
A search for quantum coin-flipping protocols
using optimization techniques

Ashwin Nayak∗ Jamie Sikora† Levent Tunçel‡

February 28, 2014

Abstract

Coin-flipping is a cryptographic task in which two physically separated, mis-
trustful parties wish to generate a fair coin-flip by communicating with each other.
Chailloux and Kerenidis (2009) designed quantum protocols that guarantee coin-flips
with near optimal bias away from uniform, even when one party deviates arbitrarily
from the protocol. The probability of any outcome in these protocols is provably at
most 1√

2
+δ for any given δ > 0. However, no explicit description of these protocols is

known, and the number of rounds in the protocols tends to infinity as δ goes to 0. In
fact, the smallest bias achieved by known explicit protocols is 1/4 (Ambainis, 2001).

We take a computational optimization approach, based mostly on convex optimiza-
tion, to the search for simple and explicit quantum strong coin-flipping protocols. We
present a search algorithm to identify protocols with low bias within a natural class,
protocols based on bit-commitment (Nayak and Shor, 2003). To make this search com-
putationally feasible, we further restrict to commitment states à la Mochon (2005). An
analysis of the resulting protocols via semidefinite programs (SDPs) unveils a simple
structure. For example, we show that the SDPs reduce to second-order cone pro-
grams. We devise novel cheating strategies in the protocol by restricting the semidef-
inite programs and use the strategies to prune the search.

The techniques we develop enable a computational search for protocols given by
a mesh over the corresponding parameter space. The protocols have up to six rounds
of communication, with messages of varying dimension and include the best known
explicit protocol (with bias 1/4). We conduct two kinds of search: one for protocols

∗Department of Combinatorics and Optimization, and Institute for Quantum Computing, University of
Waterloo. Address: 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.
Email: ashwin.nayak@uwaterloo.ca.
†Laboratoire d’Informatique Algorithmique: Fondements et Applications, Université Paris Diderot. Ad-

dress: 5 rue Thomas-Mann 75205 Paris cedex 13, France.
Email: jamie.sikora@liafa.univ-paris-diderot.fr.
‡Department of Combinatorics and Optimization, University of Waterloo. Address: 200 University Ave.

W., Waterloo, ON, N2L 3G1, Canada.
Email: ltuncel@uwaterloo.ca.

1

with bias below 0.2499, and one for protocols in the neighbourhood of protocols with
bias 1/4. Neither of these searches yields better bias. Based on the mathematical ideas
behind the search algorithm, we prove a lower bound of 0.2487 on the bias of a class
of four-round protocols.

Contents

1 Introduction 3
1.1 Quantum coin-flipping . 3
1.2 Search for explicit protocols . 5
1.3 The results . 6

2 Background and notation 8
2.1 Linear algebra . 9
2.2 Convex analysis . 10
2.3 Quantum information . 11
2.4 Semidefinite programming . 16

2.4.1 Second-order cone programming . 17

3 Coin-flipping protocols 18
3.1 Strong coin-flipping . 18
3.2 An example protocol . 20
3.3 A family of protocols . 22

4 Cheating strategies as optimization problems 25
4.1 Characterization by semidefinite programs 25
4.2 SOCP formulations for the reduced problems 30
4.3 Numerical performance of SDP formulation vs. SOCP formulation 32

5 Protocol filter 34

6 Protocol symmetry 37
6.1 Index symmetry . 37
6.2 Symmetry between probability distributions 39
6.3 The use of symmetry in the search algorithm 40

7 Search algorithm 40

8 Numerical results 42
8.1 Four-round search . 42
8.2 Six-round search . 50
8.3 Random offset . 57

2

8.4 Computer aided bounds on bias . 59
8.5 New bounds for four-round qubit protocols 62
8.6 Zoning-in on near-optimal protocols . 63

9 Conclusions 70

A SDP characterization of cheating strategies 74

B Derivations of the reduced cheating strategies 76

C Developing the strategies in the filter 80

1 Introduction

Some fundamental problems in the area of Quantum Cryptography allow formulations in
the language of convex optimization in the space of hermitian matrices over the complex
numbers, in particular, in the language of semidefinite optimization. These formulations
enable us to take a computational optimization approach towards solutions of some of
these problems. In the rest of this section, we describe quantum coin-flipping and introduce
our approach.

1.1 Quantum coin-flipping

Coin-flipping is a classic cryptographic task introduced by Blum [Blu81]. In this task, two
remotely situated parties, Alice and Bob, would like to agree on a uniformly random bit by
communicating with each other. The complication is that neither party trusts the other. If
Alice were to toss a coin and send the outcome to Bob, Bob would have no means to verify
whether this was a uniformly random outcome. In particular, if Alice wishes to cheat, she
could send the outcome of her choice without any possibility of being caught cheating.
We are interested in a communication protocol that is designed to protect an honest party
from being cheated.

More precisely, a “strong coin-flipping protocol” with bias ε is a two-party commu-
nication protocol in the style of Yao [Yao79, Yao93]. In the protocol, the two players,
Alice and Bob, start with no inputs and compute a value cA, cB ∈ {0, 1}, respectively, or
declare that the other player is cheating. If both players are honest, i.e., follow the pro-
tocol, then they agree on the outcome of the protocol (cA = cB), and the coin toss is fair
(Pr(cA = cB = b) = 1/2, for any b ∈ {0, 1}). Moreover, if one of the players deviates arbi-
trarily from the protocol in his or her local computation, i.e., is “dishonest” (and the other
party is honest), then the probability of either outcome 0 or 1 is at most 1/2 + ε. Other
variants of coin-flipping have also been studied in the literature. However, in the rest of
the article, by “coin-flipping” (without any modifiers) we mean strong coin flipping.

3

A straightforward game-theoretic argument proves that if the two parties in a coin-
flipping protocol communicate classically and are computationally unbounded, at least
one party can cheat perfectly (with bias 1/2). In other words, there is at least one party,
say Bob, and at least one outcome b ∈ {0, 1} such that Bob can ensure outcome bwith prob-
ability 1 by choosing his messages in the protocol appropriately. Consequently, classical
coin-flipping protocols with bias ε < 1/2 are only possible under complexity-theoretic
assumptions, and when Alice and Bob have limited computational resources.

Quantum communication offers the possibility of “unconditionally secure” cryptog-
raphy, wherein the security of a protocol rests solely on the validity of quantum mechan-
ics as a faithful description of nature. The first few proposals for quantum informa-
tion processing, namely the Wiesner quantum money scheme [Wie83] and the Bennett-
Brassard quantum key expansion protocol [BB84] were motivated by precisely this idea.
These schemes were indeed eventually shown to be unconditionally secure in princi-
ple [May01, LC99, PS00, MVW12]. In light of these results, several researchers have stud-
ied the possibility of quantum coin-flipping protocols, as a step towards studying more
general secure multi-party computations.

Lo and Chau [LC97] and Mayers [May97] were the first to consider quantum pro-
tocols for coin-flipping without any computational assumptions. They proved that no
protocol with a finite number of rounds could achieve 0 bias. Nonetheless, Aharonov,
Ta-Shma, Vazirani, and Yao [ATVY00] designed a simple, three-round quantum proto-
col that achieved bias ≈ 0.4143 < 1/2. This is impossible classically, even with an un-
bounded number of rounds. Ambainis [Amb01] designed a protocol with bias 1/4 à la
Aharonov et al., and proved that it is optimal within a class (see also Refs. [SR01, KN04]
for a simpler version of the protocol and a complete proof of security). Shortly there-
after, Kitaev [Kit02] proved that any strong coin-flipping protocol with a finite number
of rounds of communication has bias at least (

√
2 − 1)/2 ≈ 0.207 (see Ref. [GW07] for an

alternative proof). Kitaev’s seminal work uses semidefinite optimization in a central way.
This argument extends to protocols with an unbounded number of rounds. This remained
the state of the art for several years, with inconclusive evidence in either direction as to
whether 1/4 = 0.25 or (

√
2−1)/2 is optimal. In 2009, Chailloux and Kerenidis [CK09] set-

tled this question through an elegant protocol scheme that has bias at most (
√

2− 1)/2 + δ
for any δ > 0 of our choice (building on [Moc07], see below). We refer to this as the CK
protocol.

The CK protocol uses breakthrough work by Mochon [Moc07], which itself builds
upon the “point game” framework proposed by Kitaev. Mochon shows there are weak
coin-flipping protocols with arbitrarily small bias. (This work has appeared only in the
form of an unpublished manuscript, but has been verified by experts on the topic; see
e.g. [ACG+13].) A weak coin-flipping protocol is a variant of coin-flipping in which each
party favours a distinct outcome, say Alice favours 0 and Bob favours 1. The requirement
when they are honest is the same as before. We say it has bias ε if the following condi-
tion holds. When Alice is dishonest and Bob honest, we only require that Bob’s outcome

4

is 0 (Alice’s favoured outcome) with probability at most 1/2 + ε. A similar condition to
protect Alice holds, when she is honest and Bob is dishonest. The weaker requirement
of security against a dishonest player allows us to circumvent the Kitaev lower bound.
While Mochon’s work pins down the optimal bias for weak coin-flipping, it does this in a
non-constructive fashion: we only know of the existence of protocols with arbitrarily small
bias, not of its explicit description. Moreover, the number of rounds tends to infinity as the
bias decreases to 0. As a consequence, the CK protocol for strong coin-flipping is also
existential, and the number of rounds tends to infinity as the bias decreases to (

√
2− 1)/2.

It is perhaps very surprising that no progress on finding better explicit protocols has been
made in over a decade.

1.2 Search for explicit protocols

This work is driven by the quest to find explicit and simple strong coin-flipping protocols
with bias smaller than 1/4. There are two main challenges in this quest. First, there seems
to be little insight into the structure (if any) that protocols with small bias have; knowl-
edge of such structure might help narrow our search for an optimal protocol. Second,
the analysis of protocols, even those of a restricted form, with more than three rounds of
communication is technically quite difficult. As the first step in deriving the (

√
2 − 1)/2

lower bound, Kitaev [Kit02] proved that the optimal cheating probability of any dishonest
party in a protocol with an explicit description is characterized by a semidefinite program
(SDP). While this does not entirely address the second challenge, it reduces the analy-
sis of a protocol to that of a well-studied optimization problem. In fact this formulation
as an SDP enabled Mochon to analyze an important class of weak coin-flipping proto-
cols [Moc05], and later discover the optimal weak coin flipping protocol [Moc07]. SDPs
resulting from strong coin-flipping protocols, however, do not appear to be amenable to
similar analysis.

We take a computational optimization approach to the search for explicit strong coin-
flipping protocols. We focus on a class of protocols studied by Nayak and Shor [NS03] that
are based on “bit commitment”. This is a natural class of protocols that generalizes those
due to Aharonov et al. and Ambainis, and provides a rich test bed for our search. (See
Section 3.3 for a description of such protocols.) Early proposals of multi-round protocols
in this class were all shown to have bias at least 1/4, without eliminating the possibility of
smaller bias (see, e.g., Ref. [NS03]). A characterization of the smallest bias achievable in
this class would be significant progress on the problem: it would either lead to simple, ex-
plicit protocols with bias smaller than 1/4, or we would learn that protocols with smaller
bias take some other, yet to be discovered form.

Chailloux and Kerenidis [CK11] have studied a version of quantum bit-commitment
that may have implications for coin-flipping. They proved that in any quantum bit-
commitment protocol with computationally unbounded players, at least one party can
cheat with bias at least ≈ 0.239. Since the protocols we study involve two interleaved

5

commitments to independently chosen bits, this lower bound does not apply to the class.
Chailloux and Kerenidis also give a protocol scheme for bit-commitment that guarantees
bias arbitrarily close to 0.239. The protocol scheme is non-constructive as it uses the Mo-
chon weak coin-flipping protocol. It is possible that any explicit protocols we discover for
coin-flipping could also lead to explicit bit-commitment with bias smaller than 1/4.

We present an algorithm for finding protocols with low bias. Each bit-commitment
based coin-flipping protocol is specified by a 4-tuple of quantum states. At a high level,
the algorithm iterates through a suitably fine mesh of such 4-tuples, and computes the
bias of the resulting protocols. The size of the mesh scales faster than 1/νκD, where ν is a
precision parameter, κ is a universal constant, and D is the dimension of the states. The
dimension itself scales as 2n, where n is the number of quantum bits involved. In order to
minimize the doubly exponential size of the set of 4-tuples we examine, we further restrict
our attention to states of the form introduced by Mochon for weak coin-flipping [Moc05].
The additional advantage of this kind of state is that the SDPs in the analysis of the pro-
tocols simplify drastically. In fact, all but a few constraints reduce to linear equalities so
that the SDPs may be solved more efficiently.

Next, we employ two techniques to prune the search space of 4-tuples. First, we use a
sequence of strategies for dishonest players whose bias is given by a closed form expres-
sion determined by the four states. The idea is that if the bias for any of these strategies is
higher than 1/4 for any 4-tuple of states, we may safely rule it out as a candidate optimal
protocol. This also has the advantage of avoiding a call to the SDP solver, the computa-
tionally most intensive step in the search algorithm. The second technique is to invoke
symmetries in the search space as well as in the problem to identify protocols with the
same bias. The idea here is to compute the bias for as few members of an equivalence
class of protocols as possible.

These techniques enable a computational search for protocols with up to six rounds
of communication, with messages of varying dimension. The Ambainis protocol with
bias 1/4 has three rounds, and it is entirely possible that a strong coin-flipping protocol
with a small number of rounds be optimal. Thus, the search non-trivially extends our
understanding of this cryptographic primitive. We elaborate on this next.

1.3 The results

We performed two types of search. The first was an optimistic search that sought protocols
within the mesh with bias at most 1/4 minus a small constant. We chose the constant to
be 0.001. The rationale here was that if the mesh contains protocols with bias close to the
lower bound of≈ 0.207, we would find protocols that have bias closer to 0.25 (but smaller
than it) relatively quickly. We searched for four-round protocols in which each message is
of dimension ranging from 2 to 9, each with varying fineness for the mesh. We found that
our heuristics, i.e., the filtering by fixed cheating strategies, performed so well that they
eliminated every protocol: all of the protocols given by the mesh were found to have bias

6

larger than 0.2499 without the need to solve any SDP. Inspired by the search algorithm,
we give an analytical proof that four-round qubit protocols have bias at least 0.2487.

The initial search for four-round protocols helped us fine-tune the filter by a careful
selection of the order in which the cheating strategies were tried. The idea was to elim-
inate most protocols with the least amount of computation. This made it feasible for us
to search for protocols in finer meshes, with messages of higher dimension, and with a
larger number of rounds. In particular, we were able to check six-round protocols with
messages of dimension 2 and 3. Our heuristics again performed very well, eliminating
almost every protocol before any SDP needed to be solved. Even during this search, not
a single protocol with bias less than 0.2499 was found. We also performed a search over
meshes shifted by a randomly chosen parameter. This was to avoid potential anomalies
caused by any special properties of the mesh we used. No protocols with bias less than
0.2499 were found in this search either.

The second kind of search focused on protocols with bias close to 0.25. We first iden-
tified protocols in the mesh with the least bias. Not surprisingly, these protocols all had
computationally verified bias 1/4. We zoned in on the neighbourhood of these protocols.
The idea here was to see if there are perturbations to the 4-tuple that lead to a decrease in
bias. This search revealed 2 different equivalence classes of protocols for the four-round
version and 6 for the six-round version. Four of these eight protocols are equivalent to
optimal three-round protocols (within this class). However, the four remaining six-round
protocols bear no resemblance to any known protocol with bias 1/4. A search in the neigh-
bourhoods of all these protocols revealed no protocols with bias less than 1/4 (details in
Section 8).

It may not immediately be evident that the above searches involved a computational
examination of extremely large sets of protocols and that the techniques described above
in Section 1.2, were crucial in enabling this search. The symmetry arguments pruned the
searches drastically, and in some cases only 1 in every 1, 000, 000 protocols needed to be
checked. In most cases, the cheating strategies (developed in Section 5) filtered out the
rest of the protocols entirely. To give an example of the efficiency of our search, we were
able to check 2.74× 1016 protocols in a matter of days. Without the symmetry arguments
and the use of cheating strategies as a filter, this same search would have taken well over
69 million years, even using the very simplified forms of the SDPs. Further refinement
of these ideas may make a more thorough search of protocols with four or more rounds
feasible.

The search algorithm, if implemented with exact feasibility guarantees, has the poten-
tial to give us computer aided proofs that certain classes of protocols in the family do not
achieve optimal bias. Suppose we use a mesh such that given any 4-tuple S of states, there
is a 4-tuple S′ in the mesh such that the pairwise fidelity between corresponding distri-
butions is at least 1 − δ. Further suppose the numerical approximation to the bias for S′

7

has additive error τ due to the filter or SDP solver, and finite precision arithmetic1. If the
algorithm reports that there are no tuples in the mesh with bias at most ε∗, then it holds
that there are no 4-tuples, even outside the mesh, with bias at most ε∗ −

√
8 δ − τ . The

fineness of the mesh we are able to support currently is not sufficient for such proofs. A
refinement of the search algorithm along the lines described above, however, would yield
lower bounds for new classes of bit-commitment based protocols.

Finally, based on our computational findings, we make the following conjecture:

Conjecture 1.1 Any strong coin-flipping protocol based on bit-commitment as defined formally
in Section 3.3 has bias at least 1/4.

This conjecture, if true, would imply that we need to investigate new kinds of proto-
cols to find ones with bias less than 1/4. Regardless of the truth of the above conjecture,
we hope that the new techniques developed for analyzing protocols via modern opti-
mization methods and for simplifying semidefinite optimization problems with special
structure will be helpful in future work in the areas of quantum computing and semidef-
inite programming.

Organization of the paper. We begin with an introduction to the ideas contained in this
paper in Section 2. Section 2.3 introduces quantum computing background and Section 2.4
introduces semidefinite programming and related optimization classes. Section 3.1 de-
fines strong coin-flipping protocols and the measure of their security (namely, their bias).
We define the notion of protocols based on bit-commitment in Section 3.3. We model op-
timal cheating strategies for such protocols using semidefinite programming in Section 4.
Sections 5 and 6 exploit the structure of the semidefinite programs in order to design the
search algorithm presented in Section 7. We conclude with computational results in Sec-
tion 8 and some final remarks in Section 9.

The background material on quantum computation and optimization is aimed at mak-
ing this work accessible to researchers in both communities. Readers conversant with ei-
ther topic need only skim the corresponding sections to familiarize themselves with the
notation used. Proofs of most results are deferred to the appendix.

