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Abstract

Motivated by a concrete problem and with the goal of understanding the relationship between the
complexity of streaming algorithms and the computational complexity of formal languages, we investigate
the problem Dyck(s) of checking matching parentheses, with s different types of parentheses.

We present a one-pass randomized streaming algorithm for Dyck(2) with space of O(
√
n logn ) bits,

time per letter polylog(n), and one-sided error. We prove that this one-pass algorithm is optimal, up to
a logn factor, even when two-sided error is allowed.

Surprisingly, the space requirement shrinks drastically if we have access to the input stream in reverse.
We present a two-pass randomized streaming algorithm for Dyck(2) with space of O((logn)2), time
polylog(n) and one-sided error, where the second pass is in the reverse direction. Both algorithms can
be extended to Dyck(s) since this problem is reducible to Dyck(2) for a suitable notion of reduction in
the streaming model. Except for an extra O(

√
log s ) multiplicative overhead in the space required in the

one-pass algorithm, the resource requirements are of the same order.
For the lower bound, we exhibit hard instances Ascension(m) of Dyck(2) with length in Θ(mn).

We embed these in what we call a “one-pass” communication problem with 2m-players, where m ∈ Õ(n).
To establish the hardness of Ascension(m), we follow the “information cost” approach, but with a few
twists. We prove a direct sum result that reduces Ascension(m) to a two-player protocol for Mountain,
which is in fact a variant of Index, a fundamental problem in communication complexity. We finish the
argument with a new information cost lower bound for Mountain.

1 Introduction

The area of streaming algorithms has experienced tremendous growth in many applications since the late
1990s. Streaming algorithms sequentially scan the whole input piece by piece in one pass, or in a small
number of passes (i.e., they do not have random access to the input), while using sublinear memory space,
ideally polylogarithmic in the size of the input. The design of streaming algorithms is motivated by the
explosion in the size of the data that algorithms are called upon to process in everyday real-time applications.
Examples of such applications occur in bioinformatics for genome decoding, in Web databases for the search
of documents, or in network monitoring. The analysis of Internet traffic [AMS99], in which traffic logs are
queried, was one of the first applications of this kind of algorithm. Although these would have ramifications
for massive data such as DNA sequences and large XML files, few studies have been made in the context of
formal languages. For instance, in the context of databases, properties decidable by streaming algorithms
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have been studied [SV02, SS07], but only in the restricted case of deterministic and constant memory space
algorithms.

Motivated by a concrete problem and with the goal of understanding the relationship between the com-
plexity of streaming algorithms and the computational complexity of formal languages, we investigate the
problem Dyck(s) of checking matching parentheses, with s different types of parentheses. Regular languages
are by definition decidable by deterministic streaming algorithms with constant space. The Dyck languages
are some of the simplest context-free languages and yet already powerful. These languages play a central
role in the theory of context-free languages, since every context-free language L can be mapped to a subset
of Dyck(s) [CS63], for some s. In addition to its theoretical importance, the problem of checking matching
parentheses is encountered frequently in database applications, for instance in verifying that an XML file is
well-formed.

The problem of deciding membership in Dyck(s) has already been addressed in the massive data set-
ting, more precisely through property testing algorithms. An ε-property tester [BK95, BLR93, GGR98] for
a language L accepts all strings of L and rejects all strings which are ε-far from strings in L with respect to
the normalized Hamming distance. For every fixed ε > 0, Dyck(1) is ε-testable in constant time [AKNS01],
whereas for s > 1, Dyck(s) is ε-testable in time Õ(n2/3), with a lower bound of Ω̃(n1/11) [PRR03]. Feigen-
baum, Kannan, Strauss, and Viswanathan [FKSV02] have compared property testers and streaming algo-
rithms. Property testers are constrained to read only small portions of the input due to expectation of small
processing time. In contrast, streaming algorithms have the advantage of access to the entire string, albeit
not in a random access fashion.

With random access to the input, context-free languages are known to be recognizable in
space O((log n)2) [HU69]. In the special case of Dyck(s), logarithmic space is sufficient, as we may run
through all possible levels of nesting, and check parentheses at the same level. This scheme does not seem
to translate easily to streaming algorithms, even with a small number of passes over the input.

In the streaming model, Dyck(1) has a one-pass streaming algorithm with logarithmic space, using
a height counter. Using the linear lower bound for two-way deterministic communication protocols for
Equality, we can deduce that Dyck(2) requires space Ω(n/T ) for deterministic streaming algorithms
with T passes. In particular, Dyck(2) requires linear space for deterministic one-pass streaming algorithms.
A relaxation of Dyck(s) is Identity(s) in the free group with s generators, where local simplifications
aa = ε are allowed in addition to aa = ε, for every type of parenthesis (a, a). There is a logarithmic space
algorithm for recognizing the language Identity(s) [LZ77] that can easily be massaged into a one-pass
streaming algorithm with polylogarithmic space. Again, this algorithm does not extend to Dyck(s).

We show that Dyck(s) is reducible to Dyck(2), for a suitable notion of reduction in the streaming
model, with a log s factor expansion in the input length. First, we present a one-pass randomized streaming
algorithm for Dyck(2).

Theorem 1. Let c > 0 be any constant. There is a one-pass randomized streaming algorithm that checks
if a stream of length n belongs to Dyck(2), uses space O(

√
n log n ) and time polylog(n) per letter. If the

stream belongs to Dyck(2) then the algorithm accepts it with certainty; otherwise it rejects it with probability
at least 1− n−c.

If the length of the stream x is not known in advance, we may use standard techniques to extend the
algorithm. Namely, we use an estimate for the length that is scaled geometrically as needed. The extended
algorithm continues to accept streams in Dyck(2) with certainty. The error probability of the resulting
algorithm when x 6∈ Dyck(2) is guaranteed to be smaller than δ, for any pre-specified constant δ > 0.

If we had no space constraints, deciding Dyck(2) would be very simple: when we encounter an upstep
(a or b), push it on a stack, when we encounter a downstep (a or b), pop the top item from the stack and
check that they match. However the stack may grow to linear size in this process. To avoid this growth,
the basic strategy of our algorithm is to use a linear hash function to periodically (every

√
n/ log n letters)

compress stack information. As long as we compress sequences of only upsteps or only downsteps, all at
different heights, we are able to detect mismatches with high probability. The algorithm has one-sided
error; it accepts words that belong to the language with certainty. Although it is simple, we show that this
appealing algorithm is nearly optimal in its space usage, even when two-sided error is allowed.
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Corollary 1. Every one-pass randomized streaming algorithm for Dyck(2) with (two-sided) error
O(1/n log n) on inputs of length n uses Ω(

√
n log n) space.

In the preliminary version of this article [MMN10], we conjectured that a similar lower bound continues
to hold if we read the stream several times, but always in the same direction. This conjecture has since been
confirmed; we elaborate on this in Section 5. Surprisingly, the situation is drastically different if we can read
the data stream in reverse. We present a second algorithm, a randomized two-pass streaming algorithm for
Dyck(2) with polylogarithmic space and time, where the second pass is in the reverse direction.

Theorem 2. Let c > 0 be a constant. There is a bidirectional two-pass randomized streaming algorithm for
Dyck(2) with space O((log n)2) and time polylog(n) for inputs of length n. If the input belongs to Dyck(2)
then the algorithm accepts it with certainty; otherwise it rejects it with probability at least 1− n−c.

The above algorithm may be extended to streams of unknown length in the same manner as the unidirec-
tional one. The rejection probability for inputs not in Dyck(2) is then only guaranteed to be at least 1− δ,
for any pre-specified constant δ, whereas inputs in Dyck(2) are accepted with certainty.

The bidirectional algorithm uses a hierarchical decomposition of the stream into blocks; whenever the
algorithm reaches the end of a block, it compresses the information about subwords from within the block.
This compression is what reduces the stack size from Θ(

√
n log n ) down to O(log n), but prevents us from

checking that certain matching pairs of parentheses are well-formed. However, given the profile of the word
(i.e., the sequence of heights), we can pinpoint exactly the matching pairs that do not get checked. As
it turns out, a pair that does not get checked when scanning the input left to right is necessarily checked
when scanning in the reverse direction. Like the one-pass algorithm, this algorithm has only one-sided error,
and always accepts words that belong to the language. We note that it is straightforward to extend the
algorithms so that they recognize the language of substrings (which are subwords of consecutive letters) of
Dyck(2).

As mentioned above, we also investigate the lower bound on the space required for any one-pass random-
ized streaming algorithm. Such a lower bound is by nature hard to prove because of the connection of the
problem with Identity(2). Moreover, proving a non-trivial lower bound based on two-party communication
complexity is hopeless: the related communication problem automatically reduces to Equality after local
checks and simplifications by both players, leading to only an Ω(log n) lower bound. Instead, we build hard
instances Ascension(m) of Dyck(2) with length in Θ(mn), that we embed in a “one-pass” communication
problem with 2m players, where m ∈ Θ̃(n). The constraint is that the length of each message in the protocol
be less than σ, a function of n. Our main lower bound result (Theorem 4) is that such a protocol requires
σ ∈ Ω(n), which proves that our one-pass algorithm is optimal for probability of error of order 1/n log n,
and within an O(log n) factor of optimal for constant error (Corollary 1).

