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Abstract

We consider the problem of testing the commutativity of a black-box group specified by its k generators. The
complexity (in terms of k) of this problem was first considered by Pak, who gave a randomized algorithm involv-
ing O(k) group operations. We construct a quite optimal quantum algorithm for this problem whose complexity is
in Õ(k2/3). The algorithm uses and highlights the power of the quantization method of Szegedy. For the lower bound
of Ω(k2/3), we give a reduction from a special case of Element Distinctness to our problem. Along the way, we prove
the optimality of the algorithm of Pak for the randomized model.

1 Introduction
A direction of research in quantum computation pioneered by Grover [Gro96] around search problems in unstructured,
structured, or partially structured databases has recently been infused with new ideas for algorithm design. In contrast
to problems based on the Hidden Subgroup Problem (HSP) (see for instance Ref. [Mos99]), the speed up for these
search problems is often only polynomial.

Usually in search problems, the access to the input is done via an oracle. This leads to the notion of query
complexity which measures the number of accesses to the oracle. While no significant lower bounds are known
for quantum time complexity, the oracle constraint sometimes enables us to prove such bounds in the query model.
For promise problems quantum query complexity indeed can be exponentially smaller than the randomized one. A
prominent example is HSP. On the other hand, for total functions, deterministic and quantum query complexities are
polynomially related [BBC+01].

In HSP, the group with its all structure is known to the algorithm designer, and the group operations are generally
efficiently computable. In the event that the group is not explicitly known, or the group operations are not efficient
to implement, it is appropriate to model the group operations by an oracle or a black-box. The notion of black-box
groups was introduced by Babai and Szemerédi [BS84]. In this model, the elements of a group are encoded by words
over a finite alphabet, and the group operations are performed by an oracle (the black-box). The groups are assumed to
be specified by generators, and the encoding of group elements is not necessarily unique: different strings may encode
the same group element. Mosca [Mos99] showed that one can learn in quantum polynomial time the structure of any
black-box abelian group. Such a task is known to be hard classically. Then Watrous [Wat01] pioneered the study of
black-box group properties in the quantum context.
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In this context, we study the problem of testing the commutativity of a black-box group (GROUP COMMUTA-
TIVITY) given by its generators. The classical complexity of this problem was first considered by Pak [Pak00]. The
straightforward algorithm for the problem has complexity O(k2), where k is the number of generators, since it suffices
to check if every pair of generators commute. Pak presented a surprising randomized algorithm whose complexity is
linear in k, and also showed that the deterministic lower bound is quadratic. The linear upper bound on complexity
may also be obtained by applying quantum search [Gro96] to locate a pair of generators that do not commute. Using
the quantization of random walks by Szegedy [Sze04], we instead present a sublinear algorithm with time and query
complexity in Õ(k2/3) (Theorem 3), where the Õ notation means that logarithmic multiplicative factors are omitted.

GROUP COMMUTATIVITY bears a deceptive resemblance to ELEMENT DISTINCTNESS. The aim in the former is
to detect the presence of a pair of generators which collide in the sense that they do not commute. However, since the
group structure is unknown, whether or not a pair of generators collide can only be determined by invoking the group
oracle. Moreover, the group oracle provides access to elements from the entire group spanned by the given generators,
which may be used towards establishing commutativity. These differences necessitate the use of ideas from Pak’s
algorithm, the theory of rapidly mixing Markov chains, and perhaps most remarkably, the Szegedy quantization of
walks.

GROUP COMMUTATIVITY appears to be the first natural problem for which the approach of Szegedy has no
equivalent using other known techniques for constructing quantum algorithms, such as Grover search [Gro96], or
the type of quantum walk introduced by Ambainis [Amb04]. Conversely, for Triangle Finding, the approach of
Ambainis was more successfully applied. For this problem, Magniez, Szegedy and Santha [MSS05] construct a
quantum algorithm that uses recursively two quantum walks à la Ref. [Amb04], while the Szegedy quantization of
walks seems to give a less query-efficient algorithm. The problems of GROUP COMMUTATIVITY and TRIANGLE
FINDING thus give strong evidence that the walks due to Ambainis are not comparable with the ones due to Szegedy.

