goal by maintaining a similar data structure as in the
teleportation-based case. The data structure now contains
additional information to keep track of their measurements,
which Alice and Bob use in the recycling process.

5) Additional out-of-sync problems: Due to transmission
errors introduced by the adversary, Alice and Bob may get
out of sync in QVC. In such a scenario, the QVC operations
are performed by only one party and the quantum data
intended to be sent to the other party leaks into the MES
registers used to encrypt the messages. Furthermore, the
parties may not agree on the subset of MESs they have
already measured when they perform quantum hashing.
As we will explain in Section IV-C4, in the worst case, this
can further lead to the leakage of the quantum data into
all the MES registers involved in the quantum hashing
procedure.
We show that, surprisingly, once again the quantum

data can be recovered once Alice and Bob reconcile the
differences in the data structure developed for the task.
This is in spite of the fact that there is no reason to expect
out-of-sync QVC to be sufficient to protect the quantum
data from leaking to the environment when encoding
and decoding operations are performed incorrectly and
quantum data is sent via the noisy quantum channel.

B. Result
The following is our main result in the plain quantum

model with polynomial-size communication alphabet for

26

simulation of any n-round noiseless communication proto-
col over a fully adversarial channel of error-rate ε defined
in Section II-B2.

Theorem IV.1. Consider any n-round alternating com-
munication protocol Π in the plain quantum model, commu-
nicating messages over a noiseless channel with an alphabet
Σ of bit-size Θ (logn). Algorithm 13 is a quantum coding
scheme which given Π, simulates it with probability at
least 1− 2−Θ(nε), over any fully adversarial error channel
with alphabet Σ and error rate ε. The simulation uses
n (1 + Θ (

√
ε)) rounds of communication, and therefore

achieves a communication rate of 1−Θ (
√
ε).

C. Description of Protocol
1) General Description: Our simulation of noiseless

protocols in the plain quantum model of communication
proceeds using the same idea of running Oε (1) rounds of
the input protocol as is, while checking if the adversary
has corrupted the communication during the previous iter-
ations and if necessary, actively rewinding the simulation
to correct errors. The quantum messages are protected
using QVC against corruptions by the adversary. In order
to detect potential transmission errors, the MES pairs
used as the key in QVC may be measured after each
communication round. The measurement outcomes may
be stored and later on compared to obtain the error syn-
drome. Therefore, using a data structure similar to the one
introduced in the previous section, one can obtain a coding
scheme for simulating any protocol in the plain quantum
model. However, this approach is not efficient in using the
entanglement. Recall that in the plain quantum model,
the parties do not pre-share any entanglement, hence
they need to establish the shared MESs through extra
communication. Rather than measuring the MES pairs
immediately after each round of communication, we use
the quantum hashing procedure described in Section IV-C2
to check whether any transmission error has occurred so
far. Note that if Alice and Bob detect an error, they need
to determine the error and eventually actively rewind the
simulation to correct it and resume the simulation from
there. However, similar to the teleportation-based protocol,
due to transmission errors Alice and Bob may not always
agree on how they proceed with the simulation in every iter-
ation. Thus, in every iteration before taking further actions,
each party needs to know the actions of the other party
so far. More accurately, they first need to obtain a global
view of their joint quantum state. Alice and Bob locally
maintain a similar data structure as in the teleportation-
based protocol containing metadata and Pauli data, which
needs to be synchronized in the algorithm. They first need
to ensure they have full knowledge of each other’s metadata.
Then similar to the teleportation-based case, in order to
avoid out-of-sync scenarios in communication using QVC,
it is crucial for them to synchronize the number of MESs
they have used (see Section IV-C3). We denote by `AQVC
and `BQVC, the number of blocks of MES pairs used by Alice
and Bob, respectively. After ensuring `AQVC = `BQVC (to the

best of their knowledge), they compare their quantum hash
values to check for errors. Note that quantum hashing does
not indicate in which round of communication the error has
occurred. If the hash values do not match, they measure
the last block of MES pairs which has not gained as much
trust as the older blocks through quantum hashing. This
effectively collapses the adversary’s action on this block to
Pauli errors. The effective errors can be determined jointly
from the measurement outcomes, which are recorded by
Alice and Bob as part of their local Pauli data. Otherwise, if
the hashes do match, then Alice and Bob synchronize their
Pauli data. Note that similar to the teleportation-based
protocol, the Pauli corrections performed by Alice and Bob
are also recorded as part of the Pauli data. Together with
the metadata, this gives Alice and Bob all the information
they need to compute their estimate of the current joint
state. Hence, they can determine how to proceed with the
simulation next.

a) Recycling entanglement and recycling data.: An im-
portant complication arising in the simulation of protocols
in the plain quantum model is that in order to achieve the
simulation rate of 1−Θ(

√
ε), we cannot afford to access a

new MES pair in every round of communication using QVC.
This is where we use a crucial property of QVC, namely
the key recycling property. In communication using QVC if
no error occurs on the message then the pair of MESs used
will remain intact, hence they can be recycled and used
in later rounds. Otherwise, at some point, Alice and Bob
need to measure the MES pair to get the error syndrome,
in which case the pair cannot be recycled. By performing
quantum hashing regularly and carefully keeping track of
the measured MES blocks, Alice and Bob can recycle MES
pairs as needed and run the simulation by establishing a
smaller number of MESs at the beginning of the protocol.
The blocks of MES pairs used in QVC are implicitly
indexed from 1 to LQVC, where LQVC denotes the total
number of MES blocks reserved for communication using
QVC.
In order to correctly simulate the input protocol, we

need to ensure that the recycling is successful in every
iteration, namely that the same MES blocks are recycled
by the two parties in every iteration and that they are
indeed not corrupted when being recycled. Note that if the
two parties reuse an MES pair which has been corrupted
due to an earlier transmission error in QVC, then even
if Alice and Bob detect the error and measure the MES
pair, they have no way of knowing whether the error has
occurred the last time the MES pair were used or in an
earlier round. Moreover, if a block of MES pairs has been
locally measured by only one party, say Alice, then the
other party, Bob, needs to measure the block and avoid
this block when encrypting future messages using QVC.
We modify the metadata so that it contains additional

information to keep track of each party’s measurements.
Alice maintains a string RA ∈ {S,M}∗, where the M
symbol corresponds to a measured MES block and S is used
for an MES block still in superposition. In every iteration,
Alice concatenates RA with an S symbol corresponding

27

to her next fresh/recycled MES block and records the
index of the MES block in a string IndexA ∈ [LQVC]∗.
Both RA and IndexA are of length i after i iterations. If
she measures an MES block in the current iteration, she
changes the corresponding S symbol in RA to M. Similarly,
Bob maintains the strings RB and IndexB. The strings
IndexA and IndexB serve as queues of MES blocks to be
used/reused by Alice and Bob, respectively. Note that MES
blocks in these queues are not necessarily used immediately
or even in the same iteration by the two parties. In order to
achieve successful recycling, Alice and Bob need to ensure
that the strings RA and RB are the same (at least in a
long enough prefix). Using her full-length estimate M̃B of
FullMB, Alice computes an estimate R̃B of RB. Note that
if M̃B = FullMB then R̃B = RB. Similarly, Bob computes
his estimate R̃A of RA from his full-length estimate M̃A of
FullMA. After synchronizing their metadata and ensuring
that they have used the same number of MES blocks, they
synchronize their recycling data.
After LQVC iterations, Alice and Bob start recycling

MESs in a circular way. In order to achieve this, Alice
uses a recycling pointer `RecycleA. In every iteration, this
pointer moves forward on the strings RA and IndexA until
it reaches the next S symbol in RA. The corresponding
MES block is recycled and its index is recorded at the end
of IndexA. Similarly, Bob uses a pointer `RecycleB together
with RB and IndexB to recycle entanglement. Frequent
hashing of the metadata allows them to be highly confident
that their recycling data agree in a sufficiently long prefix.
Furthermore, quantum hashing ensures that with high
probability all the recycled MES blocks are indeed reusable.
Fig. 6 depicts the status of the strings RA and IndexA in
two consecutive iterations and how the pointers move on
these strings in the recycling process described above.

Fig. 6. The strings RA and IndexA in two consecutive iterations
LQVC + 1 and LQVC + 2. The pointer `RecycleA moves to the next S
symbol in RA to find the next MES block to recycle.

Note that the synchronization of the recycling data is
slightly different from the synchronization of the metadata
and the Pauli data. For the latter, Alice and Bob just need
to know each other’s local data, i.e., Alice needs to know
FullMB and FullPB and Bob needs to know FullMA and

FullPA and the corresponding data need not be the same.
Whereas for the recycling data, Alice and Bob need to
learn each other’s data and match them, i.e., they need to
ensure RA = RB. Moreover, unlike FullMA,FullMB and
FullPA,FullPB, earlier parts of the strings RA and RB get
modified during the simulation as Alice and Bob perform
measurements to extract error syndromes.

b) Entanglement distribution.: At the outset of the
simulation, Alice and Bob use Algorithm 11 below to share
Θ(n
√
ε) copies of the MES

∣∣φ0,0〉, defined in Definition II.2.
To establish the shared MESs, one party, say Alice, creates
the states locally and sends half of each MES to the other
party using an appropriate quantum error correcting code
of distance 4nε and constant rate. Note that such a code
is guaranteed to exist by the quantum Gilbert-Varshamov
bound [54].

Algorithm 11: Robust Entanglement Distribu-
tion

1 C ← Error Correcting Code with rate 1−Θ(H(ε))
and distance 4nε;

2 if Alice then
3 Prepare Θ (n

√
ε) MESs in registers A,B′ each

holding half of every MES;
4 Transmit C (B′) to Bob;

5 else if Bob then
6 Receive C ′(B′);
7 Decode C ′(B′) into register B;
8 return Robust Entanglement Distribution;

We remark that the initial entanglement distribution
is the only part of the simulation protocol in the plain
quantum model which we do not know how to perform
efficiently.
The shared MESs are used as follows:
• Θ (n

√
ε) MESs are used in pairs to serve as the key for

encryption of messages using QVC. They are divided
into LQVC = Θ (nε) blocks of 2r MES pairs, where
r = Θ(1√

ε
). In each block, the MES pairs are implicitly

numbered from 1 to 2r. The odd-numbered pairs are
used in QVC to send messages from Alice to Bob and
the even-numbered pairs are used to send messages
from Bob to Alice,

• Θ(n
√
ε) MESs are reserved to be used in quantum

hashing, and
• the remaining Θ(n

√
ε) MESs are measured in the

computational basis by both parties to obtain a
common random string to be used as the seed for
classical and quantum hashing.

We show that with the limited error budget of the
adversary, the Θ(n

√
ε) MESs established at the beginning

of simulation are sufficient to successfully simulate the
input protocol. This allows us to achieve a simulation rate
of 1 − Θ(

√
ε). Fig. 7 shows the MES blocks in different

stages of the simulation.

28

Fig. 7. These figures represent the blocks of MES pairs at different stages of the protocol. To simplify the figure, we represent each block by
a single MES. Note that these are used in a circular pattern, corresponding to recycling some of the previously used blocks of MES pairs.
Those depicted as circles are assumed to be good and usable for QVC, those depicted by squares have been measured already in order to
extract the error syndrome. Figure (a) represents the MES blocks at the beginning of the protocol, when none have been measured. Figure
(b) represents them when Alice and Bob agree on which ones have been measured and have used the same amount of them for QVC, which
is the desired state. Figure (c) represents a situation when Alice and Bob have gotten out-of-sync, e.g., Alice has measured some blocks that
Bob has not (and maybe used QVC more often than Bob). They then work to get back in sync before resuming the simulation.

2) Quantum Hashing: By performing local measure-
ments on the MES pairs used as the keys for encrypting
the messages in QVC and comparing the measurement
outcomes on both sides, one can extract the error syndrome
corresponding to the corruptions introduced over the noisy
communication channel. As explained in the previous
subsection, although this allows the two parties to detect
errors immediately, it is not efficient for our application.
In Subsection II-C2, we introduced an error detection
procedure which allows the parties to check for corruptions
when QVC is used over several rounds of communication to
send multiple messages at the cost of losing only one MES
which is measured at the end. However, this error detection
procedure is not directly useful in our application since the
adversary can always choose the corruptions in a way that
makes it impossible for Alice and Bob to detect errors; see
subsection II-C2. Instead, Alice and Bob use the quantum
hashing procedure described below to check whether there
is an undetected error. To avoid the adversary from hiding
her corruptions from the detection procedure above, Alice
and Bob choose a random subset of the MESs and try
to detect errors in this subset rather than all MESs used
in QVC. More precisely, quantum hashing involves the
following steps in our algorithm. At the beginning of the
i-th iteration, Alice and Bob pick a fresh MES serving as
the control system used in the error detection procedure.
Recall that Alice and Bob locally maintain the strings

IndexA and IndexB, respectively, corresponding to their
recycled MES blocks. Alice uses the shared randomness
established at the outset of the protocol to choose a
random subset of the MES registers contained in the
blocks specified by IndexA

[
`RecycleA + 1 : `AQVC

]
. Using

her recycling data RA, she locally determines the MESs
in this random subset which she has not measured already.
She performs her operations in the detection procedure
described in Subsection II-C2 only on these MESs. Bob
does the same locally, based on IndexB and RB. Alice and
Bob store their measurement outcomes in QHA and QHB,
respectively, and exchange the values. We prove that except
with exponentially small probability, recycling is successful
throughout the execution of the algorithm. As we will see,
this implies that in every iteration, `RecycleA = `RecycleB
and IndexA = IndexB. However, RA and RB do not
necessarily match in every iteration. Therefore, in some
iterations, Alice and Bob may perform quantum hashing
on different subsets of the MESs. Moreover, if the two
parties are not synchronized in the number of MES blocks
they have used, they might perform quantum hashing on
an MES that is only used by one party but not the other.
We discuss these out-of-sync quantum hashing scenarios
in Subsection IV-C4. We remark that Alice and Bob do
not need to perform quantum hashing on any of the MESs
within the blocks specified by IndexA [1 : `RecycleA]. In fact,
if according to RA [1 : `RecycleA], an MES block is measured

29

then it does not appear in IndexA
[
`RecycleA + 1 : `AQVC

]
.

Otherwise, it appears exactly once. The same statement
holds for RB and IndexB.

Alice and Bob compare their quantum hash values only
when they believe they have full knowledge of each other’s
metadata, have used the same number of MES blocks and
agree on their recycling data. If they get the same hash
values, they assume no error has occurred. Otherwise, they
believe they have detected an error. Note that similar to all
other types of data that are communicated over the noisy
channel, the quantum hash values may get corrupted by the
adversary. We say a quantum hash collision has occurred
in an iteration only when recycling has been successful
so far, Alice and Bob are indeed synchronized in their
metadata, the number of MES blocks they have used and
their recycling data and QHA = QHB despite the fact that
there are non-measured MES blocks which are not in the∣∣φ0,0〉⊗4r state.

The following lemma shows that in every iteration of the
algorithm, assuming successful recycling up to that point,
the probability of a quantum hash collision is at most 1/2.

Lemma IV.2. Let m ∈ N and k = k1 . . . km ∈
{0, 1, . . . , d − 1}m. Suppose that Alice and Bob share
the states

∣∣φ0,0〉
A0B0

,
∣∣φ0,k1

〉
A1B1

, . . . ,
∣∣φ0,km

〉
AmBm

and a
random variable S distributed over {0, 1}m, interpreted as a
subset of [m]. Alice and Bob apply c-XA0Ai and c-XB0Bi , for
all i ∈ S. Then they apply the quantum Fourier transform
operator F and its inverse F† on A0 and B0, respectively.
They measure the registers in the computational basis with
outcomes QHA and QHB, respectively. Then for k = 0m,
independent of the random variable S, we have

Pr[QHA = QHB] = 1 .

Moreover, for uniformly random S, for all k 6= 0m, we have

Pr[QHA = QHB] ≤ 1
2 .

Proof. Let S = S1S2 . . . Sm. By Lemma II.7, the state in
register A0B0 before the measurements is(

F⊗ F†
) ∣∣∣φ0,−

∑m

i=1
Siki

〉
A0B0

=
(

FZ−
∑m

i=1
Siki ⊗ F†

) ∣∣φ0,0〉
=
(

FZ−
∑m

i=1
SikiF† ⊗ 1

) ∣∣φ0,0〉
=
(

X−
∑m

i=1
Siki ⊗ 1

) ∣∣φ0,0〉
=
∣∣∣φ−∑m

i=1
Siki,0

〉
,

where the first and the last equality follow from Defini-
tion II.2; the second equality holds by Proposition II.4 and
the fact that F = FT . The third equality follows from
Proposition II.1. Hence

Pr[QHA = QHB] = Pr
[∑

Siki = 0 mod d
]
.