2 Background and notation

In this section, we establish the notation and the necessary background for this paper.

1Note that in our experiments feasibility is guaranteed only up to a tolerance, so as a result we do not
have an independently verifiable upper bound on the additive error in terms of the objective value. Indeed,
efficiently obtaining an exact feasible solution to SDPs, in general, is still an open problem at the time of this
writing.

8

2.1 Linear algebra

For a finite setA, we denote by RA, RA+, ProbA, and CA the set of real vectors, nonnegative
real vectors, probability vectors, and complex vectors, respectively, each indexed by A.
We use Rn, Rn+, Probn, and Cn for the special case when A = {1, . . . , n}. For x ∈ A, the
vectors ex denote the standard basis vectors of RA. The vector eA ∈ RA denotes the all 1
vector

∑
x∈A ex.

We denote by SA and SA+ the set of Hermitian matrices and positive semidefinite ma-
trices, respectively, each over the reals with columns and rows indexed by A.

It is convenient to define
√
x to be the element-wise square root of a nonnegative vec-

tor x. The element-wise square root of a probability vector yields a unit vector (in the
Euclidean norm). This operation maps a probability vector to a quantum state, see Sub-
section 2.3.

For vectors x and y, the notation x ≥ y denotes that x − y has nonnegative entries,
x > y denotes that x − y has positive entries, and for matrices X and Y , the notation
X � Y denotes that X − Y is positive semidefinite, and X � Y denotes X − Y is positive
definite when the underlying spaces are clear from context. When we say that a matrix
is positive semidefinite or positive definite, it is assumed to be Hermitian which implies
that SA+ ⊂ SA.

The Kronecker product of an n×n matrix X and another matrix Y , denoted X ⊗ Y , is
defined as

X ⊗ Y :=

X1,1 Y X1,2 Y · · · X1,n Y
X2,1 Y X2,2 Y · · · X2,n Y

...
...

. . .
...

Xn,1 Y Xn,2 Y · · · Xn,n Y

 .

Note that X ⊗Y ∈ SA×B+ when X ∈ SA+ and Y ∈ SB+ and Tr(X ⊗Y) = Tr(X) ·Tr(Y) when
X and Y are square.

The Schatten 1-norm, or nuclear norm, of a matrix X is defined as

‖X‖∗ := Tr(
√
X∗X),

where X∗ is the adjoint of X and
√
X denotes the square root of a positive semidefinite

matrix X , i.e., the positive semidefinite matrix Y such that Y 2 = X . Note that the 1-norm
of a matrix is the sum of its singular values. The 1-norm of a vector p ∈ CA is denoted as

‖x‖1 :=
∑
x∈A
|px|.

We use the notation ā to denote the complement of a bit a with respect to 0 and 1 and
a ⊕ b to denote the XOR of the bits a and b. We use Zn2 to denote the set of n-bit binary
strings.

9

For a vector p ∈ RA, we denote by Diag(p) ∈ SA the diagonal matrix with p on the
diagonal. For a matrix X ∈ SA, we denote by diag(X) ∈ RA the vector on the diagonal of
X .

For a vector x ∈ CA, we denote by supp(x) the set of indices of A where x is nonzero.
We denote by x−1 the element-wise inverse of x (mapping the 0 entries to 0).

For a matrix X , we denote by Null(X) the nullspace of X , by det(X) the determinant
ofX , and by λmax(X) the largest eigenvalue ofX . We denote by 〈X,Y 〉 the standard inner
product Tr(X∗Y) of matrices X,Y of the same dimension.

2.2 Convex analysis

A convex combination of finitely many vectors x1, . . . , xn is any vector of the form
∑n

i=1 λixi,
when λ1, . . . , λn ∈ [0, 1] satisfy

∑n
i=1 λi = 1. The convex hull of a set C is the set of convex

combinations of elements of C, denoted conv(C). A set C is convex if C = conv(C).
A convex function f : Rn → R ∪ {∞} is one that satisfies

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), for all x, y ∈ Rn, λ ∈ [0, 1].

A convex function is strictly convex if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y), for all x 6= y, x, y ∈ Rn, λ ∈ (0, 1).

We say that a convex function is proper if f(x) < +∞ for some x ∈ Rn. The epigraph of a
function f is the set

epi(f) := {(x, t) : f(x) ≤ t}

which are the points above the graph of the function f . A function is convex if and only
if its epigraph is a convex set.

A function f : Rn → R∪{−∞} is (strictly) concave if−f is (strictly) convex, and proper
when f(x) > −∞ for some x ∈ Rn. The hypograph of a function f is the set

hypo(f) := {(x, t) : f(x) ≥ t}

which are the points below the graph of the function f . A function is concave if and only
if its hypograph is a convex set.

Let f1, . . . , fn : Rm → R ∪ {∞} be proper, convex functions. We denote the convex hull
of the functions {f1, . . . , fn} by conv{f1, . . . , fn} which is the greatest convex function f
such that f(x) ≤ f1(x), . . . , fn(x) for every x ∈ Rm. The convex hull can be written in
terms of the epigraphs

conv{f1, . . . , fn}(x) := inf {t : (x, t) ∈ conv(∪ni=1epi(fi))} .

We denote the concave hull of {f1, . . . , fn} by conc{f1, . . . , fn}which can be written as

conc {f1, . . . , fn} := −conv {−f1, . . . ,−fn}

10

when f1, . . . , fn : Rm → R ∪ {−∞} are proper, concave functions. The concave hull is the
least concave function f such that f(x) ≥ f1(x), . . . , fn(x) for every x ∈ Rm and can be
written as

conc{f1, . . . , fn}(x) := sup {t : (x, t) ∈ conv(∪ni=1hypo(fi))} .

A convex optimization problem or convex program is one of the form

inf
x∈C

f(x),

where f is a convex function and C is a convex set. Alternatively, one could maximize a
concave function over a convex set.

2.3 Quantum information

In this subsection, we give a brief introduction to quantum information. For a more thor-
ough treatment of the subject, we refer the reader to [NC00].

Quantum states

Quantum states are a description of the state of a physical system, such as the spin
of an electron. In the simplest case, such a state is a unit vector in a finite-dimensional
Hilbert space (which is a complex Euclidean space). For example, the following vectors
are quantum states in C2

e0 :=

[
1
0

]
, e1 :=

[
0
1

]
, e+ :=

1√
2

[
1
1

]
, e− :=

1√
2

[
1
−1

]
.

The first two are standard basis vectors and can be thought of as the logical states of a
standard computer. In general, a qubit can be written as

ψ := α0 e0 + α1 e1,

where α0, α1 ∈ C satisfy |α0|2 + |α1|2 = 1. This condition ensures that ψ has norm equal to
1. Up to factor of modulus 1, the set of pairs (α0, α1) defining a two-dimensional quantum
state is in one-to-one correspondence with the unit sphere in R3.

Systems with a two dimensional state space are called quantum bits or qubits. The state
space of a sequence of n qubits is given by the n-fold tensor product (C2)⊗n ∼= C2n . Higher
dimensional systems, say, of dimension d ≤ 2n, may be viewed as being composed of a
sequence of n qubits via a canonical isometry Cd → C2n .

Notice that e+ = 1√
2
e0 + 1√

2
e1 and e− = 1√

2
e0 − 1√

2
e1. These states are said to be in

a superposition of the states e0 and e1 and exhibit properties of being in both states at the
same time. This is in part what gives quantum computers the power to efficiently tackle
hard problems such as factoring [Sho97].

11

In general, a system may be in a random superposition according to some probability
distribution. Suppose a quantum system is in such a state drawn from the ensemble of
states (ψ0, ψ1, . . . , ψn) with probabilities (p0, p1, . . . , pn), respectively. This quantum state
may be described more succinctly as a density matrix, defined as

n∑
i=0

pi ψiψ
∗
i .

Notice that this matrix is positive semidefinite and has unit trace. Moreover, any positive
semidefinite matrix with unit trace can be written in the above form using its spectral
decomposition.

Two different probability distributions over superpositions may have the same density
matrix. For example, density matrices do not record “phase information”, i.e., the density
matrix of state ψ is the same as that of −ψ. However, two ensembles with the same
density matrix behave identically under all allowed physical operations. Therefore, there
is no loss in working with density matrices, and we identify an ensemble with its density
matrix.

A quantum superposition given by the vector ψ corresponds to the rank 1 density
matrix ψψ∗ and we call it a pure state. States with a density matrix of rank 2 or more are
said to be mixed.

Quantum operations

The most basic quantum operation is specified by a unitary transformation. Suppose
U is a unitary operator acting on CA and ψ ∈ CA is a quantum state. If we apply U to ψ
then the resulting quantum state is Uψ ∈ CA. Note this is a well-defined quantum state
since unitary operators preserve Euclidean norm.

Suppose we are given a state drawn from the ensemble (ψ0, ψ1, . . . , ψn) with probabil-
ities (p0, p1, . . . , pn). Then if we apply a unitary matrix U to the state, the resulting state is
given by the ensemble (Uψ0, Uψ1, . . . , Uψn) with the same probabilities. The new density
matrix is thus

n∑
i=0

pi Uψiψ
∗
i U
∗ = U

(
n∑
i=0

pi ψiψ
∗
i

)
U∗,

where U∗ is the adjoint of U . Thus, if we apply the unitary U to a state (with density
matrix) ρ, then the resulting quantum state is UρU∗. Note that this matrix is still positive
semidefinite with unit trace.

We assume that parties capable of quantum information processing have access to
qubits initialized to a fixed quantum state, say e0, can apply arbitrary unitary operations,
and can physically transport (“send”) qubits without disturbing their state. We use the
phrase “prepare a quantum state ψ ∈ CA” to mean that we start with sufficiently many

12

qubits (say n such that CA ⊆ C2n) in state e⊗n0 and apply any unitary transformation that
maps e⊗n0 to ψ.

Quantum measurement

Measurement is a means of extracting classical information from a quantum state.
A quantum measurement on space CA is a sequence of positive semidefinite operators
(Π1, . . . ,Πn), with Πi ∈ SA+ for each i ∈ {1, . . . , n}, satisfying

∑n
i=1 Πi = I. This sequence

of operators is also called a positive operator valued measure or a POVM in the literature. If
we have some qubits in state ρ and we apply the measurement (Π1, . . . ,Πn) (or “observe
the qubits according to the measurement”), we obtain outcome “i” with probability 〈Πi, ρ〉,
and the state of the qubits becomes ΠiρΠi/ 〈Πi, ρ〉. The definitions of density matrices and
measurements establish (〈Πi, ρ〉) as a well-defined probability distribution over the in-
dices. The alteration of state resulting from a measurement is referred to as a collapse. Due
to this restricted kind of access, in general only a limited amount of classical information
may be extracted from a given quantum state.

For example, if we apply the measurement {Π0 := e0e
∗
0,Π1 := e1e

∗
1} to the state e+e

∗
+,

we obtain the outcomes:{
“0” with probability

〈
Π0, e+e

∗
+

〉
= 1/2,

“1” with probability
〈
Π1, e+e

∗
+

〉
= 1/2.

Multiple quantum systems

For convenience, we refer to a quantum system with state space CA by the index setA.
Suppose we have two quantum systems A1, A2 that are independently in pure states ψ1 ∈
CA1 and ψ2 ∈ CA2 . Their combined state is ψ1 ⊗ ψ2 ∈ CA1 ⊗ CA2 ∼= CA1×A2 where
⊗ denotes the Kronecker (or tensor) product. Note that the Kronecker product has the
property that ‖x⊗ y‖2 = ‖x‖2 ‖y‖2 so unit norm is preserved. It is not always possible to
decompose a vector in CA1⊗CA2 as a Kronecker product of vectors in CA1 and CA2 ; a state
with this property is said to be entangled. For example, the state Φ+ = [1/

√
2, 0, 0, 1/

√
2]T

is entangled; it cannot be expressed as ψ1 ⊗ ψ2 for any choice of ψ1, ψ2 ∈ C2.
These concepts extend to mixed states as well. If two disjoint quantum systems are

independently in states ρ1 ∈ SA1
+ and ρ2 ∈ SA2

+ , then the joint state of the combined system
is the density matrix ρ1 ⊗ ρ2 ∈ SA1×A2

+ . We make use of the properties that Kronecker
products preserve positive semidefiniteness and that Tr(A ⊗ B) = Tr(A) Tr(B). It is not
always possible to write a density matrix ρ ∈ SA1×A2

+ as ρ1 ⊗ ρ2 where ρ1 ∈ SA1
+ and

ρ2 ∈ SA2
+ , or more generally, as a convex combination of such Kronecker products. In the

latter case, the state is said to be entangled, and otherwise, it is said to be unentangled.
We typically consider systems consisting of two-dimensional particles (qubits), but it

is sometimes convenient to work with higher dimensional particles. Since higher dimen-

13

sional spaces may be viewed as subspaces of suitable tensor powers of C2, we continue to
describe such systems in terms of qubits.

Partial trace

The partial trace over A1 is the unique linear transformation TrA1 : SA1×A2 → SA2 ,
which satisfies

TrA1(ρ1 ⊗ ρ2) = Tr(ρ1) · ρ2,

for all ρ1 ∈ SA1 and ρ2 ∈ SA2 . More explicitly, given any matrix X ∈ SA1×A2
+ we define

TrA1 as
TrA1(X) :=

∑
x1∈A1

(
e∗x1 ⊗ IA2

)
X (ex1 ⊗ IA2) ,

where {ex1 : x1 ∈ A1} is the standard basis for CA1 . In fact, the definition is independent
of the choice of basis, so long as it is orthonormal. Note that the partial trace is positive,
i.e., TrA1(X) ∈ SA2

+ when X ∈ SA1×A2
+ , and also trace-preserving. (In fact, it is a completely

positive operation.) This ensures that the image of any density matrix under this operation,
called its reduced state, is a well-defined density matrix.

Consider the scenario where two parties, Alice and Bob, hold parts of a quantum
system which are jointly in some state ρ, i.e., they “share” a quantum state ρ over the
space CA ⊗ CB . Then the partial trace of ρ over one space characterizes the quantum
state over the remaining space (if we are interested only in operations on the latter space).
For example, TrA(ρ) is the density matrix representing Bob’s half of the state and TrB(ρ)
represents Alice’s half. Note that ρ may not equal TrB(ρ)⊗ TrA(ρ) in general.

Suppose we are given the density matrix ρ ∈ SA+. We call the pure state ψ ∈ CA ⊗ CB
a purification of ρ if TrB (ψψ∗) = ρ. A purification always exists if |B| ≥ |A|, and is in
general not unique. An important property of purifications of the same state is that they
are related to each other by a unitary operator: if TrB (ψψ∗) = TrB (φφ∗), then there exists
a unitary U acting on CB alone such that ψ = (IA ⊗ U)φ.

The partial trace operation is the quantum analogue of calculating marginal probabil-
ity distributions. Consider the linear operator TrA : RA×B → RB defined by

[TrA(v)]y =
∑
x∈A

vx,y ,

for y ∈ B. This is called the partial trace over A. Note that TrA(p) gives the marginal dis-
tribution over B of the probability distribution p ∈ ProbA×B . One may view probability
distributions as diagonal positive semidefinite matrices with unit trace. Then, taking the
partial trace (as defined for quantum states) corresponds exactly to the computation of
marginal distributions.

14

Distance measures

Notions of distance between quantum states and probability distributions are very
important in quantum cryptography. Here, we discuss two measures used in this paper
and how they are related.

We define the fidelity of two nonnegative vectors p, q ∈ RA+ as

F(p, q) :=

(∑
x∈A

√
px
√
qx

)2

and the fidelity of two positive semidefinite matrices ρ1 and ρ2 as

F(ρ1, ρ2) := ‖√ρ1
√
ρ2‖2∗ .

Notice, F(ρ1, ρ2) ≥ 0 with equality if and only if 〈ρ1, ρ2〉 = 0 and, if ρ1 and ρ2 are quantum
states, F(ρ1, ρ2) ≤ 1 with equality if and only if ρ1 = ρ2. An analogous statement can be
made for fidelity over probability vectors.

Fidelity has several useful properties, which we later use in this paper. We have occa-
sion to consider fidelity only of probability distributions, and state the properties in terms
of these. However, the following properties hold for quantum states as well. Fidelity
is symmetric, positively homogeneous in both arguments, i.e., λF(p, q) = F(λp, q) =
F(p, λq) for all λ > 0, and is concave, i.e., F (

∑n
i=1 λi pi, q) ≥

∑n
i=1 λi F (pi, q), for all

λ ∈ Probn.
Another distance measure is the trace distance. We define the trace distance between

two probability vectors p and q, denoted ∆(p, q), as

∆(p, q) :=
1

2
‖p− q‖1 .

We similarly define the trace distance between two quantum states ρ1 and ρ2 as

∆(ρ1, ρ2) :=
1

2
‖ρ1 − ρ2‖∗ .

Notice ∆(ρ1, ρ2) ≥ 0 with equality if and only if ρ1 = ρ2, and ∆(ρ1, ρ2) ≤ 1 with equality
if and only if 〈ρ1, ρ2〉 = 0. An analogous statement can be made for the trace distance
between probability vectors.

It is straightforward to show that for any Π with 0 � Π � I,

Tr(Π(ρ1 − ρ2)) ≤ ∆(ρ1, ρ2) . (1)

We now discuss two important notions in quantum cryptography. The first is how
easily two states can be distinguished from each other. For example, if Alice gives to Bob

15

one of two states ρ1 or ρ2 chosen uniformly at random, then Bob can measure to learn
whether he has been given ρ1 or ρ2 with maximum probability

1

2
+

1

4
‖ρ1 − ρ2‖∗ =

1

2
+

1

2
∆(ρ1, ρ2).

The second notion is quantum steering. Suppose Alice has given to Bob the A1 part (i.e.,
the subsystem A1 of qubits) of φ ∈ CA1×A2 . Now suppose she wants to modify and send
the A2 part in a way so as to convince Bob that a different state was sent, say ψ ∈ CA1×A2 .
Her most general strategy is to apply a quantum operation on A2 (i.e., a sequence of uni-
tary operations and measurements) before sending it to Bob. If Bob measures according
to the POVM (ψψ∗, I − ψψ∗), Alice can convince him that the state is ψ with maximum
probability

F(TrA2(ψψ∗),TrA2(φφ∗)) .