A recent result of Buhrman and Špalek [Bv06] on matrix product verification also relies on the Szegedy quanti-
zation for its worst case time complexity. However, for the worst case instances, when there is at most one erroneous
entry, the approach of Ambainis gives an algorithm whose query complexity is the same as that due to Szegedy.

We also prove that our algorithm is almost optimal by giving an Ω(k2/3) lower bound for the quantum query com-
plexity of GROUP COMMUTATIVITY (Theorem 4). Simultaneously, we give an Ω(k) lower bound for its randomized
query complexity (Theorem 4). This lower bound shows that the algorithm of Pak [Pak00] is optimal, and to our
knowledge is new. We prove the lower bounds using a reduction from the problem of detecting a unique collision pair
of a function, which is a special case of ELEMENT DISTINCTNESS.

2 Preliminaries

2.1 Black-box groups
We suppose that the elements of the group G are encoded by binary strings of length n for some fixed integer n,
which we call the encoding length. The groups are given by generators, and therefore the input size of a group is the
product of the encoding length and the number of generators. For simplicity, we also assume that the identity element
of the group is given. Note that the encoding of group elements need not be unique, i.e., a single group element may
be represented by several strings. If the encoding is not unique, one also needs an oracle for identity tests. Unless
otherwise specified, we assume that the encoding is unique in this paper. All of our results apply when the encoding
is not unique if one is given an oracle for identity tests.

Since we deal with black-box groups we shall shortly describe them in the framework of quantum computing
(see also Refs. [Mos99] or [Wat01]). For a general introduction to quantum computing the reader might consult
Refs. [NC00, KSV02]. We work in the quantum circuit model. For a group G of encoding length n, the black-box
is given by two oracles OG and its inverse O−1

G , both operating on 2n qubits. For any group elements g, h ∈ G, the
effect of the oracles is the following: OG|g〉|h〉 = |g〉|gh〉 and O−1

G |g〉|h〉 = |g〉|g−1h〉. In this notation we
implicitly use the encoding of a group element. We do that everywhere in the paper when there is no ambiguity. Not
every binary string of length n necessarily corresponds to a group element. In this case the behaviour of the black-box
can be arbitrary.
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2.2 Query model
The quantum query model was explicitly introduced by Beals, Buhrman, Cleve, Mosca, and de Wolf [BBC+01]. In
this model, as in its classical counterpart, we pay for accessing the oracle, but unlike the classical case, the machine
can use the power of quantum parallelism to make queries in superposition.

The state of the computation is represented by three registers, the query register g, the answer register h, and the
work register z. The computation takes place in the vector space spanned by all basis states |g, h, z〉. In the quantum
model the state of the computation is a complex combination of all basis states which has unit length in the `2 norm.

For a black-box group the query operator is OG together with its inverse O−1
G . For oracle function F : X → Y

the query operator is OF : |g〉|h〉 7→ |g〉|h⊕ F (g)〉, where ⊕ denotes the bitwise xor operation.
Non-query operations are independent of the oracle. A k-query algorithm is a sequence of (k + 1) operations

(U0, U1, . . . , Uk) where each Ui is unitary. Initially the state of the computation is set to some fixed value |0̄, 0̄, 0̄〉.
In case of an oracle function, the sequence of operations U0, OF , U1, OF , . . . , Uk−1, OF , Uk is applied. For black-
box groups, the modified sequence of operations U0, O

b1
G , U1, O

b2
G , . . . , Uk−1, O

bk

G , Uk is applied, where bi ∈ {±1}.
Finally, one or more qubits designated as output bits are measured to get the outcome of the computation. The
quantum algorithms we consider have a probabilistic outcome, and they might give an erroneous answer with non-
zero probability. However, the probability of making an error is bounded by some fixed constant γ < 1/2.