If k = 0m then the above probability equals 1. Suppose
that k is non-zero in a non-empty subset J of coordinates
in [m]. Consider the set Z of all s ∈ {0, 1}m such that

∑
siki = 0 mod d. Note that the minimum Hamming

distance of elements of Z restricted to J is at least 2,
since otherwise there exists j ∈ J such that d divides kj ,
contradicting kj ∈ [d− 1]. Fix j ∈ J and let ej ∈ {0, 1}m
be the string which is 1 in the j-th coordinate and zero
everywhere else. For every s ∈ Z, the string s+ej is not in
Z. Therefore, |Z| ≤ 2m−1 and for S uniformly distributed
over {0, 1}m we have

Pr
[∑

Siki = 0 mod d
]
≤ 1

2 .

Note that the above bound is tight when |J | = 1. Finally,
by Lemma II.7 the state in the registers A1B1, . . . , AmBm
remains unchanged.

In order to reduce the collision probability to a smaller
constant, quantum hashing may be repeated for a constant
number of times in every iteration with fresh control MESs
and independent random subsets S.

a) Classical seeds needed for quantum hashing.: Alice
and Bob perform quantum hashing and communicate the
hash values in every iteration but they only compare their
hash values in a subset of iterations. We choose to do
so in order to avoid the two parties from getting out-
of-sync on which MES register to use in quantum hash-
ing. As the hashing procedure only consumes a constant
number of MESs in each iteration, the total number of
MESs used in quantum hashing in the entire simulation
is Θ (Rtotal) = Θ (n

√
ε), and they constitute a constant

fraction of the MESs distributed at the outset of the
protocol; see Subsection IV-C1. On the other hand, gener-
ating independent Θ (rLQVC)-bit seeds, with r ∈ Θ (1/

√
ε)

and LQVC ∈ Θ (nε), for each of the Rtotal iterations
would require Θ

(
n2ε
)
bits of shared randomness. The

shared randomness is obtained by measuring a fraction
of the MESs established at the beginning of the algorithm.
Even in the large-alphabet case, sharing Θ

(
n2ε
)
bits of

randomness would require too much communication.
To circumvent this obstacle, we use an approach similar

to Ref. [44]. Alice and Bob start with a smaller num-
ber of i.i.d. random bits and extend them to a much
longer pseudo-random string. In more detail, they measure
Θ (n
√
ε) MESs in the computational basis and record

the binary representation of the outcomes in R′. Then
they each use the deterministic algorithm of Lemma II.15
with δ = 2−Θ(n√ε), to obtain a shared δ-biased string
R′ of length Θ (rLQVCRtotal) = Θ

(
n2ε
)
. The following

lemma bounds the collision probability when instead of a
uniformly random seed, a δ-biased seed is used in quantum
hashing. Note that in our application of Lemma IV.3, we
have m = O (rLQVC) = O (n

√
ε).

Lemma IV.3. Suppose that in Lemma IV.2 the random
variable S is δ-biased. Then for all k 6= 0m, we have

Pr[QHA = QHB] ≤ 1
2 + 2m/2δ .

30

Proof. Let U denote the uniform distribution on {0, 1}m
and Z be the subset of all s ∈ {0, 1}m such that

∑
siki = 0

mod d. By Propositions II.12 and II.11, we have

|U(Z)− S(Z)| ≤ 1
2‖U − S‖1 ≤

1
2 × 2m/2‖U − S‖2

≤ 2m/2δ .

Therefore, by Lemma IV.2, we have

Pr[QHA = QHB] = Pr
[∑

Siki = 0 mod d
]

= S(Z) ≤ 1
2 + 2m/2δ .

3) Out-of-Sync Quantum Vernam Cipher: Consider the
scenario where Alice, based on her view of the simulation
so far, implements a +1 block, while Bob believes their
classical data are not consistent and therefore implements
a C iteration. Alice simulates a block of the input protocol
Π while using the next block of MES pairs in the queue
IndexA to encrypt her messages using QVC. At the same
time, Bob tries to reconcile the inconsistency through clas-
sical communication and does not send his messages using
QVC. In this scenario, they also interpret the messages
they receive incorrectly. Alice believes Bob is also encrypt-
ing his messages using QVC and she applies QVC decoding
operations and her Pauli corrections on Bob’s messages.
Moreover, she potentially applies unitary operations of the
input protocol on her local registers. Meanwhile, Bob treats
Alice’s messages as classical information about the data
he believes they need to synchronize. More importantly,
since he does not perform the QVC operations (decoding
operations in odd rounds and encoding operations in even
rounds) on his side, in each round the corresponding MES
pair becomes entangled with the message register. So
crucial information for continuing the simulation spreads to
multiple registers. Moreover, this scenario could continue
for several iterations. Nonetheless, we provide a simple
way to redirect the quantum information back to the
ABC registers, while effectively reducing this type of
error to corruptions introduced in the joint state due to
transmission errors by the adversary. Once reduced to such
errors, Alice and Bob can actively rewind the incorrect part
of the simulation and resume from there.

As explained earlier, the first step for Alice and Bob is to
ensure they have full knowledge of each other’s metadata.
Once they both achieve this goal, they discover the discrep-
ancy in the number of MES blocks they have used. Suppose
Bob has used fewer blocks of MES pairs than Alice, i.e.,
`AQVC > `BQVC and he discovers this at the beginning of the
i-th iteration. Let E1E2 . . . E4r be the registers with Bob
containing halves of the 4r MESs in the first MES block
that Alice has used, say in the i′-th iteration, but Bob has
not so far. Note that in iteration i′, Alice has used the
MES pairs corresponding to E1E2, E5E6, . . . , E4r−3E4r−2
on her side to encrypt quantum information using QVC
and she has performed QVC decoding operations on Bob’s
messages and her marginal of MES pairs corresponding

to E3E4, E7E8, . . . , E4r−1E4r. In the i-th iteration, Alice
and Bob both send dummy messages to each other. Let
C1, C2, . . . , Cr denote the r message registers sent from
Alice to Bob after communication over the noisy channel.
For every j ∈ [r], upon receiving Cj , Bob applies QVC
decoding operations on Cj and E4j−3E4j−2, and then
applies QVC encoding operations on Cj and E4j−1E4j ,
i.e., he applies

(c-Z)E4jCj
(c-X)E4j−1Cj

(
c-X−1)

E4j−3Cj

(
c-Z−1)

E4j−2Cj

and then he discards the message register Cj . The effect
of these operations is the same as if Alice and Bob had
both used the MES block in sync, i.e., in the i′-th iteration,
except the following also happened independently of channel
error :

1) Alice’s messages in the i′-th iteration were replaced
by C1, . . . , Cr and Bob applied his QVC decoding
operations on these dummy messages rather than
the messages Alice intended to communicate,

2) the unitary operations used by Bob on the registers
BC were all identity, and

3) Bob’s messages were replaced by his messages of the
i′-th iteration and Alice’s QVC decoding operations
were applied on these (classical) messages.

The above procedure redirects the quantum information
leaked to the MES registers back to the ABC registers,
while introducing errors which act exactly the same as
transmission errors introduced by the adversary. As in the
case of corruptions by the adversary, once Alice and Bob
measure the MES block, the error collapses to a Pauli error
which can be determined by comparing the measurement
outcomes by Alice and Bob. We choose to perform the
measurements at the end of the i-th iteration, rather than
leaving the algorithm to detect the error through quantum
hashing (as in the case of transmission errors).
4) Out-of-Sync Quantum Hashing: Consider the sce-

nario in which Alice and Bob have used the same number
of MES blocks for communication using QVC but have
measured different subsets of MES blocks. Suppose that
when they perform quantum hashing, the random subset
of MESs they choose contains an MES in registers A1B1,
which has been measured by only one party, say Alice.
Let VAVB be the registers used as the control registers by
Alice and Bob in quantum hashing. Alice and Bob compare
their quantum hash values only if they believe they have
measured the same subset of MES blocks. Therefore, if they
compare their hash values in this iteration, it is due to a
transmission error or a metadata hash collision. Note that
in this scenario Bob applies a controlled-X operation on the
partially measured MES, while Alice who has measured her
marginal does not. Since A1 is already measured by Alice,
after Bob’s controlled-X operation the registers A1B1 do
not get entangled with VAVB. However, the state in the
VAVB registers will be mapped to

∣∣φ0,a〉, for a random
a ∈ {0, 1, . . . , d− 1} corresponding to Alice’s measurement
outcome. This (quite probably) results in Alice and Bob
taking incorrect actions from which they can recover once

31

they realize the inconsistency in their classical data. The
algorithm is designed to ensure that the register B1 is
measured by Bob and A1B1 is not reused by the two
parties in future iterations. Moreover, Bob’s controlled-X
operation does not change the outcome of his measurement
on B1. This ensures that Alice and Bob can correctly
learn any potential error on the message register in the
corresponding communication round once they learn each
other’s Pauli data.
A subtler scenario occurs when Alice and Bob perform

quantum hashing when they have used different numbers
of MES blocks. Suppose that `AQVC > `BQVC, i.e., Alice
has used more MES blocks and the random subset of
MESs they choose for quantum hashing contains an MES
which has been only used on Alice’s side. As explained in
the previous section, when QVC operations are performed
only on one side, the MES pair used as the key becomes
entangled with the message register and the quantum
information in the message register leaks to these half-used
MES pairs. In the current scenario, once quantum hashing
is done the information leaks into the additional MES in
registers VAVB. Even worse, since the same MES register is
used as the control system when applying the controlled-X
operations on all the MESs in the random subset, the
information may leak even further into those registers
as well. Surprisingly, the simple solution we provided to
recover from out-of-sync QVC resolves this issue as well.
The first measure we need to take is to ensure quantum
hashing is performed in a sequential way on the MESs in
the random subset, starting from the MES used earliest
to the latest one. This ensures that the states in the
MES registers which have been used both by Alice and
Bob do not get disturbed. However, the remaining MESs
in the random subset become entangled with VAVB and
potentially each other. We need to ensure that these MES
registers are not reused in future iterations. Once the two
parties synchronize their metadata and realize that they
are out of sync on the number of MESs they have used, Bob
completes QVC on his side as described in the previous
section and immediately measures his marginal of the MES
block. This ensures that he will never reuse this block in
future iterations. The algorithm is designed so that by
the time Alice needs to decide whether to recycle this
MES block or not, she will have measured her marginal of
the MES registers. We prove that except with probability
2−Θ(nε) recycling is successful in all iterations and such a
block of MES registers is never recycled.
Despite the fact that quantum hashing is performed

before Bob completes the QVC operations on his side, this
procedure has the same effect as if Bob had completed
QVC before the quantum hashing was performed. To un-
derstand this phenomenon, consider the following simpler
scenario. Suppose that Alice and Bob share 3 copies of
the MES

∣∣φ0,0〉 in registers A1B1, A2B2 and VAVB. Alice
uses the MES pair in registers A1B1 and A2B2 as the key
to encrypt a message in register C using QVC and sends
the message register to Bob. Suppose that the adversary
applies the Pauli error XaZb on the message register for

some a, b ∈ {0, 1, . . . , d− 1}. Now suppose that before Bob
applies his QVC decoding operations, Alice applies c-X on
VAA1 with VA being the control system. Then their joint
state is(

c-X−1)
B1C

(
c-Z−1)

B2C
(c-X)VAA1

(
XaZb

)
C

(c-Z)A2C

(c-X)A1C

∣∣φ0,0〉
VAVB

∣∣φ0,0〉
A1B1

∣∣φ0,0〉
A2B2

|ψ〉C .

Note that (c-X)VAA1
commutes with Bob’s QVC decoding

operation
(
c-X−1)

B1C

(
c-Z−1)

B2C
. Therefore, by Eq. (5)

their joint state is given by

(c-X)VAA1

(
XaZb

)
C

∣∣φ0,0〉
VAVB

∣∣φ0,b〉
A1B1

∣∣φ0,−a〉
A2B2

|ψ〉C .

Note that VAVB and A1B1 are entangled as a result
of the controlled-X operation. Nevertheless, Alice and
Bob still extract the correct error syndrome when they
measure A1, A2 and B1, B2, respectively, and compare
their measurement outcomes. This is due to the fact that
the error on the message register is reflected in the MES
pair as phase errors and the phase error in each MES
can still be detected correctly by local measurements in
the Fourier basis even after the controlled-X operation
is applied. In the out-of-sync quantum hashing scenario
described above a similar effect occurs. Finally, note that
when Alice and Bob do not agree on the number of MES
blocks they have used, they do not compare their quantum
hash values unless a transmission error or a metadata hash
collision occurs.
5) First representation of the joint quantum state: As

in Section III-C, we start by introducing a first represen-
tation of the joint state, denoted JS1, which in turn is
simplified into a more informative representation. This
latter representation, denoted JS2, is the representation
which Alice and Bob need to compute correctly in order
to make progress in simulation of the input protocol Π
and decide their next action in Π′. Recall that due to
the recycling of MESs, each block of MES pairs may be
used multiple times to encrypt messages using QVC. The
representations JS1 and JS2 defined below are valid only
if the recycling has been successful so far in Π′, namely
that Alice and Bob have recycled the same block of MES
registers in every iteration and that these registers were
indeed in the

∣∣φ0,0〉 state when recycled. We prove that
except with probability 2−Θ(nε) the recycling is successful
throughout the algorithm.

Recall that in the adversarial noise model, the adversary
Eve can introduce arbitrary errors on the quantum commu-
nication register C ′ that passes through her hand subject to
the constraints given by Eq. (2) and Eq. (3). Furthermore,
as explained in Section IV-C3, the algorithm is designed
so that once the two parties agree on the number of blocks
of MES pairs they have used, the error in the joint state
due to out-of-sync QVC in any iteration is translated to
a transmission error on the message registers, as if the
MES blocks were used in sync and transmission errors
were introduced by the adversary. We emphasize that in
both cases, the error on the message register is a mixture
of linear combinations of Pauli errors and once Alice and

32

Bob measure a block of MES pairs to extract (part of) the
syndrome, the error on the corresponding message register
collapses to a Pauli error. Then the joint state can be
written in terms of a new mixture of linear combinations
of Pauli errors conditioned on the measurement outcomes,
which are recorded in the Pauli data by the two parties.
To simplify the joint state representation and the analysis
of the algorithm, without loss of generality, we focus
on a fixed but arbitrary error syndrome W in any such
linear combination of Pauli errors arising in the simulation
protocol Π′. We prove the correctness of the algorithm
for any such error syndrome which by linearity implies
the correctness of the algorithm against any adversary
defined in Section II-B2. Let E ∈ Pd,n′ be a Pauli error
with wt (E) ≤ εn′. In the remainder of this section, we
assume E is the error introduced by the adversary into
the n′ communicated qudits in Π′.
We first define the representations JS1 and JS2 after i

iterations of the algorithm in the case when the two parties
have used the same number of blocks of MES pairs, i.e.,
`AQVC = `BQVC. In Subsection IV-C7, we explain how these
representations are modified when Alice and Bob are out
of sync in the number of MES blocks they have used.
We sketch how to obtain JS1 from FullMA, FullMB,

FullPA and FullPB, when the error syndrome is given by
W ∈

(
Σ2)∗ defined below in terms of E, conditioned on

some view of the classical data. Recall that when `AQVC =
`BQVC, there is a one-to-one correspondence between the
state of each MES register and the Pauli error on the mes-
sage register in the corresponding communication round.
Therefore, in order to simplify the representations, without
introducing any ambiguity, we omit the MES registers from
the representations JS1 and JS2. The first representation
JS1 of the joint state after i iterations (when `AQVC = `BQVC)
is given by

JS1 = [∗`AQVC] · · · [∗2][∗1] |ψinit〉ABCER , (30)

where |ψinit〉ABCER is the initial state of the original input
protocol Π and the content of each bracket is described
below. The j-th bracket corresponds to the j-th block of
MES pairs which have been used by both Alice and Bob
and contains from right to left r iterations of the following:

Alice’s unitary operation -
Pauli error on Alice’s message -
Bob’s Pauli correction - Bob’s unitary operation -
Pauli error on Bob’s message -
Alice’s Pauli correction.