To establish the hardness of Ascension(m), we follow the “information cost” approach taken in
Refs. [CSWY01, SS02, BJKS04, JKS03, JRS03b], among other works before and since. The technique comes
with a few twists in our case. We prove a direct sum result that captures the relationship of 2m-player
problem Ascension(m) to solving m instances of an intermediate problem Mountain, which involves only
two players. Mountain is a variant of Index, a fundamental problem in communication complexity. This
variant has been studied in the one-way communication model as “serial encoding” [ANTV99, Nay99], and
in later works on streaming and sketching as “Augmented Index” (see, e.g., Refs. [KNW10, DBIPW10]).

We adapt the notion of information cost to suit both the nature of streaming algorithms and of our
problem. The idea is to focus on the information about a part of the input contained in a part of the
protocol transcript, given the remaining inputs. Using this notion of information cost, we prove the direct
sum result (Lemma 7). A remarkable device here, originally developed by Bar-Yossef, Jayram, Kumar,
and Sivakumar [BJKS04], is the use of an “easy” distribution for the information cost for protocols, that are
correct with high probability in the worst case. The use of an easy distribution “collapses” Ascension(m)
to an instance of Mountain, which may be planted in any one of the m coordinates. Finally, we prove a
new information cost lower bound for Mountain using a medley of combinatorial and information-theoretic
means.
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In protocols for Ascension(m) we allow access to only public coins by all players, whereas in protocols
for Mountain we allow one of the players, Bob, access also to private coins (while Alice, the other player,
may only access public coins). This mixture between public and private coins for Mountain arises from a
balancing act between the direct sum result and our lower bound for Mountain (Theorem 3). Namely,
we prove the lower bound for Mountain when Alice only uses public coins, whereas the direct sum only
holds, with our definition of information cost, when Bob has access to additional private coins. The mixing
of public and private coins in the analysis of information cost has also been observed and similarly tackled
in earlier works (see, e.g., Ref. [CCM08]).

We note that as a bonus, our lower bound (Theorem 4) provides a Ω̃(
√
n) lower bound for the problem

of checking priority queues in the one-pass streaming model, solving an open problem posed by Chu, Kannan,
and McGregor [CKM07].
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2 Definitions and preliminaries

Definition 1 (Dyck). Let s be a positive integer. Then Dyck(s) denotes the language over alphabet
Σ = {a1, a1, . . . , as, as} defined recursively by:

Dyck(s) = ε+
∑
i≤s

ai ·Dyck(s) · ai ·Dyck(s).

We also denote by Dyck(s) the problem of deciding whether a word w ∈ Σ∗ is in the language Dyck(s).
In streaming algorithms, a pass on an input x ∈ Σn means that x is presented as an input stream

x1, x2, . . . , xn, which arrives sequentially, i.e., letter by letter in this order. For simplicity, we assume through-
out this article that the length n of the input is always given to the algorithm in advance. Nonetheless, all
our algorithms can be adapted using standard techniques to the case in which n is unknown until the end
of a pass. See [Mut05] for an introduction to streaming algorithms.

Definition 2 (Streaming algorithm). Fix an alphabet Σ. A k-pass deterministic (resp. randomized) stream-
ing algorithm A with space s(n) and time t(n) is a deterministic (resp. randomized) algorithm such that for
every input stream x ∈ Σn:

1. A performs k sequential passes on x;

2. A maintains a memory space of size s(n) bits while reading x;

3. A has running time at most t(n) per letter xi;

4. A has preprocessing and postprocessing time t(n).

We say that A is bidirectional if it is allowed to access to the input in the reverse order, after reaching the
end of the input. Then the parameter k is the total number of passes in either direction.

Definition 3 (Streaming reduction). Fix two alphabets Σ1 and Σ2. A problem P1 is f(n)-streaming reducible
to a problem P2 with space s(n) and time t(n), if for every input x ∈ Σn1 , there exists y = y1y2 . . . yn, with

yi ∈ Σ
f(n)
2 , such that:
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1. yi can be computed deterministically from xi using space s(n) and time t(n);

2. From a solution of P2 with input y, a solution on P1 with input x can be computed with space s(n) and
time t(n).

The following is immediate.

Proposition 1. Let P1 be f(n)-streaming reducible to a problem P2 with space s0(n) and time t0(n). Let
A be a k-pass streaming algorithm for P2 with space s(n) and time t(n). Then there is a k-pass streaming
algorithm for P1 with space s(n× f(n)) + s0(n) and time t(n× f(n)) + t0(n) with the same properties as A
(deterministic/randomized, unidirectional/bidirectional).

Moreover, we need only study Dyck(s) with s = 2:

Proposition 2. Dyck(s) is dlog se-streaming reducible to Dyck(2) with space and time O(log s).

Proof. We encode a parenthesis ai by a word of length l = dlog se with only parentheses of type b, c. We
let f(ai) be the binary expansion of i over l bits where 0 is replaced by b and 1 by c. Then f(ai) is defined
similarly, except that we write the binary expansion of i in the opposite order and replace 0 by b̄ and 1 by c̄.
Then x1 . . . xn is in Dyck(s) if and only f(x1) . . . f(xn) is in Dyck(2).

Since the parameter s is a constant independent of the length of the input stream, the above reduction
can be implemented with constant space and time. For example, in parsing XML files, given an upstep
(start-tag) <w> (respectively, a downstep (end-tag) </w>), where w is an ASCII string denoting the type of
parenthesis (tag), we can generate the above encoding of w into b, c (respectively, into b, c), while reading w
as a stream itself, i.e., character by character.

By Proposition 2, it is enough to design streaming algorithms for Dyck(2). That is the objective of the
next section.

3 Algorithms

From now on we consider Dyck(2) where the input is a stream of n letters x1x2 . . . xn in the alphabet
Σ = {a, a, b, b}. We first introduce a few definitions. An upstep is a letter a or b, a downstep is a letter a
or b. For integers i ≤ j, we denote by [i, j] the set of integers {i, i + 1, . . . , j}, and by x[i, j] the subword
xixi+1 . . . xj . We also use the notation x[i] for xi when we also consider sequences of words. For ease
of notation, we identify an increasing sequence i1 < i2 < · · · < im of indices with the corresponding
subword xi1xi2 . . . xim of x. We also use this correspondence in reverse when the indices of the subword are
clear from the context. The number of occurrences of the letter p in a word x is denoted by |x|p. In the
absence of any subscript, |x| denotes the length of the word.

Definition 4 (Height, Matching pair, Well-formed). Let x ∈ Σn.
The height of x is height(x) = |x|a + |x|b − |x|a − |x|b.
For 1 ≤ i < j ≤ n, (i, j) is a matching pair for x if height(x[1, i− 1]) = height(x[1, j]) and height(x[1, k]) >
height(x[1, i− 1]) for all k ∈ {i, . . . , j − 1}.
The height of a matching pair (i, j) is height(x[1, i− 1]).
A matching pair (i, j) for x is well-formed, if (x[i], x[j]) equals (a, a) or (b, b), ill-formed otherwise.

It follows that any index i forms a matching pair with at most one other index, and that a matching
pair consists of an upstep and a downstep. These definitions are extended to subsets I ⊆ [1, n] of indices of
letters of x. For instance, we say that I is a matching set for x, if I is the union of {i, j} over the matching
pairs (i, j) for x. Observe that when i < j we have the following equivalence: (i, j) is a matching pair for x
if and only if {i, i+ 1, i+ 2, . . . , j} is a matching set for x.

Define a partial order ≺ between words such that u ≺ v if and only if u is obtained from v by removing
zero or more of its matching pairs. This order is well defined, and in particular transitive, since matching
pairs of u are still matching pairs of v, up to reindexing. (This may be proven by a straightforward inductive
argument.)
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Proposition 3. Let u, v be words such that u ≺ v and u = u1u2 · · ·um = vi1vi2 · · · vim is obtained by remov-
ing the matching set [1, n]\ {i1, i2, . . . , im} from v. If (j, k) ∈ [1,m]2 is a matching pair for u, then (ij , ik) is
a matching pair for v.

To prove correctness of our algorithms, we use the following characterization of Dyck(2).

Proposition 4. Let x ∈ Σn. Then

1. [1, n] is a (possibly ill-formed) matching set for x if and only if height(x) = 0 and the height of every
prefix of x is nonnegative;

2. [1, n] is a well-formed matching set for x if and only if x ∈ Dyck(2).

Proof. The proof is by induction on the length n of x. The first part may be established by a straightforward
induction on n. We prove the second part. For n = 0 the result is true since the empty word is in Dyck(2)
and ∅ is a well-formed set.