In the query model of computation each query adds one to the query complexity of an algorithm, but all other
computations are free. The time complexity of the algorithm is usually measured in terms of the total circuit size for
the unitary operations Ui. We however take a more coarse-grained view of time complexity, and assume that operations
such as accessing qubits containing group encodings or updating them, take unit time.

2.3 Quantum walks
We state a simple version of the recent result of Szegedy [Sze04]. Let P be an irreducible (i.e., strongly connected),
aperiodic (i.e., non-bipartite), and symmetric Markov chain on a graph G = (V,E) on N vertices. Such a walk is
necessarily ergodic, i.e., converges to a unique stationary distribution regardless of the initial state.

Let P [u, v] denote the transition probability from u to v. Let M be a set of marked nodes of V . Assume, one
is given a database D that associates some data D(v) to every node v ∈ V . From D(v) we would like to determine
if v ∈ M . We expedite this search using a quantum procedure Φ. When operating with D three types of cost are
incurred. The cost might denote any measure of complexity such as query or time complexities.
Setup cost S: The cost to set up D(v) for a v ∈ V .
Update cost U: The cost to update D(v) for a v ∈ V , i.e., moving from D(v) to D(v′), where the transition from v
to v′ is allowed by the Markov chain P .
Checking cost C: For v ∈ V , the complexity of checking if v ∈ M from D(v).

Concerning the quantization of the walk P , one needs to consider the quantum time complexity of its implemen-
tation in terms of the following parameters:
Initialization time I: The time complexity for constructing the superposition

1√
N

∑
u,v

√
P [u, v]|u, v〉.

Transition time T: The time complexity of realizing the transformation

|u, v〉 7→ 2
√

P [u, v]
∑
v′

√
P [u, v′]|u, v′〉 − |u, v〉.

The Markov chains we construct in this paper are all random walks on regular graphs. For every node u, the proba-
bilities P [u, v] are all equal to 1/d or 0, where d is the degree of each node in the graph. The unitary transformation
defined above, restricted to the node u in the first register, then corresponds to the Grover diffusion operator [Gro96]
on the neighbours of u. The diffusion operator is the unitary matrix 2

dJ− I.
In the following theorem, which is the main result of Ref. [Sze04], the notation O(·) denotes the existence of a

universal constant so that the expression is an upper bound.
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Theorem 1 (Szegedy [Sze04]). Let δ be the eigenvalue gap of P , and let |M |
|V | ≥ ε > 0 whenever M is non-empty.

There exists a quantum algorithm that determines if M is non-empty with cost S+O((U + C)/
√

δε), and an additional
time complexity of I + O(T/

√
δε).

Note that in this theorem, when the cost denotes the time complexity, we need to add the additional time complexity
term to it.

Szegedy’s theorem thus gives us a recipe for constructing and characterizing the behaviour of a quantum walk
algorithm by specifying a classical random walk, and analysing its spectral gap and stationary distribution.

2.4 Spectral gap of Markov chains
The spectral gap (or eigenvalue gap) of a Markov chain (with non-negative eigenvalues) is the difference between the
largest and the second largest eigenvalue of the probability transition matrix that represents it. Estimating this quantity
directly from a description of the matrix is often very difficult. We take an indirect route to estimating this quantity by
appealing to its relation with the convergence properties of the Markov chain.

Consider an ergodic Markov chain on state space X with stationary distribution π. Let P t
x be the probability

distribution on X obtained by performing t steps of the Markov chain starting at x. Let ∆(t) be the maximum over all
starting states x ∈ X of the total variation distance ‖P t

x − π‖. Then the mixing time τ of the Markov chain is defined
as the smallest t such that ∆(t′) ≤ 1

2e for all t′ ≥ t.
A coupling for a Markov chain is a stochastic process on pairs of states (Ut, Vt) such that Ut and Vt, viewed

marginally, each evolve according to the Markov chain, and if Ut = Vt, then Ut+1 = Vt+1. The coupling time T is
the maximum expected time (over all pairs of initial states (u, v)) for the states Ut, Vt to coincide:

T = max
u,v

E[argmint{Ut = Vt, U0 = u, V0 = v}].

