
Recognizing Well-Parenthesized Expressions
in the Streaming Model

Frédéric Magniez∗

LRI, Univ. Paris-Sud, CNRS
F-91405 Orsay, France
magniez@lri.fr

Claire Mathieu†

Computer Science Dept.
Brown University

Providence RI 02912, U.S.A
claire@cs.brown.edu

Ashwin Nayak‡

C&O and IQC, U. Waterloo and Perimeter Institute
Waterloo ON N2L 3G1, Canada

anayak@math.uwaterloo.ca

March 31, 2010

Abstract

Motivated by a concrete problem and with the goal of understanding the relationship between the
complexity of streaming algorithms and the computational complexity of formal languages, we investi-
gate the problem DYCK(s) of checking matching parentheses, with s different types of parenthesis.

We present a one-pass randomized streaming algorithm for DYCK(2) with space O(
√

n log n) bits,
time per letter polylog(n), and one-sided error. We prove that this one-pass algorithm is optimal, up to
a log n factor, even when two-sided error is allowed, and conjecture that a similar bound holds for any
constant number of passes over the input.

Surprisingly, the space requirement shrinks drastically if we have access to the input stream in re-
verse. We present a two-pass randomized streaming algorithm for DYCK(2) with space O((log n)2),
time polylog(n) and one-sided error, where the second pass is in the reverse direction. Both algorithms
can be extended to DYCK(s) since this problem is reducible to DYCK(2) for a suitable notion of reduc-
tion in the streaming model. Except for an extra O(

√
log s) multiplicative overhead in the space required

in the one-pass algorithm, the resource requirements are of the same order.
For the lower bound, we exhibit hard instances ASCENSION(m) of DYCK(2) with length Θ(mn).

We embed these in what we call a “one-pass” communication problem with 2m-players, where m =
Õ(n). To establish the hardness of ASCENSION(m), we prove a direct sum result by following the
“information cost” approach, but with a few twists. Indeed, we play a subtle game between public and
private coins for MOUNTAIN, which corresponds to a primitive instance ASCENSION(1). This mixture
between public and private coins for MOUNTAIN results from a balancing act between the direct sum
result and a combinatorial lower bound for MOUNTAIN.

∗Supported in part by French ANR grants ANR-08-EMER-012 and ANR-07-SESU-013.
†Part of this work was funded by NSF grant CCF-0728816.
‡Work done in part while visiting the Center for Computational Intractability, Rutgers University and DIMACS, with support

from NSF grants CCF-832797 and CCF 832787. Research also supported in part by NSERC Canada. Research at Perimeter
Institute is supported in part by the Government of Canada through Industry Canada and by the Province of Ontario through MRI.

1

1 Introduction

The area of streaming algorithms has experienced tremendous growth over the last decade in many appli-
cations. Streaming algorithms sequentially scan the whole input piece by piece in one pass, or in a small
number of passes (i.e., they do not have random access to the input), while using sublinear memory space,
ideally polylogarithmic in the size of the input. The design of streaming algorithms is motivated by the
explosion in the size of the data that algorithms are called upon to process in everyday real-time applica-
tions. Examples of such applications occur in bioinformatics for genome decoding, in Web databases for
the search of documents, or in network monitoring. The analysis of Internet traffic [2], in which traffic
logs are queried, was one of the first applications of this kind of algorithm. Few studies have been made
in the context of formal languages, although these would have ramifications for massive data such as DNA
sequences and large XML files. For instance, in the context of databases, properties decidable by streaming
algorithm have been studied [24, 23], but only in the restricted case of deterministic and constant memory
space algorithms.

Motivated by a concrete problem and with the goal of understanding the relationship between the com-
plexity of streaming algorithms and the computational complexity of formal languages, we investigate the
problem DYCK(s) of checking matching parentheses, with s different types of parenthesis. Regular lan-
guages are by definition decidable by deterministic streaming algorithms with constant space. The DYCK

languages are some of the simplest context-free languages and yet already powerful. These languages play
a central role in the theory of context-free languages, since every context-free language L can be mapped
to a subset of DYCK(s) [9], for some s. In addition to its theoretical importance, the problem of checking
matching parentheses is enountered frequently in database applications, for instance in verifying that an
XML file is well-formed.

Deciding membership in DYCK(s) has already been addressed in the massive data setting, more pre-
cisely through property testing algorithms. An ε-property tester [6, 7, 12] for a language L accepts all
strings of L and rejects all strings which are ε-far from strings in L, for the normalized Hamming distance.
For every fixed ε > 0, DYCK(1) is ε-testable in constant time [1], whereas in general DYCK(s) are ε-testable
in time Õ(n2/3), with a lower bound of Ω̃(n1/11) [21]. In [11], a comparison between property testers and
streaming algorithms has been made. Streaming algorithms have the advantage of access to the entire
string, albeit not in a random access fashion.

With random access to the input, context-free languages are known to be recognizable in
space O((log n)2) [13]. In the special case of DYCK(s), logarithmic space is sufficient, as we may run
through all possible heights, and check parentheses at the same height. This scheme does not seem to easily
translate to streaming algorithms, even with a small number of passes over the input.

In the streaming model, DYCK(1) has a one-pass streaming algorithm with logarithmic space, using
a height counter. Using a straightforward one-way communication complexity argument for EQUALITY,
we can deduce that DYCK(2) requires linear space for deterministic one-pass streaming algorithms. A
relaxation of DYCK(s) is IDENTITY(s) in the free group with s generators, where local simplifications
aa = ε are allowed in addition to aa = ε, for every type of parenthesis (a, a). There is a logarithmic
space algorithm for recognizing the language IDENTITY(s) [18] that can easily be massaged into a one-pass
streaming algorithm with polylogarithmic space. Again, this algorithm does not extend to DYCK(s).

We show that DYCK(s) is reducible to DYCK(2), for a suitable notion of reduction in the streaming
model, with a log s factor expansion in the input length. Our first algorithm is a one-pass randomized
streaming algorithm for DYCK(2) with space O(

√
n log n) bits and time polylog(n) (Theorem 1). If we

had no space constraints the algorithm would be very simple: when we encounter an upstep (a or b), push

2

it on a stack, when we encounter a downstep (a or b), pop the top item from the stack and check that they
match. However the stack may grow to linear size in this process. To avoid this growth, the basic strategy
of our algorithm is to use a linear hash function to periodically (every

√
n/ log n letters) compress stack

information. As long as we compress only upsteps or only downsteps, all at different heights, we are able to
detect mismatches with high probability. The algorithm has one-sided error; it accepts words that belong to
the language with certainty. Although simple, we show that this appealing algorithm is nearly optimal in its
space usage, even when two-sided error is allowed (Corollary 1).