Let x ∈ Dyck(2) of length n. By Definition 1, there exist y, z ∈ Dyck(2) such that x = cycz, where
c ∈ {a, b}. Then (1, 2 + |y|) is a well-formed pair. By the inductive hypothesis, [1, |y|] and [1, |z|] are
well-formed matching sets for y and z, respectively. All together gives the well-formed set [1, n] for x, after
appropriate translation.

Conversely, assume that [1, n] is a well-formed set for x. Let j1 be such that (1, j1) is a (well-formed)
matching pair for x. We prove that every matching pair (i, j) for x satisfies: 1 < i, j < j1 or j1 < i, j ≤ n.
Thus the matching set [1, n] is partitioned into {1, j1}, [2, j1 − 1] (which is a translation of the matching set
for x[2, j1 − 1]), and [j1 + 1, n] (which is a translation of the matching set for x[j1 + 1, n]). By the inductive
hypothesis, x[2, j1 − 1], x[j1 + 1, n] ∈ Dyck(2), and the statement follows.

We return to the property of matching pairs (i, j) described above. Assume, for a contradiction, that
there is a matching pair (i, j) such that i < j1 < j. Then, by Definition 4, height(x[1, j1]) > height(x[1, i−1])
and also height(x[1, j1]) = height(x[1, 0]) = 0. Thus height(x[1, i− 1]) < 0, a contradiction to the first part
of the proposition.

Observe that checking that [1, n] is a (possibly ill-formed) matching set, or equivalently that height(x) = 0
and the height of every prefix of x is nonnegative, can be checked deterministically within one pass over
stream x, using log n memory. Our algorithms do not explicitly check this, but nonetheless ensure this
property when accepting x. During the computation our algorithms implicitly keep track of the height of
the word read so far. They reject when the height of any prefix is negative, so for ease of exposition, we
assume that the height of the stream is always non-negative.

Let p be a prime number such that n1+γ ≤ p < 2n1+γ , for some fixed constant γ > 0. The algorithm uses
a random function hash(·) that maps subwords v of x to integers in [0, p−1], as follows: hash(xi1xi2 . . . xim) =∑
j hash(xij ), with

hash(xi) =

 αheight(x[1,i−1]) mod p if xi = a,
−αheight(x[1,i]) mod p if xi = a,
0 otherwise,

where α is a uniformly random integer in [0, p− 1]. Note that the computation of hash(v) depends not just
on v but also on the height of its letters within x.

Given x and v, the value of hash(v) is a polynomial in α of degree bounded by the maximum height of
a prefix of x, which is at most n. A polynomial of degree d over Fp has at most d roots. Therefore, if the
polynomial corresponding to hash(v) is not identically zero, for a uniformly random α, the probability that
hash(v) = 0 is at most n/p ≤ n−γ . In particular:

Proposition 5. Let x ∈ Σn be such that every prefix of x has nonnegative height, and let v = xi1xi2 . . . be
a subword of x. If v ∈ Dyck(2), then hash(v) = 0 for all α. Moreover, if there is a height d at which v has
a single ill-formed pair (and possibly other ill-formed matching pairs at heights 6= d), then hash(v) 6= 0 with
probability at least 1− n−γ , for a uniformly random integer α ∈ [0, p− 1].
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Proof. If v ∈ Dyck(2), then by Proposition 4 the set [1, n] is well-formed, and then each well-formed
matching pair (i, j) at height d contributes{

αd − αd = 0, if (xi, xj) = (a, a);

0− 0 = 0, if (xi, xj) = (b, b).

Therefore, we get hash(v) = 0.
Now, assume there is a height d at which v has a single ill-formed pair. Since every prefix of x has

nonnegative height, the value hash(v) is a polynomial q(z) evaluated at z = α. Every well-formed pair at
height d cancels, and so the coefficient of zd in q is +1 if (xi, xj) = (a, b), and −1 if (xi, xj) = (b, a). Thus q
is not identically zero. The claim follows from the uniformly random choice of α.

For any letter xi, we may compute hash(xi) in time polylog n and space O(log n). Moreover, for any
word v the value of hash(v) can be maintained with O(log n) space.

3.1 The one-pass algorithm

The algorithm is easiest to understand if x = uv, where u has only upsteps and v has only downsteps, in
equal numbers. To check whether uv ∈ Dyck(2), the naive algorithm would grow a stack of size n/2. Here
is a simple alternative. We read the input in blocks of length q. For simplicity, assume that n is divisible
by 2q. While the algorithm is reading letters of u, the stack stores the values of hash(x[iq+ 1, (i+ 1)q]), one
stack item for each i ∈ {0, . . . , n/2q − 1} and notes that height(x[iq + 1, (i+ 1)q]) = q. While the algorithm
is reading letters of v, it adds hash(x[jq + 1, (j + 1)q]) to hash(x[iq + 1, (i + 1)q]) for j = n/q − i − 1, and
checks whether their sum is 0. The input x is ill-formed if any of the sums is non-zero. Our algorithm
is a generalization of this stack compression idea, and the block length is chosen to be q = d√n log n e to
minimize the space used.

Algorithm 1 attempts to collect a sequence of ` = d√n log n e upsteps while doing obvious checks. Using
a straightforward stack-based algorithm, any upstep followed by a downstep is checked for well-formedness,
and once checked, the pair are discarded. The stack, called Stemp in the algorithm, allows us to apply this
check for every matching pair that is encountered before reaching the limit of ` upsteps. When the stack
Stemp collects a sequence v of ` upsteps, the algorithm hashes v to hash(v) and empties Stemp. The hash
value is pushed to a second stack S. The stack S encodes the subword given by the letters seen so far that
remain to be checked. Each item of S of the form (h, `) encodes a subword v of the stream x, in the sense
that h = hash(v) and ` = height(v). The algorithm accesses S to look up information about the blocks
previously read.

To process a downstep y, the algorithm either checks for a match in Stemp or incorporates it into
the topmost stack item of S. More precisely for the second case, given a downstep y and given (h, `) =
(hash(v),height(v)), it computes hash(vy) = h+ hash(y) and height(vy) = `− 1, thus encoding vy without
explicit knowledge of v. Note that this relies on the linearity of the hash function. When the encoded
subword v has height 0, to test whether it is well-formed, the algorithm checks whether hash(v) = 0. If
this test succeeds, the entry of the stack encoding v is removed. An example execution of the algorithm is
presented in Figure 1.

For the analysis, we start with the following invariants of Algorithm 1.

Proposition 6. Let (h, `) be an item of S that encodes a subword v. Then v = v1v2, where v1 has only
upsteps, v2 has only downsteps, ` = |v1| − |v2|, and ` > 0.

The proof is by a straightforward induction on the number of operations on S, and is omitted.
We say that the pair of stacks (S, Stemp) encodes v if v = v1v2 . . . vmvtemp, where v1, v2, . . . , vm are the

subwords encoded by S (in bottom-up order), and vtemp is the sequence of upsteps in Stemp (in bottom-up
order).

Proposition 7. Let v be the subword encoded by (S, Stemp) just before processing xj, at line 23, assuming
that the algorithm has not already rejected x. Then v ≺ x[1, j − 1].

7



B1

B2

B3

B4
B5 B6
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t0 t1 t2 t3 t4t5 t6t7

Figure 1: Example of execution of Algorithm 1. Here there are eight blocks, and they are shown after the internal
simplifications have already been done. The dotted vertical lines mark times at which the stack changes size, either
starting a new stack item (for example, at time t0) or discarding a stack item (for example, at time t4). Note that
blocks and stack items are staggered: the first item incorporates the first block and the downsteps of the second
block, the second item incorporates the upsteps of the second block and the downsteps of the third block, etc. The
bullets mark times when the algorithm checks and discards an item, if the hash value is 0. The horizontal lines go
from the time when a stack item is created to the time when it is checked and discarded. For example, at time t7 the
algorithm checks and discards an item (hm, `m) such that hm incorporates the upsteps marked in bold on the figure,
namely x(t1, t2], and incorporates the downsteps marked in bold on the figure, namely x(t2, t3], x(t4, t5] and x(t6, t7].