Trace distance and fidelity are closely related. The Fuchs-van de Graaf inequalities
[FvdG99] illustrate this relationship:

Proposition 2.1 For any finite dimensional quantum states ρ1, ρ2 ∈ SD+ , we have

1−
√

F(ρ1, ρ2) ≤ ∆(ρ1, ρ2) ≤
√

1− F(ρ1, ρ2) .

2.4 Semidefinite programming

A natural model of optimization when studying quantum information is semidefinite
programming. A semidefinite program, abbreviated as SDP, is an optimization problem
of the form

(P) sup 〈C,X〉
subject to A(X) = b,

X ∈ Sn+,

whereA : Sn → Rm is linear, C ∈ Sn, and b ∈ Rm. The SDPs that arise in quantum compu-
tation involve optimization over complex matrices. However, they may be transformed
to the above standard form in a straightforward manner, by observing that Hermitian ma-
trices form a real subspace of the vector space of n × n complex matrices. We give direct
arguments as to why we may restrict ourselves to SDPs over real matrices when they arise
in this article.

Similar to linear programs, every SDP has a dual. We can write the dual of (P) as

(D) inf 〈b, y〉
subject to A∗(y)− S = C,

S ∈ Sn+,

16

where A∗ is the adjoint of A. We refer to (P) as the primal problem and to (D) as its dual.
We say X is feasible for (P) if it satisfies the constraintsA(X) = b and X ∈ Sn+, and (y, S) is
feasible for (D) ifA∗(y)−S = C, S ∈ Sn+. The usefulness of defining the dual in the above
manner is apparent in the following lemmas.

Lemma 2.2 (Weak duality) For every X feasible for (P) and (y, S) feasible for (D) we have

〈C,X〉 ≤ 〈b, y〉 .

Using weak duality, we can prove bounds on the optimal objective value of (P) and
(D), i.e., the objective function value of any primal feasible solution yields a lower bound
on (D) and the objective function value of any dual feasible solution yields an upper
bound on (P).

Under mild conditions, we have that the optimal objective values of (P) and (D) coin-
cide.

Lemma 2.3 (Strong duality) If the objective function of (P) is bounded from above on the set of
feasible solutions of (P) and there exists a strictly feasible solution, i.e., there exists X̄ � 0 such
that A(X̄) = b, then (D) has an optimal solution and the optimal objective values of (P) and (D)
coincide.

A strictly feasible solution as in the above lemma is also called a Slater point.
Semidefinite programming has a powerful and rich duality theory and the interested

reader is referred to [WSV00, TW12] and the references therein.

2.4.1 Second-order cone programming

The second-order cone (or Lorentz cone) in Rn, n ≥ 2, is defined as

SOCn := {(x, t) ∈ Rn : t ≥ ‖x‖2} .

A second-order cone program, denoted SOCP, is an optimization problem of the form

(P) sup 〈c, x〉
subject to Ax = b,

x ∈ SOCn1 ⊕ · · · ⊕ SOCnk ,

whereA is anm× (
∑k

i=1 nk) matrix, b ∈ Rm, and k is finite. We say that a feasible solution
x̄ is strictly feasible if x̄ is in the interior of SOCn1 ⊕ · · · ⊕ SOCnk .

An SOCP also has a dual which can be written as

(D) inf 〈b, y〉
subject to ATy − s = c,

s ∈ SOCn1 ⊕ · · · ⊕ SOCnk .

17

Note that weak duality and strong duality also hold for SOCPs for the properly modified
definition of a strictly feasible solution.

A related cone, called the rotated second-order cone, is defined as

RSOCn :=
{

(a, b, x) ∈ Rn : a, b ≥ 0, 2ab ≥ ‖x‖22
}
.

Optimizing over the rotated second-order cone is also called second-order cone program-
ming because (x, t) ∈ SOCn if and only if (t/2, t, x) ∈ RSOCn+1 and (a, b, x) ∈ RSOCn

if and only if (x, a, b, a + b) ∈ SOCn+1 and a, b ≥ 0. In fact, both second-order cone con-
straints can be cast as positive semidefinite constraints:

t ≥ ‖x‖2 ⇐⇒
[
t xT

x t I

]
� 0 and a, b ≥ 0, 2ab ≥ ‖x‖22 ⇐⇒

[
2a xT

x b I

]
� 0.

There are some notable differences between semidefinite programs and second-order
cone programs. One is that the algorithms for solving second-order cone programs can
be more efficient and robust than those for solving semidefinite programs. We refer the
interested reader to [Stu99, Stu02, Mit03, AG03] and the references therein.

3 Coin-flipping protocols

3.1 Strong coin-flipping

A strong coin-flipping protocol is a two-party quantum communication protocol in the style
of Yao [Yao93]. We concentrate on a class of communication protocols relevant to coin-
flipping. Informally, in such protocols, two parties Alice and Bob hold some number of
qubits; the qubits with each party are initialized to a fixed pure state. The initial joint
state is therefore unentangled across Alice and Bob. The two parties then “play” in turns.
Suppose it is Alice’s turn to play. Alice applies a unitary transformation on her qubits
and then sends one or more qubits to Bob. Sending qubits does not change the overall
superposition, but rather changes the ownership of the qubits. This allows Bob to apply
his next unitary transformation on the newly received qubits. At the end of the protocol,
each player makes a measurement of their qubits and announces the outcome as the result
of the protocol.

Formally, the players Alice and Bob, hold some number of qubits, which initially factor
into a tensor product CA0 ⊗ CB0 of Hilbert spaces. The qubits corresponding to CA0 are
in Alice’s possession, and those in CB0 are in Bob’s possession. When the protocol starts,
the qubits in CA0 are initialized to some superposition ψA,0 and those in CB0 to ψB,0, both
of which specified by the protocol. The communication consists of t ≥ 1 alternations of
message exchange (“rounds”), in which the two players “play”. Either party may play
first. The protocol specifies a factorization of the joint state space just before each round,
corresponding to the ownership of the qubits. In the ith round, i ≥ 1, suppose it is Alice’s

18

turn to play. Suppose the factorization of the state space just before the ith round is CAi−1⊗
CBi−1 . Alice applies a unitary operator UA,i to the qubits in CAi−1 . Then, Alice sends some
of her qubits to Bob. Formally, the space CAi−1 is expressed as CAi ⊗ CMi , where CAi
is Alice’s state space after the ith message is sent and CMi is the state space for the ith
message. Consequently, Bob’s state space after receiving the ith message is CBi = CMi ⊗
CBi−1 . In the next round, Bob may thus apply a unitary operation to the qubits previously
in Alice’s control.

At the end of the t rounds of play, Alice and Bob observe the qubits in their possession
according to some measurement. The outcomes of these measurements represent their
outputs. We emphasize that there are no measurements until all rounds of communication
are completed. A protocol with intermediate measurements may be transformed into this
form by appealing to standard techniques [BV97].

Definition 3.1 (Strong coin-flipping) A strong coin-flipping protocol is a two-party com-
munication protocol as described above, in which the measurements of Alice and Bob are given by
three-outcome POVMs (ΠA,0,ΠA,1,ΠA,abort) and (ΠB,0,ΠB,1,ΠB,abort), respectively. When both
parties follow the protocol, they do not abort, i.e., only get outcomes in {0, 1}. Further, each party
outputs the same bit c ∈ {0, 1} and each binary outcome occurs with probability 1/2.

We are interested in the probabilities of the different outcomes in a coin-flipping pro-
tocol, when either party “cheats”. Suppose Alice and Bob have agreed upon a protocol,
i.e., a set of rules for the state initialization, communication, quantum operations, and
measurements. What if Alice or Bob do not follow protocol? Suppose Alice is dishonest
and would like to force an outcome of 0. She may use a different number of qubits for her
private operations, so that her space CA′i may be much larger than CAi . She may create
any initial state she wants. During the communication, the only restriction is that she send
a state of the correct dimension, e.g., if the protocol requires a message with 3 qubits in the
first message, then Alice sends 3 qubits. Between messages, she may apply any quantum
operation she wants on the qubits in her possession. At the end of the protocol, she may
use a different measurement of her choice. For example, she may simply output “0” as
this is her desired outcome (which corresponds to a trivial measurement). The rules that
Alice chooses to follow instead of the protocol constitute a cheating strategy.

We would like to quantify the extent to which a cheating player can convince an honest
one of a desired outcome, so we focus on runs of the protocol in which at most one party
is dishonest. We analyze in this paper the maximum probability with which Alice (or
Bob) can force a desired outcome in terms of the “bias”, i.e., the advantage over 1/2 that a
cheating party can achieve.

Definition 3.2 (Bias) For a given strong coin-flipping protocol, for each c ∈ {0, 1}, define

• P ∗A,c := sup {Pr[honest Bob outputs c when Alice may cheat]},

• P ∗B,c := sup {Pr[honest Alice outputs c when Bob may cheat]},

19

where the suprema are taken over all cheating strategies of the dishonest player. The bias ε of the
protocol is defined as

ε := max{P ∗A,0, P ∗A,1, P ∗B,0, P ∗B,1} − 1/2 .

3.2 An example protocol

Here we describe a construction of strong coin-flipping protocols based on quantum bit-
commitment [ATVY00, Amb01, SR01, KN04] that consists of three messages. First, Alice
chooses a uniformly random bit a, creates a state of the form

ψa ∈ CA ⊗ CA
′

and sendsA to Bob, i.e., the first message consists of qubits corresponding to the space CA.
(For ease of exposition, we use this language throughout, i.e., refer to qubits by the labels
of the corresponding spaces.) This first message is the commit stage since she potentially
gives some information about the bit a, for which she may be held accountable later. Then
Bob chooses a uniformly random bit b and sends it to Alice. Alice then sends a and A′ to
Bob. Alice’s last message is the reveal stage. Bob checks to see if the qubits he received are
in state ψa (we give more details about this step below). If Bob is convinced that the state
is correct, they both output 0 when a = b, or 1 if a 6= b, i.e., they output the XOR of a and
b.

This description can be cast in the form of a quantum protocol as presented in Sec-
tion 3.1: we can encode 0 as basis state e0 and 1 as e1, we can simulated the generation of
a uniformly random bit by preparing a uniform superposition over the two basis states,
and we can “send” qubits by permuting their order (a unitary operation) so that they are
part of the message subsystem. In fact, we can encode an entirely classical protocol using
a quantum one in this manner. A more general protocol of this kind is described formally
in Section 3.3.

We present a protocol from [KN04] which follows the above framework.

Definition 3.3 (Coin-flipping protocol example)
Let A := {0, 1, 2}, A′ := A, and let CA and CA′ be spaces for Alice’s two messages.

• Alice chooses a ∈ {0, 1} uniformly at random and creates the state

ψa =
1√
2
ea ⊗ ea +

1√
2
e2 ⊗ e2 ∈ CA ⊗ CA

′
,

where {e0, e1, e2} are standard basis vectors. Alice sends the A part of ψa to Bob.

• Bob chooses b ∈ {0, 1} uniformly at random and sends it to Alice.

• Alice reveals a to Bob and sends the rest of ψa, i.e., she sends A′.

20

• Bob checks to see if the state sent by Alice is ψa, i.e., he checks to see if Alice has tampered
with the state during the protocol. The measurement on CA ⊗ CA′ corresponding to this
check is

(Πaccept := ψaψ
∗
a, Πabort := I−Πaccept).

If the measurement outcome is “abort” then Bob aborts the protocol.

• Each player outputs the XOR of the two bits, i.e., Alice outputs a⊕ b′, where b′ is the bit she
received in the second round, and if he does not abort, Bob outputs a′ ⊕ b, where a′ is the bit
received by him in the third round.

In the honest case, Bob does not abort since 〈Πabort, ψaψ
∗
a〉 = 0. Furthermore, Alice and

Bob get the same outcome which is uniformly random. Therefore, this is a well-defined
coin-flipping protocol. We now sketch a proof that this protocol has bias ε = 1/4.

Bob cheating: We consider the case when Bob cheats towards 0; the analysis of cheating
towards 1 is similar. If Bob wishes to maximize the probability of outcome 0, he has to
maximize the probability that the bit b he sends equals a. In other words, he may only
cheat by measuring Alice’s first message to try to learn a, then choose b suitably to force
the desired outcome. Define ρa := TrA′ (ψaψ

∗
a). This is the reduced state of the A-qubits

Bob has after the first message. Recall Bob can learn the value of a with probability

1

2
+

1

2
∆(ρ0, ρ1) = 3/4 ,

and this bound can be achieved. This strategy is independent of the outcome Bob desires,
thus P ∗B,0 = P ∗B,1 = 3/4.

Alice cheating: Alice’s most general cheating strategy is to send a state in the first mes-
sage such that she can decide the value of a after receiving b, and yet pass Bob’s cheat
detection step with maximum probability. For example, if Alice wants outcome 0 then
she returns a = b and if she wants outcome 1, she returns a = b̄. Alice always gets the
desired outcome as long as Bob does not detect her cheating. As a primer for more com-
plicated protocols, we show an SDP formulation for a cheating Alice based on the above
cheating strategy description. There are three important quantum states to consider here.
The first is Alice’s first message, which we denote as σ ∈ SA+. The other two states are
the states Bob has at the end of the protocol depending on whether b = 0 or b = 1, we
denote them by σb ∈ SA⊗A

′
+ . Note that TrA′(σ0) = TrA′(σ1) = σ since they are consistent

with the first message σ—Alice does not know b when σ is sent. However, they could
be different on A′ because Alice may apply some quantum operation depending upon b
before sending the A′ qubits. Then Alice can cheat with probability given by the optimal

21

objective value of the following SDP:

sup 1
2〈ψ0ψ

∗
0, σ0〉 + 1

2〈ψ1ψ
∗
1, σ1〉

subject to TrA′(σb) = σ, for all b ∈ {0, 1},
Tr(σ) = 1,

σ ∈ SA+,
σb ∈ SA⊗A

′
+ , for all b ∈ {0, 1},

recalling that the partial trace is trace-preserving, any unit trace, positive semidefinite
matrix represents a valid quantum state, and that two purifications of the same density
matrix are related to each other by a unitary transformation on the part that is traced out.

A few words about the above optimization problem are in order here. First, the re-
striction to real positive semidefinite matrices does not change the optimum: the real part
of any feasible set of complex matrices σ, σ0, σ1 is also feasible, and has the same objective
function value. Second, using straightforward transformations, we may verify that the
problem is an SDP of the form defined in Section 2.4.

It has been shown [SR01, Amb01, NS03] that the optimal objective value of this prob-
lem is

1

2
+

1

2

√
F(ρ0, ρ1) = 3/4

given by the optimal solution (σ0, σ1, σ) = (ψψ∗, ψψ∗,TrA′(ψψ
∗)), where

ψ =

√
1

6
e0 ⊗ e0 +

√
1

6
e1 ⊗ e1 +

√
2

3
e2 ⊗ e2 .

Therefore, the bias of this protocol is max{P ∗A,0, P ∗A,1, P ∗B,0, P ∗B,1} − 1/2 = 3/4− 1/2 = 1/4.
Using Proposition 2.1, it was shown in [Amb01] that for any ρ0 and ρ1, we have

max

{
1

2
+

1

2

√
F(ρ0, ρ1),

1

2
+

1

2
∆(ρ0, ρ1)

}
− 1/2 ≥ 1/4 .

Thus, we cannot improve the bias by simply changing the starting states in this type of
protocol, suggesting a substantial change of the form of the protocol is necessary to find a
smaller bias.

3.3 A family of protocols

We now consider a family of protocols which generalizes the above idea. Alice and Bob
each flip a coin and commit to their respective bits by exchanging quantum states. Then
they reveal their bits and send the remaining part of the commitment state. Each party
checks the received state against the one they expect, and abort the protocol if they detect
an inconsistency. They output the XOR of the two bits otherwise. We see that this is
uniformly random, when a and b are uniformly random.

22

The difficulty in designing a good protocol is in deciding how Alice and Bob commit
to their bits. If Alice or Bob leaks too much information early, then the other party has
more freedom to cheat. Thus, we try to maintain a balance between the two parties so as
to minimize the bias they can achieve by cheating.

Consider the following Cartesian product of finite sets A = A1 × · · · × An. These are
used for Alice’s first n messages to Bob. Suppose we are given two probability distribu-
tions α0, α1 ∈ ProbA. Define the following two quantum states

ψa =
∑
x∈A

√
αa,x ex ⊗ ex ∈ CA ⊗ CA

′
for a ∈ {0, 1},

where A′ = A. The reason we define the state over CA and a copy is because in the pro-
tocol, Alice sends states in CA while retaining copies in CA′ for herself. We may simulate
Alice’s choice of uniformly random a and the corresponding messages by preparing the
initial state

ψ :=
∑

a∈{0,1}

1√
2
ea ⊗ ea ⊗ ψa ∈ CA0 ⊗ CA

′
0 ⊗ CA ⊗ CA

′
,

where A0 = A′0 = {0, 1} are used for two copies of Alice’s bit a, one for Bob and a copy
for herself.

We now describe the setting for Bob’s messages. Consider the following Cartesian
product of finite setsB = B1×· · ·×Bn used for Bob’s first nmessages to Alice. Suppose we
are given two probability distributions β0, β1 ∈ ProbB . Define the following two quantum
states

φb =
∑
y∈B

√
βb,y ey ⊗ ey ∈ CB ⊗ CB

′
for b ∈ {0, 1},

whereB′ = B. Bob’s choice of uniformly random b, and the corresponding messages may
be simulated by preparing the initial state

φ :=
∑

b∈{0,1}

1√
2
eb ⊗ eb ⊗ φb ∈ CB0 ⊗ CB

′
0 ⊗ CB ⊗ CB

′
,

where B0 = B′0 = {0, 1} are used for two copies of Bob’s bit b, one for Alice and a copy
for himself.

We now describe the communication and cheat detection in the protocol.

Definition 3.4 (Coin-flipping protocol based on bit-commitment) A coin-flipping proto-
col based on bit-commitment is specified by a 4-tuple of probability distributions (α0, α1, β0, β1)
that define states ψ, φ as above.

• Alice prepares the state ψ and Bob prepares the state φ as defined above.

• For i from 1 to n: Alice sends CAi to Bob who replies with CBi .

23

• Alice fully reveals her bit by sending CA′0 . She also sends CA′ which Bob uses later to check
if she was honest. Bob then reveals his bit by sending CB′0 . He also sends CB′ which Alice
uses later to check if he was honest.