Similar to the teleportation-based protocol, we allow for
an additional unitary operation by Alice on the far left
when she implements a block of type −1. Using the same
rules described in Section III-C7, in each bracket, the
block of unitary operations of the input protocol Π applied
by Alice (if any) and her block type (±1 or 0) can be
computed from FullMA. Moreover, her Pauli corrections
are recorded in FullPA and the block of FullPA containing
these Pauli corrections can be located using FullMA. Each
block of FullPA may correspond to two different types of

iterations: when Alice measures a block of MES pairs to
extract the error syndrome she concatenates FullPA with
a new block containing her measurement outcomes (with
no Pauli corrections), whereas in iterations in which she
communicates using QVC, she may apply Pauli corrections
in between and records the Pauli corrections in FullPA.
Therefore, FullMA may be used to distinguish these two
different types of blocks and locate the corresponding Pauli
corrections in FullPA. Similarly, in each bracket, the block
of unitary operations of Π applied by Bob, his block type
and his Pauli corrections are obtained from FullMB and
FullPB. Finally, in JS1, the Pauli errors on the messages
in each bracket are specified in terms of the error syndrome
W = W1W2 . . .W`A

QVC
∈
(
Σ2)2r×`A

QVC defined below. The
communication in each iteration of the algorithm has two
parts. In the first part, the parties use a constant number
of rounds to communicate the pointers and hash values.
Any transmission error introduced by the adversary on
these messages only affects the actions of the two parties
in the current and future iterations, which will be recorded
in the metadata and Pauli data and reflected in the joint
state representation. The second part involves 2r rounds
of communication, in which either classical information
is communicated (e.g., to reconcile inconsistencies in the
data structures) or QVC is used to communicate quantum
information (on one side or both). Transmission errors on
these messages can directly modify the joint state and
need to be separately taken into account in the joint state
representation. Let W ′ = W ′1W

′
2 . . .W

′
Rtotal

denote the
error syndrome corresponding to the restriction of E to
these messages over the Rtotal iterations of the algorithm,
where each W ′j is a string in

(
Σ2)2r representing a Pauli

error on 2r qudits. For every j ∈
[
`AQVC

]
, if the j-th block

of MES pairs has been used in sync on both sides, say
in iteration j′, we let Wj = W ′j′ . Otherwise, the j-th
block of MES pairs has been used out of sync and we
define Wj to be the error syndrome arising on the message
registers in the corresponding communication rounds due
to the remedial actions the parties take to recover from
out-of-sync QVC; see Section IV-C3 for more details. Each
Wj ∈

(
Σ2)2r specifies the 2r Pauli errors in the j-th

bracket from the right.
Note that in order to compute the representation JS1,

one needs to know FullMA, FullMB, FullPA, FullPB and
W . This information is not necessarily available to Alice
and Bob at any point during the simulation. In fact, we use
the representation in order to analyze the progress in the
simulation. Alice and Bob compute their best guess for JS1
based on their estimates of each other’s classical data. They
only compute their estimates of JS1 when they believe
that they have full knowledge of each other’s metadata and
Pauli data, fully agree on the recycling data, have used the
same number of MES blocks and have measured all blocks
of MES pairs which were corrupted in communication using
QVC or due to out-of-sync QVC.
Alice’s estimate JS1A of JS1 is of the same form as in

Eq. (30), except she uses her best guess of FullMB and

33

FullPB in the above procedure. Moreover, the string W
in JS1 is replaced by WA = WA

1 . . .WA
`A

QVC
∈
(
Σ2)2r×`A

QVC

computed by Alice as follows. For every j ∈
[
`AQVC

]
,

• if RA [j] = S, then she sets WA
j =

(
02)2r. Recall

that when Alice computes JS1A, she believes that
they have used the same number of MES blocks and
have both already measured all blocks of MES pairs
which were corrupted in communication using QVC.
Therefore, in Alice’s view, the remaining rounds of
communication using QVC have not been corrupted.

• Otherwise, RA [j] = R̃B [j] = M, i.e., Alice has
measured the corresponding block of MES pairs and
believes Bob has measured them as well. Using FullMA
and M̃B, Alice locates the corresponding measurement
outcomes in FullPA and P̃B and sets WA

j to be
the error syndrome obtained from the measurement
outcomes.

Note that if Alice computes JS1A in an iteration with no
transmission errors or hash collisions, then the computed
representation JS1A is indeed equal to JS1. Bob computes
JS1B similarly using his best estimate of FullMA and
FullPA in the above procedure.

6) Second representation of the joint quantum state: The
representation JS2 is obtained from JS1 as follows. In JS1,
starting from the rightmost bracket, we recursively try to
cancel consecutive brackets if their contents correspond to
inverse of one another. Once no further such cancellation
is possible, what we are left with is the JS2 representation,
which is of the following form (when `AQVC = `BQVC):

JS2 = [#b] · · · [#1][Ugr · · ·U(g−1)r+2U(g−1)r+1]
· · · [Ur · · ·U2U1] |ψinit〉ABCER , (31)

where g is the largest integer such that the concatenation
of the first g brackets starting from the right equals the
sequence Ugr, . . . , U2, U1 of unitary operations of Π. As in
Subsection III-C7, we refer to these brackets as the “good”
blocks, and the remaining b brackets which need to be
actively rewound are called the “bad” blocks.
Once the parties have synchronized their classical data

(to the best of their knowledge) as described earlier, they
have all the information they need to compute their best
guesses JS1A and JS1B of JS1. Using the same procedure
described above, from JS1A Alice computes her estimate
JS2A of JS2. Similarly, Bob computes JS2B from JS1B.
Note that the two parties may have different views of their
joint state, based on which they decide how to further
evolve the state in Π′. The rules by which Alice and Bob
decide their respective types (±1 or 0) for the next block in
Π′, and which blocks of unitary operations of Π (if any) are
involved, are the same as the teleportation-based protocol;
see Section III-C7.
7) Representation of the joint state while out-of-sync:

We now define the representations JS1 and JS2 in the case
when `AQVC 6= `BQVC. Note that in this case similar to the
teleportation-based protocol, conditioned on the classical
data with Alice and Bob and a fixed error syndrome E

by the adversary, JS1 and JS2 represent a pure state.
However, in addition to the ABCER registers we need to
include the MES blocks which have been used by only one
party. Let u := |`AQVC − `BQVC|. For concreteness suppose
that `AQVC > `BQVC. Then the JS1 representation is of the
following form:

JS1 = [∗`AQVC] · · · [∗`BQVC] · · · [∗2][∗1] |ψinit〉ABCER .
(32)

The content of the first `BQVC brackets from the right
corresponding to the MES blocks which have been used by
both parties are obtained as described in Subsection IV-C5.
The leftmost u brackets, correspond to the MES blocks
which have been used only by Alice. We refer to these
blocks as the ugly blocks. These brackets contain Alice’s
unitary operations from the input protocol Π, her Pauli
correction operations and QVC encoding and decoding
operations, as well as all the MES registers involved in
these iterations which remain untouched on Bob’s side.
The representation JS2 is obtained from JS1 as fol-

lows: We denote by [@u] · · · [@1] the leftmost u brackets
corresponding to the ugly blocks. We use the procedure
described in Subsection IV-C6 on the rightmost `BQVC
brackets in JS1 to obtain JS2 of the following form:

JS2 =
[@u] · · · [@1][#b] · · · [#1][Ugr · · ·U(g−1)r+2U(g−1)r+1]
· · · [Ur · · ·U2U1] |ψinit〉ABCER , (33)

for some non-negative integers g and b, which we refer
to as the number of good blocks and the number of bad
blocks in JS2 representation, respectively. We point out
that Alice and Bob do not compute their estimates of JS1
and JS2 unless, based on their view of the simulation so
far, they believe that they have used the same number of
MES blocks. Therefore, whenever computed, JS1A, JS1B

and JS2A, JS2B are always of the forms described in
Subsections IV-C5 and IV-C6, respectively. Note that
Alice and Bob can realize that `AQVC 6= `BQVC by learning
each other’s metadata. Then if they do as described in
Subsection IV-C3, if no error or collision occurs, they
will reduce the number of ugly blocks in JS2 by one.
In this case, block [@1] turns into a standard block of
unitary operations, potentially introducing a new bad block
[#b+ 1]. If there is either a transmission error or a hash
collision, however, Bob might not realize that `AQVC > `BQVC.
Then if he has a +1, −1 or 0 type of iteration then he may
apply non-identity Pauli operations and unitary operations
on registers BC, which still results in block [@1] becoming
a standard block of unitary operations acting on registers
ABC only. Otherwise, block [@1] remains as is. Similarly, if
there is an error or a hash collision, Alice might not realize
that `AQVC > `BQVC. Then she might use her next block of
MES registers to communicate using QVC in which case
a new ugly block, call it [@u+ 1], would be added to the
left of [@u].

34

8) Constant collision probability for classical hashing suf-
fices: As in the teleportation-based algorithm, in our algo-
rithm in the plain model the hash function of Lemma III.2
is used to check for inconsistencies in the classical data
maintained by Alice and Bob. Recall that in Section III,
the collision probability p for the hash function h of
Lemma III.2 is chosen to be 1/poly(n). The output of
the hash function is of length o = Θ

(
log 1

p

)
= Θ(logn)

bits. Therefore, in the large-alphabet case, the hash values
corresponding to the classical data can be communicated
using only a constant number of rounds. However, in
the small-alphabet case, using a logarithmic number of
rounds to communicate the hash values leads to a vanishing
simulation rate. In our algorithm in this section, we use
the hash family of Lemma III.2 with a constant collision
probability and show that p = Θ (1) suffices to keep the
number of hash collisions low. We address this issue in the
simpler large-alphabet setting to simplify the proof in the
small-alphabet case at the conceptual level.
Following Haeupler [44], we circumvent the barrier ex-

plained above using the observation that hashing only
makes one-sided errors. In other words, collision only
occurs when the data to be compared are not equal, which
in turn is a result of corruptions by the adversary. As
the error budget of the adversary is bounded by 2nε, one
would expect the total number of rounds in which the
classical data being compared are not equal to be bounded
by O (nε). In fact, this allows us to have a constant collision
probability while keeping the number of hash collisions in
the same order as the number of transmission errors.
9) Summary of main steps: In Algorithm 12, we sum-

marize the outline of the steps which are followed by Alice
and Bob in the simulation. Note that since synchronizing
recycling data creates new Pauli data, we choose to do
this step before synchronizing the Pauli data. Similar to
the teleportation-based case, the algorithm is designed so
that unless there is a transmission error or a hash collision
in comparing a given type of data, Alice and Bob will
simultaneously go down these steps while never returning
to a previous step. This in fact is a crucial property used
in the analysis of the algorithm.

Note that although in step 1 we use the same algorithms
for synchronizing the metadata as in the teleportation-
based case (rewindMD and extendMD), the alphabet over
which the metadata strings are defined are now different
(see Subsection IV-D1). The algorithms mentioned in the
remaining steps are presented in the next section. Fig. 8
summarizes the main steps in flowchart form.

D. Algorithm
In this section, we present our simulation protocol in the

plain quantum communication model over large alphabets.
First, we introduce the data structure and the variables
appearing in the pseudo-code.
1) Data structure: Alice and Bob maintain a data

structure obtained by modifying the one introduced in
Section III-D1.

Algorithm 12: Main steps in one iteration of the
simulation for the large alphabet recycling-based
model

1 Agree on the history of the simulation contained in
metadata, i.e., ensure FullMA = M̃A and
FullMB = M̃B. This involves
Algorithm 4—rewindMD and
Algorithm 5—extendMD.

2 Synchronize the number of MES blocks used in
QVC, in particular, ensure `AQVC = `̃BQVC and
`BQVC = `̃AQVC. This is done via
Algorithm 18—Q-syncMES.

3 Agree on the measurement pointers and the
recycling data up to the pointers, in particular,
ensure (`RA,RA [1 : `RA]) =

(˜̀RB, R̃B
[
1 : ˜̀RB

])
and (`RB,RB [1 : `RB]) =

(˜̀RA, R̃A
[
1 : ˜̀RA

])
.

This involves Algorithm 19—rewindRD.
4 Ensure no undetected quantum error from earlier

rounds exists. This is done by ensuring
QHA = QHB and involves
Algorithm 20—measuresyndrome.

5 Ensure `RA = `AQVC and `RB = `BQVC. This is
achieved via Algorithm 21—extendRD.

6 Agree on Pauli data, in particular, ensure
FullPA = P̃A and FullPB = P̃B. This is done via
Algorithm 22—Q-rewindPD and
Algorithm 23—Q-extendPD.

7 Compute the best guess for JS1 and JS2. If there
are any “bad” blocks in the guess for JS2, reverse
the last bad block of unitary operations. I.e.,
implement quantum rewinding so that b = 0 in
JS2. This is done in Algorithm 25—Q-simulate.

8 If no “bad” blocks remain, implement the next
block of rounds of the original protocol. This
results in an increase in g in JS2, and is also done
through Algorithm 25—Q-simulate.

• Metadata: The metadata now contain new symbols
corresponding to recycling operations and error detec-
tion measurements. In every iteration NewMetaA ∈
{±1, 0,C, 0ED,M,C′} specifies Alice’s action in the
current iteration. Similar to the teleportation-based
algorithm, in an iteration with NewMetaA = C,
Alice does not access the quantum registers and if
NewMetaA ∈ {±1, 0}, then the unitary operators
of the original protocol applied locally by Alice in
the current iteration have exponent NewMetaA. If
NewMetaA = M Alice measures the block of MES reg-
isters specified by her measurement pointer and moves
the pointer back by 1. NewMetaA = C′ corresponds to
a classical iteration for Alice in which she just moves

35

Fig. 8. Flowchart of the recycling-based scheme for high rate noisy interactive quantum communication.

her measurement pointer forward by 1. Finally, in
an iteration with NewMetaA = 0ED, Alice completes
QVC on her side as explained in Section IV-C3. The
notation 0ED is used to emphasize that similar to an
iteration with NewMetaA = 0 no unitary operator
of the original protocol is applied by Alice, but she
measures the block of MES registers at the end of the
iteration for error detection.
Alice records her metadata in FullMA which is con-
catenated with NewMetaA in each iteration and has
length i at the end of the i-th iteration. Similar to
the teleportation-based algorithm, Alice maintains a

string M̃B as an estimate of Bob’s metadata, which
is not necessarily full-length. The length of M̃B is
denoted by `M̃B. Alice also maintains `MA, her esti-
mate for the length of M̃A, which is with Bob. MA
is defined as the prefix of FullMA of length `MA, i.e.,
MA := FullMA [1 : `MA]. When MA appears in any of
the algorithms in this section, it is implicitly computed
by Alice from FullMA and `MA. We denote by `AQVC
the number of iterations in which Alice has performed
QVC so far. Note that `AQVC can be computed from
FullMA and is equal to the number of ±1, 0, 0ED
symbols in FullMA. Bob’s local metadata variables

36

are defined similarly.
• Recycling data: Quantum recycling data are used

to decide whether a block of MES pairs can be reused
for communication using QVC. The recycling data
alphabet consists of the symbol M corresponding to a
measured block of MES pairs and the symbol S, used
for a block of MES pairs still in superposition. Alice
records her recycling data in a string RA, which is
of length i after i iterations. The string RA is also
computable from FullMA. Alice maintains a queue,
IndexA, of indices corresponding to MES blocks to be
used/reused in QVC. Similar to RA, the string IndexA
is of length i after i iterations. In every iteration, the
recycling subroutine returns the variable NextIndexA
which contains the index of the recycled MES block
by Alice and the string IndexA is concatenated with
this index. If no such index exists in an iteration,
NextIndexA is assigned the value ⊥ and the protocol
aborts. The variable `RecycleA is a pointer on RA
and IndexA used by Alice in the recycling subroutine
to determine NextIndexA. Alice moves this pointer
forward until it reaches the next S symbol in RA
(if it exists) and records the value of IndexA in this
coordinate into NextIndexA. In every iteration, if the
protocol does not abort, RA is concatenated with an
S symbol corresponding to the recycled MES block
and if an MES block is measured the corresponding
element of RA is changed from S to M. Alice maintains
a measurement pointer, `RA, which together with
IndexA specify the block of MES pairs to be measured
in iterations with NewMetaA = M. In each iteration,
the pointer `RA may stay the same or move backward
or forward by 1 and can be computed from FullMA.
The measurement pointers also serve as reference
points up to which Alice and Bob compare their
recycling data in each iteration. Bob’s recycling data
variables are defined similarly. Alice computes R̃B and˜̀RB as her estimate of Bob’s RB and `RB, respectively,
based on her full-length estimate M̃B of FullMB. Note
that if M̃B = FullMB then Alice’s estimates of Bob’s
recycling data are correct.