Algorithm 1 One-pass algorithm (when the length n of the stream is known in advance)

1: Stemp ← empty stack of upsteps; S ← empty stack of items (h, `)
2: (htemp, `temp)← (0, 0) {This pair encodes the subword contained in Stemp.}
3: Compute a prime p such that n1+γ ≤ p < 2n1+γ ; Pick a uniformly random α ∈ [0, p− 1]

{The pair (p, α) are used in the function hash; γ > 0 is a constant of our choice.}
4: while stream is not empty do
5: read next letter y from stream
6: if y is an upstep then
7: push y on Stemp

8: update (htemp, `temp) with y: htemp ← (htemp + hash(y) mod p); `temp ← `temp + 1
9: if Stemp has size d√n log n e then

10: push (htemp, `temp) on to S and reset Stemp to empty; (htemp, `temp)← (0, 0)
11: end if
12: else {y is a downstep}
13: if Stemp is not empty then
14: pop z from Stemp

15: check that zy is well-formed: zy ∈ {aa, bb} (if not, reject: “mismatch”)
16: update (htemp, `temp) for removal of z: htemp ← (htemp − hash(z) mod p); `temp ← `temp − 1
17: else {Stemp is empty}
18: pop (h, `) from S (if empty, reject: “extra closing parenthesis”)
19: update (h, `) with y: h← (h+ hash(y) mod p); `← `− 1
20: if ` = 0 then check that h = 0 (if not, reject: “mismatch”)
21: else push (h, `) on S
22: end if
23: end if
24: end while
25: if S and Stemp are not both empty then reject: “missing closing parenthesis”
26: accept
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Proof. The proof is by induction on the number of letters (k− 1) processed from the stream. Initially, k = 1
and the statement holds since both stacks are empty. Let v = v1v2 . . . vmvtemp be the subword encoded by
(S, Stemp) just before processing xk. We assume as our inductive hypothesis that v ≺ x[1, k − 1], and prove
that the analogous statement holds after xk has been processed.

We have vxk ≺ x[1, k]. If xk is an upstep, then after processing xk, the stacks are modified such that
they encode vxk. Therefore the propositions still holds just before processing xk+1.

Suppose now that xk is a downstep. We assume that (S, Stemp) are not both empty, otherwise the
algorithm rejects at line 18 before processing xk+1. We analyze the processing of xk in order to complete
the induction step.

First, if vtemp 6= ε then the last letter of v is the last letter of vtemp, which is an upstep. Therefore
(v|v|, xk+1) is a matching pair for vxk, and v[1, |v| − 1] ≺ vxk ≺ x[1, k]. If the algorithm does not reject at
this point, the last upstep of vtemp is deleted at line 14, and (S, Stemp) encodes v[1, |v|−1]. So the statement
holds in this case.

Second, if vtemp = ε and height(vmxk) > 0. The item (h, `) popped from S encodes vm and satisfies
height(vm) = ` from Proposition 6. Therefore ` > 1, and (h, `) is updated in order to encode vmxk, and
then pushed back to S. Now (S, Stemp) encodes vxk which satisfies vxk ≺ x[1, k]. So the statement holds in
this case as well.

The last case is when vtemp = ε and height(vmxk) = 0. By Proposition 6, the item (h, `) popped
from S encodes vm and satisfies height(vm) = ` = 1. If the algorithm does not reject after processing
xk, this item is deleted from S and (S, Stemp) now encodes v1v2 . . . vm−1. Recall that xk is a downstep.
From Proposition 6, the subword vmxk is a sequence of upsteps followed by the same number of downsteps.
Therefore ε ≺ vmxk. Since vmxk is also the suffix of vxk, we get that it is a matching set for vxk, that is
v1v2 . . . vm−1 ≺ vxk ≺ x[1, k], and the statement holds.

Lemma 1. Algorithm 1 satisfies the following invariants:

1. At line 15, the pair (z, y) is a matching pair for x.

2. At line 20, if ` = 0 then (h, 0) encodes a subword v which is a matching set for x.

Proof. For both properties, let y be the letter xj that the algorithm is currently processing. Let (S, Stemp)
be the stacks just before processing xj , and let v be the subword encoded by (S, Stemp). Since we consider
properties at line 15 and line 20, xj is necessarily a downstep.

We start with the first property. Therefore stack Stemp is not empty before processing xj and the upstep
z is on its top. Therefore v ends with z, and (z, xj) is a matching pair for vxj . By Proposition 7, subword
v satisfies v ≺ x[1, j − 1], so vxj ≺ x[1, j]. By Proposition 3, (z, xj) is also a matching pair for x[1, j], and
for x.

For the second property, Stemp = ∅ and S 6= ∅. Let vm be the subword encoded by the topmost element
of S. Then (h, 0) encodes vmxj . Moreover, by Proposition 6, vmxj is a sequence of upsteps followed by
the same number of downsteps. Therefore vmxj is a matching set for vxj . By Proposition 7, subword v
satisfies v ≺ x[1, j − 1], so vxj ≺ x[1, j]. By Proposition 3, vmxj corresponds to a matching set for x[1, j],
and therefore for x.

Lemma 2. Let (i, j) be a matching pair for x. Then just before processing xj, the stacks S and Stemp of
Algorithm 1 satisfy one of the following properties, if the algorithm has not already rejected x:

1. Stemp is not empty and has xi on top.

2. Stemp is empty but not S, and the topmost item of S encodes a subword containing xi.

Proof. Fix some matching pair (i, j). Let (S, Stemp) be the stacks of the algorithm just before processing xj .
By Proposition 7, the subword encoded by (S, Stemp) contains xi. Therefore the stacks are not both empty.

If Stemp 6= ∅ just before processing xj , then, by Lemma 1, xj matches, possibly as an ill-formed pair,
the topmost element of Stemp. Since any index (in our case, j) may form a matching pair with at most one
other index (in our case, i), the second property is satisfied.

9



Assume now that Stemp = ∅ and S 6= ∅. All upsteps in the stream, including xi, were first pushed onto
Stemp, unless the algorithm rejected before reading them. Since Stemp is now empty, the upstep xi was later
popped. By Lemma 1, xi was not popped from Stemp at line 15. (Otherwise i would match another index
k 6= j, which is impossible.) Therefore xi was encoded into a stack element and pushed on to S at line 10.
By Lemma 1 it follows that this stack element was not popped from S at line 20, and therefore is still in S
just before xj is read.

It remains to be proven that the stack element containing xi is at the top of S. Let v1v2 . . . vm be the
subwords encoded by S. By Propositions 6 and 7, we have v1v2 . . . vmxj ≺ x[1, j], and height(vk) > 0, for
k = 1, 2, . . . ,m. Since (xi, xj) is a matching pair for both v1v2 . . . vmxj and x[1, j], we have that xi is in
vm.

We conclude with the correctness of our algorithm.

Theorem 1. Algorithm 1 is a one-pass randomized streaming algorithm for Dyck(2) with space
O(
√
n log n ) and time polylog(n). If the stream belongs to Dyck(2) then the algorithm accepts it with

certainty; otherwise it rejects it with probability at least 1− n−c, where c > 0 is a constant.

Proof. The stack elements of Stemp and S take space O(1) and O(log n) bits, respectively. Stack Stemp has
size bounded by d√n log n e, and therefore uses space O(

√
n log n ). A new element is pushed on to S only

when Stemp is full (has size d√n log n e), after which Stemp is emptied. Therefore the algorithm processes at
least d√n log n e letters between each increase of the size of S, bounding the number of stack elements of S
by n/

√
n log n. Hence S also uses space O(

√
n log n ).

Using well-known results in algorithmic number theory [BS96, Sections 8.2 and 9.7], the prime p used for
the hash function may be computed probabilistically in time polylog(n). The probability that the procedure
returns a prime is at least 1−n−γ , for a constant γ > 0 of our choice. The processing time of any letter in the
stream is dominated by the computation of the hash function, specifically by the modular exponentiation.
Since the modular exponentiation involves (log n)-bit integers, the time taken is polylog(n).

With probability n−γ , the number returned by the prime number generation procedure may be composite.
We analyse the algorithm assuming that the number is prime, and then consider the case when it is composite.

To prove correctness, we first argue that the algorithm rejects when [1, n] is not a matching set for x.
We prove this property by contraposition. Assume that the algorithm accepts x. Then the stacks S, Stemp

are both empty after processing x and therefore encode the empty word. By Proposition 7, we have that
∅ ≺ [1, n], i.e., [1, n] is a matching set for x.

We assume in the rest of the proof that [1, n] is a matching set for x. By Proposition 7, S and Stemp are
never both empty while processing a downstep. The proposition also implies that if the algorithm processes
the full stream, then it accepts. Therefore, the algorithm only rejects after processing a downstep either at
line 15 or 20. Let xj be any downstep, and let i be the unique integer such that (i, j) is a matching pair.
We prove that the algorithm does not reject after processing xj if x ∈ Dyck(2), whereas it rejects with high
probability if (i, j) is ill-formed.

Consider first the case x ∈ Dyck(2). By Lemma 1, the tests at lines 15 and 20 check whether a matching
pair or set of x is well-formed. Since x is well-formed, those matching sets are all well-formed. Therefore the
tests always succeed (thanks to Proposition 5 for the test at line 20).

