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Abstract

We present deterministic algorithms for the Hidden Subgroup Problem. The first algorithm,
for abelian groups, achieves the same asymptotic worst-case query complexity as the optimal
randomized algorithm, namely O(

√
n ), where n is the order of the group. The analogous

algorithm for non-abelian groups comes within a
√

log n factor of the optimal randomized
query complexity.

The best known randomized algorithm for the Hidden Subgroup Problem has expected
query complexity that is sensitive to the input, namely O(

√
n/m ), where m is the order of

the hidden subgroup. In the first version of this article [10, Sec. 5], we asked if there is a de-
terministic algorithm whose query complexity has a similar dependence on the order of the
hidden subgroup. Prompted by this question, Ye and Li [14] present deterministic algorithms
for abelian groups which solve the problem with O(

√
n/m ) queries, and find the hidden sub-

group with O(
√

n(log m)/m + log m) queries. Moreover, they exhibit instances which show
that in general, the deterministic query complexity of the problem may be o(

√
n/m ), and that

of finding the entire subgroup may also be o(
√

n/m ) or even ω(
√

n/m ).
We present a different deterministic algorithm for the Hidden Subgroup Problem that also

has query complexity O(
√

n/m ) for abelian groups. The algorithm is arguably simpler. More-
over, it works for non-abelian groups, and has query complexity O(

√
(n/m) log(n/m) ) for a

large class of instances, such as those over supersolvable groups. We build on this to design
deterministic algorithms to find the hidden subgroup for all abelian and some non-abelian
instances, at the cost of a log m multiplicative factor increase in the query complexity.

1 Introduction

In the Simon Problem with parameter k, we are given an oracle for a function f : Zk
2 → S, for

some co-domain S with |S| ≥ 2k. The function f is either injective, or there is an unknown non-
zero element s ∈ Zk

2 such that for all x, y ∈ Zk
2, we have f (x) = f (y) if and only if x+ y ∈ {0, s}. In

the latter case, we say that the function “hides” the element s, and call a pair of distinct inputs x, y
a “collision” if f (x) = f (y). The task is to determine which of the two cases holds.

Simon designed a bounded-error quantum algorithm with query complexity O(k) for the
eponymous problem, and showed that any bounded-error classical (i.e., randomized) algorithm
for the problem requires Ω(2k/2) queries [11]. (The query lower bound stated in the paper is
Ω(2k/4) for classical algorithms with error at most 1

2 − 2−k/2. However, the proof can be modified
in a straightforward manner to show that if the algorithm makes error at most 1

4 , at least 2k/2−1
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queries are required.) The lower bound for classical algorithms is optimal up to a constant factor,
as is implied by the “Birthday Paradox”: if we pick t := d2k/2+1e elements X1, X2, . . . , Xt indepen-
dently and uniformly at random from Zk

2, if f hides some non-zero element, with probability at
least 3/4 we find a collision (i.e., a pair Xi, Xj with i, j ∈ [t] such that Xi 6= Xj but f (Xi) = f (Xj)).

We present a simple, deterministic algorithm for the Simon problem that achieves the asymp-
totically optimal classical query complexity (Theorem 2.1). Since posting the first version of this
article [10], we have learnt that algorithms achieving the same asymptotic query complexity, in-
cluding the same algorithm, were known before [5, 12, 13]. Nevertheless, it is instructive to un-
derstand the algorithm underlying Theorem 2.1, as it forms the basis of the generalizations that
we describe next.

The Simon Problem is a special case of the Hidden Subgroup Problem (see, e.g., Ref. [6]). In
the Hidden Subgroup Problem, we are given the description of a finite group G, and an oracle
for a function f : G → S, where |S| ≥ |G|. The function f is either injective, or there is an
unknown non-trivial subgroup H of G such that for all x, y ∈ G, we have f (x) = f (y) if and
only if x−1y ∈ H. In other words, the function f is constant on left cosets of a possibly trivial
subgroup of G, and takes distinct values for distinct left cosets of the subgroup. We say that the
function “hides” the subgroup H. The task is to determine whether the subgroup is trivial, i.e.,
the function f is injective, or not. When G := Zk

2 and the hidden subgroup H is of the form {0, s}
for some unknown non-zero element s ∈ Zk

2, we get the Simon Problem.
The randomized algorithm for the Simon Problem generalizes immediately to the Hidden Sub-

group Problem when the order m of the hidden subgroup H is known, and the resulting algorithm
has query complexity O(

√
n/m ), where n is the order of the group G. When the order m is not

known, we can use this basic algorithm to design a new algorithm. The new algorithm has query
complexity O(

√
n ) when the function is injective, and expected query complexity O(

√
n/m ) when

the function f hides some non-trivial subgroup H with unknown order m. Namely, we run the
basic randomized algorithm above, with error at most 1/4, assuming that the order of the hid-
den subgroup is at least r, starting from r := n/2. If we do not succeed, we halve r, and repeat
(until r ≤ 1).

We may ask if the Hidden Subgroup Problem also admits a deterministic algorithm that is
as efficient in the worst-case as the best randomized algorithm. We answer this in the affirma-
tive when the underlying group is abelian (Corollary 3.6). For non-abelian groups, we present
a deterministic algorithm that comes within a multiplicative factor of O(

√
log n ) of the optimal

randomized query complexity (Corollary 4.2). Both the algorithms are based on the construction
of a generating pair of subsets for a group (Definition 3.1), with optimal or nearly optimal size.