• Alice observes the qubits in her possession according to the measurement (ΠA,0,ΠA,1,ΠA,abort)

defined on the space SA0×B′0×B×B′
+ , where

ΠA,0 :=
∑

b∈{0,1}

ebe
∗
b ⊗ ebe∗b ⊗ φbφ∗b , ΠA,1 :=

∑
b∈{0,1}

eb̄e
∗
b̄ ⊗ ebe

∗
b ⊗ φbφ∗b ,

and ΠA,abort := I−ΠA,0 −ΠA,1.

• Bob observes the qubits in his possession according to the measurement (ΠB,0,ΠB,1,ΠB,abort)

defined on the space SB0×A′0×A×A′
+ , where

ΠB,0 :=
∑

a∈{0,1}

eae
∗
a ⊗ eae∗a ⊗ ψaψ∗a, ΠB,1 :=

∑
a∈{0,1}

eāe
∗
ā ⊗ eae∗a ⊗ ψaψ∗a,

and ΠB,abort := I−ΠB,0 −ΠB,1. (These last two steps can be interchanged.)

Note that the measurements check two things. First, they check whether the outcome
is 0 or 1. The first two terms determine this, i.e., whether a = b or if a 6= b. Second, they
check whether the other party was honest. For example, if Alice’s measurement projects
onto a subspace where b = 0 and Bob’s messages are not in state φ0, then Alice knows Bob
has cheated and aborts. A six-round protocol is depicted in Figure 1, above.

We could also consider the case where Alice and Bob choose a and b with different
probability distributions, i.e., we could change the 1/

√
2 in the definitions of ψ and φ to

other values depending on a or b. This causes the honest outcome probabilities to not be
uniformly random and this no longer falls into our definition of a coin-flipping protocol.
However, sometimes such “unbalanced” coin-flipping protocols are useful, see [CK09].
We note that our optimization techniques in Section 4 are robust enough to handle the
analysis of such modifications.

Notice that our protocol is parameterized by the four probability distributions α0, α1,
β0, and β1. It seems to be a very difficult problem to solve for the choice of these param-
eters that gives us the least bias. Indeed, we do not even have an upper bound on the
dimension of these parameters in an optimal protocol. However, we can solve for the
bias of a protocol once these parameters are fixed using the optimization techniques in
Section 4. Once we have a means for computing the bias given some choice of fixed pa-
rameters, we then turn our attention to solving for the best choice of parameters. We use
the heuristics in Sections 5 and 6 to design an algorithm in Section 7 to search for these.

24

Alice prepares ψ ∈ C
A0×A′

0
×A1×A2×A′

1
×A′

2 Bob prepares φ ∈ C
B0×B′

0
×B1×B2×B′

1
×B′

2

Alice sends CA1 (x1 ∈ A1)

Bob sends CB1 (y1 ∈ B1)

Alice sends CA2 (x2 ∈ A2)

Bob sends CB2 (y2 ∈ B2)

Alice sends CA′

0
×A′

1
×A′

2 (a ∈ {0, 1} and a copy of x1, x2)

Bob sends CB′

0
×B′

1
×B′

2 (b ∈ {0, 1} and a copy of y1, y2)

Alice checks if Bob cheated Bob checks if Alice cheated

Alice and Bob output a⊕ b if no cheating is detected

Figure 1: Six-round coin-flipping protocol based on bit-commitment. Alice’s actions are
in red and Bob’s actions are in blue.

4 Cheating strategies as optimization problems

In this section, we show that the optimal cheating strategy of a player in a coin-flipping
protocol is characterized by highly structured semidefinite programs.

4.1 Characterization by semidefinite programs

We start by formulating strategies for cheating Bob and cheating Alice as semidefinite
optimization problems as proposed by Kitaev [Kit02]. The extent to which Bob can cheat
is captured by the following lemma.

25

Lemma 4.1 The maximum probability with which cheating Bob can force honest Alice to accept
c ∈ {0, 1} is given by the optimal objective value of the following SDP:

sup 〈 ρF ,ΠA,c 〉
subject to TrB1(ρ1) = TrA1 (ψψ∗) ,

TrBj (ρj) = TrAj (ρj−1), for all j ∈ {2, . . . , n},
TrB′×B′0(ρF) = TrA′×A′0(ρn),

ρj ∈ SA0×A′0×B1×···×Bj×Aj+1×···×An×A′
+ , for all j ∈ {1, . . . , n},

ρF ∈ SA0×B′0×B×B′
+ .

Furthermore, an optimal cheating strategy for Bob may be derived from an optimal feasible solution
of this SDP.

We depict Bob cheating, and the context of the SDP variables, in a six-round protocol
in Figure 2, on the next page.

Alice prepares ψ ∈ C
A0×A′

0
×A1×A2×A′

1
×A′

2 Bob does not follow protocol

Bob maintains purifications of ρ1, ρ2, ρF

ψψ∗

TrA1
(ψψ∗)

ρ1

TrA2
(ρ1)

ρ2

TrA′

0
×A′

1
×A′

2
(ρ2)

ρF

Alice sends CA1 (x1 ∈ A1)

Bob sends CB1 (y1 ∈ B1)

Alice sends CA2 (x2 ∈ A2)

Bob sends CB2 (y2 ∈ B2)

Alice sends CA′

0
×A′

1
×A′

2 (a ∈ {0, 1} and a copy of x1, x2)

Bob sends CB′

0
×B′

1
×B′

2 (b ∈ {0, 1} and a copy of y1, y2)

Alice checks if Bob cheated Bob simply outputs his desired outcome

Figure 2: Bob cheating in a six-round protocol.

We call the SDP Lemma 4.1 Bob’s cheating SDP. In a similar fashion, we can formulate
Alice’s cheating SDP.

26

Lemma 4.2 The maximum probability with which cheating Alice can force honest Bob to accept
c ∈ {0, 1} is given by the optimal objective value of the following SDP:

sup
〈
σF ,ΠB,c ⊗ IB′0×B′

〉
subject to TrA1(σ1) = φφ∗,

TrA2(σ2) = TrB1(σ1),
...

TrAn(σn) = TrBn−1(σn−1),
TrA′⊗A′0(σF) = TrBn(σn),

σj ∈ SB0×B′0×A1×···×Aj×Bj×···×Bn×B′
+ ,

for all j ∈ {1, . . . , n},
σF ∈ SB0×B′0×A′0×A×A′×B′

+ .

Furthermore, we may derive an optimal cheating strategy for Alice from an optimal feasible solu-
tion to this SDP.

For completeness, we present proofs of these lemmas in Appendix A.
We depict Alice cheating, and the context of her SDP variables, in a six-round protocol

in Figure 3.

Alice does not follow protocol

Alice maintains purifications of σ1, σ2, σF

Bob prepares φ ∈ C
B0×B′

0
×B1×B2×B′

1
×B′

2

φφ∗

σ1

TrB1
(σ1)

σ2

TrB2
(σ2)

σF

TrB′

0
×B′

1
×B′

2
(σF)

Alice sends CA1 (x1 ∈ A1)

Bob sends CB1 (y1 ∈ B1)

Alice sends CA2 (x2 ∈ A2)

Bob sends CB2 (y2 ∈ B2)

Alice sends CA′

0
×A′

1
×A′

2 (a ∈ {0, 1} and a copy of x1, x2)

Bob sends CB′

0
×B′

1
×B′

2 (b ∈ {0, 1} and a copy of y1, y2)

Alice simply outputs her desired outcome Bob checks if Alice cheated

Figure 3: Alice cheating in a six-round protocol.

Analyzing and solving these problems computationally gets increasingly difficult and
time consuming as n increases, since the dimension of the variables increases exponen-

27

tially in n. In the analysis of the bias, we make use of the following results which simplify
the underlying optimization problems without changing their optimal objective values.

Definition 4.3 We define Bob’s cheating polytope, denoted as PB, as the set of all vectors
(p1, p2, . . . , pn) such that

TrB1(p1) = eA1 ,
TrB2(p2) = p1 ⊗ eA2 ,

...
TrBn(pn) = pn−1 ⊗ eAn ,

pj ∈ RA1×B1×···×Aj×Bj
+ , for all j ∈ {1, . . . , n},

where eAj denotes the vector of all ones on the corresponding space CAj .

We can now define a simpler “reduced” problem that captures Bob’s optimal cheating
probability.

Theorem 4.4 (Bob’s Reduced Problem) The maximum probability with which cheating Bob
can force honest Alice to accept outcome c ∈ {0, 1} is given by the optimal objective function value
of the following convex optimization problem

P ∗B,c = max

1

2

∑
a∈{0,1}

F
(
(αa ⊗ IB)Tpn, βa⊕c

)
: (p1, . . . , pn) ∈ PB

 ,

where the arguments of the fidelity functions are probability distributions over B.

The connection between the fidelity function and semidefinite programming is de-
tailed in the next subsection. A proof of the above theorem is presented in Appendix B.

We can also define Alice’s cheating polytope.

Definition 4.5 We define Alice’s cheating polytope, denoted as PA, as the set of all vectors
(s1, s2, . . . , sn, s) satisfying

TrA1(s1) = 1,
TrA2(s2) = s1 ⊗ eB1 ,

...
TrAn(sn) = sn−1 ⊗ eBn−1 ,

TrA′0(s) = sn ⊗ eBn ,
s1 ∈ RA1

+ ,

sj ∈ RA1×B1×···×Bj−1×Aj
+ , for all j ∈ {2, . . . , n},

s ∈ RA
′
0×A×B

+ ,

where eBj denotes the vector of all ones on the corresponding space CBj .

28

Now we can define Alice’s reduced problem.

Theorem 4.6 (Alice’s Reduced Problem) The maximum probability with which cheating Al-
ice can force honest Bob to accept outcome c ∈ {0, 1} is given by the optimal objective function
value of the following convex optimization problem

P ∗A,c = max

1

2

∑
a∈{0,1}

∑
y∈B

βa⊕c,y F(s(a,y), αa) : (s1, . . . , sn, s) ∈ PA

 ,

where s(a,y) ∈ RA+ is the restriction of s with the indices (a, y) fixed, i.e., [s(a,y)]x := sa,x,y.

We postpone a proof of the above theorem until Appendix B.
We note here that we can get similar SDPs and reductions if Alice chooses awith a non-

uniform probability distribution and similarly for Bob. It only changes the multiplicative
factor 1/2 in the reduced problems to something that depends on a (or b) and the proofs
are nearly identical to those in the appendix.

We point out that the reduced problems are also semidefinite programs. The con-
tainment of the variables in a polytope is captured by linear constraints, so it suffices to
express the objective function as a linear functional of an appropriately defined positive
semidefinite matrix variable.

Lemma 4.7 For any p, q ∈ RA+, we have

F(p, q) = max
{〈
X,
√
p
√
pT
〉

: diag(X) = q, X ∈ SA+
}
.

Proof: Notice that X̄ :=
√
q
√
qT is a feasible solution to the SDP with objective function

value F(p, q). All that remains to show is that it is an optimal solution. If p = 0, then we
are done, so assume p 6= 0. The dual can be written as

inf{〈y, q〉 : Diag(y) � √p√pT, y ∈ RA}.

Define y, as a function of ε > 0, entry-wise for each x ∈ A as

yx(ε) :=

(
√

F(p, q) + ε)
√
px√
qx

if px, qx > 0,

(
√

F(p,q)+ε)‖p‖1
ε if qx = 0,

ε if px = 0, qx > 0.

We can check that 〈y(ε), q〉 → F(p, q) as ε → 0, so it suffices to show that y(ε) is dual
feasible for all ε > 0. For any y > 0,

Diag(y) � √p√pT ⇐⇒ IA � Diag(y)−1/2√p√pTDiag(y)−1/2

⇐⇒ 1 ≥ √pTDiag(y)−1√p

⇐⇒ 1 ≥
∑
x∈A

px
yx
,

29

noting Diag(y)−1/2√p√pTDiag(y)−1/2 is rank 1 so the largest eigenvalue is equal to its
trace. From this, we can check that y(ε) is feasible for all ε > 0. �

The optimization problem in Lemma 4.7 remains an SDP if we replace q with a variable
constrained to be in a polytope. Therefore, the reduced problems in Theorems 4.4 and 4.6
can be modelled as semidefinite programs.

4.2 SOCP formulations for the reduced problems

In this section, we show that the reduced SDPs can be modelled using a simpler class
of optimization problems, second-order cone programs. We elaborate on this below and
explain the significance to solving these problems computationally.

We start by first explaining how to model fidelity as an SOCP. Suppose we are given
the problem

max
{√

F(p, q) : q ∈ Rn+ ∩ S
}

= max

{
n∑
i=1

√
pi ti : t2i ≤ qi, ∀i ∈ {1, . . . , n}, q ∈ Rn+ ∩ S

}
,

where p ∈ Rn+ and S ⊆ Rn. We can replace t2i ≤ qi with the equivalent constraint
(1/2, qi, ti) ∈ RSOC3, for all i ∈ {1, . . . , n}. Therefore, we can maximize the fidelity us-
ing n rotated second-order cone constraints.

For the same reason, we can use second-order cone programming to solve a problem
of the form

max

m∑
j=1

aj

√
F(pj , qj) : (q1, . . . , qm) ∈ Rmn+ ∩ S′

 ,

where a ∈ Rm+ and S′ ⊆ Rmn. However, this does not apply directly to the reduced
problems since we need to optimize over a linear combination of fidelities and f(x) = x2

is not a concave function. For example, Alice’s reduced problem is of the form

max

m∑
j=1

aj F(pj , qj) : (q1, . . . , qm) ∈ Rmn+ ∩ S′
 .

The root of this problem arises from the fact that the fidelity function, which is concave, is
a composition of a concave function with a convex function, thus we cannot break it into
these two steps. Even though the above analysis does not work to capture the reduced
problems as SOCPs, it does have a desirable property that it only uses O(n) second-order
cone constraints and perhaps this formulation will be useful for future applications.

We now explain how to model the reduced problems as SOCPs directly.

30

Lemma 4.8 For p, q ∈ Rn+, we have

F(p, q) = max

 1√
2

n∑
i,j=1

√
pipj ti,j : (qi, qj , ti,j) ∈ RSOC3, for all i, j ∈ {1, . . . , n}

 .

Proof: For every i, j ∈ {1, , . . . , n}, we have (qi, qj , ti,j) ∈ RSOC3 if and only if qi, qj ≥ 0,
and 2qiqj ≥ t2i,j . Thus, ti,j =

√
2qiqj is optimal with objective function value F(p, q). �

This lemma provides an SOCP representation for the hypograph of the fidelity func-
tion. Recall that the hypograph of a concave function is a convex set. Also, the dimension
of the hypograph of F(·, q) : Rn+ → R is equal to n (assuming q > 0). Since the hypo-
graph is O(n)-dimensional and convex, there exists a self-concordant barrier function for
the set with complexity parameter O(n), shown by Nesterov and Nemirovski [NN94].
This allows the derivation of interior-point methods for the underlying convex optimiza-
tion problem which use O(

√
n log(1/ε)) iterations, where ε is an accuracy parameter. The

above lemma uses Ω(n2) second-order cone constraints and the usual treatment of these
“cone constraints” with optimal self-concordant barrier functions lead to interior-point
methods with an iteration complexity bound of O(n log(1/ε)). It is conceivable that there
exist better convex representations of the hypograph of the fidelity function than the one
we provided in Lemma 4.8.

We can further simplify the reduced problems using fewer SOC constraints than de-
rived above. We first consider the dual formulation of the reduced problems, so as to
avoid the hypograph of the fidelity function.

Using Lemma 4.7, we write Alice’s reduced problem for forcing outcome 0 as an SDP.
The dual of this SDP is

inf z1

subject to z1 · eA1 ≥ TrB1(z2),
z2 ⊗ eA2 ≥ TrB2(z3),

...
zn ⊗ eAn ≥ TrBn(zn+1),

Diag(z
(y)
n+1) � 1

2βa,y
√
αa
√
αa

T, for all a ∈ {0, 1} , y ∈ B ,
z1 ∈ R,
zi ∈ RA1×B1×···×Ai−1×Bi−1 , for all i ∈ {2, . . . , n+ 1} ,

where z
(y)
n+1,x = zn+1,x1y1x2y2··· ,xnyn , for all x ∈ A, y ∈ B .

The only nonlinear constraint in the above problem is of the form

Diag(z) � √q√qT,

for some fixed q ≥ 0. From the proof of Lemma 4.7, we see that for z which is positive in
every coordinate

Diag(z) � √q√qT ⇐⇒
〈
z−1, q

〉
≤ 1.

31

So, it suffices to characterize inverses using SOCP constraints which can be done by con-
sidering

(zi, ri,
√

2) ∈ RSOC ⇐⇒ ri ≥ z−1
i .

With this observation, we can write the dual of Alice and Bob’s reduced problems us-
ing O(n) RSOC constraints for each fidelity function in the objective function as opposed
to Ω(n2) constraints as above.

4.3 Numerical performance of SDP formulation vs. SOCP formulation

Since the search algorithm designed in this paper examines the optimal cheating proba-
bilities of many protocols (more than 1016) we are concerned with the efficiency of solving
the reduced problems. In this subsection, we discuss the efficiency of this computation.
Our computational platform is an SGI XE C1103 with 2x 3.2 GHz 4-core Intel X5672 x86
CPUs processor, and 10 GB memory, running Linux. The reduced problems were solved
using SeDuMi 1.3, a program for solving semidefinite programs and rotated second-order
cone programs in Matlab (Version 7.12.0.635) [Stu99, Stu02].

Table 1 (on the next page) compares the computation of Alice’s reduced problem in a
four-round protocol for forcing an outcome of 0 with 5-dimensional messages. The top
part of the table presents the average running time, the maximum running time, and the
worst gap (the maximum of the extra time needed to solve the problem compared to the
other formulation). The bottom part of the table presents the average number of iterations,
the average feasratio, the average timing (the time spent in preprocessing, iterations, and
postprocessing, respectively), and the average cpusec.

Table 1 suggests that solving the rotated second-order cone programs are comparable
to solving the semidefinite programs. However, before testing the other three cheating
probabilities, we test the performance of the two formulations from Table 1 in a setting
that appears more frequently in the search. In particular, the searches detailed in Section 8
deal with many protocols with very sparse parameters. We retest the values in Table 1
when we force the first entry of α0, the second entry of α1, the third entry of β0, and the
fourth entry of β1 to all be 0. The results are shown in Table 2.

As we can see, the second-order cone programming formulation stumbles when the
data does not have full support. Since we search over many vectors without full support,
we use the semidefinite programming formulation to solve the reduced problems and for
the analysis throughout the rest of this paper.

