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Problem Definition

Spatial search and walk processes. Spatial search by quantum walk is database
search with the additional constraint that one is required to move through the search
space via a quantum walk that obeys some locality structure. For example, the data
items may be stored at the vertices of a two-dimensional grid. The requirement of
moves along the edges of the grid captures the cost of accessing different items starting
from some fixed position in the database.

Quantum walks are analogues of classical random walks on graphs. The com-
plexity of spatial search by quantum walk is strongly tied to the quantum hitting time
[20] of the walk.
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Let S, with |S| = n, be a finite set of states . Assume that a subset M ⊆ S of
states are marked . We are given a procedure C that, on input x ∈ S and an associated
data structure d(x), checks whether the state x is marked. The goal is either to find a
marked state when promised that M 6= ∅ (search version), or to determine whether M
is nonempty (decision version).

The algorithm progresses in stages. In the set-up stage we access some state of
S (usually a random state). In the walk stage we move from state to state, performing
a spatial walk as described below. The moves are called updates . In addition, in the
walk stage we perform checks to see if the current state is marked at steps selected by
the algorithm.

In the classical setting the transition probabilities of the spatial walk are de-
scribed by a stochastic matrix P = (px,y)x,y∈S. This makes the walk a Markov chain.
In every move the algorithm must perform a random transition according to P . The
possible x → y moves, i.e., those with px,y 6= 0, form the edges of a (directed) graph
G, and we say that the Markov chain P has locality structure G.

We define the search problem in the classical setting, which carries over to the
quantum case with little modification:

Input: Markov chain P on set S, marked subset M ⊆ S that is implicitly specified by
a checking procedure C, and the associated costs:

Cost type Setup Update Checking
Notation S U C

Output: a marked state if one exists (search version), or a Boolean return value that
indicates whether M is empty or not (decision version).

The algorithm is required to be correct with probability at least 2/3 in either
case, the search or the decision problem. The significance of the set-up cost, which is
incurred only once, will be clearer when we see some applications. Often we can choose
between several competing walks, and we would like to design a one with minimum
total cost.

In the quantum case, the random process P is replaced by a quantum walk WP

that has the same locality structure as P . The costs S,U,C reflect the costs of quantum
operations.

The quantum walk algorithm. Designing a quantum analogue of P is not so
straightforward, since stochastic matrices have no immediate unitary equivalents. One
either needs to abandon the discrete-time nature of the walk [15] or define the walk
operator on a space other than CS. Here we take the second route.

We say that a Markov chain P is irreducible if its underlying digraph is strongly
connected. Let P be an irreducible Markov chain, let π be its unique stationary
distribution, and let P ∗ (with P ∗ = (p∗x,y)) denote the time-reversed Markov chain,

where p∗x,y := πypy,x/πx. Define the following vectors in the vector space CS:

|px〉 :=
∑
y∈X

√
px,y |y〉 and |p∗y〉 :=

∑
x∈X

√
p∗y,x |x〉 .

Define the unitary operator WP := R1R2 on CS×S as the product of the two reflec-
tions R2 :=

∑
x∈S |x〉〈x| ⊗ (2|px〉〈px| − I) and R1 :=

∑
y∈S(2|p∗y〉〈p∗y| − I)⊗ |y〉〈y|. The

operator WP is called the quantum analogue of P , or the discrete-time quantum walk
operator arising from P , and may be viewed as a walk on the edges of the underlying
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graph G. We define a “checking” operator on CS, based on whether or not the current
state is marked: OM :=

∑
x 6∈M |x〉〈x| −

∑
x∈M |x〉〈x|.

In the above description, we have suppressed the data structure associated with
a state in the Markov chain for the sake of simplicity. The precise description of the op-
erators can be derived via the isometry |x〉 7→ |x〉|d(x)〉 between the appropriate spaces
(see, for example, Refs. [29, 30]). The data structure becomes especially significant in
the context of the complexity of the operators.