We conjecture that our lower bound still holds if we read the stream several times, but always in the
same direction. Surprisingly, the situation is drastically different if we can read the data stream in reverse.
We present a second algorithm, a randomized two-pass streaming algorithm for DYCK(2) with O((log n)2)
space and time polylog(n), where the second pass is in the reverse direction (Theorem 2). This algorithm
uses a hierarchical decomposition of the stream into blocks; whenever the algorithm reaches the end of
a block, it compresses the information about subwords from within the block. This compression is what
reduces the stack size from Θ(

√
n log n) down to O(log n), but prevents us from checking that certain

matching pairs of parentheses are well-formed. However, given the profile of the word (i.e., the sequence of
heights), we can pinpoint exactly the matching pairs that do not get checked. As it turns out, a pair that does
not get checked when scanning the input left to right is necessarily checked when scanning in the reverse
direction. Like the one-pass algorithm, this algorithm has only one-sided error, and always accepts words
that belong to the language. We note that it is straightforward to extend the algorithms so that they recognize
the language of substrings (which are subwords of consecutive letters) of DYCK(2).

As mentioned above, we also investigate the lower bound on the space required for any one-pass ran-
domized streaming algorithm. Such a lower bound is by nature hard to prove because of the connection of
the problem with IDENTITY(2). Moreover, proving a non-trivial lower bound based on two-party commu-
nication complexity is hopeless: the related communication problem automatically reduces to EQUALITY

after local checks and simplifications by both players, leading to only an Ω(log n) lower bound. Instead, we
build hard instances ASCENSION(m) of DYCK(2) with length Θ(mn), that we embed in a “one-pass” com-
munication problem with 2m players, where m = Θ̃(n). The constraint is that the length of each message in
the protocol be less than size, a function of n. Our main result (Theorem 4) is that such a protocol requires
size = Ω(n), which proves that our one-pass algorithm is optimal for probability of error of order 1/n log n,
and within an O(log n) factor of optimal for constant error (Corollary 1).

To establish the hardness of ASCENSION(m), we prove a direct sum result that captures its relationship
to solving m instances of the intermediate problem MOUNTAIN, which involves only two players. We
follow the “information cost” approach taken in [8, 22, 4, 17, 15], among other works before and since. We
adapt this notion to suit both the nature of streaming algorithms and of our problem. The idea is to focus on
the information about a part of the input contained in a part of the protocol transcript, given the remaining
inputs.

Using this notion of information cost, we prove a direct sum result (Lemma 3). A remarkable device
here is the use of an “easy” distribution for the information cost for protocols, that are correct with high
probability in the worst case. The use of an easy distribution “collapses” ASCENSION(m) to an instance
of MOUNTAIN, which may be planted in any one of the m coordinates. This technique was developed
in [4], but comes with a few twists in our case. Indeed, we play a subtle game between public and private
coins. Namely, in protocols for ASCENSION(m) only public coins are allowed for all players, whereas for
MOUNTAIN one of the players, Bob, can also access private coins, while Alice, the other player, cannot.
This mixture between public and private coins for MOUNTAIN arises from a balancing act between the
direct sum result and our combinatorial lower bound for MOUNTAIN (Theorem 3). Namely, we are only

3

able to prove the lower bound for MOUNTAIN when Alice only uses public coins, whereas the direct sum
only holds, with our definition of information cost, when Bob has access to additional private coins.

We note that as a bonus, our lower bound provides a Ω̃(
√

n) lower bound for the problem of checking
priority queues in the one-pass streaming model, solving an open problem of [10].

2 Definitions and preliminaries

Definition 1 (DYCK). Let s be a positive integer. Then DYCK(s) denotes the language over alphabet
Σ = {a1, a1, . . . , as, as} defined recursively by:

DYCK(s) = ε +
∑
i≤s

ai · DYCK(s) · ai · DYCK(s).

We also denote by DYCK(s) the problem of deciding whether a word w ∈ Σ∗ is in the lan-
guage DYCK(s).

In streaming algorithms, a pass on an input x ∈ Σn means that x is given as an input stream
x1, x2, . . . , xn, which arrives sequentially, i.e., letter by letter in this order. For simplicity, we assume
throughout this article that the length n of the input is always given to the algorithm in advance. Nonethe-
less, all our algorithms can be adapted to the case in which n is unknown until the end of a pass. See [19]
for an introduction to streaming algorithms.

Definition 2 (Streaming algorithm). Fix an alphabet Σ. A k-pass streaming algorithm A with space s(n)
and time t(n) is an algorithm such that for every input stream x ∈ Σn: (1) A performs k sequential passes
on x; (2) A maintains a memory space of size s(n) bits while reading x; (3) A has running time at most t(n)
per letter xi; (4) A has preprocessing and postprocessing time t(n).
We say that A is bidirectional if it is allowed to access to the input in the reverse order, after reaching the
end of the input. Then the parameter k is the total number of passes in either direction.

Definition 3 (Streaming reduction). Fix two alphabets Σ1 and Σ2. A problem P1 is f(n)-streaming
reducible to a problem P2 with space s(n) and time t(n), if for every input x ∈ Σn

1 , there exists
y = y1y2 . . . yn, with yi ∈ Σf(n)

2 , such that: (1) yi can be computed deterministically from xi using space
s(n) and time t(n); (2) From a solution of P2 with input y, a solution on P1 with input x can be computed
with space s(n) and time t(n).

Fact 1. Let P1 be f(n)-streaming reducible to a problem P2 with space s0(n) and time t0(n). Let A be
a k-pass streaming algorithm for P2 with space s(n) and time t(n). Then there is a k-pass streaming
algorithm for P1 with space s(n× f(n)) + s0(n) and time t(n× f(n)) + t0(n) with the same properties as
A (deterministic/randomized, unidirectional/bidirectional).

Proposition 1. DYCK(s) is dlog se-streaming reducible to DYCK(2) with space and time O(log s).

Proof. We encode a parenthesis ai by a word of length l = dlog se with only parentheses of type a1, a2.
We let f(ai) be the binary expansion of i over l bits where 0 is replaced by a1 and 1 by a2. Then f(ai) is
defined similarly, except that we write the binary expansion of i in the opposite order. Then x1 . . . xn is in
DYCK(s) if and only f(x1) . . . f(xn) is in DYCK(2).

Typically, such as in parsing XML files, the above reduction can be implemented with constant space
and time. Indeed, given an upstate (start-tag) <w> (respectively, a downstep (end-tag) </w>), where w is

4

an ASCII string denoting the type of parenthesis (tag), we can generate the above encoding of w into a1, a2

(respectively, into a1, a2), while reading w as a stream itself, i.e., character by character.
By Proposition 1, it is enough to design streaming algorithms for DYCK(2). That is the objective of the

next section.

3 Algorithms

From now on we consider DYCK(2) where the input is a stream of n letters x1x2 . . . xn in the alphabet
Σ = {a, a, b, b}. We first introduce a few definitions. An upstep is a letter a or b, a downstep is a letter a or
b.

Definition 4. Let x ∈ Σn.
The height of x is height(x) = |x|a + |x|b − |x|a − |x|b.
For 1 ≤ i < j ≤ n, (i, j) is a matching pair for x if height(x[1, i − 1]) = height(x[1, j]) and
height(x[1, k]) > height(x[1, i− 1]) for all k ∈ {i, . . . , j − 1}.
The height of a matching pair (i, j) is height(x[1, i− 1]).
A matching pair (i, j) for x is well-formed, if (x[i], x[j]) equals (a, a) or (b, b), ill-formed otherwise.