The optimal randomized algorithm for the Hidden Subgroup Problem described above has
expected query complexity that is sensitive to the input, namely O(

√
n/m ). It is natural to ask

if there is a deterministic algorithm that has query complexity with a similar dependence on the
order of the hidden subgroup. Algorithms coming close to this bound were known prior to this
work for the case of G := Zk

p for prime p, when the subgroup H has order pl and l is known; see
Ref. [12] for the p = 2 case, and Ref. [13] for the general case. The algorithm in Ref. [13] has query
complexity O(

√
n(log m)/m + log m).

The above question was posed as an open problem in the first version of this article [10, Sec. 5].
Prompted by this question, Ye and Li [14] present deterministic algorithms for abelian groups
which solve the problem with query complexity O(

√
n/m ), and find the hidden subgroup with

query complexity O(
√

n(log m)/m + log m). These algorithms also build on the concept of gener-
ating pairs which we introduced in Ref. [10], and use a construction of generating pairs similar to
the one we gave. Moreover, Ye and Li exhibit instances which show that in general, the determinis-
tic query complexity of the problem may be o(

√
n/m ), and that of finding the entire subgroup may
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also be o(
√

n/m ) or even ω(
√

n/m ). In fact, the instance with complexity ω(
√

n/m ) for finding
the hidden subgroup follows from earlier work due to Ye, Huang, Li, and Wang [13, Theorem 1].
In more detail, for the group Zpk for a given prime p and k ≥ 2, the deterministic query complex-
ity of the problem is 2 and that of finding the hidden subgroup is O(log(n/m)), while n/m may
be ω(1). For G := Zk

p and a hidden subgroup H of order pk−1, any deterministic algorithm that
finds the subgroup has query complexity Ω(k), while

√
n/m is

√
p. This gives an arbitrarily large

separation as k grows for a fixed prime p.
We present a different deterministic algorithm for the Hidden Subgroup Problem that also

has query complexity O(
√

n/m ) for abelian groups (Algorithm 1, Theorem 5.2). The algorithm
is arguably simpler. Furthermore, it also works for non-abelian groups, and has query complex-
ity O(

√
(n/m) log(n/m) ) for classes of instances which include those over supersolvable groups.

We observe that for abelian groups the problem of finding the hidden subgroup may be reduced to
that of finding a single collision, and obtain an O

(
(log m)

√
n/m

)
-query deterministic algorithm

for it (Algorithm 2, Theorem 6.1). We build on these results to design an algorithm that finds the
hidden subgroup in certain non-abelian instances with O

(
(log m)

√
(n/m) log(n/m)

)
queries

(Algorithm 3, Theorem 6.3). The instances are precisely the ones in which the underlying group
is a bicrossed product of the hidden subgroup with another subgroup [1]. All these algorithms
again rest on generating pairs of (near-) optimal size.

Note that the query complexity of the algorithm due to Ye and Li for abelian groups may be a
factor of

√
log m smaller than that of Algorithm 2. They achieve the stronger bound by searching

for a structured set of independent generators for the hidden subgroup, and by using a partially
nested sequence of generating pairs with finely tuned size. This entails a detailed analysis of
the structure of the hidden subgroup. It is not clear whether we can achieve the same query
complexity without resorting to these ideas.

Acknowledgements. A.N. is grateful for the opportunity to teach quantum computation at the
undergraduate level, which prompted this work. He is also grateful to Kanstantsin Pashkovich
for several helpful discussions, especially for a course-correction early in this work. He thanks
William Slofstra for a pointer to relevant literature, and Zekun Ye for bringing Ref. [13] to his
attention. This research is supported in part by a Discovery Grant from NSERC Canada.

2 The Simon Problem

We start with a simple, deterministic algorithm for the Simon problem that matches the query
complexity of the asymptotically optimal classical algorithm.

Theorem 2.1. There is a deterministic algorithm that makes 2bk/2c + 2dk/2e queries and solves the Simon
Problem with parameter k. Moreover, if the input function hides the non-zero element s, the algorithm
finds s. Finally, any deterministic algorithm for the problem requires at least q queries, where q is the
smallest positive integer such that (q

2) ≥ 2k − 1.

Proof. Let l := bk/2c. Viewing elements of Zk
2 as k-bit strings, we query the function f at all 2l

elements of the form u 0k−l , where u ∈ Zl
2, and at all 2k−l elements of the form 0l v, where v ∈ Zk−l

2 .
If the function is distinct at all these points, we say f is injective. Otherwise, we say that f is not
injective, and output x + y, where x 6= y and x, y are a colliding pair (i.e., are such that f (x) =
f (y)).

If the function is injective, the above algorithm outputs the correct answer. Suppose f hides
a non-zero element s ∈ Zk

2. Let a be the projection of s onto the first l coordinates, and b be the
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projection of s onto the last k − l coordinates. Then a 0k−l + 0l b = s. As f (a 0k−l) = f (0l b), the
above algorithm detects a collision and computes s correctly.

Now consider any deterministic algorithm for the problem that makes t queries such that(
t
2

)
≤ 2k − 2 .

Then we argue that there is an injective function f0, and a function f1 that hides a non-zero el-
ement s, such that f0 and f1 agree on all the t elements queried. Suppose the t queries that the
algorithm makes are x1, x2, . . . , xt. We take f0 to be any injective function. Consider the set of ele-
ments S :=

{
xi + xj : i, j ∈ [t], i 6= j

}
. We have |S| ≤ (t

2) ≤ 2k − 2, so there is at least one non-zero
element in Zk

2 \ S. Let s be one such element. By definition of s, we have xi + s 6= xj for any i, j ∈ [t].
Thus there is a function f1 that equals f0 at all the points xi, i ∈ [t], and also hides s.