A search algorithm by quantum walk is described by a quantum circuit that acts
on “registers” or “wires” which are associated with the space CS⊗CS⊗Ck, for some k ≥
0. We again suppress the registers carrying the data structure. The first two registers
hold the current edge, and the last register holds auxiliary information, or work space,
that drives the quantum walk. The quantum circuit implements the composition X :=
XtXt−1 · · ·X1, where each Xi is either WP or OM acting on the edge registers, possibly
controlled by the auxiliary register, or a unitary operator independent of P and M
acting on any of the registers. The circuit X is applied to a suitably constructed initial
state |φ0〉.

We associate a cost with each operator as a measure of its complexity, with
respect to a resource of interest. The resource could be circuit size, or in the query
model (which is the more typical application) the number of queries. We denote the
cost of implementing WP as a quantum circuit in the units of the resource of interest
by U (update cost), the cost of constructing OM by C (checking cost), and the cost
of preparing the initial state, |φ0〉, of the algorithm by S (set-up cost). Every time an
operator is used, we incur the cost associated with it. This abstraction, implicit in
Ref. [3] and made explicit in Ref. [30], allows WP and OM to be treated as black-box
operators and provides a convenient way to capture time complexity or, in the quantum
query model, query complexity . The cost of the sequence XtXt−1 · · ·X1 is the sum of
the costs of the individual operators. The observation probability is the probability
that we observe an element of M on measuring the first register of the final state,
|φt〉 := X|φ0〉, in the standard basis (|x〉)x∈S. In the decision version of the problem,
we measure a fixed single qubit of the auxiliary register in the standard basis to obtain
the output of the algorithm.

Key Results

Walk definitions. Quantum walks were first introduced by David Meyer and John
Watrous to study quantum cellular automata and quantum logspace, respectively.
Discrete-time quantum walks were investigated for their own sake by Ambainis, Bach,
Nayak, Vishwanath, and Watrous [4, 32] and Aharonov, Ambainis, Kempe, and Vazi-
rani [2] on the infinite line and the n-cycle, respectively. The central issues in the early
development of quantum walks included the definition of the walk operator, notions
of mixing and hitting times, and the speed-up achievable compared to the classical
setting.

Hitting time. Exponential quantum speed-up of the hitting time between antipodes
of the hypercube was shown by Kempe [20]. Childs, Cleve, Deotto, Farhi, Gutmann,
and Spielman [12] presented the first oracle problem solvable exponentially faster by
a quantum walk based algorithm than by any (not necessarily walk-based) classical
algorithm.

The first systematic studies of quantum hitting time on the hypercube and the
d-dimensional torus were conducted by Shenvi, Kempe, and Whaley [34] and Ambainis,
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Kempe, and Rivosh [5]. Improving upon the Grover search based spatial search algo-
rithm of Aaronson and Ambainis, Ambainis et al. [5] showed that the d-dimensional
torus with n nodes can be searched by quantum walk in

√
n steps with observation prob-

ability Ω(1) for d ≥ 3, and in
√
n log n in steps and observation probability Ω(1/ log n)

for d = 2 (see also Ref. [11]). Combining the algorithm for d = 2 with amplitude am-
plification [9] we get an algorithm with observation probability Ω(1), at a cost that is
a multiplicative factor of

√
log n larger.

In the results in Refs. [12, 20] the algorithm has implicit knowledge of the target
state, as the walk starts from a state whose location is “related” to that of the target.
It is not known if we can achieve an exponential speed-up when the walk starts in a
state that is independent of the target.