It follows that any index i forms a matching pair with at most one other index, and that a matching pair
consists of an upstep and a downstep. These definitions are extended to subsets I ⊆ [1, n] of indices of
letters of x. For instance, we say that I is a matching set for x, if I = ∪{i, j}, where the union is over
a subset of the matching pairs (i, j) for x. To prove correctness of our algorithms, we use the following
well-known characterization of DYCK(2).

Fact 2. Let x ∈ Σn. Then x ∈ DYCK(2) if and only if: height(x) = 0, the height of every prefix of x is
nonnegative, and [1, n] is a well-formed (matching) set for x.

For ease of notation, we identify an increasing sequence i1 < i2 < · · · < im of indices with the
corresponding subword xi1xi2 . . . xim of x. We also use this correspondence in reverse when the indices of
the subword are clear from the context.

During the computation the algorithm implicitly keeps track of the height of the word read so far. Let
p be a prime number such that n1+c ≤ p < 2n1+c, for some fixed constant c ≥ 1. We assume that the
algorithm can access a random function hash(·) that maps subwords v of x to integers in [0, p − 1], as
follows: hash(xi1xi2 . . . xim) =

∑
j hash(xij), with

hash(xi) =


αheight(x[1,i−1]) mod p if xi = a,

−αheight(x[1,i]) mod p if xi = a,
0 otherwise,

where α is a uniformly random integer in [0, p− 1]. Note that the computation of hash(v) depends not just
on v but also on the height of its letters within x.

Given x and v, the value of hash(v) is a polynomial in α of degree bounded by the maximum height
of a prefix, at most n. By the Schwartz-Zippel lemma, if it is not identically zero then, for a random α, the
probability that hash(v) = 0 is at most n/p ≤ n−c. In particular:

Fact 3. Let x ∈ Σn and v = xi1xi2 . . . be a subword of x. If v ∈ DYCK(2), then hash(v) = 0 for all
α. If v has exactly one ill-formed matching pair at some height, then hash(v) 6= 0 with probability at least
1− n−c, for a uniformly random integer α ∈ [0, p− 1].

5

For any letter xi, we may compute hash(xi) in time polylog n and space O(log n). Moreover, for any
word v the value of hash(v) can be maintained with O(log n) space.

3.1 The one-pass algorithm

The algorithm is easiest to understand if x = x(u)x(d), where x(u) has only upsteps and x(d) has only
downsteps, in equal numbers. To check x(u)x(d) ∈ DYCK(2), the naive algorithm would grow a stack of
size n/2. Here is a simple alternative. We read the input in blocks of length q. While our algorithm is reading
letters of x(u), the stack stores the values of hash(x[iq+1, (i+1)q]) for each i ∈ {0, . . . , n/2q−1} and notes
that height(x[iq + 1, (i + 1)q]) = q. While the algorithm is reading x(d), it adds hash(x[jq + 1, (j + 1)q])
to hash(x[iq + 1, (i + 1)q]) for j = n/q − i − 1, and checks if their sum is 0. The input x is ill-formed if
any of the sums is non-zero. Our algorithm is a generalization of this stack compression idea, and the block
length q is chosen to be

√
n log n to minimize the space used.

Algorithm 1 reads the stream in blocks of
√

n log n letters. It uses a stack data structure encoding the
subword formed by the letters seen so far that belong to matching pairs that have not yet been checked.

Algorithm 1 One-pass algorithm
S ← empty stack
for i← 1 to

√
n/ log n do

Algorithm 2 (S) {reads
√

n log n letters from stream}
end for
if S not empty, reject: “missing closing parenthesis”
Return accept

For clarity, we describe an “off-line” version of Algorithm 2 that executes once the entire block has
been read. It can easily be converted to an “online” algorithm that takes polylog n time per letter.

Within a block, Algorithm 2 first does the obvious checks with a straightforward stack-based
algorithm—any upstep followed by a downstep must match and, once checked, can be discarded. The
block is now reduced to a sequence w′ of only downsteps followed by a sequence w′′ of only upsteps. To
look up needed information about the blocks that have previously been read, the algorithm accesses a stack.
Each stack item is of the form (h, `) encoding a subword v of the stream x, in the sense that h = hash(v)
and ` = height(v).

As the algorithm processes the letters in w′, it incorporates them into the last stack item. More precisely,
given a downstep xj and given (h, `) = (hash(v),height(v)), it can compute hash(vxj) = h + hash(xj)
and height(vxj) = ` − 1, thus encoding vxj without explicit knowledge of v. Note that this relies on the
linearity of the hash function.

Once the encoded subword v has height 0, to test whether it is well-formed, the algorithm checks whether
hash(v) = 0. If this test succeeds, the entry of the stack encoding v can now be removed. Finally the
subword w′′ is processed in a straightforward manner by creating a new stack item. An example execution
of the algorithm is shown in Appendix A.

For the analysis, we first start with the following observations about Algorithm 1.

Fact 4. Let (h, `) be a stack item encoding a subword v. Then v = vuvd, where vu has only upsteps and vd

has only downsteps.

Define a partial order between words by taking the transitive closure of uv ≺ ull′v, where l, l′ ∈ {a, b},
i.e., w ≺ x if w is a subword of x obtained by removing some (well-formed or not) matching pairs in x.

6

Algorithm 2 One-pass subroutine: reading one block
input: stack S
read w = next

√
n log n letters (or less if stream ends)

check that matching pairs in w are well-formed (else reject: “mismatch”)
simplify w into w′w′′, where w′ has only downsteps and w′′ has only upsteps
for i← 1 to |w′| do

pop (h, `) from S (if empty, reject: “extra closing parenthesis”)
{(h, `) encodes a v s.t. h = hash(v) and ` = height(v)}
h← h + hash(w′

i) and `← `− 1
push (h, `) on S
{(h, `) now encodes vw′

i}
if ` = 0 then

check that h = 0 (else reject: “mismatch”)
pop and discard (h, `)

end if
end for
if w′′ 6= ε then push (hash(w′′), |w′′|) on S
{(hash(w′′), |w′′|) encodes w′′}
output: stack S

Fact 5. Consider S right after pushing the encoding of a subword ending with xj . Let v1, v2, . . . , vm be the
subwords encoded by the current stack (in bottom-up order). Then v1v2 . . . vm � x[1, j], height(vi) ≥ 0
for every i, and only vm may have height 0. Moreover, if (h, `) is a stack item encoding a subword v, then
for every downstep j ∈ v there is a unique upstep i ∈ v such that (i, j) is a matching pair for x.

Then, we conclude with the correctness of our algorithm.

Theorem 1. Algorithm 1 is a one-pass randomized streaming algorithm for DYCK(2) with space
O(
√

n log n) and time polylog(n). If the stream belongs to DYCK(2) then the algorithm accepts it with
certainty; otherwise it rejects it with probability at least 1− n−c.

Proof. Each stack element takes space O(log n) bits and each execution of Algorithm 2 adds at most one ele-
ment to the stack. There are at most

√
n/ log n stack items at any time, hence the space used is O(

√
n log n).

The processing time is easy by inspection.
To prove correctness, first assume that x ∈ DYCK(2). By Fact 2 the height of every prefix is non-

negative, so the algorithm does not reject because of an extra closing parenthesis; and the height of x is 0, so
the algorithm does not reject because of a missing closing parenthesis. For each block w, the matching pairs
within w are all well-formed, so the algorithm does not reject them either. Finally, whenever the algorithm
checks h = 0 for a stack item such that ` = 0, by Fact 5 the corresponding subword v is a matching set
for x and since x ∈ DYCK(2), v is well-formed. Then by Fact 3, it passes the hash test in Algorithm 2.
Therefore the algorithm is correct in this case.