We consider the remaining case, where (i, j) is ill-formed and the algorithm has not already rejected
before processing xj . Consider the stacks S and Stemp just before xj is processed. They are not both empty
since [1, n] is a matching set. By Lemma 2, the topmost element of Stemp is xi when Stemp 6= ∅, and the
topmost element of S encodes a subword containing xi when Stemp = ∅. In the first case, the algorithm checks
the well-formedness of (xi, xj) at line 15 and rejects with probability 1. In the second case, the algorithm
updates the stack element so that it contains both xi and xj at line 19. This element is either checked at
line 20, or it is pushed back to the stack at line 21. In the latter case, either the algorithm rejects while
processing subsequent letters, or eventually checks this stack element at line 20. We consider the first time
(if any) that this stack element is checked. Recall that the stack element encodes a subword v that contains
xi and xj , and that v is a matching set by Lemma 1. The crucial observation is that, by Proposition 6, (i, j)
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Figure 2: Block-structure decomposition. The figure illustrates the binary block decomposition of an input word of
length 2k into all the blocks that will be activated during one full pass pass. They are identical in the left-to-right
pass and the right-to-left pass as the input length is a power of 2. At every instant, there is at most one active i-block
for any i.

is the only ill-formed matching pair in v at the corresponding height. Therefore Proposition 5 implies that
the probability that the algorithm rejects is at least 1− n−γ .

We point out that the algorithm continues to accept streams x ∈ Dyck(2) with certainty even if the
modulus used in the hash function is composite. When the stream x 6∈ Dyck(2), the union bound tells us
that the probability that the algorithm does not reject is at most 2n−γ .

3.2 The bidirectional algorithm

The second algorithm uses a (virtual) hierarchical decomposition of the stream x into nested blocks of 2i

letters for i ≤ k = dlog ne (see Figure 2). We define an i-block to be any substring of the form x[(q − 1)2i +
1, q2i] for 1 ≤ q ≤ n/2i. We may omit the parameter i when referring to an i-block if its precise value is
not important. The algorithm maintains a decomposition of the prefix x[1, j] read so far into m ≤ dlog je
contiguous blocks of decreasing sizes. The decomposition is given by the binary decomposition of j. Let
0 ≤ i1 < . . . < im ≤ k be such that j =

∑m
t=1 2it . Then x[1, j] is partitioned from left to right into adjacent

blocks of decreasing lengths 2im , 2im−1 , . . . , 2i1 . We call such a decomposition the binary partition of x[1, j],
and the block of size 2i1 the last block of the binary partition. We extend the definition and notation related
to blocks to intervals [1, j] as well. The binary partition and the last block of an interval [1, j] play an
important role in the bidirectional algorithm (see line 13 of Algorithm 3).

We assume that n = 2k, for some k ≥ 1. Thanks to this assumption, the algorithm uses the same
hierarchical decomposition whether we read the stream from left to right or from right to left. The assumption
is without loss of generality, as we can append to x the word (aā)i for a suitable i ≥ 1. This is only required
if |x| is even; otherwise x 6∈ Dyck(2). At the end of the first pass, we use O(log n) bits of memory to store
the number of letters added. Algorithm 2, the bidirectional algorithm, simply runs Algorithm 3 twice,
once reading the stream in the forward direction, and a second time in reverse. The algorithm accepts if
there is no rejection during either pass. During the right to left pass, letters a, b are interpreted as a, b,
respectively (and vice-versa).

Algorithm 2 Bidirectional algorithm (when the length n of the stream is a power of 2, and is known in advance)

Compute a prime p such that n1+γ ≤ p < 2n1+γ ; Pick a uniformly random α ∈ [0, p− 1]
{The pair (p, α) are used in the function hash; γ > 0 is a constant of our choice.}
Run Algorithm 3, reading the stream from left to right
Run Algorithm 3, reading the stream from right to left
{While reading the stream right to left, a, b are interpreted as a, b, respectively (and vice-versa)}
accept
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Figure 3: Asymmetry of the two passes. The bold-face lines represent matching pairs between the two (i− 1)-blocks
B,B′ within the same i-block Bi. In this example, these pairs are checked during the left-to-right pass, since the
minimum height m within the left (i− 1)-block B is larger than the minimum height m′ with the right (i− 1)-block
B′ (during the right-to-left pass, they are compressed without any checks when Bi is processed).

Algorithm 3 continuously maintains the binary partition of the prefix x[1, j] of the stream that has
been read so far. We use a stack data structure to encode the entire prefix x[1, j]. Each stack item is now of
the form (h, `, f), and encodes a subword v of x, in the sense that h = hash(v), ` = height(v), and f is the
position in x of the first letter of v. An item remains in the stack while ` > 0.

The main difference between Algorithm 3 and Algorithm 1 is that whenever the algorithm reaches the
end of a block, it “compresses” without checking the stack items encoding subwords from within the block.
This compression is what reduces the stack size from

√
n/ log n down to O(log n), but now Proposition 6 no

longer holds for this stack; since hash is commutative, we may lose information. For example, compressing
hash(baa) with hash(bbbaa) gives hash(baabbbaa), which is equal to hash(babbabaa): one word is in Dyck(2),
the other one is not, but after compressing we can no longer distinguish between them. In processing the
ill-formed word babbabaa from left to right, the algorithm compresses the first four letters to hash(ba) and
consequently does not detect ill-formedness. The crux of the analysis is that such information loss does not
occur both when reading the stream from left to right and when reading it from right to left (see Figure 3).
Every matching pair is checked in at least one of the two passes. In the example above, in processing the
word babbabaa from right to left (with upsteps interpreted as downsteps and vice-versa), a mismatch is
detected when the 7th letter is read.

For the analysis of Algorithm 3, we first derive the following invariant that is weaker than Proposition 6.
The proof follows from induction and is omitted.

Proposition 8. Let (h, `, f) be an item of S encoding a subword v. Then ` = height(v) > 0, and every
prefix of v has positive height.

We can adapt Lemmas 1 and 2 to our new algorithm. The proofs are straightforward, and are omitted.

Lemma 3. At line 10 of Algorithm 3, if ` = 0 then (h, 0, f) encodes a subword v that is a matching set
for x.

Lemma 4. Let (j, j′) be a matching pair for x. Then, either Algorithm 3 rejects before processing xj′ , or
the stack S just before processing xj′ is not empty and its topmost item encodes a subword containing xj.

We now state a simple observation from the definition of matching pairs. Recall from the convention intro-
duced before Definition 4, that we identify a subword xi1xi2 · · ·xim of x with the set of indices {i1, i2, . . . , im}
corresponding to it.

Proposition 9. Let v = uu′ be a subword of x, and let d ≥ 0. Then u× u′ has at most one matching pair
at height d. In other words, in v there exists at most one matching pair (j, j′) at height d such that j ∈ u
and j′ ∈ u′.
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Algorithm 3 One pass of the bidirectional algorithm

1: S ← empty stack of items (h, `, f)
2: j ← 0 {This records the length of the stream read so far}
3: while stream is not empty do
4: read next letter y, and set j ← j + 1
5: if y is an upstep then
6: push the item (hash(y), 1, j) on to S {This encodes the letter y}
7: else {y is a downstep}
8: pop (h, `, f) from S (if empty, reject: “extra closing parenthesis”)
9: update (h, `, f) with h: h← (h+ hash(y) mod p); `← `− 1

10: if ` = 0 then check that h = 0 (if not, reject: “mismatch”)
11: else push (h, `, f) on S
12: end if
13: while the top 2 elements of S both start in the last block of the binary partition of [1, j] do
14: combine them into one element: pop (h2, `2, f2); pop (h1, `1, f1); push (h1 + h2, `1 + `2, f1)
15: end while
16: end while
17: if S is not empty then reject: “missing closing parenthesis”

Proof. By contradiction, assume that (i, i′) and (j, j′) are two matching pairs in u × u′ at height d. For
simplicity suppose that i < j. From the definition of matching pair for (i, i′), we get that height(x[1, k]) >
height(x[1, i − 1]), for all i ≤ k < i′. Since (i, i′) and (j, j′) are both at height d, indices i, j satisfy
height(x[1, i− 1]) = height(x[1, j − 1]) = d. Therefore j > i′, leading to j 6∈ u, which contradicts that (j, j′)
is in u× u′.

We conclude with the correctness of our algorithm.

Theorem 2. Let c > 0. Algorithm 2 is a bidirectional two-pass randomized streaming algorithm for
Dyck(2) with space O((log n)2) and time polylog(n). If the input belongs to Dyck(2) then the algorithm
accepts it with certainty; otherwise it rejects it with probability at least 1− n−c.

Proof. As before, we use well-known results in algorithmic number theory [BS96, Sections 8.2 and 9.7] to
compute the prime p for the hash function. This computation is probabilistic, takes time polylog(n), and
space at most O(log2 n). With probability n−γ , for a constant γ > 0 of our choice, the number returned
may be composite. We first analyze the algorithm assuming the number is prime, and discuss the composite
case later.

Each stack element takes space O(log n) and the stack has size at most 2k = 2 log n, hence space O(log2 n).
The processing time is dominated by the computation of the hash function, and the compression of stack
elements. Each letter read generates at most one new stack item, after which Algorithm 3 may combine
the elements on top of the stack (at most log n times). The net time is therefore polylog(n) per letter.

To analyze the algorithm, observe by induction, and Proposition 4, that the algorithm rejects in either
direction with probability 1 if [1, n] is not a matching set. A matching set may be ill-formed, and in the rest
of the proof, we focus on proving that the algorithm detects this with high probability.