We use the following facts about the mixing of Markov chains:

1. [Sin93, Proposition 2.2, Chapter 2] For walks with only non-negative eigenvalues, λt ≤ ∆(t) · (minu π(u))−1,
where λ is the second largest eigenvalue. This bounds the second largest eigenvalue in terms of the total variation
distance.

2. (see e.g., Ref. [Ald82]) ∆(t) ≤ 2 exp(−b t
τ c). This relates the total variation distance at any time t to the

mixing time τ .

3. [Gri78] τ ≤ 2eT . This bounds the mixing time τ in terms of the coupling time T .

Combining all three relations, we may deduce the following relationship between the spectral gap of a Markov
chain and coupling time.

Corollary 1. For any ergodic Markov chain with only non-negative eigenvalues, the spectral gap 1 − λ ≥ 1
4eT ,

where λ is the second largest eigenvalue, and T is the coupling time for any valid coupling defined on X ×X .

Proof. Chaining all three facts listed above, taking t-th roots, and letting t →∞, we see that

λ ≤ exp(− 1
2eT

)

≤ 1− 1
4eT

,

which is equivalent to the claim.
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2.5 The problems
Here we define the problems we are dealing with. The focus of the paper is on

GROUP COMMUTATIVITY
Oracle: Group operations OG and O−1

G for an encoding in {0, 1}n

Input: The value of n and the encoding of generators g1, . . . , gk of G
Output: Yes if G is commutative, and No otherwise (if there are two indices i, j such that gigj 6= gjgi)

The next problem is a special instance of a well-studied problem, ELEMENT DISTINCTNESS.

UNIQUE COLLISION
Oracle: A function F from {1, . . . , k} to {1, . . . , k}
Input: The value of k
Output: Yes if there exists a unique collision pair x 6= y ∈ {1, . . . , k} such that F (x) = F (y), and No if
the function is a permutation

This is a promise problem (or a relation) since we do not require a definite output for certain valid oracle functions.
We also use a further specialization of the problem when k is even, UNIQUE SPLIT COLLISION, where, in the Yes
instances, one element of the colliding pair has to come from {1, . . . , k/2} and the other from {k/2 + 1, . . . , k}. We
call this a split collision. Note that in the positive instances of this problem, the restriction of the function to the two
intervals {1, . . . , k/2} and {k/2 + 1, . . . , k} is injective.

A beautiful application of the polynomial method gives us the optimal query complexity of UNIQUE COLLISION.

Theorem 2 ([AS04, Kut05, Amb05]). The quantum query complexity of UNIQUE COLLISION is Ω(k2/3).

The original results of the works cited above refer to the more general problem ELEMENT DISTINCTNESS, which
requires the detection of one or more colliding pairs. This was proven by a randomized reduction from the problem
COLLISION which distinguishes between a bijection and a two-to-one function. However, the reduction is still valid
for the special case we consider. The reason is that the randomized reduction from COLLISION results in instances of
UNIQUE COLLISION with constant probability.

3 A quantum algorithm for GROUP COMMUTATIVITY

We are given a black-box group G with generators g1, . . . , gk. The problem is to decide if G is abelian. For technical
reasons (see the proof of Lemma 1), and without loss of generality, we assume that g1 is the identity element.

We denote by Sl the set of all l-tuples of distinct elements of {1, . . . , k}. For any u = (u1, . . . , ul) ∈ Sl, we
denote by gu the group element gu1 . . . gul

. Not all group elements are generated by such products of l generators.
However, the subset of group elements we get this way has properties analogous to the entire group (see Lemma 2
below).

Our algorithm is based on the quantization of a random walk on Sl × Sl = S2
l . We adapt an approach due to Pak,

for which we generalize Lemma 1.3 of Ref. [Pak00] to random elements from Sl. Then we show how to walk on S2
l

for finding a non-commutative element in G, if there is any. We conclude using Theorem 1.
In this section, we let p = l(l−1)+(k−l)(k−l−1)

k(k−1) . Observe that when k = 2l, then p = l−1
2l−1 ≤

1
2 . Moreover, when

l = o(k), then 1− p = Θ(l/k).