Second, assume that x 6∈ DYCK(2). By Fact 2, x fails to be in DYCK(2) for one of the following reasons.
Either some prefix of x has negative height (too many closing parentheses): then the algorithm detects the
problem when it tries to pop an item from an empty stack. Or, height(x) > 0: then the algorithm detects the
problem at the very end when it sees that the stack is not empty. Or, there is at least one matching pair (i, j)
where x is ill-formed: that is the only non trivial case. If i, j are within the same block, then the algorithm

7

rejects during the internal checks within the block. Assume now that i and j are in different blocks. If the
algorithm stops before getting to xj , it does so after correctly rejecting the word. Assume it examines xj .
Then, since xi is in a different block, xj is in w′, and thus is encoded and pushed on S. If the algorithm
never checks the stack item whose subword v contains xj , then the final stack is not empty and the algorithm
rejects the word. Finally, assume that at some point the algorithm checks the stack item encoding v. By
Fact 5, v also contains xi. By Fact 4, this is the only ill-formed matching pair at that height, so by Fact 3,
the probability that v fails the hash test in Algorithm 2 is at least 1 − n−c, for a uniformly random choice
of α. So the algorithm is correct with high probability.

3.2 The bidirectional algorithm

The second algorithm uses a hierarchical decomposition of the stream x into nested blocks of 2i letters for
i ≤ k = dlog ne. Up to padding we can assume that n = 2k: we append to x the word (aā)i of suitable
length (assuming that x is of even size, otherwise x 6∈ DYCK(2)). We use O(log n) bits of memory to store,
after the first pass, the number of letters padded. Thanks to this assumption, the algorithm uses the same
hierarchical decomposition, whether we read the stream from left to right or from right to left. During the
right to left pass, letters a, b are interpreted as a, b, respectively (and vice-versa).

As before, we use a stack data structure in such a way that Fact 5 still holds. Each stack item is now of
the form (h, `, f) encoding a subword v of x, in the sense that h = hash(v), ` = height(v), and in addition
f = first(v) is the index in x of the first letter in v.

Algorithm 3 Bi-directional algorithm
S ← empty stack
Algorithm 4 (k, S), reading stream from left to right { k = dlog ne }
if S is not empty, reject: “missing closing parenthesis”
Algorithm 4 (k, S), reading stream from right to left
{Right to left, a, b are interpreted as a, b (and vice-versa)}
Return accept

Algorithm 4 recursively decomposes x into nested blocks (Figure 2 in Appendix A). An i-block is a
substring of the form x[(q − 1)2i + 1, q2i] for 1 ≤ q ≤ n/2i. The main difference between Algorithm 4(k,
S) and Algorithm 2(S) is that whenever in a recursive call the algorithm reaches the end of the current block,
it compresses without checking the stack items encoding subwords from within the block. This compression
is what reduces the stack size from

√
n/ log n down to O(log n), but now Fact 4 no longer holds. Since

hash at a given height is commutative, we may lose information. For example compressing hash(baa) with
hash(bbb) gives hash(baabbb), which is equal to hash(babbab): one word is in DYCK(2), the other one is
not, but after compressing we can no longer distinguish between them. The crux of the analysis is that such
information loss cannot occur both when reading the stream from left to right and when reading it from right
to left (Fact 6 below, and Figure 3 in Appendix A).

For the analysis, noting that Fact 5 remains valid for Algorithm 3, we derive the following invariant
of Algorithm 3 that is weaker than Fact 4.

Fact 6. A stack item encoding a subword that starts with letter f is discarded exactly when the algorithm
reads the letter f ′ such that (f, f ′) is a matching pair.

We now state a simple observation from the definition of matching pairs.

8

Algorithm 4 Block algorithm (i, stack S) { reads i-block Bi, increases stack size by at most 1 }
if i ≥ 1 then
{read two (i− 1)-blocks B and B′}
Algorithm 4(i− 1, S)
Algorithm 4(i− 1, S)
if S has two items with first letters in Bi then
{there are at most two such items, necessarily on top}
pop (h2, `2, f2) from S {encodes v2}
pop (h1, `1, f1) from S {encodes v1}
push (h1 + h2, `1 + `2, f1) on S {encodes v1v2}

end if
else

read one letter y
if y is a downstep then

pop (h, `, f) from S (if empty, reject: “extra closing parenthesis”)
{encodes some subword v}
h← h + hash(y) and `← `− 1
push (h, `, f) on S { now encodes vy}
if ` = 0 then

check that h = 0 (if not, reject: “mismatch”)
pop and discard (h, `, f)

end if
else

push(hash(y), 1,first(y)) on S { encodes y}
end if

end if

9

Fact 7. Let v = uu′ be a subword of x, and let d ≥ 0. Then u× u′ has at most one matching pair at height
d.

We conclude with the correctness of our algorithm.

Theorem 2. Algorithm 3 is a bidirectional two-pass randomized streaming algorithm for DYCK(2) with
space O((log n)2) and time polylog(n). If the input belongs to DYCK(2) then the algorithm accepts it with
certainty; otherwise it rejects it with probability at least 1− n−c.

Proof. In terms of space requirements, each stack element takes space O(log n) and the stack has size at
most 2k = 2 log n, hence space O((log n)2). The processing time is easy by inspection, while noticing by
induction that each execution of Algorithm 4 generates only one new stack item.

To analyze the algorithm, observe (using Fact 5) that as in the proof of Theorem 1 it is correct whenever
x ∈ DYCK(2). Now, assume that x 6∈ DYCK(2) and apply Fact 2. If some prefix of x has negative height or
if the final height of x is non-zero, then as in the proof of Theorem 1 the algorithm is correct.

Finally, consider the case when x has an ill-formed matching pair. Let i be minimum such that some
i-block Bi contains an ill-formed matching pair (j, j′). By minimality, xj and xj′ are in different (i − 1)-
blocks B and B′. Let m be the minimum, over upsteps xl of B, of height(x[1, l − 1]). Let m′ be the
minimum, over downsteps xl of B′, of height(x[1, l]) (see Figure 3 in Appendix A).

Up to reversing left-to-right and right-to-left directions, we may assume that m ≥ m′.
Immediately after reading B, since j is not yet matched, the stack necessarily contains an item encoding

a word containing j; moreover, since all compressions in B involve items with first letter in B, the first letter
f of that word is in B, hence starts at height ≥ m. Since m ≥ m′, the letter f ′ matching f is in Bi, and
so, from Fact 6 by the end of reading B′ that item has been discarded. Let (h, `, f) be that discarded item,
encoding a subword v.

Since the first letter f of v is in B, all of the letters of v are in B ∪ B′. By Fact 5, v is a matching set,
and, by Fact 7, its matching pairs in B × B′ are all at different heights. So, at the height d of pair (j, j′), v
only contains (j, j′), which is ill-formed, plus possibly some matching pairs coming from B × B or from
B′ × B′, pairs that are all well-formed by minimality of i. Overall, at height d the word v has exactly one
ill-formed matching pair, so by Fact 3, the probability that v passes the hash test of Algorithm 4 is at most
n−c, for a uniformly random choice of α. So the algorithm is correct with probability 1− n−c.