Note that for k ≥ 2, if (q
2) ≥ 2k − 1, we have q2 ≥ 2k+1 − 2, and therefore

q ≥ 2(k+1)/2(1− 1/2k)1/2 ≥ 2(k+1)/2 − 2−(k−1)/2 .

Since q is integral, q ≥ 2(k+1)/2. The deterministic upper bound in the theorem comes within a
factor of 3/2 of this lower bound. Also note that the upper bound in the theorem is within a factor
of 3
√

2 of the query lower bound for randomized algorithms with error at most 1/4.

3 The Abelian Hidden Subgroup Problem

We now turn our focus to the Hidden Subgroup Problem when the underlying group is abelian.
It is not clear how the use of projections in the algorithm presented in Section 2 may be extended
to this case, let alone to the non-abelian case. The issue is that the given abelian group may be the
direct product of cyclic groups with vastly different orders. We give a different extension of the
algorithm, which combines several ways of expressing an abelian group as a sum of two subsets.

More formally, the basic idea behind the algorithm in Theorem 2.1 is to find a pair of sets S1, S2
of elements of the group G such that |S1| , |S2| ∈ O(

√
|G| ) and S1 + S2 = G, where

S1 + S2 := {x + y : x ∈ S1, y ∈ S2} .

(Here, ‘+’ denotes the group operation.) We explain how such a pair of sets may be constructed
in a few cases. Together, they yield a construction for a general abelian group.

Definition 3.1. For any group G, we say a pair S1, S2 ⊆ G is a generating pair for G if the set S1S2
defined as S1S2 := {xy : x ∈ S1, y ∈ S2} equals G.

We start with the construction of a generating pair for a cyclic group.

Lemma 3.2. Let n be an integer greater than 1, and let m := d
√

n e. There is a generating pair S1, S2
for Zn such that |S1| = m and |S2| ≤ bn/mc+ 1. If n is a perfect square, the pair further satisfies |S1| =
|S2| =

√
n .

Proof. We use the Division Algorithm to find such subsets. If we choose a divisor m that roughly
equals

√
n, then the number of different remainders and quotients we get when we divide non-

negative integers less than n are both roughly
√

n.
Let m := d

√
n e, let S1 := {0, 1, 2, . . . , m− 1}, and let S2 := {mi : 0 ≤ i < n/m}. The sub-

sets S1, S2 satisfy the required properties.
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Next, we consider a direct product of two cyclic groups whose orders are both odd powers of
the same prime number.

Lemma 3.3. Consider the group G := Zn ×Zm, where n := pk, m := pl , p is prime, and k, l are positive
odd integers. There is a generating pair S1, S2 for G such that |S1| = |S2| =

√
nm .

Proof. W.l.o.g., assume that k ≥ l. Let q := p(k+l)/2. Note that 0 < q =
√

nm < n. Consider

S1 := Zq × {0} , and
S2 := {iq : 0 ≤ i < n/q} ×Zm .

By the Division Algorithm, we have

Zq + {iq : 0 ≤ i < n/q} = Zn .

So S1 + S2 = G. Moreover, we have |S1| = q =
√

nm = (n/q)×m = |S2|.

We may combine the generating pairs for two groups to obtain one for their direct product.
While we present the proof of the lemma below with the notation for abelian groups, it also holds
for non-abelian groups.

Lemma 3.4. Consider a direct product group G := G1 × G2. Suppose S1, S2 is a generating pair for G1,
and T1, T2 is a generating pair for G2. Then (S1 × T1), (S2 × T2) is a generating pair for G.

Proof. Any element g ∈ G1 may be expressed as g1 + g2, where g1 ∈ S1 and g2 ∈ S2. Similarly,
any element h ∈ G2 may be expressed as h1 + h2, where h1 ∈ T1 and h2 ∈ T2. Then (g, h) =
(g1, h1) + (g2, h2) ∈ (S1 × T1) + (S2 × T2).

The construction for a general finite abelian group combines the above building blocks.

Theorem 3.5. For any finite abelian group G with order n, there is a generating pair S1, S2 for G such
that |S1| and |S2| are both at most 2

√
n.

Proof. By the fundamental theorem of abelian groups, any non-trivial finite abelian group G may
be expressed as a direct product of cyclic groups of prime power order:

G ∼= Z
pk1

1
×Z

pk2
2
× · · · ×Z

p
kl
l

, (3.1)

where the integers pi are primes, not necessarily distinct, and the integers ki ≥ 1 for all i ∈ [l]. We
prove the lemma by strong induction on l, the number of cyclic groups in a decomposition of G.

If l = 1, the statement follows from Lemma 3.2.
Suppose the statement holds for all non-trivial finite abelian groups which have a decomposi-

tion as above with at most m cyclic groups, for some m ≥ 1. Suppose l := m + 1, and consider a
group G with order n and a decomposition with l cyclic groups as in eq. (3.1).

Suppose for some i ∈ [l], the integer ki is even. Let r be such an index. We let G1 := Zpkr
r

and G2

the direct product of the remaining cyclic groups so that G ∼= G1 × G2. By Lemma 3.2, there is a
generating pair S1, S2 for G1 such that |S1| = |S2| =

√
n1 , where n1 := pr

kr . By the induction
hypothesis, there is a generating pair T1, T2 for G2 such that |T1| , |T2| ≤ 2

√
n2 , where n2 := |G2|.