• Pauli data: In any iteration, new Pauli data is gener-
ated on Alice’s side if and only if she measures a block
of MES pairs or performs QVC locally. NewPauliA has
three parts: If a block of r MES pairs is measured
locally by Alice in the current iteration then the
measurement outcome, (m1,m2) ∈ Σ4r, is recorded in
the first two parts of NewPauliA, and the third part
contains ⊥2r, corresponding to no Pauli corrections.
Otherwise, if Alice performs QVC then ⊥2r is recorded
in each of the first two parts and the third part similar
to the teleportation-based protocol specifies the Pauli
corrections.
Alice records her Pauli data in FullPA. Starting
from the empty string, FullPA is concatenated with
NewPauliA whenever Alice measures an MES block or
performs QVC. She maintains a string P̃B as an esti-

mate of Bob’s Pauli data. The length of P̃B is denoted
by `P̃B. Alice also maintains `PA, her estimate for the
length of P̃A, which is with Bob. PA denotes the prefix
of FullPA of length `PA, i.e., PA := FullPA [1 : `PA].
When PA appears in any of the algorithms in this
section, it is implicitly computed by Alice from FullPA
and `PA. We define qMA := |FullPA| /6r. Note that
qMA can be computed from FullMA. Alice computes
her estimate qM̃B of qMB using her full-length estimate
M̃B of FullMB. Bob’s Pauli data variables are defined
similarly.

• As in Section III, we use H with different variables
as subscript to represent hash values, e.g., HMA
represents a hash value corresponding to MA. We use
QHA and QHB to represent quantum hash values. The
data variables with a superscript ′ denote the received
data after transmission over the noisy channel, e.g.,
`′MB denotes what Alice receives when Bob sends `MB.

• The variable Itertype takes two new values: RD cor-
responding to recycling data synchronization and QH
corresponding to an iteration in which the received
quantum hash value does not match the locally com-
puted quantum hash value.

Finally, LQVC denotes the total number of MES blocks
to be used as the keys in QVC.

Remark IV.4. We point out an additional subtlety in
interpreting the Pauli data by the two parties. Recall that
when Alice and Bob compute their estimates of the joint
state, they use the metadata to locate in the Pauli data, the
measurement outcomes for each block of measured MES
pairs. However, due to transmission errors or collisions, it
is possible to have an inconsistency between the metadata
and the Pauli data. For instance, M̃A may indicate that a
specific block of P̃A contains the measurement outcomes
on an MES block, whereas it actually has ⊥2r in the first
two parts and corresponds to an iteration in which Alice
has performed QVC. In any such scenario, Alice and Bob
interpret the ⊥ symbols as 0 and compute the joint state.
This most likely introduces new errors on the joint state
from which Alice and Bob can recover once they obtain a
correct view of the simulation.

2) Pseudo-code: This section contains the pseudo-code
for the main algorithm and the subroutines that each party
runs locally in the simulation protocol. For each subroutine,
we list all the global variables accessed by the subroutine as
the Input at the beginning of the subroutine. Whenever
applicable, the relation between the variables when the
subroutine is called is stated as the Promise and the
global variables which are modified by the subroutine are
listed as the Output.

37

Algorithm 13: Q-Main (Alice’s side)
Input: n round protocol Π in plain quantum model

over polynomial-size alphabet Σ
1 Q-Initialization;
2 For i = 1→ Rtotal

3 if i ≤ LQVC then
4 NextIndexA← i;

// No recycling in the first LQVC
iterations

5 else
6 Recycle;
7 if NextIndexA =⊥ then
8 Abort;

9 IndexA← (IndexA,NextIndexA);
10 RA← (RA,S);

B computing hash values

11 HMA ← hS4i−3 (MA);
12 HM̃B ← hS4i−2

(
M̃B

)
;

13 HPA ← hS4i−1 (PA);
14 HP̃B ← hS4i

(
P̃B
)
;

15 Quantum-hash;

16 Send(
HMA, `MA, HM̃B, `M̃B, HPA,

`PA, HP̃B, `P̃B,QHA
)

;

17 Receive(
H ′

M̃A
, `′

M̃A
, H ′MB, `

′
MB, H

′
P̃A
,

`′
P̃A
, H ′PB, `

′
PB,QHB′

)
;

B Determining iteration type

18 Q-Preprocess;
19 if Itertype 6= SIM then
20 Send msg;
21 Receive msg′;

// messages are communicated alternately

B Case i.A

22 if Itertype = MD and RewindExtend = R then
23 rewindMD;

B Case i.B

24 else if Itertype = MD and RewindExtend = E
then

25 extendMD;
B Case ii.A

26 else if Itertype = MES and NewMetaA = C
then

27 return;

Algorithm 13: Q-Main (Alice’s side, cont.)

B Case ii.B

24 else if Itertype = MES and NewMetaA = 0ED
then

25 Q-syncMES;
B Case iii

26 else if Itertype = RD and RewindExtend = R
then

27 rewindRD;
B Case iv

28 else if Itertype = QH then
29 measuresyndrome;

B Case v

30 else if Itertype = RD and RewindExtend = E
then

31 extendRD;
B Case vi.A

32 else if Itertype = PD and RewindExtend = R
then

33 rewindPD;
B Case vi.B

34 else if Itertype = PD and RewindExtend = E
then

35 extendPD;
B Case vii

36 else
37 Q-Simulate;

38 return Q-Main;

Algorithm 14: Q-Preprocess (Alice’s side)
Input:

HMA, `MA, HM̃B, `M̃B, HPA, `PA, HP̃B, `P̃B
H ′

M̃A
, `′

M̃A
, H ′MB, `

′
MB, H

′
P̃A
, `′

P̃A
, H ′PB, `

′
PB

FullMA, `AQVC, M̃B,RA, , `RA

QHA,QHB′,FullPA, P̃B


Output:(

Itertype,RewindExtend,NewMetaA,
FullMA, `MA, ˜NewMetaB, M̃B, `M̃B,msg

)

1 if
(
HMA, HM̃B

)
=
(
H ′

M̃A
, H ′MB

)
and `MA =

`′
M̃A

= `M̃B = `′MB = i− 1 then

2 Compute `̃BQVC, R̃B, ˜̀RB, qM̃B;

38

Algorithm 14: Q-Preprocess (Alice’s side, cont.)

B Processing Metadata

B Case i.A

3 if
(
HMA, HM̃B, `MA, `M̃B

)
6=(

H ′
M̃A

, H ′MB, `
′
M̃A

, `′MB

)
then

4 Itertype ← MD;
5 RewindExtend ← R;
6 NewMetaA← C;
7 FullMA← (FullMA,NewMetaA);
8 msg ← dummy message of length r;

B Case i.B

9 else if (`MA < i− 1) or
(
`M̃B < i− 1

)
then

10 Itertype ← MD;
11 RewindExtend ← E;
12 NewMetaA← C;
13 FullMA← (FullMA,NewMetaA);
14 if `MA < i− 1 then
15 msg ←

encodeMD (FullMA [`MA + 1, `MA + 2]);
// Encode MD in Σr

16 else
17 msg ← dummy message of length r;

B Comparing number of used MES blocks

B Case ii.A

18 else if `AQVC > `̃BQVC then
19 Itertype ← MES;
20 NewMetaA← C;
21 FullMA← (FullMA,NewMetaA);
22 `MA ← `MA + 1;
23 ˜NewMetaB ← 0ED;
24 M̃B ←

(
M̃B, ˜NewMetaB

)
;

25 `M̃B ← `M̃B + 1;
26 msg ← dummy message of length r;

B Case ii.B

27 else if `AQVC < `̃BQVC then
28 Itertype ← MES;
29 NewMetaA← 0ED;
30 FullMA← (FullMA,NewMetaA);
31 `MA ← `MA + 1;
32 ˜NewMetaB ← C;
33 M̃B ←

(
M̃B, ˜NewMetaB

)
;

34 `M̃B ← `M̃B + 1;
35 msg ← dummy message of length r;

Algorithm 14: Q-Preprocess (Alice’s side, cont.)
B Processing recycling data

B Case iii

36 else if (`RA,RA [1 : `RA]) 6=
(˜̀RB, R̃B

[
1 : ˜̀RB

])
then

37 Itertype ← RD;
38 RewindExtend ← R;
39 if `RA > ˜̀RB then
40 NewMetaA← M;
41 ˜NewMetaB ← C;

42 else if `RA < ˜̀RB then
43 NewMetaA← C;
44 ˜NewMetaB ← M;
45 else
46 NewMetaA← M;
47 ˜NewMetaB ← M;
48 FullMA← (FullMA,NewMetaA);
49 `MA ← `MA + 1;
50 M̃B ←

(
M̃B, ˜NewMetaB

)
;

51 `M̃B ← `M̃B + 1;
52 msg ← dummy message of length r;

B Case iv
53 else if QHA 6= QHB′ then
54 Itertype ← QH;
55 NewMetaA← M;
56 FullMA← (FullMA,NewMetaA);
57 `MA ← `MA + 1;
58 ˜NewMetaB ← M;
59 M̃B ←

(
M̃B, ˜NewMetaB

)
;

60 `M̃B ← `M̃B + 1;
61 msg ← dummy message of length r;

B Case v
62 else if `RA < `AQVC then
63 Itertype ← RD;
64 RewindExtend ← E;
65 NewMetaA← C′;
66 FullMA← (FullMA,NewMetaA);
67 `MA ← `MA + 1;
68 ˜NewMetaB ← C′;
69 M̃B ←

(
M̃B, ˜NewMetaB

)
;

70 `M̃B ← `M̃B + 1;
71 msg ← dummy message of length r;

B Processing Pauli data
B Case vi.A

72 else if(
HPA, HP̃B, `PA, `P̃B

)
6=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
then

73 Itertype ← PD;

39

Algorithm 14: Q-Preprocess (Alice’s side, cont.)

74 RewindExtend ← R;
75 NewMetaA← C;
76 FullMA← (FullMA,NewMetaA);
77 `MA ← `MA + 1;
78 ˜NewMetaB ← C;
79 M̃B ←

(
M̃B, ˜NewMetaB

)
;

80 `M̃B ← `M̃B + 1;
81 msg ← dummy message of length r;

B Case vi.B

82 else if (`PA < 6qMA · r) or
(
`P̃B < 6qM̃B · r

)
then

83 Itertype ← PD;
84 RewindExtend ← E;
85 NewMetaA← C;
86 FullMA← (FullMA,NewMetaA);
87 `MA ← `MA + 1;
88 ˜NewMetaB ← C;
89 M̃B ←

(
M̃B, ˜NewMetaB

)
;

90 `M̃B ← `M̃B + 1;
91 if `PA < 6qMA · r then
92 msg ← FullPA [`PA + 1, `PA + r]

B Case vii

93 else
94 Q-Computejointstate;
95 Itertype ← SIM;
96 FullMA = (FullMA,NewMetaA);
97 `MA ← `MA + 1;
98 M̃B ←

(
M̃B, ˜NewMetaB

)
;

99 `M̃B ← `M̃B + 1;
100 return Q-Preprocess;

Algorithm 15: Q-Initialization (Alice’s side)
1 Initialize

LQVC ← Θ (nε) ;
r ← Θ (1/

√
ε) ;

Rtotal ← dn/2r + Θ(nε)e ;
t← Θ (nε) ;
`MA, `M̃B, `PA, `P̃B, `

A
QVC, `RA, `RecycleA←0 ;

FullMA, M̃B,FullPA, P̃B,RA, IndexA←∅ ;
2 h← hash function of Lemma III.2 with

p = Θ(1), o = Θ(1), s = Θ (logn) ;
3 Robust Entanglement Distribution ;
4 Reserve LQVC · 4r MES pairs to be used as the keys

in QVC ;

Algorithm 15: Q-Initialization (Alice’s side, cont.)
5 Reserve 10Rtotal MESs to be used in quantum

hashing ;
6 Measure Θ (Rtotal) MESs in the computational

basis and record the binary representation of the
outcomes in S1, . . . , S4Rtotal ;

// 4Rtotal seeds of length s for the hash
function h

7 Measure the remaining Θ (n
√
ε) MESs in the

computational basis and record the binary
representation of the outcomes in R′ ;

8 Stretch R′ to a δ-biased pseudo-random string
R = R1, . . . , R10Rtotal using the deterministic
algorithm of Lemma II.15 where δ = 2−Θ(nr) ;

// 10Rtotal seeds of length 4rLQVC used in
quantum hashing

9 return Q-Initialization;

Algorithm 16: Recycle (Alice’s side)
Input:

(
RA, IndexA, `RecycleA, `

A
QVC

)
Output: (`RecycleA,NextIndexA)

1 `RecycleA ← `RecycleA + 1 ;
2 while(

`RecycleA < `AQVC
)

and (RA [`RecycleA] = M) do
3 `RecycleA ← `RecycleA + 1 ;
4 if `RecycleA = `AQVC then
5 NextIndexA←⊥ ;
6 else
7 NextIndexA← IndexA [`RecycleA] ;
8 return Recycle;

Algorithm 17: Quantum-hash (Alice’s side)
Input:

(
RA, IndexA, `AQVC, `RecycleA, R

)
Output: QHA

1 QHA← ∅ ;
2 For k = 1→ 10
3 Choose a fresh MES from “Quantum Hash”

category, and let F denote the register
containing Alice’s half of the state;

4 // Hashing blocks `RecycleA + 1 to `AQVC

5 For j = 1→ 4r
(
`AQVC − `RecycleA

)
6 if (R10i+k [j] = 1) and(

RA
[
`RecycleA + d j4r e

]
6= M

)
then

7 Apply (c-X)VAAb
, where

40

Algorithm 17: Quantum-hash (Alice’s side)

8 b = 4r · IndexA
[
`RecycleA + b j4r c

]
+

(j mod 4r);

9 Apply the Fourier transform operator F on VA,
measure it in the computational basis and
record the outcome in qh;

10 QHA← (QHA, qh);

11 return Quantum-hash;

Algorithm 18: Q-syncMES (Alice’s side)

Input:
(
IndexA, `AQVC,msg′,FullPA

)
Promise:

(
HMA, HM̃B, `MA, `M̃B

)
=(

H ′
M̃A

, H ′MB, `
′
M̃A

+ 1, `′MB + 1
)
,

`MA = `M̃B = i , `AQVC < `̃BQVC

Output:
(
`AQVC,NewPauliA,FullPA

)
1 Let C0 be the communication register at the

beginning of the current iteration (which is in
Alice’s possession) and for every j ∈ [r], let Cj
denote the communication register containing
msg′(j), Bob’s j-th message in this iteration;

2 `AQVC ← `AQVC + 1;
3 Let E1E2 · · ·E4r be the registers with Alice

containing halves of the 4r MESs in the block
indexed by IndexA

[
`AQVC

]
;

4 Apply
(c-Z)E2C0

(c-X)E1C0

5 For every j ∈ [r − 1], upon receiving Cj apply

(c-Z)E4j+2Cj
(c-X)E4j+1Cj

(
c-X−1)

E4j−1Cj

(
c-Z−1)

E4jCj

6 Upon receiving Cr apply(
c-X−1)

E4r−1Cr

(
c-Z−1)

E4rCr

// See Section IV-C3 for the rationale and
Bob’s analogue of above steps

7 Apply the Fourier transform operator
to E1, E2, · · · , E4r and measure them in the
computational basis. Store the measurement
outcomes in (m1,m2) ∈ Σ4r;

8 RA
[
`AQVC

]
← M;

9 NewPauliA←
(
m1,m2,⊥2r);

10 FullPA← (FullPA,NewPauliA);
11 return Q-syncMES;

Algorithm 19: rewindRD (Alice’s side)

Input: (NewMetaA,RA, `RA, IndexA,FullPA)
Promise:(
HMA, HM̃B, `MA, `M̃B, `

A
QVC

)
=(

H ′
M̃A

, H ′MB, `
′
M̃A

+ 1, `′MB + 1, `̃BQVC

)
,

`MA = `M̃B = i ,
(`RA,RA [1 : `RA]) 6=

(˜̀RB, R̃B
[
1 : ˜̀RB

])
Output: (NewPauliA,FullPA,RA, `RA)

1 if NewMetaA = M and RA [`RA] = S then
2 Sequentially apply the Fourier transform

operator to all the MESs in the block indexed
by IndexA [`RA] and measure them in the
computational basis ;

3 Store the measurement outcomes in
(m1,m2) ∈ Σ4r;

4 NewPauliA←
(
m1,m2,⊥2r);

5 FullPA← (FullPA,NewPauliA);
6 RA [`RA]← M;

7 `RA ← `RA − 1;
8 return rewindRD;

Algorithm 20: measuresyndrome (Alice’s side)
Input: (RA, `RA, IndexA,FullPA)
Promise:(
HMA, HM̃B, `MA, `M̃B, `

A
QVC

)
=(

H ′
M̃A

, H ′MB, `
′
M̃A

+ 1, `′MB + 1, `̃BQVC

)
,

`MA = `M̃B = i ,
(`RA,RA [1 : `RA]) =

(˜̀RB, R̃B
[
1 : ˜̀RB

])
,

QHA 6= QHB′

Output: (NewPauliA,FullPA,RA, `RA)

1 if RA [`RA] = S then
2 Sequentially apply the Fourier transform

operator to all the MESs in the block indexed
by IndexA [`RA] and measure them in the
computational basis ;

3 Store the measurement outcomes in
(m1,m2) ∈ Σ4r;

4 NewPauliA←
(
m1,m2,⊥2r);

5 FullPA← (FullPA,NewPauliA);
6 RA [`RA]← M;
7 `RA ← `RA − 1
8 return measuresyndrome;

41

Algorithm 21: extendRD (Alice’s side)

Input: `RA

Promise:(
HMA, HM̃B, `MA, `M̃B, `

A
QVC

)
=(

H ′
M̃A

, H ′MB, `
′
M̃A

+ 1, `′MB + 1, `̃BQVC

)
,

`MA = `M̃B = i ,
(`RA,RA [1 : `RA]) =

(˜̀RB, R̃B
[
1 : ˜̀RB

])
,

QHA = QHB′ , `RA < `AQVC

Output: `RA

1 `RA ← `RA + 1;
2 return extendRD;

Algorithm 22: Q-rewindPD (Alice’s side)

Input:(
HPA, `PA, HP̃B, `P̃B, H

′
P̃A
, `′

P̃A
, H ′PB, `

′
PB

)
Promise:(
HMA, HM̃B, `MA, `M̃B, `

A
QVC

)
=(

H ′
M̃A

, H ′MB, `
′
M̃A

+ 1, `′MB + 1, `̃BQVC

)
,

`MA = `M̃B = i ,
(`RA,RA [1 : `RA]) =

(˜̀RB, R̃B
[
1 : ˜̀RB

])
,

QHA = QHB′ , `RA = `AQVC ,(
HPA, HP̃B, `PA, `P̃B

)
6=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
.