4 Lower bounds

We define a family of hard instances for DYCK(2) as follows. For any word Z ∈ {a, b}n, let Z be the
matching word associated with Z. For positive integers m,n, consider the following instances of length
Θ(mn):

w = X1Y 1c1c1Y1 X2Y 2c2c2Y2 . . .

. . . XmY mcmcmYm Xm . . . X2 X1,

where for every i, Xi ∈ {0, 1}n, Yi = Xi[n− ki + 2, n] for some ki ∈ {1, 2, . . . , n}, and ci ∈ {a, b}. The
word w is in DYCK(2) if and only if, for every i, ci = Xi[n− ki + 1].

Intuitively, for m = n/ log n recognizing w is difficult with space o(n). After reading Xi, the streaming
algorithm does not have enough space to store information about the bit at unknown index (n−ki+1). When
it reads ci it is therefore unable to decide whether ci = Xi[n− ki + 1]. Moreover, after reading Y m it does
not have enough space to store information about all indices k1, k2, . . . , km. When it reads Xm . . . X2 X1

10

it therefore misses out on its second chance to check whether ci = Xi[n − ki + 1] for every i. The formal
proof contains several subtleties and is executed in the language of communication complexity.

We define a communication problem ASCENSION(m) (Figure 5 in Appendix B) associated with the
hard instances described above. For convenience, we replace suffixes by prefixes. Formally, in the problem
ASCENSION(m) there are 2m players A1, A2, . . . , Am and B1, B2, . . . , Bm. Player Ai has Xi ∈ {0, 1}n,
Bi has ki ∈ [n], a bit ci and the prefix Xi[1, ki−1] of Xi. Let X = (X1, X2, . . . , Xm), k = (k1, k2, . . . , km)
and c = (c1, c2, . . . , cm). The goal is to compute fm(X,k, c) =

∨m
i=1 f(Xi, ki, ci) =

∨m
i=1(Xi[ki] ⊕ ci),

which is 0 if Xi[ki] = ci for all i, and 1 otherwise.
Motivated by the streaming model, we require each message to have length at most size bits, where the

parameter size is a function of m and n and corresponds to the space used in the streaming algorithm. We
also require the communication between the 2m participants in a one-pass protocol to be in the following
order:

Round 1
– For i from 1 to m− 1, player Ai sends message MAi to Bi, then Bi sends message MBi to Ai+1;
– Am sends message MAm to Bm;

Round 2
– Bm sends message MBm to Am;
– For i from m down to 2, Ai sends message M ′

Ai
to Ai−1;

– A1 computes the output.

A streaming algorithm for DYCK(2) with space ‘size’ implies a communication protocol
for ASCENSION(m) as described above. So a lower bound on size follows from a lower bound on the
communication complexity of ASCENSION(m).

To establish the hardness of solving ASCENSION(m), we prove a direct sum result that captures its
relationship to solving m instances of a “primitive” problem MOUNTAIN defined as follows. In the problem
MOUNTAIN (Figure 4 in Appendix B), Alice has an n-bit string X ∈ {0, 1}n, and Bob has an integer k ∈
[n], a bit c and the prefix X[1, k−1] of X . The goal is to compute the Boolean function f(X, k, c) = (X[k]⊕
c) which is 0 if X[k] = c, and 1 otherwise. In a one-pass protocol for MOUNTAIN, the communication
occurs in the following order: Alice sends a message MA to Bob, Bob sends a message MB to Alice, then
Alice outputs f(X, k, c).

As mentioned in Section 1, we follow the “information cost” approach, a method that has been partic-
ularly successful in recent works on direct sum results. The method comes in a variety of flavours, each
crafted to suit the application at hand. We describe the approach as adapted for ASCENSION(m). Informa-
tion cost is often defined in terms of the entire input and the full transcript of the protocol. We enforce both
the nature of streaming algorithms and of our problem, by restricting our attention to only one message MBm

from the transcript. We also split the input in two parts, and measure the information in the message MBm

about one part (k, c), conditioned on the other part X. In our case, the conditioning corresponds to infor-
mation that is in the hands of the subsequent players. The closest such measures, of which we are aware,
were considered in [17, 5].

The direct sum result is proven using the superadditivity of mutual information for inputs (ki, ci) picked
independently from a carefully chosen distribution. In the defining information cost, we measure mutual
information with respect to a distribution on which the MOUNTAIN function is the constant 0, eventhough
we consider protocols for the problem that are correct with high probability in the worst case (or, equiva-
lently, when the inputs are chosen from a “hard” distribution). The use of this easy distribution collapses the
function ASCENSION(m) to an instance of MOUNTAIN in any chosen coordinate. We massage this tech-

11

nique into a form that is better suited to the streaming model and to proving lower bounds for the primitive
function MOUNTAIN.

We finish by giving a combinatorial argument that protocols computing MOUNTAIN in the worst case
necessarily reveal “a lot” of information even when its inputs are chosen according to the easy distribution.
Privacy loss, a measure similar to information cost, has been studied previously in protocols for INDEX

(see, e.g., [16, 14] and the references therein). Although this communication problem is closely related
to MOUNTAIN, prior works study INDEX under hard distributions, and do not seem to extend directly to our
case.

4.1 Information cost

We measure the information cost of a one-pass public-coin randomized protocol P for ASCENSION(m)
(of the form described in the previous section), with respect to some distribution ν on the inputs (X,k, c),
by ICν(P) = I(k, c : MBm |X, R), where R denotes the public-coins of P . From this we define the
information cost of the problem ASCENSION(m) itself with respect to a distribution ν and error parameter δ
as follows: ICpub

ν (ASCENSION(m), δ) = min
(
ICν(P)

)
, where the minimum is over one-pass public-coin

randomized protocols P for the problem, with worst-case error at most δ. Note that the information cost
implicitly depends on size, the length of each message.

For the problem MOUNTAIN we play a subtle game between public and private coins. We consider
protocols in which Alice has access only to public coins R, whereas Bob additionally has access to some
independent private coins RB . We define ICν(P) = I(k, c : MB|X, R), where R denotes only the public-
coins of P . Further, we define ICmix

ν (MOUNTAIN, δ) = min
(
ICν(P)

)
, where P ranges over “mixed”

public and private coin randomized protocols with worst case error at most δ where Alice and Bob share
public coins, and only Bob has access to extra private coins.

We also make use of a related measure of complexity for MOUNTAIN when P ranges over
protocols where Alice’s message is deterministic, and Bob has access to private coins RB:
DICmix

ν (MOUNTAIN, µ, δ) = min
(
ICν(P)

)
, i.e., the minimum information cost with respect to ν, where

P ranges over protocols for MOUNTAIN, in which Alice’s message MA is deterministic given her input X ,
while Bob may use his private coins RB to generate his message. Further, the distributional error of P is
at most δ when the inputs are chosen according to µ. Note that in general, and certainly in our application,
ν and µ may be different, meaning that we measure the information cost of the protocol with respect to
some distribution ν, while we measure its error under a potentially different distribution µ. For later use, we
recall that the distributional error under µ is Exp(X,k,c)∼µ

(
Pr(P fails on (X, k, c))

)
, where the probability

is over the private coins RB of Bob.
We begin by relating the information cost for protocols in which Alice is deterministic to that of mixed

randomized protocols.