By Lemma 3.4, we get a generating pair (S1 × T1), (S2 × T2) for G such that |S1 × T1| , |S2 × T2| ≤
2
√

n1n2 = 2
√

n .
Suppose for all i ∈ [l], the integers ki are odd. Suppose for some i, j ∈ [l], i 6= j, we have pi =

pj. Let r, s be such a pair of indices. We let G1 := Zpkr
r
×Zpks

s
and G2 the direct product of the
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remaining cyclic groups so that G ∼= G1 × G2. By Lemma 3.3, there is a generating pair S1, S2
for G1 such that |S1| = |S2| =

√
n1 , where n1 := pr

kr ps
ks . By the induction hypothesis, there is a

generating pair T1, T2 for G2 such that |T1| , |T2| ≤ 2
√

n2 , where n2 := |G2|. By Lemma 3.4, we get
a generating pair (S1 × T1), (S2 × T2) for G such that |S1 × T1| , |S2 × T2| ≤ 2

√
n1n2 = 2

√
n .

Suppose for all i ∈ [l], the integers ki are odd, and the primes pi are all distinct. Then, by the
Chinese Remainder Theorem, we have G ∼= Zn. The statement now follows from Lemma 3.2, by
noting that for n ≥ 2 we have d

√
n e ≤ 2

√
n and b

√
n c+ 1 ≤ 2

√
n .

The algorithm for the abelian Hidden Subgroup Problem follows directly from the existence
of a suitable generating pair for the underlying group.

Corollary 3.6. There is a deterministic algorithm with query complexity at most 4
√

n that solves the
Hidden Subgroup Problem over an abelian group G with order n. Moreover, if the input function hides the
non-trivial subgroup H, the algorithm finds all the elements of H.

Proof. By Theorem 3.5, there is a generating pair S1, S2 for the group G such that |S1| , |S2| ≤ 2
√

n .
We query the oracle function f at −x for all x ∈ S1 and at all elements y ∈ S2. If the function is
injective on the set of points queried, we say f is injective. Otherwise, we say that f is not injective,
and output {x + y : x ∈ S1, y ∈ S2, f (−x) = f (y)}.

If the function is injective, the above algorithm outputs the correct answer. Suppose f hides the
non-trivial subgroup H. Let h ∈ H be any element of the hidden subgroup. We have h = h1 + h2
for some h1 ∈ S1 and h2 ∈ S2. By definition of H we have f (−h1) = f (h2). When h is not
the identity, we have −h1 6= h2 and the algorithm detects a collision. Moreover, the algorithm
computes H correctly.

Note that we can get upper bounds with better constants for certain abelian groups by appeal-
ing to the properties of the generating pair constructed in Theorem 3.5. As the Simon Problem is
a special case, Theorem 2.1 implies that in the worst case, these upper bounds are tight up to a
constant factor.

4 The General Hidden Subgroup Problem

Finally, we consider the Hidden Subgroup Problem for a general finite group. Non-abelian groups
are more varied in structure than abelian ones, and it appears challenging to extend the ideas used
in the abelian case to them. Instead, we resort to a probabilistic argument to show the existence of
a generating pair of small size. The construction comes within a poly-logarithmic multiplicative
factor of optimal, and leads to our final algorithm.

Theorem 4.1. For any finite group G with order n (with n > 1), there is a generating pair S1, S2 for G
such that |S1| and |S2| are both at most

⌈√
n ln n

⌉
.

Proof. We let S1 := {g1, g2, . . . , gt}, any subset consisting of t distinct group elements, where t :=⌈√
n ln n

⌉
. Let R := {h1,h2, . . . ,ht} be a set of t distinct group elements chosen uniformly at

random from the collection of t-element subsets of G. Recall that the set of products of elements
from S1 and R is denoted as S1R, i.e., S1R := {xy : x ∈ S1, y ∈ R}.
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We show that for any fixed element g ∈ G, the probability that g 6∈ S1R is less than 1/n.

Pr(g 6∈ S1R) = Pr(∀i ∈ [t], g−1
i g 6∈ R)

=

(
n− t

t

)(
n
t

)−1

=
(n− t)(n− t− 1)(n− t− 2) · · · (n− 2t + 1)

n(n− 1)(n− 2) · · · (n− t + 1)

=

(
1− t

n

)(
1− t

n− 1

)(
1− t

n− 2

)
· · ·
(

1− t
n− t + 1

)
.

Since t > 1, we get

Pr(g 6∈ S1R) <

(
1− t

n

)t

< exp
(
− t2

n

)
≤ 1

n
.

By the Union Bound, the probability that S1R 6= G is strictly less than 1. So there is a subset S2 of
size t such that S1S2 = G.

A similar result may be derived from a generalization of the Erdős-Rényi Theorem [7] due to
Babai and Erdős [2]. However, this gives us a generating pair in which the size of a set may be as
large as 4

√
n ln n .

As before, the algorithm for the general Hidden Subgroup Problem follows directly from the
existence of a suitable generating pair for the underlying group.

Corollary 4.2. There is a deterministic algorithm with query complexity at most 2
⌈√

n ln n
⌉

that solves
the Hidden Subgroup Problem over an arbitrary group G with order n. Moreover, if the input function
hides the non-trivial subgroup H, the algorithm finds all the elements of H.