Lemma 1. Let K 6= G be a subgroup of G. Then Pru∈Sl
[gu 6∈ K] ≥ 1−p

2 .

Proof. First we fix a total order (equivalently, a permutation) σ of {1, . . . , k}, and we denote by Sσ
l that subset of

l-tuples in Sl which respect the total order σ. In other words, u = (u1, . . . , ul) ∈ Sσ
l iff σ−1(ui) < σ−1(ui+1) for

all 1 ≤ i < l.
All the sets Sσ

l have the same size
(
n
l

)
. Any tuple u of distinct elements respects exactly n!/l! permutations σ,

and therefore occurs in exactly the same number of sets Sσ
l . Thus picking a uniformly random element from Sl is the

same as first picking a uniformly random permutation σ, and then picking a random element u ∈ Sσ
l . Consequently,
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it is enough to prove the theorem for any fixed order σ. The reader may find it helpful to take σ to be the identity
permutation to understand the idea behind the proof.

Let i be the smallest index for which gσ(i) 6∈ K. Such an i exists since K 6= G. Recall that g1 is the identity
element.

Fix an ordered l-tuple u such that σ(i) 6∈ u and 1 ∈ u. We denote by v the ordered l-tuple where 1 has been
deleted from u, and σ(i) has been inserted into it at the appropriate position (that respects the total order). Formally,
if u = (u1, . . . , um, um+1, . . . , ul) such that σ−1(um) < i < σ−1(um+1), then v is obtained by deleting 1 from
the (l + 1)-tuple (u1, . . . , um, σ(i), um+1, . . . , ul). This mapping defines a bijection (a perfect matching) between
tuples u such that σ(i) 6∈ u and 1 ∈ u, and tuples v such that σ(i) ∈ v and 1 6∈ v. Below we show that for every
matched pair of tuples u, v, at least one of the group elements gu, gv is not in K.

Consider a matched pair u, v as above. Let a = gu1gu2 · · · gum , and b = gum+1 · · · gul
. Then gu = ab and gv =

agσ(i)b. Note that because of the choice of i, the group element a ∈ K. If gu = ab ∈ K, then b = a−1gu ∈ K as
well. This means that gv = agσ(i)b 6∈ K, since otherwise, we would have gσ(i) = a−1gvb−1 ∈ K. Thus, both gu

and gv cannot be in K. Therefore

Pr
u∈Sσ

l

[gu ∈ K|σ(i) ∈ u xor 1 ∈ u] ≤ 1
2
.

Since for any two indices i, j,

Pr
u∈Sσ

l

[i, j ∈ u or i, j 6∈ u] = p =
l(l − 1) + (k − l)(k − l − 1)

k(k − 1)
,

we conclude that
Pr

u∈Sσ
l

[gu ∈ K] ≤ (1− p)× 1
2 + p× 1,

which is at most (1 + p)/2.

From Lemma 1, we can generalize Lemma 1.1 of Ref. [Pak00]. For this, we recall the notions of the centre of a
group, and the centralizer of a group element. The centralizer C(g) of a group element g ∈ G is the set of all group
elements h that commute with g. This is a subgroup of G. The centre C(G) of the group is the intersection of the
centralizers of all groups elements. This is also a subgroup of G, and by definition, the elements of this subgroup
commute with every element of the group G.

Lemma 2. If G is non-commutative then Pru,v∈Sl
[gugv 6= gvgu] ≥ (1−p)2

4 .

Proof. If G is non-commutative, then the centre C(G) of G is a proper subgroup. With probability at least (1− p)/2,
gu does not belong to C(G) for a random u ∈ Sl (Lemma 1). We condition upon this event. Since gu 6∈ C(G), there
is at least one element of G that does not commute with it. So the centralizer of gu is also a proper subgroup of G.
Again, by Lemma 1, the probability that for a random v ∈ Sl, gv does not belong to the centralizer of gu is also at
least (1− p)/2.