The above observation implies that we may assume that [1, n] is a matching set. In particular, it implies
that S is never empty while processing a downstep. Moreover, if the algorithm processes the full stream in
one direction, then the stack is empty at the end and Algorithm 3 does not reject.

By Lemma 3, each check at line 10 consists of verifying that a matching set is well-formed. Therefore
the algorithm always accepts whenever x ∈ Dyck(2).

Consider now the case when x has an ill-formed matching pair. Let i be minimum number such that
some i-block Bi contains an ill-formed matching pair (j, j′). By minimality, xj and xj′ are in different
(i − 1)-blocks B and B′. Let m be the minimum, over upsteps xl of B, of height(x[1, l − 1]). Let m′ be
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the minimum, over downsteps xl of B′, of height(x[1, l]) (see Figure 3). Up to swapping left-to-right and
right-to-left directions, we may assume that m ≥ m′.

Assume that the algorithm does not reject before processing xj′ . The stack S is empty since [1, n] is a
matching set. Then, by Lemma 4, the topmost element of S encodes a subword containing xj . Moreover,
since all compressions in B involve items with first letter in B, the first letter f of that word is in B, hence
starts at height ≥ m. Since m ≥ m′, the letter f ′ matching f is in Bi, and so, from Proposition 8 by the end
of reading B′ that item is discarded. Let (h, 0, f) be that discarded item, encoding a subword v containing
both xj and xj′ .

Since the first letter f of v is in B, all of the letters of v are in B∪B′. Recall that v is a matching set, and,
by Proposition 9, its matching pairs in B ×B′ are all at different heights. So, at the height d of pair (j, j′),
v only contains (j, j′), which is ill-formed, plus possibly some matching pairs coming from B × B or from
B′×B′, pairs that are all well-formed by minimality of i. Altogether, at height d the word v has exactly one
ill-formed matching pair, so by Proposition 5, the probability that v passes the hash test of Algorithm 3
is at most n−γ , for a uniformly random choice of α. So the algorithm is correct with probability 1− n−γ .

The algorithm continues to accept streams x ∈ Dyck(2) with certainty even if the modulus used in the
hash function is composite. When the stream x 6∈ Dyck(2), the union bound tells us that the probability
that the algorithm does not reject is at most 2n−γ .

4 Lower bounds

In this section, we prove a space lower bound for Dyck(2). We start with a family of hard instances that we
embed in a communication problem Ascension(m). A streaming algorithm that uses space σ (a function
of m,n) implies a multi-party communication protocol for Ascension(m) with 2m players, in which every
message has length σ. We then appeal to a direct sum argument to derive a two-party communication
protocol for Mountain with “low” information cost. Finally, we show that such a protocol is impossible,
unless σ ∈ Ω(n).

4.1 Reduction from Dyck(2), and an overview

We define the family of hard instances for Dyck(2) as follows. For any word z ∈ {a, b}n, let z be the
minimal matching word associated with z (so that zz is well-formed). For positive integers m,n, consider
the following instances of length in Θ(mn):

w = x1y1c1c1y1 x2y2c2c2y2 . . . xmymcmcmym xm . . . x2 x1,

where for every i, xi ∈ {a, b}n, yi = xi[n− ki + 2, n] for some ki ∈ {1, 2, . . . , n}, and ci ∈ {a, b}. The word
w is in Dyck(2) if and only if, for every i, ci = xi[n− ki + 1].

Intuitively, for m = n/ log n recognizing w is difficult with space o(n). After reading xi, the streaming
algorithm does not have enough space to store information about the bit at unknown index (n − ki + 1).
When it reads ci it is therefore unable to decide whether ci = xi[n− ki + 1]. Moreover, after reading ym it
does not have enough space to store information about all indices k1, k2, . . . , km. When it reads xm . . . x2 x1

it therefore misses out on its second chance to check whether ci = xi[n − ki + 1] for every i. The formal
proof contains several subtleties and is executed in the language of communication complexity.

We define a communication problem Ascension(m) (see Figure 4) associated with the hard instances
described above. For convenience, we replace suffixes by prefixes, and identify a with 0 and b with 1.
Formally, in the problem Ascension(m) there are 2m players A1,A2, . . . ,Am and B1,B2, . . . ,Bm. Player Ai
has xi ∈ {0, 1}n, Bi has ki ∈ [n], a bit ci and the prefix xi[1, ki − 1] of xi. Let x = (x1, x2, . . . , xm),
k = (k1, k2, . . . , km) and c = (c1, c2, . . . , cm). The goal is to compute fm(x,k, c) =

∨m
i=1 f(xi, ki, ci) =∨m

i=1(xi[ki]⊕ ci), which is 0 if xi[ki] = ci for all i, and 1 otherwise.
Motivated by the streaming model, we require each message to have length at most σ bits, where the

parameter σ is a function of m and n and corresponds to the space used in the streaming algorithm. We also
require the communication between the 2m participants in a one-pass protocol to be in the following order:
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Figure 4: Problem Ascension(m). The figure presents the m-fold nesting of streams of the form depicted in Figure 5.
The stream is divided between 2m players. There are m potential mismatches, the ith one caused by the letter ci in
Bi’s input. The word is well-formed if and only ci = xi[ki], for all i.

Round 1

– For i from 1 to m− 1, player Ai sends message MAi to Bi, then Bi sends message MBi to Ai+1;

– Am sends message MAm to Bm;

Round 2

– Bm sends message MBm to Am;

– For i from m down to 2, Ai sends message M ′Ai to Ai−1;

– A1 computes the output.

A streaming algorithm for Dyck(2) with space ‘σ’ implies a communication protocol for Ascension(m)
as described above. So a lower bound on σ follows from a lower bound on the communication complexity
of Ascension(m).

To establish the hardness of solving Ascension(m), we prove a direct sum result that captures its
relationship to solving m instances of a “primitive” problem Mountain. In the problem Mountain (see
Figure 5), Alice has an n-bit string x ∈ {0, 1}n, and Bob has an integer k ∈ [n], a bit c and the prefix
x[1, k − 1] of x. The goal is to compute the Boolean function f(x, k, c) = (x[k] ⊕ c) which is 0 if x[k] = c,
and 1 otherwise. In a one-pass protocol for Mountain, the communication occurs in the following order:
Alice sends a message MA to Bob, Bob sends a message MB to Alice, then Alice outputs f(x, k, c).

As mentioned in Section 1, we follow the “information cost” approach, a method that has been particularly
successful in recent works on direct sum results. The method comes in a variety of flavours, each crafted to
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Figure 5: Problem Mountain. The figure presents an input stream with its division between players Alice and Bob.
The horizontal axis represents the length of the stream seen so far, and the vertical axis represents the corresponding
height. We introduce a potential mismatch denoted by letter c in Bob’s input, with y[1, k−1] = x[1, k−1]. Therefore,
the word is well-formed if and only if c = x[k].

suit the application at hand. We describe the approach as adapted for Ascension(m). Information cost is
often defined in terms of the entire input and the full transcript of the protocol. We enforce both the nature
of streaming algorithms and of our problem, by restricting our attention to only one message MBm from the
transcript. We also split the input in two parts, and measure the information in the message MBm about one
part (k, c), conditioned on the other part x. In our case, the conditioning corresponds to information that is
in the hands of the subsequent players. The closest such measures, of which we are aware, were considered
in [JKS03, BBCR13].

The direct sum result is proven using the superadditivity of mutual information for inputs (ki, ci) picked
independently from a carefully chosen distribution. In the defining information cost, we measure mutual
information with respect to a distribution on which the Mountain function is the constant 0, even though we
consider protocols for the problem that are correct with high probability in the worst case (or, equivalently,
when the inputs are chosen from a “hard” distribution). The use of this easy distribution collapses the
function Ascension(m) to an instance of Mountain in any chosen coordinate. We massage this technique
into a form that is better suited to the streaming model and to proving lower bounds for the primitive
function Mountain.

We finish by giving a combinatorial argument that protocols computing Mountain in the worst case
necessarily reveal “a lot” of information even when its inputs are chosen according to the easy distribution.
Privacy loss, a measure similar to information cost, has been studied previously in protocols for Index (see,
e.g., [JRS09, JRS03a] and the references therein). Although this communication problem is closely related
to Mountain, prior works study Index under hard distributions, and do not seem to extend directly to our
case.

4.2 Information cost

We now implement the program laid out above. We use standard notions from information theory such as
Shannon entropy H(A), mutual information I(A : B), and their conditional variants H(A|C), I(A : B|C),
respectively (where A,B,C are jointly distributed random variables). For a primer on these notions and
their properties, we refer the reader to the text [CT91].

We measure the information cost of a one-pass public-coin randomized protocol P for Ascension(m)
(of the form described in the previous section), with respect to some distribution ν by ICν(P ) = I(K,C :
MBm |X, R), where (X,K,C) are inputs drawn from ν, and R denotes the public coins of P . From this
we define the information cost of the problem Ascension(m) itself with respect to a distribution ν and
error parameter δ as follows: ICpub

ν (Ascension(m), δ) = min
(
ICν(P )

)
, where the minimum is over one-
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pass public-coin randomized protocols P for the problem, with worst-case error at most δ. Note that the
information cost implicitly depends on σ, the length of each message.