Element distinctness. The first result that used a quantum walk to solve a natural
algorithmic problem, the so-called element distinctness problem, was due to Ambainis
[3]. The problem is to find out if among the set of s elements of a database two are
identical. Ambainis constructed a walk on the Johnson graph J(r, s) whose vertices are
the r-size subsets of a universe of size s (in his case the universe corresponds to the
set of all database elements), with two subsets connected iff their symmetric difference
has size two. A subset is marked, i.e., it is an element of M , if it captures two identical
database elements. In the quantum (but also the classical) query model the set-up cost
is r, which stands for the cost of downloading r (random) database elements. Update
incurs a constant cost, as it requires reading a new database element and forgetting and
old one. Furthermore, since we are in the query model, the checking cost is zero, since
whether a state is marked can be deduced from the currently held database elements
without any further download. Ambainis ingeniously balanced the costs of S and U
finding that in the quantum case the optimum choice for r is s2/3, leading to a query
complexity of s2/3 (this is a non-trivial balance: in the classical case the same walk gives
no speed-up). In contrast, the Grover algorithm, the inspiration behind Ambainis’ work,
has no balancing option: its set-up and update costs are zero in the query model. (The
Grover search may be viewed as a quantum walk on the complete graph.) It turns out
that the above walk-based quantum query algorithm with complexity O(s2/3), matches
the lower bound due to Aaronson and Shi [1].

General Markov chains. Ambainis’s result is based on the quantum hitting time

of J(r, s) for a marked set of relative size
(
r
s

)2
. In Ref. [35], Szegedy investigates the

hitting time of quantum walks arising from general Markov chains. His definitions
(walk operator, hitting time) are abstracted directly from Ref. [3] and are consistent
with prior literature, although slightly different in presentation.

For a Markov chain P , the (classical) average hitting time of M can be expressed
in terms of the leaking walk matrix PM , which is obtained from P by deleting all rows
and columns indexed by states of M . Let v1, . . . , vn−m, be the normalized eigenvectors
of PM , and let λ1, . . . , λn−m be the associated eigenvalues, where m = |M |. Let h(x,M)
denote the expected time to reach M from x. Let µ : S → R+ be the initial distribution
from which we start, and µ′ its restriction to S \M . Denote the vector (

√
µ′(x) )x∈S\M

by u. Then the average hitting time of M is h :=
∑

x∈S µ(x)h(x,M) =
∑n−m

k=1
|(vk,u)|2
1−λk

.
Although the leaking walk matrix PM is not stochastic, one can consider the absorbing
walk matrix P ′ =

[
PM P ′′

0 I

]
, where P ′′ is the matrix obtained from P by deleting the

rows indexed by M and the columns indexed by S \M . The walk P ′ behaves like P
but is absorbed by the first marked state it hits. Consider the quantum analogue WP ′

of P ′ and |φ0〉 :=
∑

x∈S

√
π(x)|x〉|px〉, where π is the stationary distribution of P .

The state |φ0〉 is stationary for WP , i.e., is an eigenvector with eigenvalue 1. Define the
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quantum hitting time, H, of set M to be the smallest t for which ‖W t
P ′ |φ0〉−|φ0〉‖ ≥ 0.1.

Note that the cost of WP ′ is proportional to U + C.
The motivation behind this definition of quantum hitting time is the following.

The classical hitting time measures the number of iterations of the absorbing walk P ′

required to noticeably skew the uniform starting distribution. Similarly, the quantum
hitting time bounds the number of iterations of the following quantum algorithm for
detecting whether M is nonempty: At each step, apply operator WP ′ . If M is empty,
then P ′ = P and the starting state is left invariant. If M is nonempty, then the
angle between W t

P ′|φ0〉 and W t
P |φ0〉 gradually increases (for t not too large). Using

an additional control register to apply either WP ′ or WP with quantum control, the
divergence of these two states (should M be nonempty) can be detected. The required
number of iterations is characterized by H.

It remains to compute H. When P is symmetric and ergodic, the expression
for the classical hitting time has a quantum analogue [35] (we assume m ≤ n/2 for
technical reasons):

H ≤
n−m∑
k=1

ν2k√
1− λk

, (1)

where νk = (vk, u). Note that u = 1√
n
(1, . . . , 1), since P is symmetric. So νk sum of the

coordinates of vk divided by 1/
√
n. From (1) and the expression for h one can derive

an amazing connection between the classical and quantum hitting times:

Theorem 1 (Szegedy [35]). Let P be symmetric and ergodic, and let h be the classical
hitting time for marked set M and uniform starting distribution. Then the quantum
hitting time of M is at most

√
h. Therefore, the cost of solving the decision version of

the problem is of order S +
√
h(U + C).