Lemma 1.
DICmix

ν (MOUNTAIN, µ, 2δ) ≤ 2× ICmix
ν (MOUNTAIN, δ).

Proof. Consider a randomized protocol P for MOUNTAIN with worst-case error at most δ such that
ICmix

ν (MOUNTAIN, δ) = ICν(P). We further assume that Alice and Bob have uniformly distributed public
coins R, and only Bob has extra private coins RB . Then

ICmix
ν (MOUNTAIN, δ) = Exp

r

(
I(k, c : MBm |X, R = r)

)
,

12

Since P has worst-case error at most δ, it has distributional error at most δ under µ:

Exp
r

(
Exp

(X,k,c)∼µ

(
Pr(P fails on (X, k, c)|R = r)

))
≤ δ.

Therefore, by the Markov inequality, there is a setR with Pr(R ∈ R) ≥ 1
2 such that

∀r ∈ R, Exp
(X,k,c)∼µ

(
Pr(P fails on (X, k, c)|R = r)

)
≤ 2δ.

Now consider the information cost of P under the distribution ν over inputs. Let U(R) denote the uniform
distribution onR. We have

Exp
r∼U(R)

(
I(k, c : MBm |X, R = r)

)
≤ 2× ICmix

ν (MOUNTAIN, δ),

since the event R has probability at least 1/2. Therefore, there exists an r ∈ R such that I(k, c :
MBm |X, R = r) ≤ 2 × ICmix

ν (MOUNTAIN, δ). Let Pr be the protocol obtained by fixing the public
coins used in P to r. Then Alice’s message MA is deterministic. By definition of R, the protocol Pr has
distributional error at most 2δ under µ, and ICν(P) ≤ 2× ICmix

ν (MOUNTAIN, δ).

4.2 Information cost of Mountain

As explained before, and formally proved in the next section, the information cost approach entails showing
that the MOUNTAIN problem is “hard” even when we restrict our attention to an easy distribution. We prove
such a result here.

Let µ be the distribution over inputs (X, k, c) in which X is a uniformly random n-bit string, k is a
uniformly random integer in [n] and c a uniformly random bit. This is a hard distribution for MOUNTAIN

(as is implicit in [20, 3]). We consider the information cost of MOUNTAIN under the distribution µ0 obtained
by conditioning µ on the event that the function value is 0: µ0(X, k, c) = µ(X, k, c|X[k] = c).

Lemma 2. If size ≤ n/100, then

DICmix
µ0

(MOUNTAIN, µ, 1/16n2) = Ω(log n).

Proof. Let P be a randomized protocol for MOUNTAIN, where Alice’s message MA is deterministic, with
distributional error at most 1/16n2 under the distribution µ, such that |MA| ≤ n/100. We prove that
ICµ0(P) = Ω(log n). In the following, all expressions involving mutual information and entropy are with
respect to the distribution µ0.

By Markov inequality, there are at least 2n−1 strings U on which P fails with error at most 1/8n2 on
average on input (U, k, c), where (k, c) are uniformly distributed. Let S ⊆ {0, 1}n of size at least 2n−1 be
the set of such strings U . Then P has error probability less than 1/4n on input (U, k, c), for every (k, c).

Let α be a possible message MA from Alice to Bob when her inputs range in S, and let Sα = {U ∈
S : MA(U) = α}. For every string V ∈ Sα, we bound from below the mutual information of k and MB ,
the randomized message that Bob sends back to Alice, as k varies. For this we construct a set I ⊆ [n] such
that the message distributions mk = MB(α, V [1, k − 1], k, V [k]) for k ∈ I are pairwise well-separated
in `1 distance. This is in turn established by exhibiting, for each k ∈ I , a string Vk ∈ Sα such that
Vk[1, k − 1] = V [1, k − 1] and Vk[k] 6= V [k]. The details follow.

13

Associate with Sα its dictionary T , a 2-rank tree (a tree with either 1 or 2 children at any internal node),
all whose nodes except the root are labeled by bits; the root has an empty label. Each string V in Sα is in
one-to-one correspondence with a top-down path π in T from the root to one of its leaves, where the label
of the (i + 1)th node in π is V [i]. We identify V ∈ Sα with the path π in T , and refer to this path as V .

The tree T has |Sα| leaves, each at depth n. For a fixed V ∈ Sα, let I be the set of integers k such that
the (k + 1)th node in path V has out-degree 2. By construction, for every k ∈ I there exists another string,
say, Vk ∈ Sα such that Vk[1, k − 1] = V [1, k − 1] and Vk[k] 6= V [k]. Set ck = V [k] for every k ∈ [n].
Then the message distributions satisfy MB(α, V [1, k−1], k, ck) = MB(α, Vk[1, k−1], k, ck), for all k ∈ I .
Let mk = MB(α, V [1, k − 1], k, ck). Let k, k′ ∈ I be distinct indices such that k < k′. As Vk′ [1, k′ −
1] = V [1, k′ − 1], the message distribution MB(α, Vk′ [1, k − 1], k, ck) on input (Vk′ , k, ck) equals mk,
and also MB(α, Vk′ [1, k′ − 1], k′, ck′) on input (Vk′ , k

′, ck′) equals mk′ . However, Vk′ [k] = V [k] = ck,
so the function evaluates to 0 on input (Vk′ , k, ck), and Vk′ [k′] 6= V [k′] = ck′ , so the function value is 1
on (Vk′ , k

′, ck′). The protocol P computes its outputs from mk, Vk′ and mk′ , Vk′ , respectively, on these
instances, and errs with probability at most 1/4n.

We use the above property of the distributions {mk} to bound from below the mutual information of k
in the message MB , given V .

Proposition 2.

I(k : MB|X = V) ≥
(4|I| − n

4n

)
log n− 2.

(We prove this below.)
Next, we observe from the properties of 2-rank trees that the number of strings V ∈ Sα for which |I| = l

is at most 2l. The number of V for which |I| ≤ l − 2 is therefore at most 2l−1. Now fix l = log |Sα|, and
note that the proportion of V ∈ Sα with |I| ≥ l − 1 is at least 1/2. Therefore ExpV∼U(Sα) |I| ≥ l−1

2 .
We now concentrate on the messages α such that PrX uniform(MA(X) = α|X ∈ S) ≥ 2−n/10. Then

l = log |Sα| ≥ n− 1− n/10 = 0.9n− 1, and by Proposition 2 for n large enough,

Exp
V∼U(Sα)

(I(k, c : MB|X = V))

≥

[
1
n

Exp
V∼U(Sα)

|I| − 1
4

]
log n− 2

≥
[
l − 1
2n
− 1

4

]
log n− 2

≥
[
0.9n− 2

2n
− 1

4

]
log n− 2

≥ 1
10

log n− 2.

Consider the setA of messages α which have probability at most 2−n/10 given X ∈ S. These messages
occur with probability at most 2n/1002−n/10 = 2−9n/10, which is negligible. Therefore we conclude that
I(k, c : MB|X) = Ω(log n).