32

Table 1: Comparison of solving the SOCP and SDP formulations of Alice forcing outcome
0 with 5-dimensional messages in four-rounds (averaged over 1, 000 randomly selected
protocols).

INFO parameters SOCP SDP

Average running time (s) 0.1551 0.1529
Max running time (s) 0.7491 0.2394

Worst gap (s) + 0.5098 + 0.0927

Average iteration 14.4420 12.2940
Average feasratio 0.9990 1.0000

Average timing [0.0270, 0.1267, 0.0010]T [0.0024, 0.1494, 0.0009]T

Average cpusec 0.9283 0.6588

Table 2: Comparison of solving the SOCP and SDP formulations of Alice forcing outcome
0 with 5-dimensional messages in four-rounds (averaged over 1, 000 randomly selected
protocols with forced 0 entries).

INFO parameters SOCP SDP

Average running time (s) 0.4104 0.1507
Max running time (s) 0.7812 0.2084

Worst gap (s) + 0.6323 + 0

Average iterations 32.7370 12.2530
Average feasratio 0.5172 1.0000

Average timing [0.0279, 0.3814, 0.0010]T [0.0023, 0.1473, 0.0009]T

Average cpusec 2.4953 0.5605

33

5 Protocol filter

In this section, we describe ways to bound the optimal cheating probabilities from below
by finding feasible solutions to Alice and Bob’s reduced cheating problems. In the search
for parameters that lead to the lowest bias, our algorithm tests many protocols. The idea
is to devise simple tests to check whether a protocol is a good candidate for being optimal.
For example, suppose we can quickly compute the success probability of a certain cheat-
ing strategy for Bob. If this strategy succeeds with too high a probability for a given set of
parameters, then we can rule out these parameters as being good choices. This saves the
time it would have taken to solve the SDPs (or SOCPs).

We illustrate this idea using the Kitaev lower bound below.

Theorem 5.1 ([Kit02, GW07]) For any coin-flipping protocol, we have

P ∗A,0P
∗
B,0 ≥

1

2
and P ∗A,1P

∗
B,1 ≥

1

2
.

Suppose that we find that P ∗A,0 ≈ 1/2, that is, the protocol is very secure against dishonest
Alice cheating towards 0. Then, from the Kitaev bound, we infer that PB,0 ≈ 1 and the
protocol is highly insecure against cheating Bob. Therefore, we can avoid solving for P ∗B,0.

The remainder of this section is divided according to the party that is dishonest. We
discuss cheating strategies for the two parties for the special cases of 4-round and 6-round
protocols.

Cheating Alice

We now present a theorem which captures some of Alice’s cheating strategies.

Theorem 5.2 For a protocol parameterized by α0, α1 ∈ ProbA and β0, β1 ∈ ProbB , we can
bound Alice’s optimal cheating probability as follows:

P ∗A,0 ≥ 1

2

∑
y∈B

conc {βa,yF(·, αa) : a ∈ {0, 1}} (v) (2)

≥ 1

2
λmax

(
η
√
α0
√
α0

T + τ
√
α1
√
α1

T
)

(3)

≥
(

1

2
+

1

2

√
F(α0, α1)

)(
1

2
+

1

2
∆(β0, β1)

)
, (4)

where
η :=

∑
y∈B:

β0,y≥β1,y

β0,y and τ :=
∑
y∈B:

β0,y<β1,y

β1,y ,

and
√
v is the normalized principal eigenvector of η

√
α0
√
α0

T + τ
√
α1
√
α1

T.

34

Furthermore, in a six-round protocol, we have

P ∗A,0 ≥ 1

2
λmax

(
η′
√

TrA2(α0)
√

TrA2(α0)
T

+ τ ′
√

TrA2(α1)
√

TrA2(α1)
T
)

(5)

≥
(

1

2
+

1

2

√
F(TrA2(α0),TrA2(α1))

)(
1

2
+

1

2
∆(TrB2(β0),TrB2(β1))

)
, (6)

where

η′ :=
∑
y1∈B1:

[TrB2
(β0)]y1≥[TrB2

(β1)]y1

[TrB2(β0)]y1 and τ ′ :=
∑
y1∈B1:

[TrB2
(β0)]y1<[TrB2

(β1)]y1

[TrB2(β1)]y1 .

We have analogous bounds for P ∗A,1, which are obtained by interchanging β0 and β1 in the above
expressions.

We call (2) Alice’s improved eigenstrategy, (3) her eigenstrategy, and (4) her three-round strat-
egy. For six-round protocols, we call (5) Alice’s eigenstrategy and (6) her measuring strategy.

Note that only the improved eigenstrategy is affected by switching β0 and β1 (as long
as we are willing to accept a slight modification to how we break ties in the definitions of
η, η′, τ, and τ ′).

We now briefly describe the strategies that yield the corresponding cheating prob-
abilities in Theorem 5.2. Her three-round strategy is to prepare the qubits AA′ in the
state ψ′ = (ψ0 + ψ1)/ ‖ψ0 + ψ1‖ instead of ψ0 or ψ1, send the first n messages accordingly,
then measure the qubits received from Bob to try to learn b, and reply with a bit a using
the measurement outcome (along with the rest of the state ψ′), to bias the coin towards her
desired output. Her eigenstrategy is the same as her three-round strategy, except that the
first message is further optimized. The improved eigenstrategy has the same first message
as in her eigenstrategy, but the last message is further optimized.

For a six-round protocol, Alice’s measuring strategy is to prepare the qubitsAA′ in the
following stateψ′ = (ψ′0+ψ′1)/ ‖ψ′0 + ψ′1‖whereψ′0 andψ′1 are purifications of TrA2,A′(ψ0ψ

∗
0)

and TrA2,A′(ψ1ψ
∗
1), respectively. She measures Bob’s first message to try to learn b, then

depending on the outcome, she applies a (fidelity achieving) unitary before sending the
rest of her messages. Her six-round eigenstrategy is similar to her measuring strategy,
except her first message is optimized in a way described in the proof.

We prove Theorem 5.2 in the appendix.

Cheating Bob

We turn to strategies for a dishonest Bob.

35

Theorem 5.3 For a protocol parameterized by α0, α1 ∈ ProbA and β0, β1 ∈ ProbB , we can
bound Bob’s optimal cheating probability as follows:

P ∗B,0 ≥
1

2
+

1

2

√
F(β0, β1), (7)

and
P ∗B,0 ≥

1

2
+

1

2
∆(TrA2×···×An(α0),TrA2×···×An(α1)). (8)

In a four-round protocol, we have

P ∗B,0 ≥ 1

2

∑
a∈{0,1}

F

(∑
x∈A

αa,xvx, βa

)
(9)

≥ 1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa

T

 (10)

≥ max

{
1

2
+

1

2
∆(α0, α1),

1

2
+

1

2

√
F(β0, β1)

}
,

where
√
vx is the normalized principal eigenvector of

∑
a∈{0,1} αa,x

√
βa
√
βa

T.
In a six-round protocol, we have

P ∗B,0 ≥ 1

2

∑
a∈A′0

F

(∑
x∈A

αa,x p̃2
(x), βa

)
(11)

≥ 1

2
λmax

(
κ
√

TrB2(β0)
√

TrB2(β0)
T

+ ζ
√

TrB2(β1)
√

TrB2(β1)
T
)

(12)

≥
(

1

2
+

1

2

√
F(TrB2(β0),TrB2(β1))

)(
1

2
+

1

2
∆(α0, α1)

)
, (13)

where

[p̃2
(x)]y1,y2 :=

cy1

βg(x),y1,y2
[TrB2

(βg(x))]y1
if [TrB2(βg(x))]y1 > 0 ,

cy1
1
|B2| if [TrB2(βg(x))]y1 = 0 ,

κ =
∑
x∈A:

α0,x≥α1,x

α0,x , ζ =
∑
x∈A:

α0,x<α1,x

α1,x , g(x) = arg max
a
{αa,x} ,

and
√
c is the normalized principal eigenvector of

1

2
λmax

(
κ
√

TrB2(β0)
√

TrB2(β0)
T

+ ζ
√

TrB2(β1)
√

TrB2(β1)
T
)
.

36

Furthermore, if |Ai| = |Bi| for all i ∈ {1, . . . , n}, then

P ∗B,0 ≥
1

2

∑
a∈{0,1}

F(αa, βa) . (14)

We get analogous lower bounds for P ∗B,1 by switching the roles of β0 and β1 in the above
expressions.

We prove Theorem 5.3 in the appendix. We call (7) Bob’s ignoring strategy and (8) his
measuring strategy. For four-round protocols, we call (9) Bob’s eigenstrategy and (10) his
eigenstrategy lower bound. For six-round protocols, we call (11) Bob’s six-round eigenstrat-
egy, (12) his eigenstrategy lower bound, and (13) his three-round strategy. We call (14) Bob’s
returning strategy.

Note that the only strategies that are affected by switching β0 and β1 are the eigen-
strategy and the returning strategy.

We now briefly describe the strategies that yield the corresponding cheating prob-
abilities in Theorem 5.3. Bob’s ignoring strategy is to prepare the qubits BB′ in the
state φ′ = (φ0 + φ1)/ ‖φ0 + φ1‖ instead of φ0 or φ1, send the first n messages accord-
ingly, then send a value for b that favours his desired outcome (along with the rest of φ′).
His measuring strategy is to measure Alice’s first message, choose b according to his best
guess for a and run the protocol with φb. His returning strategy is to send Alice’s mes-
sages right back to her. For the four-round eigenstrategy, Bob’s commitment state is a
principal eigenvector depending on Alice’s first message.

For a six-round protocol, Bob’s three-round strategy is to prepare the qubitsBB′ in the
following state φ′ = (φ′0+φ′1)/ ‖φ′0 + φ′1‖where φ′0 and φ′1 are purifications of TrB2,B′(φ0φ

∗
0)

and TrB2,B′(φ1φ
∗
1), respectively. He measures Alice’s second message to try to learn a,

then depending on the outcome, he applies a (fidelity achieving) unitary before sending
the rest of his messages. His six-round eigenstrategy is similar to his three-round strategy
except that the first message is optimized in a way described in the proof.

6 Protocol symmetry

In this section, we discuss equivalence between protocols due to symmetry in the states
used in them. Namely, we identify transformations on states under which the bias re-
mains unchanged. This allows us to prune the search space of parameters needed to
specify a protocol in the family under scrutiny. As a result, we significantly reduce the
time required for our searches.

6.1 Index symmetry

We show that if we permute the elements ofAi orBi, for any i ∈ {1, . . . , n}, then this does
not change the bias of the protocol. We first show that cheating Bob is unaffected.

37

Cheating Bob

Bob’s reduced problems are to maximize 1
2

∑
a∈A′0

F
(
(αa ⊗ IB)Tpn, βa

)
, for forcing

outcome 0, and 1
2

∑
a∈A′0

F
(
(αa ⊗ IB)Tpn, βā

)
, for forcing outcome 1, over the polytope

PB defined as the set of all vectors (p1, p2, . . . , pn) that satisfy

TrB1(p1) = eA1 ,
TrB2(p2) = p1 ⊗ eA2 ,

...
TrBn(pn) = pn−1 ⊗ eAn ,

pj ∈ RA1×B1×···×Aj×Bj
+ , for all j ∈ {1, . . . , n} .

Suppose we are given a new protocol where the elements of Ai have been permuted,
for some i ∈ {1, . . . , n} (and therefore the entries of αa for both a ∈ {0, 1}). We can write
the entries of (αa ⊗ IB)Tpn as

[(αa ⊗ IB)Tpn]y =
∑
x∈A

αa,x[pn]x,y,

for each y ∈ B. For any feasible solution for the original protocol, we construct a feasible
solution by permuting the elements of pj corresponding to Ai. This gives us a bijection,
and the feasible solution so constructed has the same objective function value as the orig-
inal one. Thus, dishonest Bob cannot cheat more or less than in the original protocol.

Now suppose we are given a new protocol where the elements of Bi have been per-
muted for some i ∈ {1, . . . , n}. We can write

F
(
(αa ⊗ IB)Tpn, βa

)
=

(√
(αa ⊗ IB)Tpn

T√
βa

)2

.

If we permute the entries in pn corresponding to Bi (and likewise for every variable in the
polytope) we get the same objective function value.

Similar arguments hold for P ∗B,1. In both cases, Bob’s cheating probabilities are unaf-
fected.

Cheating Alice

To show that the bias of the protocol remains unchanged, we still need to check that
cheating Alice is unaffected by a permutation of the elements of Ai or Bi. Alice’s re-
duced problem is to maximize 1

2

∑
a∈A′0

∑
y∈B βa,y F(s(a,y), αa) for forcing outcome 0,

and 1
2

∑
a∈A′0

∑
y∈B βā,y F(s(a,y), αa) for forcing outcome 1, over the set of all vectors

38

(s1, s2, . . . , sn, s) that satisfy

TrA1(s1) = 1 ,
TrA2(s2) = s1 ⊗ eB1 ,

...
TrAn(sn) = sn−1 ⊗ eBn−1 ,

TrA′0(s) = sn ⊗ eBn ,

sj ∈ RA1×B1×···×Bj−1×Aj
+ , for all j ∈ {1, . . . , n} ,

s ∈ RA
′
0×A×B

+ .

By examining the above problem, we see that the same arguments that apply to cheat-
ing Bob also apply to cheating Alice. We can simply permute any feasible solution to
account for any permutation in Ai or Bi.

Note that these arguments only hold for “local” permutations, i.e., we cannot in gen-
eral permute the indices in Ai ×Ai′ without affecting the bias.

6.2 Symmetry between probability distributions

We now identify a different kind of symmetry in the protocols. Recall the four objective
functions

P ∗B,0 =
1

2

∑
a∈A′0

F
(
(αa ⊗ IB)Tpn, βa

)
and P ∗B,1 =

1

2

∑
a∈A′0

F
(
(αa ⊗ IB)Tpn, βā

)
for Bob and

P ∗A,0 =
1

2

∑
y∈B

∑
a∈{0,1}

βa,y F(s(a,y), αa) and P ∗A,1 =
1

2

∑
y∈B

∑
a∈{0,1}

βā,y F(s(a,y), αa)

for Alice.
We argue that the four quantities above are not affected if we switch β0 and β1 and

simultaneously switch α0 and α1. This is immediate for cheating Bob, but requires expla-
nation for cheating Alice. The only constraints involving s(a,y) can be written as∑

a∈A′0

s(a,y) = s(y1,...,yn−1)
n ,

for all y = (y1, . . . , yn−1, yn) ∈ B. Since this constraint is symmetric about a, the result
follows.

It is also evident that switching β0 and β1 switches P ∗A,0 and P ∗A,1 and it also switches
P ∗B,0 and P ∗B,1. With these symmetries, we can effectively switch the roles of α0 and α1 and
the roles of β0 and β1 independently and the bias is unaffected.

39

6.3 The use of symmetry in the search algorithm

Since we are able to switch the roles of α0 and α1, we assume α0 has the largest entry out
of α0 and α1 and similarly that β0 has the largest entry out of β0 and β1.

In four-round protocols, since we can permute the elements ofA = A1, we also assume
α0 has entries that are non-decreasing. This allows us to upper bound all the entries of α0

and α1 by the last entry in α0. We do this simultaneously for β0 and β1.
In the six-round version, we need to be careful when applying the index symmetry,

we cannot permute all of the entries in α0. The index symmetry only applies to local
permutations so we only partially order them. We order A2 such that the entries α0,x̃1x2

do not decrease for one particular index x̃1 ∈ A1. It is convenient to choose the index
corresponding to the largest entry. Then we order the last block of entries in α0 such that
they do not decrease. Note that the last entry in α0 is now the largest among all the entries
in α0 and α1. We do this simultaneously for β0 and β1. Note that the search algorithm does
not stop all symmetry; for example if α0 and α1 both have an entry of largest magnitude,
we do not compare the second largest entries. But, as will be shown in the computational
tests, we have a dramatic reduction in the number of protocols to be tested using the
symmetry in the way described above.

7 Search algorithm

In this section, we develop an algorithm for finding coin-flipping protocols with small
bias within our parametrized family.

To search for protocols, we first fix a dimension d for the parameters

α0, α1, β0, β1 ∈ Probd.

We then create a finite mesh over these parameters by creating a mesh over the entries in
the probability vectors α0, α1, β0, and β1. We do so by increments of a precision parameter
ν ∈ (0, 1). For example, we range over the values

{0, ν, 2ν, . . . , 1− ν, 1}

for [α0]0, the first entry of α0. For the second entry of α0, we range over

{0, ν, 2ν, . . . , 1− [α0]0}

and so forth. Note that we only consider ν = 1/N for some positive integer N so that we
use the endpoints of the intervals.

This choice in creating the mesh makes it very easy to exploit the symmetry discussed
in Section 6. We show computationally (in Section 8) that this symmetry helps by dra-
matically reducing the number of protocols to be tested. This is important since there are(
d+N−1
N

)4
protocols to test (before applying symmetry considerations).

40

Each point in this mesh is a set of candidate parameters for an optimal protocol. As
described in Section 5, the protocol filter can be used to expedite the process of checking
whether the protocol has high bias or is a good candidate for an optimal protocol. There
are two things to be considered at this point which we now address.

First, we have to determine the order in which the cheating strategies in the proto-
col filter are applied. It is roughly the case that the computationally cheaper tasks give a
looser lower bound to the optimal cheating probabilities. Therefore, we start with these
easily computable probabilities, i.e. the probabilities involving norms and fidelities, then
check the more computationally expensive tasks such as largest eigenvalues and calculat-
ing principal eigenvectors. We lastly solve the semidefinite programs. Another heuristic
that we use is alternating between Alice and Bob’s strategies. Many protocols with high
bias seem to prefer either cheating Alice or cheating Bob. Having cheating strategies for
both Alice and Bob early in the filter removes the possibility of checking many of Bob’s
strategies when it is clearly insecure concerning cheating Alice and vice versa. Starting
with these heuristics, we then ran preliminary tests to see which order seemed to per-
form the best. The order (as well as the running times for the filter strategies) is shown in
Tables 3 and 4 for the four-round version and Tables 13 and 14 for the six-round version.

Second, we need to determine a threshold for what constitutes a “high bias.” If a filter
strategy has success probability 0.9, do we eliminate this candidate protocol? The lower
the threshold, the more quickly the filter eliminates protocols. However, if the threshold
is too low, we may be too ambitious and not find any protocols. To determine a good
threshold, consider the following protocol parameters

α0 =
1

2
[1, 0, 1]T , α1 =

1

2
[0, 1, 1]T , β0 = [1, 0]T , β1 = [0, 1]T .