For u ∈ Sl, let tu be the balanced binary tree with l leaves, whose leaves are from left to right the elements gui ,
for i = 1, . . . , l, and such that each internal node is the group product of its two successors. If l is not a power of 2,
we put the deepest leaves to the left.

The random walk on S2
l that forms the basis of our quantum algorithm consists of two independent simultaneous

walks on Sl. For a pair (u, v) of l-tuples, we maintain the binary trees tu, tv as described above as the data.

The random walk on Sl

Suppose the current state is u ∈ Sl.
With probability 1/2 stay at u; with probability 1/2, do the following:
– Pick a uniformly random position i ∈ {1, . . . , l}, and a uniformly random index j ∈ {1, . . . , k}.
– If j = um for some m, then exchange ui and um, else, set ui = j.
– Update the tree tu (using O(log l) group operations). This involves “uncomputing” all the products
from the root to the leaf that is being updated, and then computing fresh products from the leaf to the root
of the tree.
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Lemma 3. The spectral gap of the walk described above is at least c
l log l , for a universal constant c ≥ 1

8e , provided l ≤
k/2.

Proof. First, we show that the random walk mixes rapidly using a “coupling argument”. Then, using a relation between
mixing time and the second largest eigenvalue, we get a bound on the spectral gap.

Note that the walk is ergodic and has the uniform distribution on Sl as its stationary distribution π. Thus π(u) =
(k−l)!

k! for all u.
The eigenvalues of any stochastic matrix P , such as the transition matrix of a Markov chain, all lie in the inter-

val [−1, 1]. Suppose we modify the chain by including self-loops at every state, i.e., remaining at the current state
with probability 1/2, and following the transition of the chain with probability 1/2. Then the transition matrix be-
comes (I + P )/2, where I is the identity matrix. The eigenvalues of this matrix lie in the interval [0, 1]. Because of
such self-loops, all the eigenvalues of our walk above on Sl are non-negative.

In order to find a lower bound for the spectral gap of our random walk on Sl, we use Corollary 1. A coupling for
which T ≤ l log l is the obvious one: for any pair u, v ∈ Sl, follow one step of the random walk with the same choice
of random position i and index j. This is clearly a valid coupling, since the marginal process on any one of the two
tuples is the same as our walk, and if the two tuples are identical, they are modified identically by the walk.

Let d be the Hamming distance between the two tuples u, v. This distance never increases during the coupling
process described above. Moreover, in one step of the process, the distance goes down by 1 with probability at
least d

2l . This is because with probability d/l, the position i is one where u and v are different, and with probability at
least (k− l)/k, the index j is not one from the positions where u and v are the same. Since l ≤ k/2, the net probability
that the distance decreases by 1 is at least d/2l.

By a straightforward calculation, the expected time T for the distance to go to zero is at most 2l log l (since d ≤ l).
Using the relation between λ and T derived in Corollary 1, we get our bound on the spectral gap.

Theorem 3. There is a quantum algorithm that solves GROUP COMMUTATIVITY with O(k2/3 log k) queries and time
complexity O(k2/3 log2 k).

Proof. Our algorithm derived from an application of Theorem 1 to the product of two independent walks on Sl. The
database associated with a tuple u ∈ Sl is the binary tree tu. Due to the Szegedy Theorem, we need only compute the
eigenvalue gap δ of the random walk and the fraction of marked states ε in the uniform distribution on S2

l .
The stationary distribution for the walk is the uniform distribution on Sl×Sl. So, from Lemma 2 above, the fraction

of marked states ε is at least (1− p)2/4. The spectral gap δ for the walk is the same as that on Sl, i.e., δ ≥ c/(l log l),
from Lemma 3.

We start with a uniform distribution over |u, tu〉|v, tv〉, where u, v ∈ Sl. The setup cost is at most 2(l− 1) and the
updating cost of the walk is O(log l). We choose l = o(k) so that 1− p = Θ(l/k). By Theorem 1, the total query cost
is

2(l − 1) + O

(
1√
δε

log l

)
= 2(l − 1) + O

(
1

1− p

√
l log l · log l

)
= 2(l − 1) + O

(
k√
l
log3/2 l

)
.