For the problem Mountain we play a subtle game between public and private coins. We consider
protocols in which Alice has access only to public coins R, whereas Bob additionally has access to some
independent private coins RB. We define ICν(P ) = I(K,C : MB|X,R), where R denotes only the public-
coins of P . Further, we define ICmix

ν (Mountain, δ) = min
(
ICν(P )

)
, where P ranges over “mixed” public

and private coin randomized protocols with worst case error at most δ where Alice and Bob share public
coins, and only Bob has access to extra private coins.

We also make use of a related measure of complexity for Mountain when P ranges over protocols
where Alice’s message is deterministic, and Bob has access to private coins RB: DICmix

ν (Mountain, µ, δ) =
min

(
ICν(P )

)
, i.e., the minimum information cost with respect to ν, where P ranges over protocols for

Mountain, in which Alice’s message MA is deterministic given her input X, while Bob may use his private
coins RB to generate his message. Further, the distributional error of P is at most δ when the inputs are
chosen according to µ. Note that in general, and certainly in our application, ν and µ may be different,
meaning that we measure the information cost of the protocol with respect to some distribution ν, while we
measure its error under a potentially different distribution µ. For later use, we recall that the distributional
error under µ is E(X,K,C)∼µ

(
Pr(P fails on (X,K,C))

)
, where the probability is over the private coins RB

of Bob.
We begin by relating the information cost for protocols in which Alice is deterministic to that of mixed

randomized protocols. A similar argument for eliminating public randomness is seen in Ref. [CCM08,
Lemma 3.3].

Lemma 5.
DICmix

ν (Mountain, µ, 2δ) ≤ 2× ICmix
ν (Mountain, δ).

Proof. Consider a randomized protocol P for Mountain with worst-case error at most δ such that
ICmix

ν (Mountain, δ) = ICν(P ). We further assume that Alice and Bob have uniformly distributed pub-
lic coins R, and only Bob has extra private coins RB. Then

ICmix
ν (Mountain, δ) = E

r

(
I(K,C : MBm |X,R = r)

)
,

Since P has worst-case error at most δ, it has distributional error at most δ under µ:

E
r

(
E

(X,K,C)∼µ

(
Pr(P fails on (X,K,C)|R = r)

))
≤ δ.

Therefore, by the Markov inequality, there is a set R with Pr(R ∈ R) ≥ 1
2 such that

∀r ∈ R, E
(X,K,C)∼µ

(
Pr(P fails on (X,K,C)|R = r)

)
≤ 2δ.

Now consider the information cost of P under the distribution ν over inputs. Let U(R) denote the uniform
distribution on R. We have

E
r∼U(R)

(
I(k, c : MBm |X,R = r)

)
≤ 2× ICmix

ν (Mountain, δ),

since the event R has probability at least 1/2. Therefore, there exists an r ∈ R such that I(K,C :
MBm |X,R = r) ≤ 2 × ICmix

ν (Mountain, δ). Let Pr be the protocol obtained by fixing the public coins
used in P to r. Then Alice’s message MA is deterministic. By definition of R, the protocol Pr has distribu-
tional error at most 2δ under µ, and ICν(Pr) ≤ 2× ICmix

ν (Mountain, δ).
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4.3 Information cost of Mountain

As explained before, and formally proved in the next section, the information cost approach entails showing
that the Mountain problem is “hard” even when we restrict our attention to an easy distribution. We
prove such a result here.

Let µ be the distribution over inputs (x, k, c) in which X is a uniformly random n-bit string, K is a
uniformly random integer in [n] and C a uniformly random bit. This is a hard distribution for Mountain
(as is implicit in [Nay99, ANTV02]). We consider the information cost of Mountain under the distribution
µ0 obtained by conditioning µ on the event that the function value is 0: µ0(x, k, c) = µ(x, k, c|X[K] = C).

Lemma 6. If σ ≤ n/100, then

DICmix
µ0

(Mountain, µ, 1/16n2) ∈ Ω(log n).

Proof. Let P be a randomized protocol for Mountain, where Alice’s message MA is deterministic, with
distributional error at most 1/16n2 under the distribution µ, such that |MA| ≤ n/100. We prove that
ICµ0

(P ) ∈ Ω(log n). In the following, all expressions involving mutual information and entropy are with
respect to the distribution µ0.

By the Markov inequality, there are at least 2n−1 strings u on which P fails with error at most 1/8n2 on
average on input (u,K,C), where (K,C) are uniformly distributed. Let S ⊆ {0, 1}n of size at least 2n−1 be
the set of such strings u. When u ∈ S, the protocol P has error probability at most 1/4n on input (u, k, c),
for every (k, c).

Let α be a possible message MA from Alice to Bob when her inputs range in S, and let Sα = {u ∈
S : MA(u) = α}. For every string v ∈ Sα, we bound from below the mutual information of K and MB,
the randomized message that Bob sends back to Alice. For this we construct a set Jv ⊆ [n] such that the

message distributions Mk
def
= MB(α, v[1, k − 1], k, v[k]) for k ∈ Jv are pairwise well-separated in `1 distance.

This is in turn established by exhibiting, for each k ∈ Jv, a string uk ∈ Sα such that uk[1, k− 1] = v[1, k− 1]
and uk[k] 6= v[k]. The details follow.

Associate with Sα its dictionary T , a 2-rank tree (a tree with either 1 or 2 children at any internal node),
all of whose nodes except the root are labeled by bits; the root has an empty label. Each string v in Sα is in
one-to-one correspondence with a top-down path π in T from the root to one of its leaves, where the label
of the (i+ 1)th node in π is v[i]. We identify v ∈ Sα with the path π in T , and refer to this path as v.

The tree T has |Sα| leaves, each at depth n. For a fixed v ∈ Sα, let Jv be the set of integers k
such that the (k + 1)th node in path v has out-degree 2. By construction, for every k ∈ Jv there exists
another string, say, uk ∈ Sα such that uk[1, k − 1] = v[1, k − 1] and uk[k] 6= v[k]. Set ck = v[k] for
every k ∈ [n]. Then the message distributions satisfy MB(α, v[1, k − 1], k, ck) = MB(α, uk[1, k − 1], k, ck),
for all k ∈ Jv. Let Mk = MB(α, v[1, k − 1], k, ck). Let k, k′ ∈ Jv be distinct indices such that k < k′.
As uk′ [1, k

′−1] = v[1, k′−1], the message distributionMB(α, uk′ [1, k−1], k, ck) on input (uk′ , k, ck) equalsMk,
and also MB(α, uk′ [1, k

′ − 1], k′, ck′) on input (uk′ , k
′, ck′) equals Mk′ . However, uk′ [k] = v[k] = ck, so the

function evaluates to 0 on input (uk′ , k, ck), and uk′ [k
′] 6= v[k′] = ck′ , so the function value is 1 on (uk′ , k

′, ck′).
The protocol P computes its outputs from Mk, uk′ and Mk′ , uk′ , respectively, on these instances, and errs
with probability at most 1/4n.

We use the above property of the distributions {Mk} to bound from below the mutual information of K
and the message MB, given v.

Proposition 10.

I(K : MB|X = v) ≥
(4|Jv| − n

4n

)
log n− 2.

(We prove this below.)
Next, we observe from the properties of 2-rank trees that the number of strings v ∈ Sα for which |Jv| = l

is at most 2l. The number of v for which |Jv| ≤ l − 2 is therefore at most 2l−1. Now fix l = log |Sα|, and
note that the proportion of v ∈ Sα with |Jv| ≥ l − 1 is at least 1/2. Therefore Ev∼U(Sα) |Jv| ≥ l−1

2 .
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We now concentrate on the messages α such that PrX uniform(MA(X) = α|X ∈ S) ≥ 2−n/10. Then
l = log |Sα| ≥ n− 1− n/10 = 0.9n− 1, and by Proposition 10 for n ≥ 3,

E
V∼U(Sα)

(I(K,C : MB|X = V )) ≥
[

1

n
E

V∼U(Sα)
|JV | −

1

4

]
log n− 2

≥
[
l − 1

2n
− 1

4

]
log n− 2

≥
[

0.9n− 2

2n
− 1

4

]
log n− 2 ≥ 1

10
log n− 2.

Consider the set A of messages α which have probability at most 2−n/10 given X ∈ S. These messages
occur with probability at most 2n/1002−n/10 = 2−9n/10, which is negligible. Therefore we conclude that
I(K,C : MB|X) ∈ Ω(log n).

Proof of Proposition 10. Fix a string v, and the corresponding set of indices Jv. Suppose we are given as
input a distribution M = Mk, for some k ∈ Jv. We recover k using the following procedure Π:

1. For each k′ ∈ Jv, simulate Alice’s computation of the output in the protocol P , by setting MB = M ,
the distribution given as input to Π, and X = uk′ .