Proof of Proposition 2. Fix a string V , and the corresponding set of indices I . Suppose we are given as
input a distribution m = mk, for some k ∈ I . We recover k using the following procedure Π:

14

1. For each k′ ∈ I , simulate the Alice’s computation of the output in the protocol P , by setting MB = m,
the input distribution, and X = Vk′ .

2. Let (dk′)k′∈I be the sequence of outputs Alice generates from the above simulation. Output the largest
k′ for which dk′ = 1. This is our guess for k.

On input mk, the simulation of P above generates dk = 1, and dk′ = 0 for k′ > k, with probability at least
1− 1/4n for any fixed k′ ≥ k. Therefore, the procedure outputs k′ = k with probablity at least 3/4.

We now argue that the entropy of k is significantly reduced when given MB, X , under the distribution µ0

(i.e., when ck = X[k]). This is equivalent to saying that the mutual information of k and MB is high. When
the inputs are picked according to the distribution µ0, we have

I(k, c : MB|X = V) = H(k|X = V)−H(k|MB, X = V)
= log n−H(k|MB, X = V).

We bound from above the conditional entropy H(k|MB, X = V). We first separate the values of k 6∈ I as
follows. Let p = |I|/n, and define the Boolean random variable J as 1 iff k ∈ I . We have

H(k|MB, X = V)
= H(kJ |MB, X = V)
= H(J |MB, X = V) + H(k|MB, X = V, J)
= H(p) + (1− p)H(k|MB, X = V, k 6∈ I)

+p H(k|MB, X = V, k ∈ I)
≤ 1 + (1− p) log n + H(k|MB, X = V, k ∈ I)
≤ 1 + (1− p) log n + H(k|K, X = V, k ∈ I),

where K is the random variable computed by our finding procedure Π, and the final step follows from
the Data Processing Inequality. For any fixed k ∈ I , given MB the procedure Π computes K = k with
probability at least 3/4. By the Fano Inequality, we have

H(k|K, X = V, k ∈ I) ≤ H
(

1
4

)
+

1
4

log(|I| − 1)

≤ 1 +
1
4

log n.

By combining Lemmas 1 and 2 we get

Theorem 3.
ICmix

µ0
(MOUNTAIN, 1/32n2) = Ω(log n).

4.3 Reduction from Ascension to Mountain

We now study the information cost of ASCENSION(m) for the distribution µm
0 over ({0, 1}n×[n]×{0, 1})m

for X = (X1, X2, . . . , Xm), k = (k1, k2, . . . , km) and c = (c1, c2, . . . , cm). We state a direct sum property
that relates this cost to that of one instance of MOUNTAIN, and then conclude.

15

Lemma 3.
ICpub

µm
0

(ASCENSION(m), δ) ≥ m× ICmix
µ0

(MOUNTAIN, δ).

Proof. Let P be a public-coin randomized protocol for ASCENSION(m) with worst-case error δ such that
ICµm

0
(P) = ICpub

µm
0

(ASCENSION(m), δ).
From P , we construct the following protocol P ′

j for MOUNTAIN, where j ∈ [n]. Let (X, k, c) be the
input for MOUNTAIN.

1. Alice sets Aj’s input Xj to its input X .
2. Bob sets Bj’s input (kj , Xj [1, kj − 1], cj) to its input (k, X[1, k − 1], c).
3. Alice and Bob generate, using public coins, (Xi, ki, ci) according to µ0, independently for all i < j,

and Xi uniformly independently for i > j.
4. Bob generates (ki) uniformly independently for i > j, but using his private coins. Then Bob sets

ci = Xi[ki] for i > j (so that (Xi, ki, ci) are distributed according to µ0, independently for all i > j).
5. Alice and Bob run the protocol P by simulating the players (Ai, Bi)m

i=1 as follows:

(a) Alice runs P until she generates the message MAj from player Aj . She sends this message to
Bob.

(b) Bob continues running P until he generates the message MBm from player Bm. He sends this
message to Alice.

(c) Alice completes the rest of the protocol P until the end, and produces as output for P ′
j , the output

of player A1 in P .

By definition of the distribution µ0, we have f(Xi, ki, ci) = 0 for all i 6= j. So fm(X,k, c) = f(X, k, c),
and each protocol P ′

j computes the function f , i.e., solves MOUNTAIN, with worst-case error δ.
We prove that ICµm

0
(P) =

∑
j ICµ0(P

′
j), which implies the result, since only Bob uses private coins in

P ′
j .

Let R denote the public coins used in the protocol P . By applying the chain rule to ICµm
0

(P), we get

ICµm
0

(P)
= I(k, c : MBm |X, R)

=
∑

j

I(kj , cj : MBm |X, k1, c1, . . . , kj−1, cj−1, R)

Let Rj = (R, (Xi)j 6=i, (ki, ci)i<j). These are all the public random coins used in the protocol P ′
j , and

any further random coins (ki, ci)i>j are used only by Bob. Since for all j

ICµ0(P
′
j) = I(kj , cj : MBm |Xj , Rj),

which is the same as
I(kj , cj : MBm |X, k1, c1, . . . , kj−1, cj−1, R),

the direct sum result follows.

Theorem 4. Let P be a public-coin randomized protocol for ASCENSION(n/ log n) with worst-case error
probability 1/32n2, then size = Ω(n).

16

Proof. Let m = n/ log n and δ = 1/32n2, and let P be a public-coin randomized proto-
col for ASCENSION(m) with worst-case error probability δ. ICµm

0
(P) is at most size, and by

definition ICpub
µm

0
(ASCENSION(m), δ) is less than or equal to ICµm

0
(P). By Lemma 3, we have

ICpub
µm

0
(ASCENSION(m), δ) ≥ m× ICmix

µ0
(MOUNTAIN, δ). By Theorem 3, we get ICmix

µ0
(MOUNTAIN, δ) =

Ω(log n). Combining yields size = Ω(m log n) = Ω(n).

Corollary 1. Every one-pass randomized streaming algorithm for DYCK(2) with (two-sided) error
O(1/n′ log n′) uses Ω(

√
n′ log n′) space, where n′ is the input length.

Proof. Assume we have a one-pass randomized streaming algorithm for DYCK(2) with (two-sided) error
O(1/n′ log n′) uses space size, where n′ is the input length. Then, by the discussion at the beginning of
Section 4, there is a public-coin randomized protocol for ASCENSION(n/ log n) with n = Θ(

√
n′ log n′)

and with worst-case error probability 1/32n2. By Theorem 4, the messages have length Ω(n), and therefore,
the streaming algorithm has space Ω(n) = Ω(

√
n′ log n′).

Acknowledgements

For earlier discussions, F.M. would like to thank Michel de Rougemont, Miklos Santha, Umesh Vazirani,
and especially Pranab Sen, who, among other things, noticed that the logarithmic space algorithm for IDEN-
TITY(s) in [18] can be converted to a one-pass randomized streaming algorithm with logarithmic space. We
would also like to thank an anonymous referee for pointing out a

√
log n factor improvement of our original

one-pass algorithm.

References

[1] N. Alon, M. Krivelich, I. Newman, and M. Szegedy. Regular languages are testable with a constant
number of queries. SIAM Journal on Computing, 30(6), 2000.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments.
Journal of Computer and System Sciences, 58(1):137–147, 1999.