Proof. By Theorem 4.1, there is a generating pair S1, S2 for the group G such that |S1| , |S2| ≤⌈√
n ln n

⌉
. We query the oracle function f at x−1 for all x ∈ S1 and at all elements y ∈ S2. If the

function is injective on the set of points queried, we say f is injective. Otherwise, we say that f is
not injective, and output

{
xy : x ∈ S1, y ∈ S2, f (x−1) = f (y)

}
.

If the function is injective, the above algorithm outputs the correct answer. Suppose f hides the
non-trivial subgroup H. Let h ∈ H be any element of the hidden subgroup. We have h = h1h2 for
some h1 ∈ S1 and h2 ∈ S2. By definition of H we have f (h−1

1 ) = f (h2). When h is not the identity,
we have h−1

1 6= h2 and the algorithm detects a collision. Moreover, the algorithm computes H
correctly.

We can obtain explicit, optimal algorithms for certain classes of non-abelian groups. For exam-
ple, if a group G of order n has a subgroup H of order Θ(

√
n ), then we can construct a generating

pair S1, S2 of size Θ(
√

n ) by taking S1 := H and S2 to be a complete set of coset representatives
of H. In fact, in this case, the group satisfies a stronger property; see, for example, Ref. [3]. Not all
groups have a subgroup of such size. For example, the abelian group Zp for a prime p does not
have such a subgroup, and yet admits a suitable generating pair.

5 Subgroup-dependent query complexity

There is a randomized algorithm for the Hidden Subgroup Problem that has expected query com-
plexity O(

√
|G| / |H| ) when the oracle f hides H, and has worst-case query complexity O(

√
|G| ).
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In this section we use the notion of a generating pair in a more sophisticated manner to match this
performance with a deterministic algorithm for all abelian groups, and some classes of non-abelian
groups.

The algorithm rests on the following observation.

Lemma 5.1. Suppose G1 and H are subgroups of the possibly non-abelian finite group G such that G1 has
cardinality at least |G| / |H|. Then either G1H = G or |G1 ∩ H| > 1.

Proof. The intersection G1 ∩ H is a subgroup of G and contains the identity element. There are
exactly |G| / |H| distinct left cosets of H. If G1H 6= G, by the Pigeon-Hole Principle, there are two
distinct elements g1, g2 ∈ G1 such that g1H = g2H, i.e., g−1

2 g1 ∈ H. Since g−1
2 g1 is also an element

of G1, and is not the identity element, we have |G1 ∩ H| > 1.

Suppose that G is abelian, we know the order m of the hidden subgroup H, and m > 1. Then
we may find a non-trivial element of H as follows. Consider any subgroup G1 of G of order n/m,
where n := |G|. Such a subgroup exists since G has a subgroup with order d for any positive
divisor d of n [8, Corollary 2.4, page 77]. Let S1, S2 be a generating pair for G1, and let g be any
element of G \ G1. By Lemma 5.1, either (i) there is a non-identity element h ∈ H that is also
in G1, or (ii) G1H = G. In case (i), let h = a + b, where a ∈ S1 and b ∈ S2. If we query the
oracle f at the elements −x and y, for all x ∈ S1 and y ∈ S2, we will find f (−a) = f (b), and can
compute h. In case (ii), we have g = g1 + h for some g1 ∈ G1 and h ∈ H. Since g is not in G1, the
element h is not the identity. Suppose g1 = a + b, with a ∈ S1 and b ∈ S2. Then g− a = b + h,
and f (g− a) = f (b). If we query the oracle f at the elements g− x and y, for all x ∈ S1 and y ∈ S2,
we will find f (g− a) = f (b), and can compute h. This is the key idea underlying the algorithm.

For sets S1, S2 ⊆ G, define S−1
1 as the set S−1

1 :=
{

x−1 : x ∈ S1
}

. Following our notation for the
product of sets of group elements, S−1

1 S2 =
{

x−1y : x ∈ S1, y ∈ S2
}

. Algorithm 1 (Find-Collision)
implements the above idea with a geometrically decreasing sequence of guesses for the order of H.
We show in Theorem 5.2 that the algorithm is correct and has the query complexity we seek for a
large class of groups.

Theorem 5.2. Algorithm 1 (Find-Collision) solves the Hidden Subgroup Problem over any finite group G.
If the order of the group is n and that of the hidden subgroup H is m, the algorithm has query complexity as
stated below.

1. If G is abelian, the algorithm has query complexity O(
√

n/m ).

2. If G is not abelian, the algorithm has query complexity O(
√

n ln n ). Further, if G has a sub-
group of order n1 such that n/m ≤ n1 ≤ κn/m for some κ ≥ 1, then the query complexity
is O(

√
(κn/m) ln(κn/m) ).

Proof. Since the algorithm outputs a collision only when it finds one, it gives the correct answer
when the oracle function f is injective. Suppose the function f hides a non-trivial subgroup H, so
that m ≥ 2.