This is the four-round version of the optimal three-round protocol in Subsection 3.2. Nu-
merically solving for the cheating probabilities for this protocol shows that

P ∗A,0 = P ∗A,1 = P ∗B,0 = P ∗B,1 = 3/4.

Thus, there exists a protocol with the same bias as the best-known explicit coin-flipping
protocol constructions. This suggests that we use a threshold around 0.75. Preliminary
tests show that using a threshold of 0.75 or larger is much slower than a value of 0.7499.
This is because using the larger threshold allows protocols with optimal cheating proba-
bilities (or filter cheating probabilities) of 0.75 to slip through the filter and these protocols
are no better than the one mentioned above (and many are just higher dimensional em-
beddings of it). Therefore, we use a threshold of 0.7499. (Tests using a threshold of slightly
larger than 0.75 are considered in Subsection 8.6.)

Using these ideas, we now state the search algorithm.

41

Search algorithm for finding the best protocol parameters

Fix a dimension d and mesh precision ν.
For each protocol in the mesh (modulo the symmetry):
• Use the Protocol Filter to eliminate (some) protocols with bias above 0.2499.
• Calculate the optimal cheating probabilities by solving the SDPs.

If any are larger than 0.7499, move on to the next protocol.
Else, output the protocol parameters with bias ε < 1/4.

We test the algorithm on the cases of four and six-round protocols and for certain
dimensions and precisions for the mesh. These are presented in detail next.

8 Numerical results

Computational Platform. We ran our programs on Matlab, Version 7.12.0.635, on an SGI
XE C1103 with 2x 3.2 GHz 4-core Intel X5672 x86 CPUs processor, and 10 GB memory,
running Linux.

We solved the semidefinite programs using SeDuMi 1.3, a program for solving semidef-
inite programs in Matlab [Stu99, Stu02].

Sample programs can be found at the following link:

http://www.math.uwaterloo.ca/˜anayak/coin-search/

8.1 Four-round search

We list the filter cheating strategies in Tables 3 and 4 which also give an estimate of how
long it takes the program to compute the success probability for each strategy based on
the average over 1000 random instances (i.e. four randomly chosen probability vectors
α0, α1, β0, and β1.)

Notice the two strategies with codes F1 and F2 are special because they only involve
two of the four probability distributions. Preliminary tests show that first generating β0

and β1 and checking with F1 is much faster than first generating α0 and α1 and checking
with F2, even though F2 is much faster to compute.

We can similarly justify the placement of P ∗A,0 before P ∗B,0 or P ∗B,1. The strategies F8
and F9 perform very well and the cheating probabilities are empirically very close to P ∗B,0
and P ∗B,1. Thus, if a protocol gets through the F8 and F9 filter strategies, then it is likely
that P ∗B,0 and P ∗B,1 are also less than 0.7499. This is why we place P ∗A,0 first (although it
will be shown that the order of solving the SDPs does not matter much).

42

http://www.math.uwaterloo.ca/~anayak/coin-search/

Ta
bl

e
3:

A
ve

ra
ge

ru
nn

in
g

ti
m

es
fo

r
fil

te
r

st
ra

te
gi

es
fo

r
a

4-
ro

un
d

pr
ot

oc
ol

w
he

n
d

=
5

ov
er

ra
nd

om
pr

ot
oc

ol
st

at
es

(1
of

2)
.

Su
cc

es
s

Pr
ob

ab
ili

ty
C

om
p.

Ti
m

e
(s

)
C

od
e

1 2
+

1 2

√ F
(β

0
,β

1
)

0.
0
00

03
44

29
F1

1 2
+

1 2
∆

(α
0
,α

1
)

0.
0
00

00
46

40
F2

(1 2
+

1 2

√ F
(α

0
,α

1
)) (1 2

+
1 2
∆

(β
0
,β

1
))

0.
0
00

02
59

80
F3

1 2

∑ a
∈
{0
,1
}

F
(α

a
,β
a
)

0.
0
00

02
37

67
F4

1 2

∑ a
∈
{0
,1
}

F
(α

a
,β
ā
)

0.
0
00

01
80

19
F5

1 2
λ

m
a
x

∑

y
:β

0
,y
≥
β
1
,y

β
0
,y

 √
α

0
√
α

0
T

+

∑

y
:β

0
,y
<
β
1
,y

β
1
,y

 √
α

1
√
α

1
T

0.

0
00

03
66

13
F6

(√
v

is
th

e
pr

in
ci

pa
le

ig
en

ve
ct

or
)

1 2

∑ x
∈
A
λ

m
a
x

(∑ a
∈
{0
,1
}
α
a
,x
√
β
a
√
β
a

T
)

0.
0
00

07
30

10
F7

(√
v x

is
th

e
pr

in
ci

pa
le

ig
en

ve
ct

or
fo

r
ea

ch
x
∈
A

)

1 2

∑ a
∈
{0
,1
}

F
(∑ x

∈
A
α
a
,x

(v
x
),
β
a

)
0.

0
00

69
76

11
F8

1 2

∑ a
∈
{0
,1
}

F
(∑ x

∈
A
α
a
,x

(v
x
),
β
ā

)
0.

0
00

53
29

54
F9

43

Ta
bl

e
4:

A
ve

ra
ge

ru
nn

in
g

ti
m

es
fo

r
fil

te
r

st
ra

te
gi

es
fo

r
a

4-
ro

un
d

pr
ot

oc
ol

w
he

n
d

=
5

ov
er

ra
nd

om
pr

ot
oc

ol
st

at
es

(2
of

2)
.

Su
cc

es
s

Pr
ob

ab
ili

ty
C

om
p.

Ti
m

e
(s

)
C

od
e

∑ y
∈
B

co
n

c
{ 1 2
β

0
,y

F
(·,
α

0
),

1 2
β

1
,y

F
(·,
α

1
)} (v

)
0
.1

22
97

1
20

5
F1

0

∑ y
∈
B

co
n

c
{ 1 2
β

1
,y

F
(·,
α

0
),

1 2
β

0
,y

F
(·,
α

1
)} (v

)
0
.1

23
37

5
67

8
F1

1

P
∗ A
,0

0
.1

49
81

4
37

3
SD

PA
0

1

2
P
∗ A
,0

0
.0

00
00

0
94

7
F1

2

P
∗ B
,0

0
.0

70
84

6
37

8
SD

PB
0

P
∗ A
,1

0
.1

49
17

6
11

7
SD

PA
1

1

2
P
∗ A
,1

0
.0

00
00

0
76

0
F1

3

P
∗ B
,1

0
.0

70
47

9
44

9
SD

PB
1

44

Recall from Subsection 4.3 that we solve forP ∗B,0, P ∗B,1, P ∗A,0, andPA,1 using the semidef-
inite programming formulations of the reduced problems.

We then give tables detailing how well the filter performs for four-round protocols, by
counting the number of protocols that are not determined to have bias greater than 0.2499
by each prefix of cheating strategies. We test four-round protocols with message dimen-
sion d ∈ {2, . . . , 9} and precision ν ranging up to 1/2000 (depending on d).

45

Ta
bl

e
5:

Th
e

nu
m

be
r

of
pr

ot
oc

ol
s

th
at

ge
tp

as
te

ac
h

st
ra

te
gy

in
th

e
fil

te
r

fo
r
d

=
2.

d
=

2
ν

=
1/

50
0

ν
=

1/
10

00
ν

=
1/

12
50

ν
=

1/
15

00
ν

=
1/

20
00

Pr
ot

oc
ol

s
6
.3

0
e+

10
1
.0

0
e+

12
2
.4

4
e+

12
5
.0

7
e+

12
1.

60
e+

1
3

Sy
m

m
et

ry
3
,9

6
9
,1

26
,0

01
63
,0

01
,5

02
,0

01
15

3
,5

66
,7

99
,3

76
31

8
,0

9
7
,1

2
8
,0

0
1

1
,0

04
,0

06
,0

04
,0

0
1

F1
96
,7

06
,5

35
1,

49
9
,4

79
,9

74
3
,6

36
,6

09
,2

80
7
,5

0
6
,2

8
9
,3

0
9

23
,6

07
,1

43
,5

6
0

F2
72
,3

36
,8

75
1,

12
3
,1

12
,0

00
2
,7

24
,5

52
,3

20
5
,6

2
4
,7

1
6
,1

2
5

17
,6

93
,5

60
,0

0
0

F3
5

27
50

6
7

1
24

F4
0

0
0

0
0

F5
0

0
0

0
0

F6
0

0
0

0
0

F7
0

0
0

0
0

F8
0

0
0

0
0

Ta
bl

e
6:

Th
e

nu
m

be
r

of
pr

ot
oc

ol
s

th
at

ge
tp

as
te

ac
h

st
ra

te
gy

in
th

e
fil

te
r

fo
r
d

=
3.

d
=

3
ν

=
1/

5
ν

=
1/

10
ν

=
1/

20
ν

=
1/

30
ν

=
1/

50

Pr
ot

oc
ol

s
1
.9

4
e+

05
1
.8

9
e+

07
2.

84
e+

09
6.

05
e+

10
3
.0

9
e+

1
2

Sy
m

m
et

ry
4
,3

56
27

2
,4

84
29
,4

30
,6

25
55
,4

36
,7

02
5

2
5,

47
5
,9

9
0
,5

4
4

F1
1
,2

54
37
,5

84
2,

17
5,

42
5

30
,9

85
,2

2
0

1
,0

2
0
,0

8
0
,2

9
2

F2
66

5
19
,6

56
1,

30
0,

04
2

19
,3

66
,2

5
6

66
2
,1

5
8
,7

2
8

F3
49

47
0

22
,2

82
22

5,
09

8
4
,4

1
4
,9

9
4

F4
29

26
1

11
,6

67
11

0,
93

1
2
,0

2
8
,5

1
8

F5
28

25
8

11
,4

95
10

9,
51

5
2
,0

0
9
,1

4
1

F6
28

24
1

10
,4

05
96
,4

64
1
,7

6
5
,1

1
4

F7
0

3
54

1
48

1
,1

58

F8
0

0
0

0
0

46

Ta
bl

e
7:

Th
e

nu
m

be
r

of
pr

ot
oc

ol
s

th
at

ge
tp

as
te

ac
h

st
ra

te
gy

in
th

e
fil

te
r

fo
r
d

=
4.

d
=

4
ν

=
1/

1
0

ν
=

1/
12

ν
=

1/
16

ν
=

1/
20

ν
=

1/
2
4

ν
=

1/
30

Pr
ot

oc
ol

s
6
.6

9
e+

09
4.

28
e+

10
8.

81
e+

11
9
.8

3
e+

12
7.

3
1

e+
13

8
.8

6
e+

14

Sy
m

m
et

ry
13
,4

98
,2

76
74
,1

66
,5

44
1
,1

54
,6

40
,4

00
10
,3

34
,5

52
,2

81
6
9,

92
7,

4
55
,8

44
7
36
,4

8
6
,6

4
3
,3

4
4

F1
2
,4

32
,1

8
8

12
,6

16
,5

80
14

6,
11

4,
00

0
93

4
,8

56
,1

64
5,

91
6,

0
06
,9

36
49
,7

98
,9

33
,2

64

F2
1
,0

36
,0

3
0

5,
61

6,
81

0
71
,2

46
,7

00
48

9
,2

82
,3

76
3,

17
0,

6
26
,9

56
27
,7

60
,1

30
,9

76

F3
6
6,

62
3

30
2,

54
7

3,
18

5,
89

5
19
,6

70
,6

42
10

1,
7
03
,6

67
7
38
,2

84
,5

22

F4
4
6,

73
4

20
9,

74
7

2,
06

1,
86

8
12
,0

00
,1

87
59
,5

03
,8

95
4
06
,9

63
,1

12

F5
4
6,

53
1

20
8,

96
1

2,
05

4,
89

1
11
,9

62
,1

04
59
,3

53
,3

74
4
06
,0

99
,6

37

F6
4
2,

59
1

19
8,

19
2

1,
88

6,
78

2
11
,0

04
,1

25
54
,7

02
,0

75
3
67
,8

47
,3

04

F7
32

9
75

6
3,

43
9

17
,1

44
55
,9

29
19

0
,6

9
9

F8
0

0
0

0
0

0

Ta
bl

e
8:

Th
e

nu
m

be
r

of
pr

ot
oc

ol
s

th
at

ge
tp

as
te

ac
h

st
ra

te
gy

in
th

e
fil

te
r

fo
r
d

=
5.

d
=

5
ν

=
1/

5
ν

=
1/

8
ν

=
1/

10
ν

=
1/

12

Pr
ot

oc
ol

s
2
.5

2
e+

08
6
.0

0
e+

10
1
.0

0
e+

12
1
.0

9
e+

13

Sy
m

m
et

ry
24

0
,1

00
29
,5

39
,2

25
28

4
,5

29
,4

24
2
,4

85
,9

19
,8

81

F1
10

5
,8

40
9
,4

67
,7

70
66
,2

57
,5

04
56

7
,5

4
4
,9

9
7

F2
37
,5

84
2
,6

87
,9

06
22
,7

74
,5

44
20

3
,9

8
3
,3

6
0

F3
8,

56
1

24
1
,4

20
2
,4

40
,7

65
1
7,

79
4
,6

5
5

F4
7,

42
3

20
1
,5

69
1
,9

37
,2

98
1
3,

68
2
,0

5
9

F5
7,

41
7

20
0
,9

65
1
,9

33
,8

33
1
3,

66
5
,0

8
7

F6
7,

41
7

18
9
,1

44
1
,7

90
,1

44
1
3,

11
7
,1

6
5

F7
0

1
,4

15
10
,7

90
4
3,

45
9

F8
0

0
0

0

47

Ta
bl

e
9:

Th
e

nu
m

be
r

of
pr

ot
oc

ol
s

th
at

ge
tp

as
te

ac
h

st
ra

te
gy

in
th

e
fil

te
r

fo
r
d

=
6.

d
=

6
ν

=
1/

7
ν

=
1/

8
ν

=
1/

9
ν

=
1/

10
ν

=
1/

1
1

ν
=

1/
12

Pr
ot

oc
ol

s
3
.9

3
e+

1
1

2
.7

4
e+

12
1
.6

0
e+

13
8.

13
e+

13
3
.6

4
e+

14
1.

4
6

e+
15

Sy
m

m
et

ry
5
3,

14
4
,1

0
0

26
5
,9

50
,8

64
1
,0

21
,8

25
,1

56
3
,5

34
,3

02
,5

00
12
,5

77
,3

98
,2

01
46
,1

07
,2

5
5,

0
76

F1
2
5,

07
0
,3

1
0

10
7
,5

83
,8

76
38

7
,4

59
,8

86
1
,0

34
,7

86
,7

00
3
,6

0
5
,8

1
4
,6

4
8

13
,3

70
,5

5
8,

5
68

F2
7
,2

7
6
,9

24
23
,2

94
,0

07
12

3
,2

46
,3

28
28

7
,2

51
,2

18
1
,3

3
0
,2

2
4
,6

9
6

3,
8
41
,0

6
3,

8
48

F3
1
,7

4
4
,0

38
2
,8

11
,3

74
25
,1

14
,4

51
42
,5

03
,2

08
2
58
,4

55
,9

16
46

8,
2
18
,3

2
4

F4
1
,5

5
1
,5

22
2
,5

26
,9

00
21
,6

82
,0

87
36
,6

28
,5

17
2
14
,8

23
,6

42
39

0,
8
46
,1

5
8

F5
1
,5

5
0
,6

17
2
,5

24
,0

52
21
,6

66
,4

37
36
,5

94
,6

82
2
14
,6

98
,0

72
39

0,
6
49
,9

3
1

F6
1
,4

5
1
,0

38
2
,4

19
,4

74
20
,5

98
,7

49
34
,1

17
,9

86
2
03
,6

05
,4

33
37

7,
8
99
,9

4
6

F7
9
,1

69
13
,9

76
57
,7

20
17

4,
11

8
5
26
,0

77
1,

1
53
,8

6
4

F8
0

0
0

0
0

0

Ta
bl

e
10

:T
he

nu
m

be
r

of
pr

ot
oc

ol
s

th
at

ge
tp

as
te

ac
h

st
ra

te
gy

in
th

e
fil

te
r

fo
r
d

=
7.

d
=

7
ν

=
1/

5
ν

=
1/

6
ν

=
1/

7
ν

=
1/

8
ν

=
1/

9
ν

=
1/

10

Pr
ot

oc
ol

s
4
.5

5
e+

1
0

7.
28

e+
11

8.
67

e+
12

8.
13

e+
13

6.
27

e+
1
4

4
.1

1
e+

15

Sy
m

m
et

ry
3
,7

0
9
,4

76
46
,9

63
,6

09
28

9,
37

4,
12

1
1,

73
0,

64
3,

20
1

7,
4
02
,0

2
1,

2
25

3
0,

49
0
,3

9
8
,2

2
5

F1
2
,2

7
0
,7

54
26
,9

52
,8

49
16

1,
11

1,
18

1
84

1,
29

7,
02

3
3,

4
56
,4

5
6,

1
25

1
0,

91
5
,7

0
7
,4

9
5

F2
4
9
5
,1

80
3,

15
4,

26
6

36
,3

30
,7

56
13

6,
78

8,
37

2
8
51
,5

0
9,

1
25

2
,4

1
9
,9

4
0
,7

4
3

F3
1
4
9
,8

06
36

9,
43

4
10
,2

77
,6

99
20
,4

69
,5

35
2
16
,1

4
8,

2
69

4
49
,4

64
,9

67

F4
1
4
2
,2

55
35

1,
29

0
9,

58
3,

74
7

19
,2

00
,6

70
1
97
,2

5
0,

3
30

4
09
,3

66
,4

94

F5
1
4
2
,2

41
35

1,
21

9
9,

58
2,

21
5

19
,1

94
,6

92
1
97
,2

1
4,

4
54

4
09
,1

85
,8

85

F6
1
4
2
,2

41
35

1,
21

9
9,

03
4,

72
8

18
,7

34
,0

72
1
87
,9

7
7,

5
89

3
83
,4

02
,0

64

F7
0

0
60
,1

55
91
,7

87
5
12
,1

7
1

1
,8

04
,3

82

F8
0

0
0

0
0

0

48

Ta
bl

e
11

:T
he

nu
m

be
r

of
pr

ot
oc

ol
s

th
at

ge
tp

as
te

ac
h

st
ra

te
gy

in
th

e
fil

te
r

fo
r
d

=
8.

d
=

8
ν

=
1/

4
ν

=
1/

5
ν

=
1/

6
ν

=
1/

7
ν

=
1/

8
ν

=
1/

9

Pr
ot

oc
ol

s
1
.1

8
e+

1
0

3.
93

e+
11

8.
67

e+
12

1.
38

e+
14

1.
71

e+
1
5

1
.7

1
e+

16

Sy
m

m
et

ry
1
,5

7
2
,5

16
11
,5

32
,8

16
17

9,
34

5,
66

4
1,

29
3,

69
7,

02
4

9,
0
18
,1

6
1,

2
96

4
2,

35
2
,4

0
5
,2

0
9

F1
1
,0

5
4
,6

14
7,

79
7,

21
6

11
5,

13
1,

02
4

81
4,

85
5,

04
0

5,
0
50
,8

5
0,

2
68

2
3,

06
1
,8

1
7
,6

1
7

F2
60
,5

52
1,

35
6,

93
6

9,
76

6,
19

2
14

2,
86

2,
43

0
6
06
,5

9
7,

7
35

4
,4

1
7
,6

6
8
,7

4
2

F3
0

43
1,

95
6

1,
25

4,
42

0
44
,4

57
,2

39
1
06
,8

5
1,

4
20

1
,2

7
6
,4

9
9
,4

9
6

F4
0

41
7,

75
9

1,
21

3,
72

8
42
,5

41
,7

02
1
02
,7

1
9,

8
51

1
,2

0
4
,2

3
8
,2

7
3

F5
0

41
7,

74
1

1,
21

3,
62

9
42
,5

39
,4

30
1
02
,7

1
0,

1
39

1
,2

0
4
,1

7
3
,2

4
4

F6
0

41
7,

74
1

1,
21

3,
62

9
40
,4

25
,2

72
1
01
,0

6
1,

7
06

1
,1

5
1
,0

9
7
,9

6
5

F7
0

0
0

27
7,

22
5

4
52
,7

9
2

3
,1

94
,3

46

F8
0

0
0

0
0

0

Ta
bl

e
12

:T
he

nu
m

be
r

of
pr

ot
oc

ol
s

th
at

ge
tp

as
te

ac
h

st
ra

te
gy

in
th

e
fil

te
r

fo
r
d

=
9.

d
=

9
ν

=
1/

3
ν

=
1/

4
ν

=
1/

5
ν

=
1/

6
ν

=
1/

7
ν

=
1/

8

Pr
ot

oc
ol

s
7
.4

1
e+

08
6
.0

0
e+

10
2.