One can further show:

Theorem 2 (Szegedy [35]). If P is state-transitive and |M | = 1, then the marked

state is observed with probability at least n/h with cost O(S +
√
h(U + C)).

The observation probability n/h can be increased to Θ(1) with
√
h/n iterations of

the algorithm from Theorem 2, using amplitude amplification [9]. Theorems 1 and 2
imply most quantum hitting time results of the previous section directly , relying only
on estimates of the corresponding classical hitting times. Expression (1) is based on a
fundamental connection between the eigenvalues and eigenvectors of P and WP . Notice
that p∗y,x = py,x for symmetric P , so |p∗y〉 = |py〉. So R1 and R2 are reflections through
the subspaces generated by {|px〉 ⊗ |x〉| x ∈ S} and {|x〉 ⊗ |px〉| x ∈ S}, respectively.
The eigenvalues of R1R2 can be expressed in terms of the eigenvalues of the mutual
Gram matrix D(P ) of these systems. This matrix D(P ), the discriminant matrix of
P , equals P when P is symmetric. The formula remains fairly simple even when P is
not symmetric. In particular, the absorbing walk P ′ has discriminant matrix

[
PM 0
0 I

]
.

Finally, the relation between D(P ) and the spectral decomposition of WP is given by:

Theorem 3 (Szegedy [35]). Let P be an arbitrary Markov chain on a finite state
space S and let cos θ1 ≥ · · · ≥ cos θl be those singular values of D(P ) lying in the open
interval (0, 1), with associated singular vector pairs vj, wj for 1 ≤ j ≤ l. Then the non-
trivial eigenvalues of WP (namely those other than 1 and −1) and their corresponding
eigenvectors are (e−2iθj , R1wj − e−iθjR2vj) and (e2iθj , R1wj − eiθjR2vj) for 1 ≤ j ≤ l.

Subsequent developments. Magniez, Nayak, Roland, and Santha [29] used the
Szegedy quantum analogue WP of an ergodic walk P , rather than that of its absorbing
version P ′, to develop a search algorithm in the style of Ambainis [3].
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Theorem 4 (Magniez, Nayak, Roland, Santha [29]). Let P be reversible and
ergodic with spectral gap δ > 0. Let M have probability either zero or ε > 0 under the
stationary distribution of P . There is a quantum algorithm solving the search problem
with cost S + 1√

ε
( 1√

δ
U + C).

The main idea here is to apply quantum phase estimation [14, 22] to the quantum
walk WP in order to implement an approximate reflection operator about the initial
state. This operator is then used along with the checking operator OM in an amplitude
amplification scheme to get the final algorithm.

The average classical hitting time h may be bounded by 1/δε (with δ,M, ε as in
Theorem 4), and this bound is tight for most known applications. In these applications,
the above algorithm finds marked elements with complexity at most that of the Szegedy
algorithm. In other applications, for instance, Triangle Finding [30], where the checking
cost C is much larger than the update cost U, the complexity of the algorithm in
Theorem 4 is asymptotically smaller.

In the case of the 2-D square grid with n vertices, the average classical hit-
ting time h is n log n. This is asymptotically lesser than 1/δε when there is a single
marked element. (In this case, 1/δε = n2.) Algorithms due to Ambainis et al. [5] and
Szegedy [35] find a unique marked state with O(

√
n log n) steps of quantum walk,

a
√

log n factor larger than
√
h. Tulsi [36] showed how we may find a unique marked

element in O(
√
h) steps. Magniez, Nayak, Richter, and Santha [28] extended this re-

sult to show that for any state-transitive Markov chain, a unique marked state can be
found in O(

√
h ) steps. They also devised a detection algorithm that solves the deci-

sion version of the problem for any reversible Markov chain and any number of marked
elements, in O(

√
h) steps (thus extending Theorem 1).