This expression is minimized when l = k2/3 log k, and the cost is O(k2/3 log k).
The time complexity overhead comes from the initialization and transition times that are both essentially equal

to the time complexity of performing a Grover diffusion operation (see Section 2.3). For the initialization, we use a
diffusion over S2

l , whose time complexity is O(log(|Sl|2)) = O(l log k). For the transition, we use a diffusion over
a set of size 2 tensor product with a diffusion over a set of size kl, therefore the corresponding time complexity is
O(log(kl)) = O(log k).
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4 Reduction from UNIQUE SPLIT COLLISION

We begin our presentation of the lower bound by considering the complexity of UNIQUE SPLIT COLLISION. This
problem is at least as hard as UNIQUE COLLISION in its query complexity since any bounded-error algorithm for the
former can be used to detect an arbitrary collision.

Proposition 1. The randomized and the quantum query complexity of UNIQUE SPLIT COLLISION is respectively
Ω(k) and Ω(k2/3).

Proof. One can prove the Ω(k) lower bound for classical query complexity by an adversary argument.
For the quantum case, we reduce UNIQUE COLLISION to UNIQUE SPLIT COLLISION by composing the oracle

function with a random permutation. Then Theorem 2 (due to Aaronson and Shi [AS04] and Kutin [Kut05], together
with Ambainis [Amb05]) implies the lower bound.

Assume that we have an algorithm A for UNIQUE SPLIT COLLISION with constant bounded error γ < 1/4. We
run A on oracle F composed with a random permutation on the domain. If there is a collision in the function F ,
with probability at least 1/2, the colliding pair will have one point on either side of k/2. This will be detected with
probability at least 1 − γ. The overall success probability will be (1 − γ)/2 ≥ 3/8. If there is no collision, the
algorithm will make an error with probability at most γ < 1/4. Using standard techniques, this gap in acceptance
probability can be made symmetric around 1/2 and boosted by repeating the experiment with an independent run of
the algorithm A on F composed with a fresh random permutation. For completeness, we include the argument below.

Our final algorithm for UNIQUE COLLISION picks two random permutations, and runs A on the oracle function
composed with these permutations. It accepts if any one of the two executions of A accepts. We now show that the
error of our algorithm is now upper bounded by 1/4 + γ < 1/2.

If the oracle function F has no collision, the error is upper bounded by 2γ < 1/4+γ. If F has a collision, then with
probability at most (1/2)2 = 1/4, the colliding pair has no point on either side of k/2 for both the randomly chosen
permutations. Assume this is not the case, and fix a permutation for which the permuted F has a split collision. Our
algorithm accepts this permutation of F with probability at least 1 − γ. Therefore the overall error is upper bounded
by 1/4 + γ.

In reducing a positive instance of UNIQUE COLLISION, with probability close to 1/4, we get inputs for which the
algorithm for UNIQUE SPLIT COLLISION need not output a definite answer with probability bounded away from 1/2.
(These are inputs where the colliding pair of indices are both at most k/2 or both greater than k/2.) Our argument is
valid in spite of this, since the acceptance probability in the other case is high.

We conclude by proving the same lower bound for GROUP COMMUTATIVITY as well. We thus show that the
algorithm described in the previous section is almost optimal.

The group involved in the proof of the lower bound is a subgroup G of U(4k), the group under matrix multiplica-
tion of 4k × 4k unitary matrices. The generators of G are block diagonal, each with 2k blocks of dimension 2 × 2.
Each block is one of the following Pauli matrices:

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y = XZ =

(
0 −1
1 0

)
.

No pair of matrices amongst X, Y and Z commute. An encoding of the group G consists in words σ1 . . . σ2k of
length 2k over the alphabet {I, X, Y, Z} together with a sign vector s = (s1, s2, . . . , s2k) in {+1,−1}2k. A tuple
(s, σ1, . . . σ2k) represents the matrix diag(s1σ1, . . . , s2kσ2k). We call this encoding the explicit encoding.