74
e+

12
8.

13
e+

13
1.

71
e+

1
5

2
.7

4
e+

16

Sy
m

m
et

ry
16

4
,0

25
3
,7

44
,2

25
32
,0

69
,5

69
59

4,
43

3,
16

1
4,

95
7,

1
45
,6

4
9

39
,8

08
,6

29
,4

41

F1
13

1
,6

25
2
,6

66
,4

30
23
,3

48
,5

49
41

4,
16

0,
04

7
3,

42
3,

6
81
,1

8
9

24
,8

51
,3

38
,1

55

F2
1
4,

3
00

11
5
,7

52
3,

27
3,

66
2

26
,0

75
,0

45
4
70
,0

2
8,

5
82

2
,2

16
,0

82
,5

60

F3
2
,7

00
0

1,
06

5,
27

1
3,

48
4,

09
2

1
53
,9

3
2,

9
46

4
32
,7

54
,9

76

F4
2
,6

39
0

1,
04

1,
33

9
3,

40
5,

53
2

1
49
,5

2
3,

4
87

4
21
,9

03
,5

00

F5
2
,6

39
0

1,
04

1,
31

7
3,

40
5,

40
3

1
49
,5

2
0,

3
61

4
21
,8

89
,2

60

F6
2
,6

39
0

1,
04

1,
31

7
3,

40
5,

40
3

1
42
,9

1
6,

5
65

4
16
,8

69
,3

27

F7
0

0
0

0
1,

05
3,

2
22

1
,8

09
,8

00

F8
0

0
0

0
0

0

49

Observations on the four-round search

We were able to search larger spaces than feasible with the SDP formulations alone.
For example, suppose we took the 2.74 × 1016 protocols from the d = 9, ν = 1/8 search
and checked to see if any of these had bias less than 0.7499 by solving only the reduced
SDPs. Since each SDP takes at least 0.08 seconds to solve, this search would take at least
69 million years to finish. By applying the techniques in this paper, we were able to run
this search in a matter of days.

We see that symmetry helped dramatically reduce the number of protocols that needed
to be tested. In the largest search, we were able to cut the 2.74 × 1016 protocols down to
3.98× 1010. F1 and F2 perform very well, together cutting down the number of protocols
by a factor of about 10. An interesting observation is that F2 performs much better than
F1, and is also 10 times faster to compute. It may seem better to put F2 before F1 in the
tests, however, we place F1 first since it is beneficial to have the more expensive strategy
being computed first. This way, it only needs to be computed for every choice of β0 and
β1. If we were to calculate F2 first, we would have to calculate F1 on (α0, α0, β0, β1) for
every α0, α1 that F2 did not filter out.

Being the first strategy to rely on all four probability distributions, F3 performs very
well by reducing the number of protocols by another factor of 10. F4, F5, and F6 do not
perform well (F5 being the same as F4 but with β0 swapped with β1); they cut down the
number of protocols by a very small number. F7 and F8 perform so well that no SDPs
were needed to be solved.

These numbers suggest a conjecture along the lines of

min
α0,α1,β0,β1∈Prob9

max {F1, . . . ,F8} ≥ 0.7499.

However, we shall soon see computational evidence in Subsection 8.6 showing that this
may not be true if we replace 0.7499 with 0.75 and conduct zoning-in searches with much
higher precision.

8.2 Six-round search

We list the filter cheating strategies in the tables on the next two pages and give an esti-
mate for how long it takes to compute the success probability for each strategy by taking
the average over 1000 random instances. We then give tables of how well the filter per-
forms for six-round protocols with d ∈ {2, 3} and ν as small as 1/15 for d = 2 and 1/4 for
d = 3. The measure of performance of the filter that we use is as before. For each prefix of
cheating strategies in the filter, we count the number of protocols in the mesh that are not
determined to have bias greater than 0.2499 by that prefix.

Again, we choose which strategy to put first, G1 or G2. Preliminary tests show that
placing G1 first results in a much faster search, similar to the four-round case. Even

50

Ta
bl

e
13

:A
ve

ra
ge

ru
nn

in
g

ti
m

es
fo

r
fil

te
r

st
ra

te
gi

es
in

a
si

x-
ro

un
d

pr
ot

oc
ol

fo
r
d

=
3

ov
er

ra
nd

om
pr

ot
oc

ol
st

at
es

(1
of

2)
.

Su
cc

es
s

Pr
ob

ab
ili

ty
C

om
p.

Ti
m

e
(s

)
C

od
e

1 2
+

1 2

√ F
(β

0
,β

1
)

0
.0

0
00

36
12

8
G

1

1 2
+

1 2
∆

(T
r A

2
(α

0
),

T
r A

2
(α

1
))

0
.0

0
00

05
55

2
G

2

1 2
λ

m
a
x

(κ
√ T

r B
2
(β

0
)√ T

r B
2
(β

0
)T

+
ζ
√ T

r B
2
(β

1
)√ T

r B
2
(β

1
)T
)

0
.0

0
00

15
66

7
G

3
w

he
re
κ

:=
∑ x

:α
0
,x
≥
α
1
,x
α

0
,x

an
d
ζ

:=
∑ x

:α
0
,x
<
α
1
,x
α

1
,x

(1 2
+

1 2

√ F
(T

r A
2
(α

0
),

T
r A

2
(α

1
))
) (1 2

+
1 2
∆

(T
r B

2
(β

0
),

T
r B

2
(β

1
))
)

0
.0

0
00

28
40

8
G

4

1 2
λ

m
a
x

∑

y
:β

0
,y
≥
β
1
,y

β
0
,y

 √
α

0
√
α

0
T

+

∑

y
:β

0
,y
<
β
1
,y

β
1
,y

 √
α

1
√
α

1
T

0
.0

0
00

52
32

5
G

5

1 2
λ

m
a
x

(η
′√ T

r A
2
(α

0
)√ T

r A
2
(α

0
)T

+
τ
′√ T

r A
2
(α

1
)√ T

r A
2
(α

1
)T
)

0
.0

0
00

44
24

3
G

6

w
he

re
η
′
:=
∑ y

1
∈
B

1
:[
T

r B
2
(β

0
)]
y
1
≥

[T
r B

2
(β

1
)]
y
1
[T

r B
2
(β

0
)]
y
1
,

an
d
τ
′
:=
∑ y

1
∈
B

1
:[
T

r B
2
(β

0
)]
y
1
<

[T
r B

2
(β

1
)]
y
1
[T

r B
2
(β

1
)]
y
1

51

Ta
bl

e
14

:A
ve

ra
ge

ru
nn

in
g

ti
m

es
fo

r
fil

te
r

st
ra

te
gi

es
in

a
si

x-
ro

un
d

pr
ot

oc
ol

fo
r
d

=
3

ov
er

ra
nd

om
pr

ot
oc

ol
st

at
es

(2
of

2)
.

Su
cc

es
s

Pr
ob

ab
ili

ty
C

om
p.

Ti
m

e
(s

)
C

od
e

1 2

∑ a
∈
A
′ 0

F
(∑ x

∈
A
α
a
,x
p̃

2
(x

) ,
β
a

)
0
.0

00
87

91
19

G
7

1 2

∑ a
∈
A
′ 0

F
(∑ x

∈
A
α
a
,x
p̃

2
(x

) ,
β
ā

)
0
.0

00
79

71
06

G
8

w
he

re
p̃

2
(x

)
is

as
de

fin
ed

in
Th

eo
re

m
5.

3

∑ y
∈
B

co
n

c
{ 1 2
β

0
,y

F
(·,
α

0
),

1 2
β

1
,y

F
(·,
α

1
)} (v

)
0
.2

56
37

79
81

G
9

∑ y
∈
B

co
n

c
{ 1 2
β

1
,y

F
(·,
α

0
),

1 2
β

0
,y

F
(·,
α

1
)} (v

)
0
.2

49
94

62
19

G
10

(√
v

is
th

e
pr

in
ci

pa
le

ig
en

ve
ct

or
of

th
e

m
at

ri
x

in
G

5)

P
∗ B
,0

0
.1

64
74

48
70

SD
PB

0

1

2
P
∗ B
,0

0
.0

00
00

09
96

G
11

P
∗ A
,0

0
.2

76
03

45
48

SD
PA

0

P
∗ B
,1

0
.1

62
81

89
74

SD
PB

1

1

2
P
∗ B
,1

0
.0

00
00

10
75

G
12

P
∗ A
,1

0
.2

71
63

19
13

SD
PA

1

52

though G5 takes longer to compute than G6, tests show that it is better to have G5 first.
We calculate P ∗B,0 before P ∗A,0 since G9 and G10 are close approximations of P ∗A,0 and P ∗A,1,
respectively. It will be evident that the order of solving the SDPs does not matter much.

We note here a few omissions as compared to the four-round tests. First, we have
removed the two returning strategies, F4 and F5. These did not perform well in the four-
round tests and preliminary tests show that they did not perform well in the six-round
search either. Also, we do not have all the lower bounds for the eigenstrategies. Prelimi-
nary tests show that the lower bounds omitted take just as long or longer to compute than
the corresponding upper bound, thus we just use the upper bound in the filter. Also, the
marginal probabilities take approximately 5.49×10−6 seconds to compute which is negli-
gible compared to the other times. Thus, we need not be concerned whether the strategies
rely on the full probability distributions or marginal distributions.

53

Ta
bl

e
15

:T
he

nu
m

be
r

of
pr

ot
oc

ol
s

th
at

ge
tp

as
te

ac
h

st
ra

te
gy

in
th

e
fil

te
r

fo
r
d

=
2.

d
=

2
ν

=
1/

3
ν

=
1/

4
ν

=
1/

5
ν

=
1/

6
ν

=
1/

7
ν

=
1/

8

Pr
ot

oc
ol

s
1
60
,0

00
1,

50
0,

62
5

9,
83

4,
49

6
49
,7

87
,1

36
20

7
,3

6
0
,0

0
0

7.
41

e+
0
8

Sy
m

m
et

ry
6,

40
0

59
,0

49
28

0,
90

0
1
,5

17
,8

24
5
,6

8
3
,4

5
6

19
,7

13
,6

0
0

G
1

3,
20

0
20
,4

12
82
,6

80
38

9
,3

12
1
,3

9
7
,0

2
4

4,
11

5,
8
80

G
2

2,
32

0
12
,5

16
67
,5

48
27

2
,3

92
1
,1

1
2
,2

2
8

3,
05

7,
2
46

G
3

1,
72

5
9,

62
7

52
,4

24
22

3
,0

34
89

9
,4

5
0

2,
52

6,
7
12

G
4

71
4

4,
20

6
27
,9

65
10

5
,0

50
43

0
,4

5
4

1,
24

0,
1
06

G
5

21
0

68
4

7,
74

3
20
,3

73
11

2
,4

3
5

2
28
,2

7
4

G
6

21
0

68
4

7,
74

3
20
,3

73
11

0
,4

0
1

2
28
,2

7
4

G
7

30
48

1,
28

5
1
,8

56
10
,9

79
1
7,

83
1

G
8

0
0

46
6

16
4

3
,4

2
7

4,
62

0

G
9

0
0

46
6

16
4

3
,4

1
9

4,
51

2

G
10

0
0

46
6

16
4

3
,3

6
9

4,
51

2

SD
PB

0
0

0
6

0
26

20

G
11

0
0

6
0

26
20

SD
PA

0
0

0
0

0
0

0

54

Ta
bl

e
16

:T
he

nu
m

be
r

of
pr

ot
oc

ol
s

th
at

ge
tp

as
te

ac
h

st
ra

te
gy

in
th

e
fil

te
r

fo
r
d

=
2.

d
=

2
ν

=
1/

9
ν

=
1/

10
ν

=
1/

11
ν

=
1/

12
ν

=
1/

1
3

ν
=

1/
14

ν
=

1/
15

Pr
ot

oc
ol

s
2.

3
4

e+
0
9

6.
69

e+
09

1
.7

5
e+

10
4
.2

8
e+

10
9
.8

3
e+

10
2
.1

3
e+

1
1

4
.4

3
e+

1
1

Sy
m

m
et

ry
58
,2

47
,4

24
15

5,
27

6
,5

21
40

1
,0

80
,7

29
97

3
,5

02
,4

01
2
,0

52
,1

80
,6

01
4
,6

32
,1

63
,6

00
9
,3

72
,1

76
,1

00

G
1

11
,0

20
,6

08
23
,8

62
,8

15
60
,7

61
,9

18
14

0
,1

54
,8

92
24

0
,8

20
,1

16
55

5
,6

4
1
,8

4
0

1
,0

48
,4

52
,3

00

G
2

8,
9
44
,1

36
18
,7

17
,2

10
50
,3

37
,0

94
11

0
,2

74
,1

08
20

4
,5

22
,4

68
44

4
,5

3
7
,9

6
4

87
7
,6

8
4
,8

6
0

G
3

7,
3
35
,6

17
15
,5

03
,3

08
41
,4

47
,6

68
93
,2

22
,2

86
16

7
,7

17
,6

37
38

0
,2

3
8
,4

3
5

73
9
,6

5
3
,7

5
8

G
4

3,
4
77
,0

93
8,

53
4
,3

26
20
,5

03
,5

50
45
,8

88
,1

92
91
,9

9
1
,0

5
5

18
5
,9

7
1
,7

7
0

35
0
,1

0
5
,4

3
5

G
5

6
96
,6

01
1,

36
7
,1

15
3
,4

35
,3

90
6
,5

77
,9

17
12
,4

2
5
,0

3
9

2
3,

21
0
,9

7
9

4
3,

78
5
,9

9
7

G
6

6
88
,6

13
1,

36
7
,1

15
3
,4

35
,3

90
6
,5

77
,9

17
12
,2

5
8
,1

1
7

2
3,

09
7
,7

1
3

4
3,

18
8
,0

9
9

G
7

5
7,

59
8

87
,3

03
23

2
,3

82
35

5
,0

57
67

8
,3

8
4

1
,0

5
1
,3

3
9

1
,9

7
7
,1

8
5

G
8

1
7,

51
2

18
,1

05
64
,2

73
86
,2

72
17

7
,2

9
7

23
0
,1

4
6

4
79
,0

88

G
9

1
6,

00
5

15
,6

89
50
,8

47
74
,1

14
14

3
,1

7
2

19
5
,8

5
8

4
11
,8

64

G
10

1
5,

87
5

15
,1

24
49
,8

19
71
,4

39
13

7
,2

3
2

18
5
,6

9
6

3
86
,7

41

SD
PB

0
6
8

58
15

2
12

6
4
92

3
46

5
94

G
11

6
8

58
15

2
12

6
4
92

3
46

5
94

SD
PA

0
0

0
0

0
0

0
0

55

Ta
bl

e
17

:T
he

nu
m

be
r

of
pr

ot
oc

ol
s

th
at

ge
tp

as
te

ac
h

st
ra

te
gy

in
th

e
fil

te
r

fo
r
d

=
3.

d
=

3
ν

=
1/

2
ν

=
1/

3
ν

=
1/

4

Pr
ot

oc
ol

s
4
,1

00
,6

25
74

1
,2

00
,6

25
60
,0

37
,2

5
0
,6

2
5

Sy
m

m
et

ry
68
,1

21
6
,3

95
,8

41
27

9
,3

2
4
,3

6
9

G
1

42
,2

82
5
,2

22
,3

85
18

0
,5

0
0
,4

0
0

G
2

8,
74

8
3
,3

24
,6

50
86
,1

5
1
,6

0
0

G
3

5,
64

3
1
,9

58
,0

70
58
,0

3
8
,6

6
7

G
4

16
1

71
4
,3

93
30
,7

7
3
,9

1
8

G
5

0
46

4
,5

38
15
,3

1
0
,1

1
6

G
6

0
46

4
,5

38
15
,3

1
0
,1

1
6

G
7

0
31

0
,5

18
6
,5

5
7
,0

0
7

G
8

0
28

4
,4

18
5
,4

4
7
,0

1
5

G
9

0
28

4
,4

18
5
,3

9
3
,9

1
1

G
10

0
28

4
,4

18
5
,3

9
3
,9

1
1

SD
PB

0
0

2,
65

5
24
,0

12

G
11

0
2,

65
5

24
,0

12

SD
PA

0
0

0
0

56

Observations on the six-round search

We first note that the filter does not work as effectively as in the four-round case. The
six-round search for d = 3 ran for about a month. In comparison, all the four-round
searches ran in the matter of days.