Output:
(
`PA, `P̃B

)
1 if `PA 6= `′

P̃A
or `P̃B 6= `′PB then

2 if `PA > `′
P̃A

then

3 `PA ← `PA − r;
4 if `P̃B > `′PB then
5 `P̃B ← `P̃B − r;

6 else
7 if HPA 6= H ′

P̃A
then

8 `PA ← `PA − r;
9 if HP̃B 6= H ′PB then

10 `P̃B ← `P̃B − r;

11 return Q-rewindPD;

Algorithm 23: Q-extendPD (Alice’s side)

Input:
(
`PA, `P̃B, P̃B, qMA, qM̃B,msg′

)
Promise:(
HMA, HM̃B, `MA, `M̃B, `

A
QVC

)
=(

H ′
M̃A

, H ′MB, `
′
M̃A

+ 1, `′MB + 1, `̃BQVC

)
,

`MA = `M̃B = i ,
(`RA,RA [1 : `RA]) =

(˜̀RB, R̃B
[
1 : ˜̀RB

])
,

QHA = QHB′ , `RA = `AQVC ,(
HPA, HP̃B, `PA, `P̃B

)
=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
,

`PA < 6qMA · r or `P̃B < 6qM̃B · r.
Output:

(
`PA, P̃B, `P̃B

)
1 if `PA < 6qMA · r then
2 `PA ← `PA + r;
3 if `P̃B < 6qM̃B · r then
4 P̃B

[
`P̃B + 1 : `P̃B + r

]
← msg′;

5 `P̃B ← `P̃B + r;
6 return Q-extendPD;

Algorithm 24: Q-computejointstate (Alice’s
side)

Input:
(

FullMA, M̃B,RA,FullPA, P̃B
)

Promise:(
HMA, HM̃B, `MA, `M̃B, `

A
QVC

)
=(

H ′
M̃A

, H ′MB, `
′
M̃A

, `′MB, `̃
B
QVC

)
, `MA = `M̃B = i− 1

, (`RA,RA [1 : `RA]) =
(˜̀RB, R̃B

[
1 : ˜̀RB

])
,

QHA = QHB′ , `RA = `AQVC ,(
HPA, HP̃B, `PA, `P̃B

)
=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
,

`PA = 6qMA · r , `P̃B = 6qM̃B · r,
Output:

(
JS1A,JS2A,NewMetaA, ˜NewMetaB,

Block,RewindExtend,PCorr, P̃Corr

)
1 Compute JS1A;
2 Compute JS2A;
3 Compute NewMetaA;

4 Compute ˜NewMetaB;
5 Compute RewindExtend;
6 Compute Block;
7 Compute PCorr;

8 Compute P̃Corr;
// Refer to Sections IV-C5, IV-C6 to see

how these variables are computed

9 return Q-computejointstate;

42

Algorithm 25: Q-simulate (Alice’s side)
Input:(
IndexA,FullPA, `PA,P̃B, `P̃B,NewMetaA,

RewindExtend,Block,PCorr, P̃Corr,`
A
QVC

)
Promise:(
HMA, HM̃B, `MA, `M̃B, `

A
QVC

)
=(

H ′
M̃A

, H ′MB, `
′
M̃A

+ 1, `′MB + 1, `̃BQVC

)
,

`MA = `M̃B = i ,
(`RA,RA [1 : `RA]) =

(˜̀RB, R̃B
[
1 : ˜̀RB

])
,

QHA = QHB′ , `RA = `AQVC ,(
HPA, HP̃B, `PA, `P̃B

)
=
(
H ′

P̃A
, H ′PB, `

′
P̃A
, `′PB

)
,

`PA = 6qMA · r , `P̃B = 6qM̃B · r,
Output:(
`AQVC,NewPauliA,FullPA, `PA,

˜NewPauliB, P̃B, `P̃B, `RA

)
1 `AQVC ← `AQVC + 1;
2 Continue the simulation of the noiseless protocol

according to the output of Q-computejointstate
using the block of MESs indexed by
IndexA

[
`AQVC

]
;

3 NewPauliA←
(
⊥2r,⊥2r,PCorr

)
;

4 FullPA← (FullPA,NewPauliA);
5 `PA ← `PA + 6r;

6 ˜NewPauliB ←
(
⊥2r,⊥2r, P̃Corr

)
;

7 P̃B ←
(

P̃B, ˜NewPauliB
)
;

8 `P̃B ← `P̃B + 6r;

9 `RA ← `RA + 1;
10 return Q-simulate;

E. Analysis

To simplify the analysis of the algorithm, without loss
of generality, we assume that the error introduced by the
adversary on the n′ message registers in Π′ is an arbitrary
Pauli error of weight at most εn′. We prove the correctness
of the algorithm for any such error syndrome, which by
linearity implies the correctness of the algorithm against
any adversary defined in Section II-B2. In order to track
the simulation progress and show the correctness of the
algorithm, we condition on some view of the local classical
data recorded by Alice and Bob.
Similar to Section III-E, the analysis of Algorithm 13

is in terms of potential functions which measure the
correctness of the two players’ views of what has happened
so far in the simulation and quantify the progress in
reproducing the joint state of the input protocol. We recall

the following definitions from Section III-E:

mdA
+ := the length of the longest prefix where

MA and M̃A agree; (34)
mdB

+ := the length of the longest prefix where
MB and M̃B agree; (35)

mdA
− := max{`MA, `M̃A} −md

A
+ ; (36)

mdB
− := max{`MB, `M̃B} −md

B
+ ; (37)

pdA
+ :=b1

r
× the length of the longest prefix

where PA and P̃A agreec; (38)

pdB
+ :=b1

r
× the length of the longest prefix

where PB and P̃B agreec; (39)

pdA
− :=1

r
max{`PA, `P̃A} − pd

A
+ ; (40)

pdB
− :=1

r
max{`PB, `P̃B} − pd

B
+ . (41)

We recall the definition of g, b, u from Subsection IV-C7:

g := number of good blocks in JS2, (42)
b := number of bad blocks in JS2, (43)
u := |`AQVC − `BQVC| . (44)

We define

rd+ := max
{
j : j ≤ min{`RA, `RB} ,

RA [1 : j] = RB [1 : j] ,

Wk = 04r, ∀k ≤ j s.t. RA [k] = S
}

; (45)

rd− := max{`RA, `RB} − rd+ , (46)

where W in Equation (45) is the string corresponding to
the error syndrome defined in Subsection IV-C5. At the
end of the i-th iteration, we let

ΦMD := 2i−mdA
+ + 3mdA

− −mdB
+ + 3mdB

− , (47)
ΦRD := `AQVC + `BQVC + 13rd− − 2rd+ , (48)
ΦPD := 6qMA + 6qMB − pdA

+ + pdA
− − pdB

+ + pdB
− , (49)

ΦQ := g − b− 9u , (50)
Φ := ΦQ − ΦMD − ΦRD − ΦPD . (51)

The following lemma states an important property of
potential functions ΦMD, ΦRD and ΦPD defined above
which we use in the analysis of the algorithm.

Lemma IV.5. Throughout the algorithm, it holds that
• ΦMD ≥ 0 with equality if and only if Alice and Bob have
full knowledge of each other’s metadata, i.e., mdA

+ =
mdB

+ = i and mdA
− = mdB

− = 0.
• ΦRD ≥ 0 with equality if and only if Alice and Bob have
used the same number of MES blocks (`AQVC = `BQVC),
their measurement pointers `RA and `RB agree and
are equal to `AQVC, they fully agree on the recycling
data (RA = RB) and Wk = 04r for all k ≤ `AQVC with
RA [k] = S, i.e., `AQVC = `BQVC = rd+ and rd− = 0.

43

• ΦPD ≥ 0 with equality if and only if Alice and Bob
have full knowledge of each other’s Pauli data, i.e.,
pdA

+ = 6qMA, and pdB
+ = 6qMB, and pdA

− = pdB
− = 0.

Proof. The first statement follows from the property that
mdA
−,md

B
− ≥ 0 and mdA

+,md
B
+ ≤ i. The second statement

holds since rd− ≥ 0, rd+ ≤ min{`RA, `RB} and the
property that `RA ≤ `AQVC and `RB ≤ `BQVC. The third
statement follows since pdA

−, pd
B
− ≥ 0, pdA

+ ≤ 6qMA , and
pdB

+ ≤ 6qMB.

In order to avoid ambiguity, whenever necessary we use
a superscript i to indicate the value of the variables of the
algorithm at the end of the i-th iteration. For instance, we
denote Alice’s recycling data at the end of the i-th iteration
by RAi. Before presenting the analysis of Algorithm 13,
we formally define successful recycling.

Definition IV.6. We say recycling is successful in the
i-th iteration of Algorithm 13 if the following hold:
• The algorithm does not abort in the i-th iteration, i.e.,

NextIndexAi,NextIndexBi 6=⊥,
• NextIndexAi = NextIndexBi,
• The block of MES registers indexed by NextIndexAi

are in the
∣∣φ0,0〉⊗4r state at the beginning of the i-th

iteration.

Note that the conditions of Definition IV.6 are all
satisfied in the first LQVC iterations of the algorithm as well.
Note that if recycling is successful in the first i iterations of
the algorithm then `jRecycleA = `jRecycleB, for all j ≤ i and
we have IndexAi = IndexBi. Moreover, for every i ≥ LQVC,
we have IndexAi [1 : LQVC] = IndexBi [1 : LQVC] = 1 :
LQVC.
Proof Outline of Theorem IV.1. In order to prove

the successful simulation of an n-round protocol, it suffices
to show that Φ ≥ n/2r, at the end of the simulation. In
Section III-E we showed that in the teleportation-based
protocol, except with exponentially small probability, the
total number of hash collisions is O (nε). Then, for suffi-
ciently large number of iterations, to prove the correctness
it was sufficient to show that in any iteration with no error
or hash collision the potential function increases by at
least one, while any iteration with errors or hash collisions
decreases the potential by at most some fixed constant.
However, this statement is not necessarily true for Algo-
rithm 13 if the recycling of MESs has not been successful in
an earlier iteration. In fact, the potential function is defined
in terms of JS2 which is a valid representation of the joint
state at any stage in the simulation only if recycling has
been successful so far. Therefore, to use such an argument,
one needs to prove successful recycling first. On the other
hand, to prove successful recycling in an iteration, we need
to bound the number of iterations with a hash collision,
as well as the number of iterations dedicated to “recovery”
from hash collisions and transmission errors. Therefore,
the analysis of the recycling-based protocol involves an
inductive argument.

The analysis in this section involves constants

c1 < c2 < c3 < c4 < c5 < c6 < c7 < c8 < c9 ,

chosen such that ci is sufficiently large depending only on
cj with j < i.

Definition IV.7. We say an iteration of Algorithm 13
suffers from a metadata hash collision when HMA = HM̃A
despite the fact that MA 6= M̃A, or HMB = HM̃B despite
the fact that MB 6= M̃B. Note that we distinguish between
the above scenario and when, for instance, HMA = H ′

M̃Adue to a transmission error on HM̃A, despite the two might
have similar effects.

The following lemma bounds the number of iterations
with a metadata hash collision.

Lemma IV.8. The number of iterations of Algorithm 13
suffering from a metadata hash collision is at most c1nε
with probability at least 1− 2−Θ(nε).

Proof. We call an iteration a dangerous iteration of type
I if mdA

− + mdB
− 6= 0, at the beginning of the iteration.

Note that metadata hash collisions can only occur in type
I dangerous iterations. Let dI denote the number of such
iterations. It suffices to prove that

Pr (dI > c1nε) ≤ 2−Θ(nε) .

Note that in any iteration mdA
− + mdB

− increases by at
most 6. Moreover, in an iteration with mdA

−+mdB
− 6= 0, if

mdA
−+mdB

− decreases, it decreases by at least 1. Therefore,
in at least dI/7 iterations, mdA

−+mdB
− increases or remains

unchanged at a nonzero value. Note that mdA
− + mdB

− >
0 increases or remains unchanged only if a transmission
error or a metadata hash collision occurs. Moreover, when
mdA
−+mdB

− increases from zero in an iteration, it is due to
a transmission error. The number of iterations is less than
2n. So the total number of iterations with transmission
errors is at most 2nε. This implies that in all the remaining
iterations, i.e., at least dI/7 − 2nε iterations a metadata
hash collision occurs. Since the algorithm uses independent
seeds in each iteration and the probability of collision is
chosen to be 0.1, the expected number of collisions is at
most dI/10. If dI > c1nε for a sufficiently large c1, then
the Chernoff bound implies that the probability of having
so many collisions is at most 2−Θ(nε).

Definition IV.9. We refer to an iteration of Algorithm 13
as a recovery iteration of type I if at least one of Alice or
Bob conducts one of the cases i.A, i.B, ii.A, or ii.B.

We use the following lemma to bound the number of
type I recovery iterations.

Lemma IV.10. Suppose that in the first i iterations of
Algorithm 13, the number of iterations suffering from a
metadata hash collision is at most c1nε. Then the number
of type I recovery iterations in the first i iterations is at
most c2nε.

44

Proof. Let
ΦI := u+ ΦMD .

By Lemma IV.5 and the definition of u in Eq. (44), ΦI
is always non-negative and is equal to zero if and only if
Alice and Bob know each other’s full metadata and have
used the same number of MES blocks for QVC.
Note that if ΦI = 0 at the beginning of an iteration,

then the iteration is a type I recovery iteration only if
a transmission error in the communication of metadata
messages occurs. The total number of such iterations is at
most 2nε.
Let βI denote the number of iterations in the first i

iterations starting with ΦI > 0. Note that in any iteration,
ΦI increases or remains unchanged at a nonzero value only
if a metadata hash collision or a transmission error occurs.
In each iteration, regardless of the number of errors and
collisions, ΦI increases by at most 23. Moreover, if ΦI
decreases, it decreases by at least 1. Assuming the number
of metadata hash collisions is at most c1nε, this implies
that the number of iterations in which ΦI decreases is at
most 23 (c1 + 2)nε. So we have βI ≤ 24 (c1 + 2)nε.

Therefore, the total number of type I recovery iterations
is at most c2nε, where c2 := 24 (c1 + 2) + 2.

Definition IV.11. We say an iteration of Algorithm 13
suffers from a quantum hash collision when recycling
has been successful so far, Alice and Bob know each
other’s metadata, have used the same number of MES
blocks (`AQVC = `BQVC) and agree on their measurement
pointers and their recycling data up to the measurement
pointers (`RA = `RB and RA [1 : `RA] = RB [1 : `RB])
but despite the fact that there is an undetected quantum
error from earlier iterations (Wk 6= 04r for some k ≤ `RA
with RA [k] = S), their quantum hash values match,
i.e., QHA = QHB. Note that we distinguish between
the above scenario and when QHA = QHB′ due to a
transmission error on QHB.