[3] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani. Dense quantum coding and quantum finite
automata. Journal of the ACM, 49(4):1–16, July 2002.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics approach to data
stream and communication complexity. Journal of Computer and System Sciences, 68(4):702–732,
2004. Special issue on FOCS 2002.

[5] B. Barak, M. Braverman, X. Chen, and A. Rao. Direct sums in randomized communication
complexity. Technical Report TR09-044, Electronic Colloquium on Computational Complexity,
http://http://eccc.hpi-web.de/eccc/, 2009.

[6] M. Blum and S. Kannan. Designing programs that check their work. Journal of the ACM, 42(1):269–
291, 1995.

[7] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems.
Journal of Computer and System Sciences, 47(3):549–595, 1993.

17

[8] A. Chakrabarti, Y. Shi, A. Wirth, and A. C.-C. Yao. Informational complexity and the direct sum
problem for simultaneous message complexity. In Proceedings of the 42nd Annual IEEE Symposium
on Foundations of Computer Science, pages 270–278, 2001.

[9] N. Chomsky and M. Schotzenberger. Computer programming and formal languages. In P. Braffort
and D. Hirschberg, editors, The algebraic theory of context-free languages, pages 118–161, 1963.

[10] M. Chu, S. Kannan, and A. McGregor. Checking and spot-checking the correctness of priority queues.
In Proceedings of 34th International Colloquium on Automata, Languages and Programming, volume
4596 of Lecture notes in Computer Science, pages 728–739. Springer, Berlin/Heidelberg, 2007.

[11] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. Testing and spot-checking of data
streams. Algorithmica, 34(1):67–80, 2002.

[12] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approx-
imation. Journal of the ACM, 45(4):653–750, 1998.

[13] J. Hopcroft and J. Ullman. Formal Languages and Their Relation to Automata. Addison-Wesley, 1969.

[14] R. Jain, J. Radhakrishnan, and P. Sen. A direct sum theorem in communication complexity via mes-
sage compression. In Proceedings of the Thirtieth International Colloquium on Automata Languages
and Programming, volume 2719 of Lecture notes in Computer Science, pages 300–315. Springer,
Berlin/Heidelberg, 2003.

[15] R. Jain, J. Radhakrishnan, and P. Sen. A lower bound for the bounded round quantum communication
complexity of Set Disjointness. In Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, pages 220–229. IEEE Computer Society Press, Los Alamitos, CA, USA, 2003.

[16] R. Jain, J. Radhakrishnan, and P. Sen. A property of quantum relative entropy with an application to
privacy in quantum communication. Journal of the ACM, 56(6):1–32, 2009.

[17] T. S. Jayram, R. Kumar, and D. Sivakumar. Two applications of information complexity. In Pro-
ceedings of the Thirty-Fifth annual ACM Symposium on Theory of Computing, pages 673–682. ACM,
2003.

[18] R. Lipton and Y. Zalcstein. Word problems solvable in logspace. Journal of the ACM, 24(3):522–526,
1977.

[19] S. Muthukrishnan. Data streams: algorithms and applications. Foundations and Trends in Theoretical
Computer Science, 1(2):117–236, 2005.

[20] A. Nayak. Optimal lower bounds for quantum automata and random access codes. In Proceedings
of the 40th Annual IEEE Symposium on Foundations of Computer Science, pages 369–376. IEEE
Computer Society Press, Oct. 17–19, 1999.

[21] M. Parnas, D. Ron, and R. Rubinfeld. Testing membership in parenthesis languages. Random Struc-
tures & Algorithms, 22(1):98–138, 2003.

[22] M. Saks and X. Sun. Space lower bounds for distance approximation in the data stream model. In
Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pages 360–369.
ACM, 2002.

18

[23] L. Segoufin and C. Sirangelo. Constant-memory validation of streaming XML documents against
DTDs. In Proceedings of 11th International Conference on Database Theory, volume 4353 of Lecture
notes in Computer Science, pages 299–313. Springer, Berlin/Heidelberg, 2007.

[24] L. Segoufin and V. Vianu. Validating streaming XML documents. In Proceedings of 21st ACM sym-
posium on Principles Of Database Systems, pages 53–64, 2002.

A Example executions

Figure 1 shows an example of execution of our one-pass algorithm. Here there are eight blocks, and they
are shown after the internal simplifications have already been done. The dotted vertical lines mark times at
which the stack changes size, either starting a new stack item (for example, at time t0) or discarding a stack
item (for example, at time t4). Note that blocks and stack items are staggered: the first item incorporates the
first block and the downsteps of the second block, the second item incorporates the upsteps of the second
block and the downsteps of the third block, etc. The bullets mark times when the algorithm checks and
discards an item, if the hash value is 0. The horizontal lines go from the time when a stack item is created
to the time when it is checked and discarded. For example, at time t7 the algorithm checks and discards
an item (hm, `m) such that hm incorporates the upsteps marked in bold on the figure, namely x(t1, t2], and
incorporates the downsteps marked in bold on the figure, namely x(t2, t3], x(t4, t5] and x(t6, t7].

B1

B2

B3

B4
B5 B6

B7

B8

t0 t1 t2 t3 t4t5 t6t7

Figure 1: Example of execution of Algorithm 1

Figure 2 illustrates the logarithmic block decomposition of the input word into all the blocks that will
be activated during one-pass. They are identical from the left-to-right pass and the right-to-left pass since
thanks to padding the input length is a power of 2. At every instant, only one i-block is activated for each i.

. . .

k-block

(k − 1)-block

1-block

(k − 1)-block

(k − 2)-block (k − 2)-block (k − 2)-block (k − 2)-block

.

Figure 2: Decomposition in block-structure

Figure 3 gives an intuition of the proof of Fact 6. The bold-face lines represent matching pairs between
the two (i − 1)-blocks B,B′ within the same i-block Bi. In the case of the figure, those pairs are checked
during the left-to-right pass, since the minimum height m within the left (i − 1)-block B is larger than

19

the minimum height m′ with the right (i − 1)-block B′ (during the right-to-left pass, they are compressed
without any checks when Bi is processed).

B B�

j j� m�

m

Block Bi

Figure 3: Illustration of Fact 6

B Figures for hard instances

Figure 4 presents an input stream with its division between players Alice and Bob. The horizontal axis
represents the length of the stream seen so far, and the vertical axis represents the corresponding height. We
introduce a potential mismatch denoted by letter c in Bob’s input.

k
c

Alice
Bob

Alice

.

A1 A1

B1

B2

Bm

Am

A2A2

length

X
Y

c
X

Y

height

Figure 4: Problem MOUNTAIN: Y [1, k−1] = X[1, k−1]. The word is well-formed if and only if c = X[k].

Figure 5 presents the m-fold nesting of the above stream. The stream is now divided between 2m
players. There are m potential mismatches, the ith one caused by the letter ci in Bi’s input.

k X

Y y

x
C c

Alice
Bob

Alice

.

A1 A1

B1

B2

Bm

Am

A2A2

mardi 3 novembre 2009

Figure 5: Problem ASCENSION(m): The word is well-formed if and only ci = Xi[ki], for all i.

20