Theorem 4. The randomized and the quantum query complexity of GROUP COMMUTATIVITY are respectively Ω(k)
and Ω(k2/3).

Proof. We prove the theorem by reducing UNIQUE SPLIT COLLISION to GROUP COMMUTATIVITY. First, we define
a group that is non-commutative if and only if the oracle input F for UNIQUE SPLIT COLLISION has a collision.
Second, we design a unique encoding of the group elements such that each group operation can be simulated with at
most four queries to F . We then conclude our theorem using Proposition 1.
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For i, j ∈ {1, 2, . . . , k}, we define aij , bij ∈ U(2k) of the form described above. Both kinds of matrix have
the identity matrix in all their blocks except for the i-th and (j + k)-th. The i-th block is Y in both aij and bij .
The (j + k)-th block is Z in aij and X in bij .

Suppose the oracle for the problem UNIQUE SPLIT COLLISION computes the function F : {1, . . . , k} →
{1, . . . , k}. We associate a generator gi of the type described above with each element i in the domain of F . The
generator gi is aiF (i) if i ≤ k/2, and it is biF (i) if i > k/2.

Observe that all the generators gi are distinct, since the i-th block in it is Y , and the rest of the initial k blocks are
the identity matrix. This is designed so that we can identify the index i from the explicit encoding of a generator.

For any two distinct points i1, i2, if F (i1) 6= F (i2), then the generators gi1 , gi2 have distinct blocks F (i1) + k
and F (i2) + k set to either Z or X . So if the function F is injective, the set of generators {gi} consists of k distinct
commuting elements. If there is a collision i1, i2 in F with one point on either side of k/2, then the same block F (i1)+
k = F (i2)+k is set to Z and X respectively. Then the generators gi1 and gi2 do not commute, and the group generated
by {gi} is non-abelian.

The encoding of the group elements is the explicit encoding defined above except for the generators gi. The
generators gi are encoded by their corresponding indices i. The input to GROUP COMMUTATIVITY is 1, 2, . . . , k.

Now we explain how to simulate the group operations. When an integer i is involved in a group operation, we
query the oracle for F at i and construct gi as defined above. One more query to F is required to erase the value of the
function. Otherwise we do not query F . Matrix operations can be performed without incurring any further calls to F .

We also have to take care to output the result of a group operation in the correct encoding. Namely, when the
output of a group operation is either aij or bij , for some i, j, then we check if it can be encoded by i using one query
to F , and one more query to erase the value of the function.

Thus a group operation involves F at most six times, when both of the elements are encoded by integers. Note
that a product of two group elements of the form aij or bij can never result in another such generator. We can thus
improve the number of invocations of the function oracle from six to four per group operation.
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[Bv06] Harry Buhrman and Robert Špalek. Quantum verification of matrix products. In Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 880–889, 2006.

9



[Gri78] David S. Griffeath. Coupling methods for Markov processes. In Gian-Carlo Rota, editor, Studies in
Probability and Ergodic Theory, pages 1–43. Academic Press, New York, NY, USA, 1978.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-
Eighth Annual ACM Symposium on the Theory of Computing, pages 212–219, 1996.

[KSV02] Alexei Yu. Kitaev, Alexander H. Shen, and Mikhail N. Vyalyi. Classical and Quantum Computation,
volume 47 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.

[Kut05] Samuel Kutin. Quantum lower bound for the collision problem with small range. Theory of Computing,
1(2):29–36, 2005.

[Mos99] Michele Mosca. Quantum Computer Algorithms. PhD thesis, University of Oxford, 1999.

[MSS05] Frédéric Magniez, Miklos Santha, and Mario Szegedy. Quantum algorithms for the triangle problem. In
Proceedings of 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1109–1117, 2005.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge, UK, 2000.

[Pak00] Igor Pak. Testing commutativity of a group and the power of randomization. Electronic version at
http://www-math.mit.edu/∼pak/research.html, 2000.

[Sin93] Alistair Sinclair. Algorithms for Random Generation and Counting: A Markov Chain Approach. Progress
in theoretical computer science. Birkhäuser, Boston, 1993.
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