We use the following lemma to bound the number of
iterations suffering from a quantum hash collision.

Lemma IV.12. Suppose that recycling is successful in
the first i iterations of Algorithm 13 and the number of
iterations suffering from a metadata hash collision is at
most c1nε. Then the number of iterations suffering from a
quantum hash collision in the first i iterations is at most
c3nε with probability at least 1− 2−Θ(nε).

Proof. We call an iteration a dangerous iteration of type
II if rd− 6= 0, at the beginning of the iteration. Note
that quantum hash collisions can only occur in type II
dangerous iterations. Let dII denote the number of such
iterations in the first i iterations of Algorithm 13. It suffices
to prove that

Pr (dII > c3nε) ≤ 2−Θ(nε) .

Note that in any iteration rd− increases by at most
2. Moreover, in an iteration with rd− 6= 0, if rd− de-
creases, it decreases by at least 1. Therefore, in at least

dII/3 iterations, rd− increases or remains unchanged at
a nonzero value. Note that, assuming successful recycling
in the previous iterations, rd− > 0 increases or remains
unchanged in an iteration only if
• A metadata hash collision or a transmission error on
metadata messages (i.e., HkMA , HMA1 , HMA2 , Hk

M̃A
,

HM̃A1
, HM̃A2

, HkMB , HMB1 , HMB2 , Hk
M̃B

, HM̃B1
,

HM̃B2
) occurs, or else,

• The iteration is a type I recovery iteration. Alice and
Bob are still reconciling an earlier inconsistency in
their metadata and they are both in case i.A or case
i.B, or one of them is in case ii.A and the other one
in case ii.B. Else,

• A transmission error on quantum hash values or a
quantum hash collision occurs. At least one party does
not realize that rd− > 0 and conducts one of the cases
v, vi.A, vi.B, or vii.

Moreover, assuming successful recycling in the previous
iterations, the value of rd− increases from zero in an
iteration only if
• A metadata hash collision occurs and Alice and
Bob act based on incorrect estimates of each other’s
recycling data, or else,

• A transmission error on metadata messages occurs, or
else,

• A transmission error on quantum hash values occurs
and only one party conducts case iv, or else,

• A transmission error on the Pauli data messages
(i.e., HkPA , HPA1 , HPA2 , Hk

P̃A
, HP̃A1

, HP̃A2
, HkPB ,

HPB1 , HPB2 , Hk
P̃B
, HP̃B1

, HP̃B2
) occurs and one

party conducts case vi.A or vi.B while the other is
in case vii. Else,

• A transmission error occurs on the communicated
QVC messages when both parties conduct case vii.

Assuming the number of metadata hash collisions is at
most c1nε, by Lemma IV.10, the total number of type I
recovery iterations is at most c2nε. The total number of
transmission errors is at most 2nε. Therefore, in at least
dII/3− (c1 + c2 + 2)nε iterations a quantum hash collision
occurs.
The shared random string used as the classical seed

for quantum hashing is δ-biased with δ = 2−Θ(n√ε). By
Lemma II.15, the seeds are also δΘ(1)-statistically close to
being Θ (Rtotal)-wise independent. Therefore, all hashing
steps are statistically close to being fully independent.
Combined with Lemma IV.3, this implies that the expected
number of quantum hash collisions is at most 10−3dII.
For sufficiently large c3, if dII > c3nε, the Chernoff
bound implies that the probability of having at least
dII/3− (c1 + c2 + 2)nε quantum hash collisions is at most
2−Θ(nε).

Definition IV.13. We refer to an iteration of Algo-
rithm 13 as a recovery iteration of type II if it is not a
type I recovery iteration and at least one of Alice or Bob
conducts one of the cases iii, iv, or v.

45

We use the following lemma to bound the number of
type II recovery iterations.

Lemma IV.14. Suppose that in the first i iterations
of Algorithm 13, recycling is successful, the number of
iterations suffering from a metadata hash collision is at
most c1nε and the number of iterations suffering from a
quantum hash collision is at most c3nε. Then the total
number of type II recovery iterations in the first i iterations
is at most c4nε.

Proof. Note that by Lemma IV.5, ΦRD is always non-
negative. If at the beginning of an iteration ΦRD = 0,
then the iteration is a type II recovery iteration only if
• ΦMD > 0 but due to a metadata hash collision or a
transmission error on metadata messages both Alice
and Bob do not realize that. In this case, they compute
their estimates of each other’s recycling data based
on incorrect estimates of each other’s metadata.

• ΦMD = 0 but a transmission error in communication
of quantum hashes occurs.

Therefore, in the first i iterations the total number of
type II recovery iterations starting with ΦRD = 0 is at
most (c1 + 2)nε.
Let βRD denote the number of iterations starting with
ΦRD > 0 in the first i iterations. Assuming successful
recycling in the preceding iterations, ΦRD > 0 increases or
remains unchanged in an iteration only if
• The iteration is a type I recovery iteration, or else,
• ΦMD > 0 but due to a metadata hash collision or

transmission errors on metadata messages, Alice and
Bob don’t realize that and act based on their incorrect
estimates of each other’s recycling data.

• ΦMD = 0, i.e., Alice and Bob have correct estimates
of each other’s recycling data but a quantum hash
collision or a transmission error on quantum hash
values occurs.

Moreover, ΦRD increases from zero in an iteration only
if
• A transmission error occurs, or else,
• A metadata hash collision occurs and the two par-
ties act based on incorrect estimates of each other’s
recycling data.

Therefore, the number of iterations in the first i it-
erations with ΦRD increasing or remaining unchanged
at a nonzero value is at most (c1 + c2 + c3 + 2)nε. Note
that in each iteration, regardless of the number of errors
and collisions, ΦRD increases by at most 30. Moreover, if
ΦRD decreases, it decreases by at least 1. This implies
that the number of iterations in which ΦRD decreases
is at most 30 (c1 + c2 + c3 + 2)nε. So, we have βRD ≤
31 (c1 + c2 + c3 + 2)nε.
Therefore, the total number of recovery iterations of
type II in the first i iterations is at most c4nε, where
c4 := 31 (c1 + c2 + c3 + 2) + (c1 + 2).

Definition IV.15. We say an iteration of Algorithm 13
suffers from a Pauli data hash collision when recycling has

been successful so far, Alice and Bob know each other’s
metadata, agree on the number of MES blocks they have
used (`AQVC = `BQVC), agree on their recycling data, their
measurement pointers satisfy `RA = `RB = `AQVC, all the
non-measured MES blocks are in the

∣∣φ0,0〉⊗4r state and
HPA = HP̃A despite the fact that PA 6= P̃A or HPB = HP̃B
despite the fact that PB 6= P̃B. Note that we distinguish
between the above scenario and when for instance HPA =
H ′

P̃A
due to a transmission error on HP̃A.

We use the following lemma to bound the number of
iterations suffering from a Pauli data hash collision.

Lemma IV.16. Suppose that in the first i iterations
of Algorithm 13, recycling is successful, the number of
iterations suffering from a metadata hash collision is at
most c1nε and the number of iterations suffering from a
quantum hash collision is at most c3nε. Then the number
of iterations suffering from a Pauli data hash collision in
the first i iterations is at most c5nε with probability at least
1− 2−Θ(nε).

Proof. We call an iteration a dangerous iteration of type
III if pdA

− + pdB
− 6= 0, at the beginning of the iteration.

Note that Pauli data hash collisions can only occur in type
III dangerous iterations. Let dIII denote the number of
such iterations in the first i iterations of Algorithm 13. We
prove that

Pr (dIII > c5nε) ≤ 2−Θ(nε) .

Note that in any iteration pdA
−+pdB

− increases by at most 8.
Moreover, in an iteration with pdA

−+pdB
− 6= 0, if pdA

−+pdB
−

decreases, it decreases by at least 1. Therefore, in at least
dIII/9 iterations, pdA

−+pdB
− increases or remains unchanged

at a nonzero value. Note that when pdA
−+pdB

− > 0 increases
or remains unchanged in an iteration, it is due to one of
the following reasons:
• The iteration is a type I recovery iteration, or else,
• The iteration is a type II recovery iteration, or else,
• A Pauli data hash collision or a transmission error on

Pauli data messages (i.e., HPA, `PA, HPB, `PB, HP̃B,
`P̃B, HP̃A, `P̃A) occurs.

Moreover, pdA
−+ pdB

− increases from zero in an iteration
only if
• A metadata hash collision or transmission error on

the metadata messages occurs, or else,
• A transmission error on the quantum hash values

occurs, or else,
• A transmission error on the Pauli data messages

occurs, or else,
• Both parties conduct case vi.B and due to a transmis-

sion error, at least one of Alice or Bob extends her/his
estimate of the other party’s Pauli data incorrectly.

Assuming the number of iterations of Algorithm 13
suffering from a metadata hash collision is at most c1nε
and the number of iterations suffering from a quantum
hash collision is at most c3nε, the total number of type I
and type II recovery iterations is at most (c2 + c4)nε. The

46

number of transmission errors is at most 2nε. Therefore,
in at least dIII/9− (c1 + c2 + c4 + 2)nε iterations a Pauli
data hash collision occurs.
Since the algorithm uses independent seeds in each

iteration and the probability of a collision is chosen to
be 0.1, the expected number of Pauli data hash collisions
is at most dIII/10. For sufficiently large c5, if dIII > c5nε,
the Chernoff bound implies that the probability of having
so many Pauli data hash collisions in the first i iterations
is at most 2−Θ(nε).

Definition IV.17. We refer to an iteration of Algo-
rithm 13 as a recovery iteration of type III if it is not
a type I or type II recovery iteration and at least one of
Alice or Bob conducts one of the cases vi.A or vi.B.

We use the following lemma to bound the number of
type III recovery iterations.

Lemma IV.18. Suppose that in the first i iterations of
Algorithm 13, recycling is successful and the number of it-
erations suffering from metadata , quantum and Pauli data
hash collisions is at most c1nε, c3nε and c5nε, respectively.
Then the total number of type III recovery iterations in the
first i iterations is at most c6nε.

Proof. Note that by Lemma IV.5, ΦPD is always non-
negative and it is equal to zero if and only if Alice and
Bob have full knowledge of each other’s Pauli data. If at
the beginning of an iteration ΦPD = 0, then the iteration
is a type III recovery iteration only if
• A transmission error occurs on the Pauli data mes-

sages, or else,
• A metadata hash collision or a transmission error on
metadata messages occurs. In this case at least one
party incorrectly believes that his/her estimate of the
other party’s Pauli data is not full-length.

Therefore, in the first i iterations the total number of
type III recovery iterations starting with ΦPD = 0 is at
most (c1 + 2)nε.
Let βPD denote the number of iterations starting with

ΦPD > 0 in the first i iterations. Note that in any iterations
ΦPD > 0 increases or remains unchanged only if
• The iteration is a type I recovery iteration, or else,
• The iteration is a type II recovery iteration, or else,
• A Pauli data hash collision or a transmission error on

Pauli data messages occurs.
Moreover, ΦPD increases from zero in an iteration only

if
• A metadata hash collision or transmission error on

the metadata messages occurs, or else,
• The iteration is a type I recovery iteration in which
one party conducts case ii.A and the other case ii.B,
or else,

• A transmission error on the quantum hash values
occurs, or else,

• The iteration is a type II recovery iteration in which
both parties conduct case iii or both conduct case iv,
or else,

• A transmission error on the Pauli data messages
occurs.

Therefore, the number of iterations in the first i it-
erations with ΦPD increasing or remaining unchanged
at a nonzero value is at most (c1 + c2 + c4 + c5 + 2)nε.
Note that in each iteration, regardless of the number
of errors and collisions, ΦPD increases by at most 22.
Moreover, if ΦPD decreases, it decreases by at least 1.
This implies that the number of iterations in which ΦPD
decreases is at most 22 (c1 + c2 + c4 + c5 + 2)nε. So, we
have βPD ≤ 23 (c1 + c2 + c4 + c5 + 2)nε.
Therefore, the total number of recovery iterations of

type III in the first i iterations is at most c6nε, where
c6 := 23 (c1 + c2 + c4 + c5 + 2) + (c1 + 2).

Let ωi denote the number of iterations suffering from a
transmission error or a hash collision in the first i iterations,
plus the number of recovery iterations of type I, II, or III, in
the first i iterations. Note that the bounds and probabilities
in Lemmas IV.8–IV.18 are all independent of the iteration
number i. As a corollary we have:

Corollary IV.19. There exist q = 2−Θ(nε) and a constant
c7 such that, for every i ∈ [Rtotal], assuming successful
recycling in the first i iterations of Algorithm 13, except
with probability at most q, we have ωi ≤ c7nε.

The following lemma is the last ingredient we need
to prove successful recycling in every iteration of the
simulation. Recall that RAi and RBi denote the recycling
data of Alice and Bob, respectively, at the end of the i-th
iteration.

Lemma IV.20. Let t = c8nε where c8 > 3c7. Then for
every i ∈ [Rtotal] where i ≥ t, if recycling is successful in
the first i− 1 iterations and ωi−1 ≤ c7nε, then:

1) RAi [1 : i− t] = RBi [1 : i− t], i.e., at the end of
iteration i, the recycling data of Alice and Bob agree
in a prefix of length at least i− t.

2) RAi [1 : i− t] = RAi+1 [1 : i− t], i.e., the prefix of
RA of length i − t does not get modified in the next
iteration. The same statement holds for RB.

3) For every k ∈ [i− t] such that RAi [k] = RBi [k] = S,
we have Wk = 04r.

Proof. Part 1:
Toward contradiction, suppose that there exists t′ ∈

[t, i− 1] such that RAi [i− t′] 6= RBi [i− t′]. Without
loss of generality, assume that RAi [i− t′] = M and
RBi [i− t′] = S. Suppose that the last time Alice’s mea-
surement pointer `RA was equal to i− t′ was t2 iterations
earlier, i.e., iteration i − t2. In that iteration, `RA has
distance t1 := t′ − t2 from i − t2, the iteration number.
Note that the distance between the iteration number and
`RA increases only in (some) recovery iterations and it
increases by at most 2: the distance remains the same if
Alice is in case v or case vii. Otherwise, it increases by 1 if
`RA does not move and increases by 2 when it moves back.
This implies that in the first i− t2 iterations, there have
been at least t1/2 recovery iterations. In the t2 iterations

47

after that, there is an inconsistency in the recycling data
which does not get resolved. In any of these iterations one
of the following holds:
• A metadata hash collision or a transmission error on

metadata messages occurs, or else,
• The iteration is a type I recovery iteration and Alice

and Bob are still trying to reconcile an inconsistency
in their metadata, or else,

• The iteration is a type II recovery iteration. In this
case, no metadata transmission error or collision oc-
curs and the iteration is not a type I recovery iteration.
So Alice and Bob know each other’s recycling data and
aware of the inconsistency, they are trying to resolve
it.

Therefore, in the first i − 1 iterations, the number of
recovery iterations plus the number of iterations suffering
from a transmission error or a collision is at least

t1/2 + t2 − 1 ≥ t′/2− 1 ≥ t/2− 1 ≥ c8
2 nε− 1 ,

contradicting ωi−1 ≤ c7nε. Note that here we implicitly use
the reasonable assumption that nε is at least a constant.

Part 2:
Suppose that recycling is successful in the first i − 1

iterations and ωi−1 ≤ c7nε. Note that by the same
argument as in part 1, at the end of iteration i + 1,
the difference between the measurement pointers and the
iteration number is at most 2ωi−1 + 4 ≤ 2c7nε + 4 ≤ t.
Therefore, the prefixes of both RA and RB of length i− t
do not get modified in the next iteration.

Part 3:
Note that the difference between the iteration number

and `AQVC increases only in (some) recovery iterations and
it increases by at most 1: The difference remains the
same if Alice is in case ii.B or case vii. Otherwise, `AQVC
remains unchanged and the distance increases by 1. The
number of recovery iterations in the first i iterations is
at most ωi−1 + 1 < t. Therefore, at the end of the i-
th iteration we have min{`AQVC, `

B
QVC} > i − t. Toward

contradiction, suppose that there exists t′ ∈ [t, i− 1] such
that RAi [i− t′] = RBi [i− t′] = S and Wi−t′ 6= 04r. This
is due to one of the following scenarios:
• The corresponding block of MES registers has been
used by both parties for communication using QVC,
but in different iterations (out-of-sync QVC).

• It has been used in the same iteration by both parties
for communication using QVC but transmission errors
have occurred on the messages.