Krovi, Magniez, Ozols, and Roland [24] presented a different quantum algorithm
for finding multiple marked elements in any reversible Markov chain. They introduced a
notion of interpolation between any reversible chain P and its absorbing counterpart P ′,
and used the quantum analogue of the interpolated walk. In the case of a unique
marked element, the resulting algorithm solves the search version of the problem with
cost S +

√
h(U + C). The precise relationship between the number of steps of the

quantum walk taken by the algorithm in the case of more than one marked element,
and the corresponding classical hitting time remains open. It is known that for certain
choices of P and M , the former may be asymptotically larger than

√
h.

The schema due to Magniez et al. [29] described above has been extended in
different ways. Jeffery, Kothari, and Magniez [18] use a quantum state as the data
structure d(x) associated with a state x ∈ S in quantum algorithms with nested walks.
In this manner, they avoid the repeated overhead of set-up cost in the inner quantum
walks used for checking marked states. They solve several problems, including Trian-
gle Finding, with query as well as time complexity matching, up to polylogarithmic
factors, the performance of algorithms previously derived from learning graphs [7, 26].
Childs, Jeffery, Kothari, and Magniez [8] introduced the use of a data structure that
depends on the state transition in the walk. Using this, they develop quantum algo-
rithms with nested walks, where the recursion occurs in the update operation. The cost
incurred is essentially what we would expect from Theorem 4. This extension leads to
algorithms that are as efficient in time as in query complexity, for applications such as
3-Distinctness. Independently, Belovs designed a different quantum walk algorithm [8],
which leads to a similar result for 3-Distinctness.
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Applications

We list some quantum walk based results for search problems that represent speed-ups
over Grover search based solutions. All are inspired by Ambainis’ algorithm for element
distinctness.

Triangle finding. Suppose we are given the adjacency matrix A of a graph on n
vertices and are required to determine if the graph contains a triangle (i.e., a clique
of size 3), using as few queries as possible to the entries of A. The classical query
complexity of this problem is Θ(n2). Magniez, Santha, and Szegedy [30] gave an Õ(n1.3)
algorithm. This upper bound has been improved by a sequence of results [7, 16, 26, 29]
(see also Ref. [18]) to Õ(n5/4). Several of these algorithms, including the current best
algorithm due to Le Gall [16] are based on the quantum walk search framework.

Matrix product verification and matrix multiplication. Suppose we are
given three n × n matrices A, B, C over a ring and are required to determine if
AB 6= C, i.e., if there exist i, j such that

∑
k AikBkj 6= Cij. We would like to make as

few queries as possible to the entries of A, B, and C. This problem has classical query
complexity Θ(n2). Buhrman and Špalek [10] gave an O(n5/3) quantum query algorithm.
They also observed that two Boolean matrices can be multiplied with query complex-
ity O(n3/2

√
` ), where ` is the number of non-zero entries in the product. This has since

been improved in a sequence of results [17, 25, 37] to O(n
√
` ). The algorithm due to

Le Gall [25] builds upon quantum walk algorithms. We refer the reader to Ref. [23] for
further work on this topic.

Group commutativity testing. Suppose we are presented with a black-box group
specified by its k generators and are required to determine if the group commutes
using as few queries as possible to the group product operation (i.e., queries of the
form “What is the product of elements g and h?”). The classical query complexity is
Θ(k) group operations. Magniez and Nayak [27] gave an (essentially optimal) Õ(k2/3)
quantum query algorithm for this problem. The algorithm involves a quantum walk on
the product of two graphs whose vertices are ordered l-tuples of distinct generators.

Forbidden subgraph property. A property of graphs is called minor closed when
the following condition holds: if a graph has the property, then all its minors also
possess the property. A graph property (which need not be minor closed) is called a
forbidden subgraph property (FSP) if it can be described by a finite set of forbidden
subgraphs. Suppose we are given the adjacency matrix A of a graph on n vertices
and are required to determine if the graph has a minor closed property Π, using as
few queries as possible to the entries of A. Childs and Kothari [13] show that if Π is
non-trivial and is not FSP, then it has query complexity in Θ(n3/2). They complement
this with a more efficient algorithm for any minor closed property Π that is FSP. The
algorithm has query complexity O(nα) for some α < 3/2, and is based on the quantum
walk search framework.