2. Let (Dk′)k′∈Jv be the sequence of outputs Alice generates from the above simulation. Output the
largest k′ for which Dk′ = 1. This is our guess for k.

On input Mk, the procedure Π above generates Dk = 1, and Dk′ = 0 for k′ > k, each with probability at
least 1− 1/4n for any fixed k′ ≥ k. Therefore, the procedure outputs k with probablity at least 3/4.

We now argue that the entropy of K is significantly reduced when given MB, X = v, under the distribu-
tion µ0 (i.e., when ck = v[k]). This is equivalent to saying that the mutual information of k and MB is high.
When the inputs are picked according to the distribution µ0, we have

I(K,C : MB|X = v) = H(K|X = v)−H(K|MB, X = v)

= log n−H(K|MB, X = v).

We bound from above the conditional entropy H(K|MB, X = v). We first separate the values of k 6∈ Jv as
follows. Let p = |Jv|/n, and define the Boolean random variable L as 1 iff K ∈ Jv. We have

H(K|MB, X = v)

= H(KL|MB, X = v)

= H(L|MB, X = v) + H(K|MB, X = v, L)

= H(p) + (1− p)H(K|MB, X = v,K 6∈ Jv)
+pH(K|MB, X = v,K ∈ Jv)

≤ 1 + (1− p) log n+ H(K|MB, X = v,K ∈ Jv)
≤ 1 + (1− p) log n+ H(K|KΠ, X = v, k ∈ Jv),

where KΠ is the random variable output by the procedure Π. The second equality follows from the Chain
Rule for entropy [CT91, Theorem 2.2.1, p. 16], and the final step follows from the Data Processing Inequal-
ity [CT91, Theorem 2.8.1, p. 32]. For any fixed k ∈ Jv, given Mk the procedure Π computes KΠ = k with
probability at least 3/4. By the Fano Inequality [CT91, Theorem 2.11.1, p. 39], we have

H(K|KΠ, X = v,K ∈ Jv) ≤ H

(
1

4

)
+

1

4
log(|Jv| − 1)

≤ 1 +
1

4
log n.
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By combining Lemmas 5 and 6 we get

Theorem 3.
ICmix

µ0
(Mountain, 1/32n2) ∈ Ω(log n).

4.4 Reduction from Ascension to Mountain

We now study the information cost of Ascension(m) for the distribution µm0 over ({0, 1}n × [n]× {0, 1})m
for the inputs x = (x1, x2, . . . , xm), k = (k1, k2, . . . , km) and c = (c1, c2, . . . , cm). We state a direct sum
property that relates this cost to that of one instance of Mountain, and then conclude.

Lemma 7.
ICpub

µm0
(Ascension(m), δ) ≥ m× ICmix

µ0
(Mountain, δ).

Proof. Let P be a public-coin randomized protocol for Ascension(m) with worst-case error δ such that

ICµm0 (P ) = ICpub
µm0

(Ascension(m), δ).

From P , we construct the following protocol P ′j for Mountain, where j ∈ [n]. Let (x, k, c) be the input
for Mountain.

1. Alice sets Aj ’s input xj to her input x.

2. Bob sets Bj ’s input (kj , xj [1, kj − 1], cj) to his input (k, x[1, k − 1], c).

3. Alice and Bob generate, using public coins, (Xi,Ki, Ci) according to µ0, independently for all i < j,
and Xi uniformly independently for i > j.

4. Bob generates (Ki) uniformly independently for i > j, but using his private coins. Then Bob sets
Ci = Xi[Ki] for i > j (so that (Xi,Ki, Ci) are distributed according to µ0, independently for all i > j).

5. Alice and Bob run the protocol P by simulating the players (Ai,Bi)
m
i=1 as follows:

(a) Alice runs P until she generates the message MAj from player Aj . She sends this message to Bob.

(b) Bob continues running P until he generates the message MBm from player Bm. He sends this
message to Alice.

(c) Alice completes the rest of the protocol P until the end, and produces as output for P ′j , the output
of player A1 in P .

By definition of the distribution µ0, we have f(Xi,Ki, Ci) = 0 for all i 6= j. So fm(X,K,C) = f(x, k, c),
and each protocol P ′j computes the function f , i.e., solves Mountain, with worst-case error δ.

We prove that ICµm0 (P ) =
∑
j ICµ0

(P ′j), which implies the result, since only Bob uses private coins in P ′j .
Let R denote the public coins used in the protocol P . By applying the Chain Rule [CT91, Theorem 2.5.2,

p. 22] to ICµm0 (P ), we get

ICµm0 (P ) = I(K,C : MBm |X, R)

=
∑
j

I(Kj , Cj : MBm |X,K1, C1, . . . ,Kj−1, Cj−1, R)

Let Rj = (R, (Xi)j 6=i, (Ki, Ci)i<j). These are all the public random coins used in the protocol P ′j , and
any further random coins (Ki, Ci)i>j are used only by Bob. Since for all j

ICµ0
(P ′j) = I(Kj , Cj : MBm |Xj , Rj) ,

which is the same as
I(Kj , Cj : MBm |X,K1, C1, . . . ,Kj−1, Cj−1, R) ,

the direct sum result follows.
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We can now conclude a lower bound for Ascension(m).

Theorem 4. Let P be a public-coin randomized protocol for Ascension(n/ log n) with worst-case error
probability 1/32n2, then σ ∈ Ω(n).

Proof. Let m = n/ log n and δ = 1/32n2, and let P be a public-coin randomized protocol for Ascension(m)

with worst-case error probability δ. ICµm0 (P ) is at most σ, and by definition ICpub
µm0

(Ascension(m), δ) is less

than or equal to ICµm0 (P ). By Lemma 7, we have ICpub
µm0

(Ascension(m), δ) ≥ m× ICmix
µ0

(Mountain, δ). By

Theorem 3, we get ICmix
µ0

(Mountain, δ) ∈ Ω(log n). Combining yields σ ∈ Ω(m log n) ∈ Ω(n).

Corollary 1. Every one-pass randomized streaming algorithm for Dyck(2) with (two-sided) error
O(1/n′ log n′) uses Ω(

√
n′ log n′) space, where n′ is the input length.

Proof. Assume we have a one-pass randomized streaming algorithm for Dyck(2) with (two-sided) error
O(1/n′ log n′) uses space σ, where n′ is the input length. Then, by the discussion at the beginning of
Section 4, there is a public-coin randomized protocol for Ascension(n/ log n) with n ∈ Θ(

√
n′ log n′) and

with worst-case error probability 1/32n2. By Theorem 4, the messages have length Ω(n), and therefore, the
streaming algorithm has space Ω(n) = Ω(

√
n′ log n′ ).

5 Concluding remarks

Existing computing infrastructure typically supports unidirectional streams. A question that naturally arises
from our work is whether we can achieve the performance of the bidirectional algorithm in Theorem 2 by
making multiple passes in the same direction. Two sets of authors, Chakrabarti, Cormode, Kondapally, and
McGregor [CCKM10, CCKM13], and Jain and Nayak [JN10] independently and concurrently proved that
allowing a larger constant number of passes in the same direction does not help. More precisely, they show
that for any T ≥ 1, any unidirectional randomized T -pass streaming algorithm that recognizes length n
instances of Dyck(2) with a constant probability of error uses space Ω(

√
n/T ). The lower bound in both

works goes via an extension of the reduction from Ascension(m) to Mountain (cf. Section 4.4). When
specialized to one-pass algorithms, the above gives us a bound that is factor of

√
log n better than the one

in Corollary 1 for constant error probability. However, it falls short of optimal (by the same factor) for
polynomially small error.

A number of later works have explored applications of the fingerprinting technique in streaming algo-
rithms, the relationship of formal language theory to streaming, or the advantage of bidirectional streams
over unidirectional ones. Chakrabarti et al. [CCKM10, CCKM13] use fingerprinting in a one-pass stream-
ing algorithm for checking priority queues. They also observe that the algorithms in this article extend
to checking stacks, queues, and double-ended queues. Konrad and Magniez [KM12] show a qualitatively
similar dichotomy between one-pass and bidrectional two-pass algorithms as in this article, for validating
XML documents. In addition, they present an algorithm when access to external memory is available. The
multipass lower bound for Dyck(2) described above [CCKM10, JN10] extends to the problem of checking
priority queues. François and Magniez prove a lower bound of Ω(

√
n/T ) for this problem even in the presence

of timestamps, with T passes in the same direction. They complement this with a polylogarithmic space
bidirectional algorithm, thus providing another example of a language for which bidirectional streams are
exponentially more powerful than unidirectional ones. Krebs, Limaye, and Srinivasan [KLS11] give stream-
ing algorithms for nearly well-parenthesized “one-turn” expressions and Babu, Limaye, and Varma [BLV10]
(see also [BLRV13]) study the streaming complexity of subclasses of context-free languages. We expect the
ideas in this article to have further such ramifications.
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