If the group is abelian, it has a subgroup of order n/m [8, Corollary 2.4, page 77], and n/m ≤
n/2. If it does not find a collision in an earlier iteration, Algorithm 1 finds a collision in an iteration
with k = ` ≥ 0, where ` is such that n/m ∈

[
n/2`+1, n/(2` + 1)

]
. This is due to the reasoning

given after Lemma 5.1. It thus outputs the correct answer. We have ` = dlog2 me − 1, and initially,
k = dlog2 ne − 1 ≥ 0. By Theorem 3.5, we have |S1| , |S2| ≤ 2

√
|G1| in every iteration with queries.
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Algorithm 1: Find-Collision(G, f )
Input : group G of order n, with n > 1; oracle for f : G → S that hides a subgroup
Output : injective, or collision a, b ∈ G

1 Let k be the integer l such that n ∈ (2l , 2l+1] ;
2 if G is abelian then k0 ← 0 ;
3 else k0 ← −1 ;
4 while k ≥ k0 do
5 Find, if there is one, a subgroup G1 ≤ G with the largest order

in
[
n/2k+1, n/(b2kc+ 1)

]
; /* the expression b2kc is required to correctly

handle the case k = k0 = −1 */

6 if such a subgroup G1 exists then
7 Find a generating pair S1, S2 for G1 which minimizes max {|S1| , |S2|} ;
8 if G1 = G then g← e, the identity element of G ;
9 else g← any element in G \ G1 ;

10 Let R← S−1
1 ∪ S2 ∪

(
S−1

1 {g}
)

;
11 Query f at all the elements in R ;
12 if f (z) = f (y) for some z, y ∈ R such that z 6= y then return collision z, y ;
13 k← k− 1 ;

14 return injective

So the query complexity of the algorithm is at most

dlog2 ne−1

∑
k=`

3 · 2
√

n/2k ≤ 6
√

n
2` ∑

i≥0

1√
2i

≤ 12(1 +
√

2 )
√

n/m ,

as ` ≥ log2 m− 1. The bound on the query complexity when m = 1 is the same as that for m = 2,
as the algorithm executes all the iterations until k = 0. Part 1 of the theorem thus follows.

Suppose G is non-abelian. If the algorithm does not find a collision in earlier iterations,
when k = −1, we have G1 = G, and correctness follows as in Corollary 4.2. If G has a proper
subgroup of order n1 with n/m ≤ n1 ≤ κn/m for some κ, the algorithm finds a collision as in the
abelian case in an iteration with k ≥ ` ≥ 0, where ` is such that κn/m ∈

[
n/2`+1, n/(2` + 1)

]
.

It thus outputs the correct answer. Further, we have ` = dlog2(m/κ)e − 1, and initially, k =

dlog2 ne − 1 ≥ 0. By Theorem 4.1, we have |S1| , |S2| ≤
√
|G1| ln |G1|+ 1 in every iteration with

queries. So the query complexity of the algorithm is at most

dlog2 ne−1

∑
k=`

3
(

1 +
( n

2k ln
n
2k

)1/2
)

≤ 3(dlog2 ne − dlog2(m/κ)e+ 1) + 3
( n

2`
ln

n
2`
)1/2

∑
i≥0

1√
2i

≤ 6 + 3 log2(κn/m) + 3(2 +
√

2 )
(

2κn
m

ln
2κn
m

)1/2

,

as ` ≥ log2(m/κ)− 1. The bound on the query complexity when m = 1 is 2d
√

n ln n e more than

9



that for m = 2, as the algorithm executes all the iterations until k = −1. Part 2 of the theorem thus
follows.

Unlike abelian groups, a non-abelian group of order n may not have a subgroup of order n/m
when it has a proper subgroup of order m. For example A4, the alternating group of degree 4, has
order 12, has several subgroups of order 2, but does not have a subgroup of order 6. However, in
large classes of instances of the Hidden Subgroup Problem, subgroups of suitable size exist. An
immediate example is the class of CLT groups. (A group G is called a converse Lagrange Theorem
(CLT) group if it contains a subgroup of order d for every positive divisor d of |G|.) CLT groups
include supersolvable groups; see, e.g., Ref. [9]. For such instances, Find-Collision achieves query
complexity O(

√
(n/m) ln(n/m) ).

6 Finding the hidden subgroup

Unlike the algorithms in Corollary 3.6 and Corollary 4.2, Algorithm 1 may find only one non-
trivial element from the hidden subgroup. In this section, we show how to extend Algorithm 1 to
find the entire hidden subgroup.

When the group G is abelian, the problem of finding the entire subgroup may be reduced to
that of finding one non-trivial element of the subgroup. This allows us to identify the subgroup
by repeatedly using Algorithm 1 to find a set of generators.

Algorithm 2: Find-Abelian-Subgroup(G, f )
Input : group G of order n, with n > 1; oracle for f : G → S that hides a subgroup
Output : injective, or generators S ⊂ G of the hidden subgroup

1 S← ∅ ;
2 repeat
3 H1 ← 〈S〉, the subgroup generated by S ;
4 G1 ← G/H1 ;
5 if |G1| > 1 then
6 Let f1 be the function defined by f and H1 in the proof of Theorem 6.1 ;
7 outcome← Find-Collision(G1, f1) ;

8 if outcome = collision a, b then S← S ∪
{

g−1
1 g2

}
, where a = g1H1 and b = g2H1 ;

9 else
10 outcome← injective

11 until outcome = injective;
12 if S = ∅ then return injective ;
13 else return generators S ;

Theorem 6.1. There is a deterministic algorithm that solves the Hidden Subgroup Problem over any finite
abelian group G, and finds the hidden subgroup with O((log m)

√
n/m ) queries when the order of G is n

and that of the hidden subgroup is m.

Proof. Suppose the oracle is f , the hidden subgroup is H, and we know a set of generators for a
subgroup H1 ≤ H.