In any case, suppose that the last time one of the pointers
`AQVC or `BQVC was equal to i− t′ was t2 iterations earlier,
i.e., iteration i− t2 and without loss of generality, suppose
that `AQVC is that pointer. In iteration i− t2, the pointer
`AQVC has distance t1 := t′ − t2 from i − t2, the iteration
number. This implies that in the first i − t2 iterations,
there have been at least t1 recovery iterations. In the t2
iterations after that, the block of MES registers indexed
by IndexA [i− t′] are not measured by any of the parties.
In any of these iterations one of the following holds:

• A metadata hash collision or a transmission error on
metadata messages occurs, or else,

• The iteration is a type I recovery iteration and Alice
and Bob are still trying to reconcile an inconsistency
in their metadata, or else,

• A quantum hash collision or a transmission error on
quantum hash values occurs, or else,

• The iteration is a type II recovery iteration. In this
case, no metadata transmission error or collision oc-
curs and the iteration is not a type I recovery iteration.
So Alice and Bob know each other’s recycling data and
are both in case iii or both in case iv.

The above argument implies that in the first i−1 iterations,
the number of recovery iterations plus the number of
iterations suffering from a transmission error or a collision
is at least

t1 + t2 − 1 = t′ − 1 ≥ t− 1 ≥ c8nε− 1 ,

contradicting ωi−1 ≤ c7nε.

We are now ready to prove that except with expo-
nentially small probability recycling is successful in ev-
ery iteration of the algorithm. Recall that we denote
Alice’s recycling pointer at the end of iteration i by
`iRecycleA. We use mA

i to denote the number of M symbols
in RAi

[
1 : `iRecycleA

]
. Similarly, `iRecycleB denotes Bob’s

recycling pointer at the end of iteration i and the number
of M symbols in RBi

[
1 : `iRecycleB

]
is denoted by mB

i .

Lemma IV.21. Let LQVC = c9nε, where c9 > c7 + c8.
Then with probability at least 1 − 2−Θ(nε), recycling is
successful throughout the execution of Algorithm 13.

Proof. The proof is based on induction on the iteration
number i. Note that recycling starts from iteration LQVC +
1.
Base case (i = LQVC + 1): Note that the

conditions of Definition IV.6 are satisfied in the
first LQVC iterations of the algorithm and we
have IndexA [1 : LQVC] = IndexB [1 : LQVC] =
1 : LQVC. Therefore, by Corollary IV.19, except
with probability at most q = 2−Θ(nε), we
have ωLQVC ≤ c7nε. Assuming ωLQVC ≤ c7nε,
by Lemma IV.20, RALQVC+1 [1 : LQVC + 1− t] =
RBLQVC+1 [1 : LQVC + 1− t] and for every
k ∈ [LQVC + 1− t] such that RALQVC+1 [k] =
RBLQVC+1 [k] = S, we have Wk = 04r. Note that
the number of M symbols in RALQVC+1 [1 : LQVC + 1− t]
and RBLQVC+1 [1 : LQVC + 1− t] is at most the number
of type I and type II recovery iterations so far, hence at
most

ωLQVC+1 ≤ ωLQVC + 1 ≤ c7nε+ 1 < LQVC + 1− t .

As shown in Part 3 of Lemma IV.20, at the end of iteration
LQVC, we have min

{
`AQVC, `

B
QVC

}
> LQVC − t. Therefore,

after running the Recycle subroutine, the algorithm does
not abort and at the end of iteration LQVC+1, the recycling
pointers are equal, i.e., `LQVC+1

RecycleA = `
LQVC+1
RecycleB. Together

with the fact that IndexA [1 : LQVC] = IndexB [1 : LQVC],

48

this implies that the conditions of Definition IV.6 are
satisfied. Therefore, there exists an event E of probability
at most q = 2−Θ(nε) such that if ¬E then,
• recycling is successful in iteration LQVC + 1,
• `

LQVC+1
RecycleA = `

LQVC+1
RecycleB, and

• `
LQVC+1
RecycleA = mA

LQVC+1 +1 and `LQVC+1
RecycleB = mB

LQVC+1 +1.
For LQVC < i ≤ Rtotal, let Ti be the following statement

in terms of the iteration number i:
• Recycling is successful in the first i iterations of the

algorithm,
• `iRecycleA = `iRecycleB, i.e., the recycling pointers are

equal at the end of iteration i, and
• `iRecycleA = mA

i + i− LQVC and `iRecycleB = mB
i + i−

LQVC.
Induction hypothesis: For LQVC < i ≤ Rtotal, there

exists an event Ei of probability at most (i− LQVC)·q such
that if ¬Ei then Ti holds.
Inductive step: Assuming ¬Ei, by Corollary IV.19,

except with probability at most q = 2−Θ(nε), we
have ωi ≤ c7nε. Let E′ be the event that ωi > c7nε.
Note that Pr (E′|¬Ei) ≤ q. Suppose further that ¬E′. Since
`iRecycleA = mA

i + i− LQVC, we have

i− t− `iRecycleA = LQVC − t−mA
i

≥ LQVC − t− ωi ≥ Ω(nε) .

By induction hypothesis, we also have i− t− `iRecycleB ≥
Ω(nε). As shown in Part 3 of Lemma IV.20, at the end
of iteration i, we have min

{
`AQVC, `

B
QVC

}
> i − t. By

part 1 of Lemma IV.20, we have RAi+1 [1 : i+ 1− t] =
RBi+1 [1 : i+ 1− t]. Since ωi−1 ≤ ωi ≤ c7nε, by part 2 of
Lemma IV.20, we have RAi+1 [1 : i− t] = RAi [1 : i− t]
and RBi+1 [1 : i− t] = RBi [1 : i− t]. Therefore, the al-
gorithm does not abort in iteration i + 1 and we have
`i+1
RecycleA = `i+1

RecycleB. Moreover, `i+1
RecycleA = mA

i+1 + (i +
1) − LQVC and `i+1

RecycleB = mB
i+1 + (i + 1) − LQVC. Note

that since recycling is successful in the first i iterations, at
the beginning of iteration i+ 1, we have IndexA = IndexB.
So NextIndexAi+1 = NextIndexBi+1 6=⊥, i.e., the first
and second conditions of Definition IV.6 are satisfied for
iteration i+ 1.

By part 3 of Lemma IV.20, for every k ∈ [i+ 1− t] such
that RAi+1 [k] = RBi+1 [k] = S, we have Wk = 04r. Note
that in the strings IndexA and IndexB, while each index
in [LQVC] may appear several times before the recycling
pointers, it can only appear at most once after these
pointers. Therefore, the block of MES registers indexed
by NextIndexAi+1 is indeed in the

∣∣φ0,0〉⊗4r state when
it is recycled in iteration i+ 1 and the third condition of
Definition IV.6 is also satisfied.

For Ei+1 := Ei ∨ E′, we have

Pr (Ei+1) ≤ Pr (Ei) + Pr (E′|¬Ei)
≤ (i− LQVC) · q + q = (i+ 1− LQVC) · q .

By the above argument, if ¬Ei+1 then Ti+1 holds. Note
that for LQVC < i ≤ Rtotal, we have

(i− LQVC) · q = 2−Θ(nε) .

Lemma IV.22. Assuming successful recycling throughout
the execution of Algorithm 13, each iteration with no
transmission error or hash collision increases the potential
function Φ defined in Eq. (51) by at least 1.

Proof. Note that in an iteration with no error or hash col-
lision Alice and Bob agree on the iteration type. Moreover,
if Itertype = MD,RD or PD, they also agree on whether
they extend or rewind the data and if Itertype = MES
(Case ii), then exactly one of them is in sub-case A and
the other one in sub-case B. We analyze the potential
function in each case keeping in mind the hierarchy of
the cases; e.g., Case ii or later cases are encountered
only if Alice and Bob have full knowledge of each other’s
metadata. Lemma IV.5 guarantees that ΦMD = 0 on
entering Case ii, ΦMD = ΦRD = 0 on entering Case vi
and ΦMD = ΦRD = ΦPD = 0 on entering Case vii.
• Alice and Bob are in Case i.A:

– ΦRD, ΦPD and ΦQ stay the same.
– i increases by 1.
– mdA

+ and mdB
+ stay the same.

– None of mdA
− and mdB

− increases and at least one
decreases by 1.

Therefore, ΦMD decreases by at least 3− 2 = 1 and Φ
increases by at least 1.

• Alice and Bob are in Case i.B:
– ΦRD, ΦPD and ΦQ stay the same.
– i increases by 1.
– mdA

− and mdB
− stay at 0.

– At least one of `MA or `MB is smaller than i− 1;
If only `MA < i−1, then mdA

+ increases by 2, and
mdB

+ by 1. The case where only `MB < i − 1 is
similar. If both are smaller than i− 1, then mdA

+
and mdB

+ both increase by 2.
Therefore, ΦMD decreases by at least 3− 2 = 1 and Φ
increases by at least 1.

• Alice is in Case ii.A, Bob is in Case ii.B:
– ΦMD stays at 0.
– rd+ and rd− stay the same.
– `AQVC stays the same and `BQVC increases by 1.
– qMA stays the same and qMB increases by 1.
– pdA

+, pd
A
−, pd

B
+, pd

B
− stay the same.

– g stays the same, b increases by at most 1 and u
decreases by 1.

Therefore, ΦRD, ΦPD and ΦQ increase by 1, 6 and at
least 8, respectively. So Φ increases by at least 1.

• Alice is in Case ii.B, Bob is in Case ii.A: This case is
similar to the one above.

• Alice and Bob are in Case iii:
– ΦMD stays at 0.
– rd+, `AQVC and `BQVC stay the same.
– rd− decreases by 1.
– pdA

+, pd
A
−, pd

B
+, pd

B
− stay the same.

– qMA and qMB do not decrease. qMA increases by
1 if RA [`RA] = S. Similarly, qMB increases by 1
if RB [`RB] = S.

49

– ΦQ stays the same.
Therefore, ΦRD decreases by 13 and ΦPD increases by
at most 12. So Φ increases by at least 1.

• Alice and Bob are in Case iv:
– ΦMD stays at 0.
– rd+, `AQVC and `BQVC stay the same.
– rd− decreases by 1.
– pdA

+, pd
A
−, pd

B
+, pd

B
− stay the same.

– qMA and qMB do not decrease. They both increase
by 1, if RA [`RA] = RB [`RB] = S.

– ΦQ stays the same.
Therefore, ΦRD decreases by 13 and ΦPD increases by
at most 12. So Φ increases by at least 1.

• Alice and Bob are in Case v:
– ΦMD stays at 0.
– rd− stays at 0 and rd+ increases by 1.
– `AQVC and `BQVC stay the same.
– ΦPD and ΦQ stay the same.

Therefore, ΦRD decreases by 2 and Φ increases by 2.
• Alice and Bob are in Case vi.A:

– ΦMD and ΦRD stay at 0.
– pdA

+, pd
B
+, qMA, qMB stay the same.

– None of pdA
− and pdB

− increases and at least one
decreases by 1.

– ΦQ stays the same.
Therefore, ΦPD decreases by at least 1. So Φ increases
by at least 1.

• Alice and Bob are in Case vi.B:
– ΦMD and ΦRD stay at 0.
– qMA, qMB stay the same and pdA

−, pdB
− stay at 0.

– At least one of the following holds: `PA < 6qMA ·
r, in which case pdA

+ increases by 1 (otherwise
it remains unchanged), or `PB < 6qMB · r, and
then pdB

+ increases by 1 (otherwise it remains
unchanged).

– ΦQ stays the same.
Therefore, ΦPD decreases by at least 1. So Φ increases
by at least 1.

• Alice and Bob are in Case vii:
– ΦMD, ΦRD and ΦPD stay at 0.
– u stays at 0.
– If b 6= 0 then g stays the same and b decreases by

1, otherwise, b stays at 0 and g increases by 1.
Therefore, ΦQ increases by 1 and so does Φ.

So assuming successful recycling throughout the execution
of the algorithm, the potential function Φ increases by at
least 1 in every iteration with no transmission error or
hash collision.

Lemma IV.23. Assuming successful recycling through-
out the execution of Algorithm 13, each iteration of the
algorithm, regardless of the number of hash collisions and
transmission errors, decreases the potential function Φ by
at most 85.

Proof. In any iteration, i increases by 1, while g, mdA
+,

mdB
+, rd+, pdA

+ and pdB
+ decrease by at most 1; b, u, `AQVC,

`BQVC, qMA and qMB increase by at most 1; mdA
− and mdB

−
increase by at most 3; rd− increases by at most 2; and
pdA
− and pdB

− increase by at most 4. Hence, ΦMD, ΦRD,
ΦPD increase by at most 22, 30 and 22, respectively, and
ΦQ decreases by at most 11. So in total, Φ decreases by at
most 85.

Finally, we are ready to prove the main result of this
section.

Theorem IV.1 (Restated). Consider any n-round al-
ternating communication protocol Π in the plain quantum
model, communicating messages over a noiseless channel
with an alphabet Σ of bit-size Θ (logn). Algorithm 13 is a
quantum coding scheme which given Π, simulates it with
probability at least 1− 2−Θ(nε), over any fully adversarial
error channel with alphabet Σ and error rate ε. The
simulation uses n (1 + Θ (

√
ε)) rounds of communication,

and therefore achieves a communication rate of 1−Θ (
√
ε).

Proof. Let Rtotal =
⌈
n
2r
⌉

+ 86 (c1 + c3 + c5 + 2)nε. By
Lemma IV.21, recycling is successful throughout the execu-
tion of the algorithm with probability at least 1− 2−Θ(nε).
Assuming successful recycling, by Lemmas IV.8, IV.12
and IV.16, the total number of iterations with a hash
collision is at most c1 + c3 + c5 except with probability
2−Θ(nε). Since the number of iterations is less than 2n,
the total number of iterations with a transmission error is
at most 2nε. Therefore, by Lemma IV.22, in the remain-
ing Rtotal − (c1 + c3 + c5 + 2)nε iterations the potential
function Φ increases by at least 1. The potential function
decreases in an iteration only if a hash collision or a
transmission error occurs and by Lemma IV.23, it decreases
by at most 85. So at the end of the simulation, we have

g − b− u ≥ ΦQ ≥Φ ≥ Rtotal − (c1 + c3 + c5 + 2)nε

− 85 (c1 + c3 + c5 + 2)nε ≥ n

2r .

Therefore, the simulation is successful with probability at
least 1 − 2−Θ(nε). The cost of entanglement distribution
is Θ (n

√
ε). Moreover, the amount of communication in

each iteration is independent of the iteration type and is
always (2r + Θ(1)): in every iteration each party sends
Θ(1) symbols to communicate the hash values and the
value of the pointers in line 13 of Algorithm 13; each party
sends another r symbols either in line 17 of Algorithm 13,
if Itertype 6= SIM or in Algorithm 25. Hence, the total
number of communicated qudits is

Θ
(
n
√
ε
)

+Rtotal · (2r + Θ(1))

= Θ
(
n
√
ε
)

+
(⌈ n

2r + Θ (nε)
⌉)

(2r + Θ(1))

= n
(
1 + Θ

(√
ε
))

.

V. Conclusion
In this paper, we study efficient simulation of noiseless

two-party interactive quantum communication via low
noise channels. For noise parameter ε, a lower bound of

50

1 − Θ(
√
ε) on the communication rate is proved in the

plain quantum model with large communication alphabets.
To achieve this goal, we first study the teleportation-based
model in which the parties have access to free entanglement
and the communication is over a noisy classical channel.
In this model, we show the same lower bound of 1−Θ(

√
ε)

in the large alphabet case. We adapt the framework
developed for the teleportation-based model to the plain
quantum model in which the parties do not have access
to pre-shared entanglement and communicate over a noisy
quantum channel. We show how quantum Vernam cipher
can be used in the interactive communication setting to
efficiently recycle and reuse entanglement, allowing us to
simulate any input protocol with an overhead of only
1 + Θ(

√
ε). In an upcoming paper, we will show how

the same communication rate can be achieved when the
communication alphabet is of constant size.

References

[1] D. Leung, A. Nayak, A. Shayeghi, D. Touchette, P. Yao, and
N. Yu, “Capacity approaching coding for low noise interactive
quantum communication,” in Proceedings of the 50th Annual
ACM Symposium on Theory of Computing. ACM, 2018, pp.
339–352.

[2] O. Regev and B. Klartag, “Quantum one-way communication
can be exponentially stronger than classical communication,” in
Proceedings of the forty-third annual ACM symposium on Theory
of computing. ACM, 2011, pp. 31–40.

[3] C. E. Shannon, “A mathematical theory of communication,” Bell
System Tech. J., vol. 27, pp. 379–423, 623–656, 1948.

[4] N. Stolte, “Rekursive codes mit der plotkin-konstruktion und
ihre decodierung,” Ph.D. dissertation, TU Darmstadt, Fachbere-
ich Elektrotechnik und Informationstechnik„ 2002.