3-Distinctness. This is a generalization of the element distinctness problem. Sup-
pose we are given elements x1, . . . , xm ∈ {1, . . . ,m} and are asked if there exist three
distinct indices i, j, k such that xi = xj = xk. The Ambainis quantum walk algorithm
achieves query and time complexity O(m3/4). The query complexity was improved to
O(m5/7) by Belovs [6] using a new technique—learning graphs, while the best time
complexity remained unchanged. Childs et al. [8] later designed time efficient query
algorithms with complexity Õ(m5/7), using extensions of the quantum walk search
framework.
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Open Problems

Many issues regarding quantum analogues of Markov chains remain unresolved, both
for the search problem and the closely related mixing problem.

Search problem. Can the quadratic quantum speed-up of hitting time for the deci-
sion version of the problem be extended from all reversible Markov chains to all ergodic
ones? Can quantum walks also find marked elements quadratically faster than classical
walks, in the case of reversible Markov chains with multiple marked states? What other
algorithmic applications of search by quantum walk can be found?

Sampling problem. Another wide use of Markov chains in classical algorithms is in
generating samples from certain probability distributions. In particular, Markov chain
Monte Carlo algorithms work by running a carefully designed ergodic Markov chain.
After a number of steps given by the mixing time of P , the distribution over states
is guaranteed to be ε-close to its stationary distribution π. Such algorithms form the
basis of most randomized algorithms for approximating #P-complete problems (see,
e.g., Ref. [19]). The sampling problem may be formalized as follows:

Input: Markov chain P , tolerance ε ∈ (0, 1).
Output: A sample from a distribution that is ε-close to π in total variation distance.

Notions of quantum mixing time were first proposed and analyzed on the line,
the cycle, and the hypercube [2, 4, 31, 32]. Kendon and Tregenna [21] and Richter [33]
have investigated the use of decoherence in improving mixing of quantum walks. Two
fundamental questions about quantum mixing time remain open: What is the “most
natural” definition? And, when is there a quantum speed-up over the classical mixing
time?

Recommended Reading

1. Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element dis-
tinctness problems. Journal of the ACM, 51(4):595–605, July 2004.

2. Dorit Aharonov, Andris Ambainis, Julia Kempe, and Umesh Vazirani. Quantum walks on graphs.
In Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, STOC ’01,
pages 50–59, New York, NY, USA, 2001. ACM.

3. Andris Ambainis. Quantum walk algorithm for Element Distinctness. SIAM Journal on Comput-
ing, 37(1):210–239, 2007.

4. Andris Ambainis, Eric Bach, Ashwin Nayak, Ashvin Vishwanath, and John Watrous. One-
dimensional quantum walks. In Proceedings of the Thirty-third Annual ACM Symposium on
Theory of Computing, STOC ’01, pages 37–49, New York, NY, USA, 2001. ACM.

5. Andris Ambainis, Julia Kempe, and Alexander Rivosh. Coins make quantum walks faster. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05,
pages 1099–1108, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.

6. Aleksandrs Belovs. Learning-graph-based quantum algorithm for k-Distinctness. In Proceedings
of the 53rd Annual IEEE Symposium on Foundations of Computer Science, pages 207–216, Los
Alamitos, CA, USA, Oct 2012. IEEE Computer Society.

7. Aleksandrs Belovs. Span programs for functions with constant-sized 1-certificates: Extended ab-
stract. In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing,
STOC ’12, pages 77–84, New York, NY, USA, 2012. ACM.

8. Aleksandrs Belovs, Andrew M. Childs, Stacey Jeffery, Robin Kothari, and Frédéric Magniez.
Time-efficient quantum walks for 3-Distinctness. In Fedor V. Fomin, Rūsiņš Freivalds, Marta
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