Define a function f1 on the quotient group G/H1 as f1(gH1) := f (g) for any g ∈ G. The
function f1 is well-defined as left cosets of H1 in G are subsets of left cosets of H in G, and the

10



function f is constant on left cosets of H. Moreover, the function f1 hides the subgroup H/H1
of G/H1, as the left cosets of H in G correspond to left cosets of H/H1 in G/H1. Finally, the
function f1 may be evaluated with one query to the oracle for f .

Using this reduction, we may find the hidden subgroup H using Algorithm 2. The correct-
ness of the algorithm follows by observing that in any iteration, if f1 is injective, then H1 equals
the hidden subgroup. If f1 is not injective, by Theorem 5.2, Find-Collision(G1, f1) returns a colli-
sion g1H1, g2H1 ∈ G/H1 for f1. Note that g1, g2 is a collision for f . We also have g−1

1 g2 6∈ H1, so
along with g−1

1 g2, the set S generates a larger subgroup of H. Thus, the size of the subgroup H1
increases by a factor of at least 2 in every iteration a collision is found, and the algorithm termi-
nates after at most log2 m iterations. In every iteration of Algorithm 2, the ratio of the order of G1
and the hidden subgroup H/H1 equals n/m. The query complexity of the algorithm now follows
from Theorem 5.2.

It is not clear how to extend Algorithm 2 to the non-abelian case, since the group H1 may
not be normal in general, and the corresponding quotient group may not be defined. We present
a different algorithm, Algorithm 4, that works for some abelian and some non-abelian instances
(which we describe after Theorem 6.3). Algorithm 4 builds on Algorithm 3, which is a variant of
Algorithm 1 and is also based on Lemma 5.1.

Algorithm 3: Find-New-Collision(G, H1, f )
Input : group G of order n, with n > 1; subgroup H1 ≤ G; oracle for f : G → S that hides

a subgroup containing H1
Output : no-new-collision, or collision a, b ∈ G such that a−1b 6∈ H1

1 Let k be the integer l such that n ∈ (2l , 2l+1] ;
2 if G is abelian then m1 ← max {2, |H1|} ;
3 else m1 ← |H1| ;
4 k0 ← dlog2 m1e − 1 ;
5 while k ≥ k0 do
6 Find, if there is one, a subgroup G1 ≤ G with the largest order

in
[
n/2k+1, n/(b2kc+ 1)

]
such that G1 ∩ H1 = {e}, where e is the identity element

of G ; /* the expression b2kc is required to correctly handle the

case k = k0 = −1 */

7 if such a subgroup G1 exists then
8 Find a generating pair S1, S2 for G1 which minimizes max {|S1| , |S2|} ;
9 if G1H1 = G then g← e, the identity element of G ;

10 else g← any element in G \ (G1H1) ;
11 Let R← S−1

1 ∪ S2 ∪
(
S−1

1 {g}
)

;
12 Query f at all the elements in R ;
13 if f (z) = f (y) for some z, y ∈ R such that z−1y 6∈ H1 then return collision z, y ;
14 k← k− 1 ;

15 return no-new-collision

Theorem 6.2. Let (G, f ) be an instance of the Hidden Subgroup Problem, H the subgroup that f hides,
and H1 a subgroup of H. Let the orders of G, H, H1 be n, m, m1, respectively. Suppose G has a subgroup G0
of order n0 such that n0 ≥ n/m, and G0 intersects H1 only in the identity element. Then Find-New-
Collision(G, H1, f ) (Algorithm 3) returns “no new collision” if H1 = H, and returns a collision a, b ∈ G
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such that a−1b 6∈ H1 otherwise. Further, if n0 ≤ κn/m for some κ ≥ 1, the algorithm has query complexity
as stated below:

1. if G is abelian, the algorithm has query complexity O(
√

κn/m ), and

2. if G is not abelian, the algorithm has query complexity O(
√
(κn/m) ln(κn/m) ).

Proof. When H1 = {e}, the algorithm is identical to Algorithm 1, and its correctness follows by
Theorem 5.2. Suppose H1 is not the trivial subgroup.

Since the algorithm reports a collision a, b only when a−1b 6∈ H1, it gives the correct answer
when H1 = H. Suppose H1 6= H. By hypothesis, G has a subgroup G0 of order at least n/m such
that G0 intersects H1 only in the identity element. Then |G0| ≤ n/m1 ≤ n/2; otherwise, we would
have two distinct elements of G0 in the same coset of H1, which implies that |G0 ∩ H1| > 1.

If it does not find a collision in earlier iterations, the algorithm finds a subgroup G1 with |G1| ≥
n/m and G1 ∩ H1 = {e} in an iteration with k ≥ k0 ≥ 0 (recall that k0 := dlog2 m1e − 1 ≥ 0,
since m1 ≥ 2). Let S1, S2 be the generating pair for G1 computed by the algorithm.

Suppose G1H1 = G. Consider any element h ∈ H \ H1. We have h = g1h1 for some g1 ∈ G1
and h1 ∈ H1. So g1 = hh−1

1 ∈ G1 ∩ H, and g1 6∈ H1. We also have g1 = ab for some a ∈ S1
and b ∈ S2, so f (a−1) = f (b). The algorithm queries the oracle f at the elements x−1 and y, for
all x ∈ S1 and y ∈ S2, so it finds and returns a collision.

Now suppose G1H1 6= G, so that the algorithm also finds an element g ∈ G \ (G1H1) in the
same iteration.