[5] E. Arikan, “Channel polarization: A method for constructing
capacity-achieving codes for symmetric binary-input memoryless
channels,” IEEE Transactions on Information Theory, vol. 55,
no. 7, pp. 3051–3073, July 2009.

[6] A. S. Holevo, “The capacity of the quantum channel with gen-
eral signal states,” IEEE Transactions on Information Theory,
vol. 44, no. 1, pp. 269–273, 1998.

[7] B. Schumacher and M. D. Westmoreland, “Sending classical
information via noisy quantum channels,” Phys. Rev. A, vol. 56,
no. 1, pp. 131–138, 1997.

[8] S. Lloyd, “Capacity of the noisy quantum channel,” Phys. Rev.
A, vol. 55, no. 3, pp. 1613–1622, 1997.

[9] P. W. Shor, “The quantum channel capacity and coherent
information,” Lecture notes, MSRI Workshop on Quantum
Computation, 2002.

[10] I. Devetak, “The private classical capacity and quantum capacity
of a quantum channel,” IEEE Transactions on Information
Theory, vol. 51, no. 1, pp. 44–55, 2005.

[11] A. R. Calderbank and P. W. Shor, “Good quantum error-
correcting codes exist,” Phys. Rev. A, vol. 54, pp. 1098–1105,
Aug 1996. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevA.54.1098

[12] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. Sloane,
“Quantum error correction via codes over GF(4),” IEEE Trans-
actions on Information Theory, vol. 44, no. 4, pp. 1369–1387,
1998.

[13] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Woot-
ters, “Mixed-state entanglement and quantum error correction,”
Phys. Rev. A, vol. 54, no. 5, pp. 3824–3851, 1996.

[14] H. Bombin, “Gauge color codes: optimal transversal gates and
gauge fixing in topological stabilizer codes,” New Journal of
Physics, vol. 17, no. 8, p. 083002, 2015. [Online]. Available:
http://stacks.iop.org/1367-2630/17/i=8/a=083002

[15] D. DiVincenzo, P. Shor, and J. Smolin, “Quantum-channel
capacity of very noisy channels,” Physical Review A, vol. 57,
no. 2, pp. 830–839, 1998.

[16] M. B. Hastings, “Superadditivity of communication capacity
using entangled inputs,” Nature Physics, vol. 5, no. 4, p. 255,
2009.

[17] G. Smith and J. Yard, “Quantum communication with zero-
capacity channels,” Science, vol. 321, no. 5897, pp. 1812–1815,
2008.

[18] H. Buhrman, R. Cleve, and A. Wigderson, “Quantum vs. clas-
sical communication and computation,” in Proceedings of the
30th Annual ACM Symposium on Theory of Computing. ACM,
1998, pp. 63–68.

[19] P. Høyer and R. De Wolf, “Improved quantum communication
complexity bounds for disjointness and equality,” in STACS
2002. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 299–310.

[20] S. Aaronson and A. Ambainis, “Quantum search of spatial
regions,” in Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science. IEEE, 2003, pp. 200–209.

[21] H. Klauck, A. Nayak, A. Ta-Shma, and D. Zuckerman, “In-
teraction in quantum communication,” IEEE Transactions on
Information Theory, vol. 53, no. 6, pp. 1970–1982, 2007.

[22] R. Jain, J. Radhakrishnan, and P. Sen, “A lower bound for the
bounded round quantum communication complexity of set dis-
jointness,” in Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science. IEEE, 2003, pp. 220–229.

[23] M. Braverman, A. Garg, Y. K. Ko, J. Mao, and D. Touchette,
“Near-optimal bounds on bounded-round quantum communi-
cation complexity of disjointness,” in Proceedings of the 2015
IEEE 56th Annual Symposium on Foundations of Computer
Science (FOCS), ser. FOCS ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 773–791. [Online]. Available:
http://dx.doi.org/10.1109/FOCS.2015.53

[24] R. Raz, “Exponential separation of quantum and classical com-
munication complexity,” in Proceedings of the 31st Annual ACM
Symposium on Theory of Computing. ACM, 1999, pp. 358–367.

[25] G. Brassard, A. Nayak, A. Tapp, D. Touchette, and F. Unger,
“Noisy interactive quantum communication,” SIAM Journal
on Computing, vol. 48, no. 4, pp. 1147–1195, 2019. [Online].
Available: https://doi.org/10.1137/16M109867X

[26] C. H. Bennett, G. Brassard, R. Jozsa, D. Mayers, A. Peres,
B. Schumacher, and W. K. Wootters, “Reduction of quantum en-
tropy by reversible extraction of classical information,” Journal
of Modern Optics, vol. 41, no. 12, pp. 2307–2314, 1994.

[27] D. Dieks, “Communication by EPR devices,” Phys. Lett. A,
vol. 92, no. 6, pp. 271–272, 1982.

[28] W. K. Wootters and W. H. Zurek, “A single quantum cannot
be cloned,” Nature, vol. 299, no. 5886, pp. 802–803, 1982.

[29] L. J. Schulman, “Communication on noisy channels: A coding
theorem for computation,” in Proceedings of the 33rd Annual
IEEE Symposium on Foundations of Computer Science. IEEE,
1992, pp. 724–733.

[30] ——, “Deterministic coding for interactive communication,” in
Proceedings of the 25th Annual ACM Symposium on Theory of
Computing. ACM, 1993, pp. 747–756.

[31] ——, “Coding for interactive communication,” IEEE Transac-
tions on Information Theory, vol. 42, no. 6, pp. 1745–1756, 1996.

[32] M. Braverman and A. Rao, “Toward coding for maximum
errors in interactive communication,” IEEE Transactions on
Information Theory, vol. 60, no. 11, pp. 7248–7255, 2014.

[33] Z. Brakerski and Y. T. Kalai, “Efficient interactive coding
against adversarial noise,” in Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science. IEEE,
2012, pp. 160–166.

[34] Z. Brakerski and M. Naor, “Fast algorithms for interactive cod-
ing,” in Proceedings of the 24th Annual ACM-SIAM Symposium
on Discrete Algorithms. Society for Industrial and Applied
Mathematics, 2013, pp. 443–456.

[35] Z. Brakerski, Y. T. Kalai, and M. Naor, “Fast interactive
coding against adversarial noise,” J. ACM, vol. 61, no. 6, pp.
35:1–35:30, Dec. 2014. [Online]. Available: http://doi.acm.org/
10.1145/2661628

[36] R. Gelles, A. Moitra, and A. Sahai, “Efficient and explicit
coding for interactive communication,” in Proceedings of the
52nd Annual IEEE Symposium on Foundations of Computer
Science. IEEE, 2011, pp. 768–777.

[37] ——, “Efficient coding for interactive communication,” IEEE
Transactions on Information Theory, vol. 60, no. 3, pp. 1899–
1913, March 2014.

https://link.aps.org/doi/10.1103/PhysRevA.54.1098
https://link.aps.org/doi/10.1103/PhysRevA.54.1098
http://stacks.iop.org/1367-2630/17/i=8/a=083002
http://dx.doi.org/10.1109/FOCS.2015.53
https://doi.org/10.1137/16M109867X
http://doi.acm.org/10.1145/2661628
http://doi.acm.org/10.1145/2661628

51

[38] M. Ghaffari and B. Haeupler, “Optimal error rates for interactive
coding ii: Efficiency and list decoding,” in Proceedings of the 55th
Annual IEEE Symposium on Foundations of Computer Science.
IEEE, 2014, pp. 394–403.

[39] M. Braverman and K. Efremenko, “List and unique coding for
interactive communication in the presence of adversarial noise,”
SIAM Journal on Computing, vol. 46, no. 1, pp. 388–428, 2017.
[Online]. Available: https://doi.org/10.1137/141002001

[40] M. Ghaffari, B. Haeupler, and M. Sudan, “Optimal error
rates for interactive coding i: Adaptivity and other settings,”
in Proceedings of the Forty-sixth Annual ACM Symposium
on Theory of Computing, ser. STOC ’14. New York,
NY, USA: ACM, 2014, pp. 794–803. [Online]. Available:
http://doi.acm.org/10.1145/2591796.2591872

[41] K. Efremenko, R. Gelles, and B. Haeupler, “Maximal noise in
interactive communication over erasure channels and channels
with feedback,” in Proceedings of the 2015 Conference on
Innovations in Theoretical Computer Science, ser. ITCS ’15.
New York, NY, USA: ACM, 2015, pp. 11–20. [Online]. Available:
http://doi.acm.org/10.1145/2688073.2688077

[42] M. Franklin, R. Gelles, R. Ostrovsky, and L. J. Schulman,
“Optimal coding for streaming authentication and interactive
communication,” IEEE Transactions on Information Theory,
vol. 61, no. 1, pp. 133–145, Jan 2015.

[43] G. Kol and R. Raz, “Interactive channel capacity,” in Proceedings
of the 45th Annual ACM Symposium on Theory of Computing.
ACM, 2013, pp. 715–724.

[44] B. Haeupler, “Interactive channel capacity revisited,” in
Proceedings of the 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science, ser. FOCS ’14. Washington,
DC, USA: IEEE Computer Society, 2014, pp. 226–235. [Online].
Available: http://dx.doi.org/10.1109/FOCS.2014.32

[45] B. Haeupler and A. Velingker, “Bridging the capacity
gap between interactive and one-way communication,”
in Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, ser. SODA
’17. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2017, pp. 2123–2142. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3039686.3039824

[46] Y.-H. K. Assaf Ben-Yishai, Ofer Shayevitz, “Interactive coding
for Markovian protocols,” in 55th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), 2017,
pp. 870–877.

[47] R. Gelles, “Coding for interactive communication: A survey,”
Foundations and Trends® in Theoretical Computer Science,
vol. 13, no. 1–2, pp. 1–157, 2017.

[48] D. W. Leung, “Quantum vernam cipher,” Quantum Info.
Comput., vol. 2, no. 1, pp. 14–34, Dec. 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2011417.2011419

[49] M. A. Nielsen and I. L. Chuang, Quantum computation and
quantum information. Cambridge, UK: Cambridge University
Press, 2000.

[50] J. Watrous, The Theory of Quantum Information. Cambridge
University Press, May 2018.

[51] M. M. Wilde, Quantum Information Theory. Cambridge, UK:
Cambridge University Press, 2013.

[52] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, “Simple
constructions of almost k-wise independent random variables,”
Random Structures & Algorithms, vol. 3, no. 3, pp. 289–304,
1992. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/rsa.3240030308

[53] J. Naor and M. Naor, “Small-bias probability spaces: Efficient
constructions and applications,” SIAM Journal on Computing,
vol. 22, no. 4, pp. 838–856, 1993. [Online]. Available:
https://doi.org/10.1137/0222053

[54] K. Feng and Z. Ma, “A finite gilbert-varshamov bound for pure
stabilizer quantum codes,” IEEE Transactions on Information
Theory, vol. 50, no. 12, pp. 3323–3325, Dec 2004.

Debbie Leung joined the Institute for Quan-
tum Computing (IQC) and the Department
of Combinatorics and Optimization at the
University of Waterloo in 2005. Before that,
she was a Tolman postdoctoral fellow at the
Institute for Quantum Information, California
Institute of Technology and a postdoc at the
Physics of Information group at the IBM TJ
Watson Research Center. She received her PhD
in Physics at Stanford University in 2000.

Ashwin Nayak received his B.Tech. degree
from Indian Institute of Technology, Kanpur
in 1995 and his Ph.D. degree from Univer-
sity of California, Berkeley in 1999. He is a
Professor in the Department of Combinatorics
and Optimization, and Institute for Quantum
Computing, University of Waterloo, Waterloo,
Canada. Before coming to Waterloo, he held
post-doctoral positions at DIMACS Center
and AT&T Labs–Research, California Insti-
tute of Technology, and Mathematical Sciences

Research Institute, Berkeley. His research primarily revolves around
quantum information and computation, with an emphasis on algo-
rithms, complexity, and communication. He continues to work more
broadly on related topics in theoretical computer science.

Ala Shayeghi received his Ph.D. degree in
Mathematics from the Department of Combi-
natorics and Optimization, and Institute for
Quantum Computing, University of Waterloo
in 2020. He is currently a post-doctoral re-
searcher at Laboratoire de l’Informatique du
Parallélisme, ENS de Lyon, and Inria in France.
His research focuses on quantum information
theory and its applications in theoretical com-
puter science.

Dave Touchette received a Ph.D. from the
Département d’informatique et de recherche
opérationnelle, Université de Montréal in 2015.
He was a Postdoctoral Researcher with the
Institute for Quantum Computing and De-
partment of Combinatorics and Optimization,
University of Waterloo, and the Perimeter
Institute of Theoretical Physics. He is currently
an Assistant Professor in the Département
d’informatique and member of Institut Quan-
tique, Université de Sherbrooke. His research

interests include quantum information theory, quantum cryptography
and quantum complexity theory.

https://doi.org/10.1137/141002001
http://doi.acm.org/10.1145/2591796.2591872
http://doi.acm.org/10.1145/2688073.2688077
http://dx.doi.org/10.1109/FOCS.2014.32
http://dl.acm.org/citation.cfm?id=3039686.3039824
http://dl.acm.org/citation.cfm?id=2011417.2011419
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.3240030308
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.3240030308
https://doi.org/10.1137/0222053

52

Penghui Yao obtained his Ph.D. degree in
computer science from the Centre for Quan-
tum Technologies (CQT), National University
of Singapore in 2013. He spent one year at
CQT as a research associate, one year at the
Centrum Wiskunde and Informatica in the
Netherlands as a postdoc, one year at the
Institute for Quantum Computing at the Uni-
versity of Waterloo, Waterloo, ON, Canada as
a postdoc, and one and a half years at the
Joint Center for Quantum Information and

Computer Science University of Maryland, MD, USA as a Hartree
postdoctoral fellow. He is presently an associate professor in the
Department of Computer Science, Nanjing University, China. His
research interests are in the areas of communication complexity,
information theory, computational complexity and Fourier analysis.

Nengkun Yu is a Senior Lecturer in the
Centre for Quantum Software and Information,
University of Technology Sydney. He received
the B.S. and Ph.D. degrees from the Depart-
ment of Computer Science and Technology,
Tsinghua University, Beijing, China, in July
of 2008 and 2013, respectively. From January
2014 to July 2016, he was a postdoc at the
Institute for Quantum Computing at the Uni-
versity of Waterloo, Canada. He won the J G
Russell Award from the Australian Academy of

Science in 2018. His research interest focuses on quantum computing.

	Introduction
	Motivation
	The main questions
	Channel coding theory as a special case
	Communication complexity as a special case
	The problem, and motivation for the investigation

	Fundamental difficulties in coding for quantum interactive communication
	Standard error correcting codes are inapplicable
	The no-cloning quantum problem

	Prior classical and quantum work
	Classical results showing positive rates
	Classical results with efficient encoding and decoding
	Classical results with optimal rates
	Quantum results showing positive rates

	Results in this paper, overview of techniques, and our contributions

	Preliminaries
	Mathematical notation
	Quantum Communication Model
	Noiseless Communication Model
	Noisy Communication Model

	Protocols over qudits
	Quantum teleportation over noisy qudit channels
	Quantum Vernam cipher over noisy qudit channels

	Small-bias and lg-wise independence

	Coding for teleportation-based communication with a large alphabet
	Overview
	Insufficiency of simply combining lg
	New difficulties in rate-optimal simulations
	Framework
	A major new obstacle: out-of-sync teleportation
	Tight rope between robustness and rate

	Result
	Description of Protocol
	Metadata
	Number of MESs used
	Pauli data
	Hashing for string comparison
	Out-of-Sync Teleportation
	First representation of the quantum registers
	Second representation of the quantum registers
	Representations of quantum registers while out-of-sync
	Summary of main steps

	Algorithm
	Data structure
	Pseudo-code

	Analysis

	Recycling-based coding scheme via large alphabet quantum channels
	Overview
	Teleportation is inapplicable
	Quantum Vernam Cipher (QVC)
	Entanglement recycling and adaptations of QVC for the current problem
	Framework
	Additional out-of-sync problems

	Result
	Description of Protocol
	General Description
	Quantum Hashing
	Out-of-Sync Quantum Vernam Cipher
	Out-of-Sync Quantum Hashing
	First representation of the joint quantum state
	Second representation of the joint quantum state
	Representation of the joint state while out-of-sync
	Constant collision probability for classical hashing suffices
	Summary of main steps

	Algorithm
	Data structure
	Pseudo-code

	Analysis

	Conclusion
	References
	Biographies
	Debbie Leung
	Ashwin Nayak
	Ala Shayeghi
	Dave Touchette
	Penghui Yao
	Nengkun Yu