If G1H = G, we have g = g1h for some g ∈ G1 and h ∈ H. Since g 6∈ G1H1, g1h 6∈ G1H1,
and h 6∈ H1. Suppose g1 = ab, with a ∈ S1 and b ∈ S2. Then a−1g = bh, and f (a−1g) = f (b).
The algorithm queries the oracle f at the elements x−1g and y, for all x ∈ S1 and y ∈ S2, so it
finds f (a−1g) = f (b), and returns a collision.

If G1H 6= G, as in Lemma 5.1, there are two distinct elements g1, g2 ∈ G1 such that g−1
2 g1 ∈ H.

Since G1 ∩ H1 = {e}, and g1 6= g2, we have g−1
2 g1 ∈ H \ H1. We also have g−1

2 g1 = ab, for
some a ∈ S1 and b ∈ S2. The algorithm queries the oracle f at the elements x−1 and y, for
all x ∈ S1 and y ∈ S2, so it finds f (a−1) = f (b), and returns a collision in this case as well.

Assuming n/m ≤ |G0| ≤ κn/m ≤ n for some κ ≥ 1 with G0 as in the statement of the theorem,
the algorithm executes iterations with k ≥ `, where ` is such that κn/m ∈

[
n/2`+1, n/(b2`c+ 1)

]
.

So the query complexity of the algorithm follows by same kind of analysis as in Theorem 5.2.

Thus, whenever there is a large enough subgroup G0 that intersects with a proper subgroup H1
of the hidden subgroup H only in the identity element, Algorithm 3 gives us an element h of H
that is not in H1. Along with H1, the element h generates a strictly larger subgroup of H. As long
as the condition above holds for all proper subgroups of H, we can repeat Algorithm 3 until we
find a set of generators for the hidden subgroup. This process is described in Algorithm 4.

Theorem 6.3. Algorithm 4 (Find-Subgroup) solves the Hidden Subgroup Problem over a group G and
finds the hidden subgroup H when G has a subgroup G0 of order n/m such that |G0 ∩ H| = 1, where n
and m are the orders of G and H, respectively. Moreover, the algorithm makes

• O((log m)
√

n/m ) queries when G is abelian, and

• O((log m)
√
(n/m) log(n/m) ) queries when G is non-abelian.

Proof. The existence of a subgroup G0 as in the statement of the theorem implies that all the hy-
potheses of Theorem 6.2 are satisfied for every subgroup H1 of H. So, starting with H1 = {e},
where e is the identity element of G, Find-New-Collision(G, H1, f ) returns a collision a, b in each
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Algorithm 4: Find-Subgroup(G, f )
Input : group G of order n, with n > 1; oracle for f : G → S that hides a subgroup
Output : injective, or generators S ⊂ G of the hidden subgroup

1 S← ∅ ;
2 repeat
3 H1 ← 〈S〉 ;
4 outcome← Find-New-Collision(G, H1, f ) ;
5 if outcome = collision a, b then S← S ∪

{
a−1b

}
;

6 until outcome = injective;
7 if S = ∅ then return injective ;
8 else return generators S ;

iteration of Algorithm 4 in which H1 6= H. Since a−1b 6∈ H1, the set S ∪
{

a−1b
}

generates a larger
subgroup of H. Thus, the size of the subgroup H1 increases by a factor of at least 2 in every itera-
tion in which a collision is found, and the algorithm terminates after at most log2 m iterations. The
query complexity follows from Theorem 6.2.

A subgroup as in the statement of Theorem 6.3 exists if G is the semidirect product of H with
another subgroup, i.e., H is normal and there is a subgroup K such that G = H o K, or there
is a normal subgroup K such that G = H n K. We may then take G0 := K. Not all groups
have a semidirect product structure, even if the hidden subgroup is normal. For example, every
proper subgroup H of the abelian group Zpk with k > 1 is normal, but Zpk cannot be expressed
as a semidirect product of H with another subgroup. On the other hand, a group need not have
a semidirect product structure for a subgroup with the properties in Theorem 6.3 to exist. For
example, consider Sn, the symmetric group of degree n, and Sn−1 as its subgroup consisting of
permutations that map n to itself. Then Sn = Sn−1H, where H is the subgroup generated by the
cycle (1 2 3 · · · n), and neither Sn−1 nor H is normal in Sn for n ≥ 4. Such groups are known as
the bicrossed products (also as Zappa-Szép or knit products); see, e.g., [1, 4]. Thus, Algorithm 4 finds
the hidden subgroup H with query complexity as in Theorem 6.3 whenever G is the bicrossed
product of H with another group. A description of groups arising as bicrossed products is a
matter of ongoing research [1].

7 Open problems

We conclude with a few open problems. The query complexity of the algorithm designed by
Ye and Li [14] for finding the hidden subgroup in abelian instances may be smaller than that of
Algorithm 2. The lower query complexity hinges on an intricate analysis of the structure of the
hidden subgroup. Can we establish the same query complexity through simpler means?

There are a number of variants of the Hidden Subgroup Problem, for example, when the un-
derlying group is specified implicitly. These may also admit deterministic algorithms with optimal
classical query complexity. The precise characterization of the deterministic query complexity of
the Hidden Subgroup Problem for explicitly specified groups, especially in the non-abelian case, is
perhaps the most interesting problem left open by this work. Related questions are whether there
is a generating pair of size O(

√
n ) for any non-abelian group of order n, for what instances of the

problem Algorithms 1 and 3 give the correct output with query complexity Õ(
√

n/m ), where m is
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the order of the hidden subgroup, or whether there are similar “generic” algorithms that achieve
this query complexity for larger classes of groups.
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