The symmetry arguments cut down the number of protocols we need to examine sig-
nificantly, by a factor of roughly 100. Note that in the four-round case it was a factor of
1, 000, 000 (for the d = 9 case). This can be explained by the weaker index symmetry in
the six-round version.

Cheating strategy G1 cut the number of protocols down by a factor of 10 with G2
performing less well than the corresponding strategy in the four-round tests. G5 also
performed well, but after this, G6 was not much help. G7 and G8 cut down the number
of protocols by a factor of 10 each in the d = 2 case, but not as much in the d = 3 case.
The next notable strategy was G10, being G9 with β0 and β1 swapped, which performed
very poorly. It seems that the swapped strategies do not help much in the filters, that is,
there is not much discrepancy between cheating towards 0 or 1. SDPB0 almost filtered
out the rest of the protocols, relying on SDPA0 to stop the rest. The implicit strategy from
Kitaev’s bound, G11, did not perform well after SDPB0 (note that it relies on SDPB0 so
it is computed afterwards). Again, we notice that no protocols with bias less than 0.2499
were found.

We notice that G9 and G10, the improved eigenstrategies for Alice, hardly filter out
any protocols, if any at all, in the low-precision tests. In these strategies, we compute a
value on the concave hull

conc

{
1

2
β0,y F(·, α0),

1

2
β1,y F(·, α1)

}
,

for every value of y. In the eigenstrategy, we approximate the concave hull with the one
of the two that has the larger constant. When we choose these constants according to a
coarse mesh, e.g., ν = 1/3 or ν = 1/4, the one with the larger constant is a very good
approximation of the concave hull. It appears that, we need finer precisions to bring out
the power of this strategy in the filter.

In all our searches, we did not find any protocols with bias less than 0.2499, and it
seems that 1/4 might be the least bias achievable by the class of protocols we study. To
further test this conjecture, in the next two subsections we present two other kinds of
search.

8.3 Random offset

We would like to test more protocols, and also avoid anomalies that may have arisen in
the previous tests due to the structure of the mesh we use and also any special relation the
protocol states may have with each other due to low precision. The six-round searches

57

Table 18: The percentage of protocols that get stopped by each strategy in the worst case
over 100 random instances of offset parameter δ.

d = 2 ν = 1/3 ν = 1/4 ν = 1/5 ν = 1/6

G1 71.87% 82.35% 84.06% 86.63%

G2 17.18% 29.80% 15.80% 24.15%

G3 8.17% 10.73% 13.46% 12.12%

G4 51.45% 49.68% 53.99% 48.44%

G5 70.00% 83.29% 78.02% 82.86%

G6 0% 0% 0% 0%

G7 75.00% 92.43% 87.32% 94.35%

G8 100% 100% 49.10% 100%

G9 0%

G10 0%

SDPB0 100%

take a long time, which restricts the precision ν we can use. The resulting mesh is also
highly structured. We would like to test protocol parameters that do not necessarily have
such regular entries. With this end in mind, we offset all of the values in the search by
some random additive term δ > 0. For example, say the entries of α0, α1, β0, and β1 have
been selected from the set {0, ν, 2ν, . . . , 1− ν, 1}. With an offset parameter δ ∈ (0, ν/2), we
use the range

{δ, δ + ν, δ + 2ν, . . . , δ + 1− ν} .

Note that this destroys index symmetry. The simplest way to see this is to consider the
2-dimensional probability distributions created in this way. They are{[

δ
1− δ

]
,

[
δ + ν

1− δ − ν

]
,

[
δ + 2ν

1− δ − 2ν

]
, . . . ,

[
δ + 1− ν
ν − δ

]}
.

We see that the set of first entries is not the same as the set of second entries when δ > 0.
We choose the last entry in each vector to be such that the entries add to 1. Since we
generate all four of the probability distributions in the same manner, we can still apply
the symmetry arguments to suppose α0 has the largest entry out of both α0 and α1 and
similarly for β0 and β1.

Table 18 (above) shows how well each strategy in the filter performs in the worst case
and Table 19 (on the next page) shows the average case over 100 random choices of offset
parameter δ ∈ [0, 1/100].

58

Table 19: The percentage of protocols that get stopped by each strategy in the average case
over 100 random instances of offset parameter δ.

d = 2 ν = 1/3 ν = 1/4 ν = 1/5 ν = 1/6

G1 85.75% 87.30% 89.42% 90.47%

G2 17.18% 29.80% 15.80% 24.15%

G3 10.85% 13.15% 14.53% 12.35%

G4 62.49% 52.53% 55.34% 53.03%

G5 70.00% 87.11% 93.46% 93.29%

G6 0% 0% 0% 0%

G7 98.70% 99.01% 96.58% 98.77%

Observations on the random offset tests

We notice that G6 performs very poorly on these tests. We need finer precision to see
the effects of G6 in the filter. Also, G1 performs generally better as the filter precision
increases. We see from the previous tables that it should stay at roughly 90%. We see that
G5 and G7 perform very well. G7 sometimes filters out the rest (why the average case
table only displays up to G7). G8 performs well most of the time, except in the ν = 1/5
case in the worst case table. Few protocols made it past the entire filter, and only SDPB0
needed to be solved of the four SDPs. No protocols with bias at most 0.2499 were found.

8.4 Computer aided bounds on bias

The search algorithm has the potential to give us computer aided proofs that certain coin-
flipping protocols have bias within a small interval. In this section, we describe the kind
of bound we can deduce under the assumption that the software provides us an indepen-
dently verifiable upper bound on the additive error in terms of the objective value.

We begin by showing that any state ξ ∈ RD of the form used in the protocols is suitably
close to a state given by the mesh used in the search algorithm. For an integer N ≥ 1,
let MN = {j/N : j ∈ Z, 0 ≤ j ≤ N}.

Lemma 8.1 Let N ≥ 1 be an integer. Consider the state ξ =
∑D

i=1

√
γi ei in RD, where γ ∈

ProbD. Then there is a probability distribution γ′ ∈ ProbD ∩MD
N such that the corresponding

state ξ′ =
∑D

i=1

√
γ′i ei satisfies ξ∗ξ′ ≥ 1−D/2N .

Proof: Let γ̃i = bγiNc /N for i ∈ {1, 2, . . . , D}. Note that
∑D

i=1 γ̃i ≤ 1, and that 1 −∑D
i=1 γ̃i =

∑D
i=1 γi −

∑D
i=1 γ̃i = j/N , for some j ∈ {0, 1, 2, . . . , D}. We may obtain γ′ by

59

adding 1/N to j coordinates of γ̃. For concreteness, let γ′i = γ̃i + 1/N for i ∈ {1, 2, . . . , j}
and γ′i = γ̃i for i ∈ {j + 1, . . . , D}. We therefore have ‖γ − γ′‖1 ≤ D/N , and

ξ∗ξ′ = F(γ, γ′)1/2 ≥ 1− D

2N
,

by Proposition 2.1. �

The above lemma helps us show that any protocol in the family we consider is ap-
proximated by one given by the mesh.

Lemma 8.2 Consider a bit-commitment based coin-flipping protocolA with bias ε of the form de-
fined in Section 3.3. LetA be specified by the 4-tuple (α0, α1, β0, β1), where αi, βi ∈ ProbD. There
is a protocol A′ with bias ε′ of the same form, defined by a 4-tuple (α′0, α

′
1, β
′
0, β
′
1), where α′i, β

′
i ∈

ProbD ∩MD
N , such that |ε− ε′| ≤ 2

√
D/N .

Proof: The statement of the lemma is vacuous if 1 − D/2N < 0, we therefore assume
1 − D/2N ≥ 0. We show that ε′ ≤ ε + 2

√
D/N . The other inequality ε ≤ ε′ + 2

√
D/N

follows similarly.
Without loss in generality, assume that bias ε′ is achieved when Bob cheats towards 0

in protocol A′. Recall

ψ =
1√
2

(e0 ⊗ e0 ⊗ ψ0 + e1 ⊗ e1 ⊗ ψ1) , and

ΠA,0 =
∑

b∈{0,1}

ebe
∗
b ⊗ ebe∗b ⊗ φbφ∗b .

Let the probability distributions α′0, α
′
1, β
′
0, β
′
1 and states ψ′0, ψ

′
1, φ
′
0, φ
′
1 corresponding to the

distributions α0, α1, β0, β1, respectively, be the ones guaranteed by Lemma 8.1. Let

ψ′ =
1√
2

(
e0 ⊗ e0 ⊗ ψ′0 + e1 ⊗ e1 ⊗ ψ′1

)
, and

Π′A,0 =
∑

b∈{0,1}

ebe
∗
b ⊗ ebe∗b ⊗ φ′b(φ′b)∗ .

We have ψ∗ψ′ ≥ 1− D
2N , by Lemma 8.1, and∥∥ψ′(ψ′)∗ − ψψ∗∥∥∗ ≤ 2

(
1− (ψ∗ψ′)2

)1/2
≤ 2

√
D/N ,

by Proposition 2.1. Further,∥∥Π′A,0 −ΠA,0

∥∥
op ≤ max

{∥∥φ′0(φ′0)∗ − φ0φ
∗
0

∥∥
op ,
∥∥φ′1(φ′1)∗ − φ1φ

∗
1

∥∥
op

}
≤

√
D/N ,

60

using the identity ‖vv∗ − uu∗‖op =
(
1− (v∗u)2

)1/2 for normalized real vectors v and u.
Here, ‖X‖op denotes the operator norm of X , namely the largest singular value of the
matrix X .

For this analysis, we assume that the protocol A′ is presented in the form described
in Section 3.1, and the two parties start with joint initial state e⊗4n

0 , apply U1, U2, . . . , U2n

alternately, and finally measure their parts of the system to obtain the output.
Consider Bob’s cheating strategy towards 0 (which we assumed achieves bias ε′). As

in the proof of Lemma 4.1, it follows that there are spaces Hi and corresponding uni-
tary operations U ′i on them for even i ≤ 2n that characterize his cheating strategy. When
Alice measures ζ ′ = (U ′2nU2n−1U

′
2n−2 · · ·U1)e⊗4n

0 , she obtains outcome 0 with probabil-

ity
∥∥∥Π′A,0ζ

′
∥∥∥2

2
= 1

2 + ε′. (In the expression for the final state ζ ′, we assume that the unitary
operations extend to the combined state space by tensoring with identity over the other
part.)

We consider the same cheating strategy for Bob in the protocolA, in which Alice starts
with the commitment state ψ, and performs the measurement

{
ΠA,0,ΠA,1,ΠA,abort

}
. This

corresponds to a different initial unitary transformation for Alice instead of U1. Let ζ be
the corresponding final joint state. Note that ψ is mapped to ζ using the same unitary
transformation that maps ψ′ to ζ ′ since Bob is using the same cheating strategy. The prob-
ability of outcome 0 is ‖ΠA,0ζ‖22 ≤

1
2 + ε, as the protocol A has bias ε. We may bound the

difference in probabilities as follows.

ε′ − ε ≤ Tr
(
Π′A,0ζ

′(ζ ′)∗
)
− Tr (ΠA,0ζζ

∗)

= Tr
(
(Π′A,0 −ΠA,0)ζ ′(ζ ′)∗

)
+ Tr

(
ΠA,0(ζ ′(ζ ′)∗ − ζζ∗)

)
≤

∥∥Π′A,0 −ΠA,0

∥∥
op +

1

2

∥∥ζζ∗ − ζ ′(ζ ′)∗∥∥∗ By Eq. (1)

=
∥∥Π′A,0 −ΠA,0

∥∥
op +

1

2

∥∥ψψ∗ − ψ′(ψ′)∗∥∥∗
≤ 2

√
D/N ,

as claimed. �

We may infer bounds on classes of protocols using the search algorithm and the lemma
above. Suppose the computational approximation to the bias obtained by the algorithm
has net additive error τ due to the protocol filter and SDP solver and the finite precision
arithmetic used in the computations. If the algorithm reports that there are no protocols
with bias at most ε∗ given by a mesh with precision parameter N , then it holds that there
are no 4-tuples, even outside the mesh, with bias at most ε∗ − 2

√
D/N − τ . Here D

is the dimension of Alice’s (or Bob’s) first n messages (i.e., commitment states used, or
equivalently, the size of the support of an element of the 4-tuple).

A quick calculation with ε∗ = 0.2499 shows that mesh fineness parameterN ≥ 2184×d
for four-round protocols and N ≥ 2184× d2 for six-round protocols with message dimen-

61

sion d, would be sufficient for us to conclude that such protocols do not achieve optimal
bias ≈ 0.2071. We would then obtain computer aided lower bounds for new classes of bit-
commitment based protocols. Thus, a refinement of the search algorithm that allows finer
meshes for messages of larger dimension and over more rounds would be well worth
pursuing.

8.5 New bounds for four-round qubit protocols

We can derive analytical bounds on the bias of four-round protocols using the strength-
ened Fuchs-van de Graaf inequality for qubit states, below:

Proposition 8.3 ([SR01]) For any quantum states ρ1, ρ2 ∈ S2
+, i.e., qubits, we have

1 ≤ ∆(ρ1, ρ2) + F(ρ1, ρ2) .

Recall from Section 5 that Bob can cheat in a four-round protocol with probability
bounded below by

P ∗B,0 ≥ 1

2
+

1

2

√
F(β0, β1) (15)

and
P ∗B,0 ≥ 1

2
+

1

2
∆(α0, α1) (16)

and Alice can cheat with probability bounded below by

P ∗A,0 ≥
(

1

2
+

1

2

√
F(α0, α1)

)(
1

2
+

1

2
∆(β0, β1)

)
. (17)

If β0, β1 ∈ Prob2, then by (15) and Proposition 8.3, we have ∆(β0, β1) ≥ 4P ∗B,0(1 − P ∗B,0)

and if α0, α1 ∈ Prob2, then from (16) and Proposition 8.3, we have F(α0, α1) ≥ 2 − 2P ∗B,0.
Combining these two bounds with (17), we get

4P ∗A,0 ≥
(

1 +
√

2− 2P ∗B,0

) (
1 + 4P ∗B,0(1− P ∗B,0)

)
implying max{P ∗A,0, P ∗B,0} ≥ 0.7487 > 1/

√
2 ≈ 0.7071. In fact, using the Fuchs-van de

Graaf inequalities from Proposition 2.1, we can get bounds when they are not both two-
dimensional. If β0, β1 are two-dimensional and α0, α1 are not, we get a lesser bound of
max{P ∗A,0, P ∗B,0} ≥ 0.7140 > 1/

√
2. On the other hand, if α0, α1 are two-dimensional and

β0, β1 are not, then we get max{P ∗A,0, P ∗B,0} ≥ 0.7040 6> 1/
√

2, so we do not rule out the
possibility of optimal protocols with these parameters.

Note that tests whereα0, α1 are two-dimensional are subsumed in the higher-dimensional
tests we performed. However, future experiments could include computationally testing
the case where Alice’s first message is two-dimensional and Bob’s first message has di-
mension 10 or greater.

62

8.6 Zoning-in on near-optimal protocols

The computational tests that we performed so far suggest that there are no protocols with
cheating probabilities less than 0.7499, that is, slightly smaller than the best known con-
structions. The tests also show that the number of protocols grows very large as the mesh
precision increases. This poses the question of whether there are protocols that have op-
timal cheating probabilities just slightly less than 3/4 when one considers increased mesh
precisions. In this subsection, we focus on searching for such protocols.

There are a few obstacles to deal with in such a search. The first is that increasing
the precision of the mesh drastically increases the number of protocols to be tested. To
deal with this, we restrict the set of parameters to be tested by only considering protocols
which are close to optimal, i.e., near-optimal protocols. In other words, we “zone in” on
some promising protocols to see if there is any hope of improving the bias by perturbing
some of the entries. To do this, we fix a near-optimal protocol and create a mesh over a
small ball around the entries in each probability vector. We would like a dramatic increase
in precision, so we use a ball of radius 2 ν (unless stated otherwise), yielding up to 5
increments tested around each entry. This gives us the advantage of having a constant
number of protocols to check, independent of the mesh precision. However, this comes
at the cost that we lose symmetry, since we do not wish to permute the entries nor the
probability distributions defining the protocol.

Another challenge is to find the near-optimal protocols. The approach we take is to
keep track of the best protocol found, updating the filter threshold accordingly. There are
two issues with this approach. One is that increasing the threshold decreases the efficiency
of the filter, so we are not able to search over the same mesh precisions given earlier in this
section. The second is that there is an abundance of protocols with cheating probabilities
exactly equal to 3/4. As was done in Section 7, we can embed an optimal three-round
protocol with optimal cheating probabilities 3/4 into a four-round or six-round protocol.
One way to do this is to set α0 = α1 (i.e. Alice’s first n messages contain no information)
or by setting β0 ⊥ β1 (i.e. Bob’s first message reveals b, making the rest of his messages
meaningless). So we already know many protocols with cheating probabilities equal to
3/4, but can we find others? We now discuss the structure of near-optimal protocols in
the case of four-round and six-round protocols, and how we zone in on them.

Four-round version

For the four-round search, we fix a message dimension d = 5 and use precision param-
eters ν ∈ {1/7, 1/8, 1/9, 1/10, 1/11}. This search yields a minimum (computer verified)
bias of ε = 0.2647 when we rule out protocols with α0 = α1 or β0 ⊥ β1. In other words,
we have that all of the protocols tested had one of the following three properties:

63

• α0 = α1,

• 〈β0, β1〉 = 0,

• max
{
P ∗A,0, P

∗
A,1, P

∗
B,0, P

∗
B,1

}
≥ 0.7647.

This suggests that near-optimal four-round protocols behave similarly to optimal three-
round protocols. We now zone in on two protocols, one representing each of the first two
conditions above. The first protocol is

α0 =
1

2
[0, 0, 0, 1, 1]T , α1 =

1

2
[0, 0, 1, 0, 1]T , β0 = [0, 0, 0, 0, 1]T , β1 = [0, 0, 0, 1, 0]T

which satisfies β0 ⊥ β1 = 0 and has all four (computationally verified) cheating probabil-
ities equal to 3/4. The second protocol is

α0 = [0, 0, 0, 0, 1]T , α1 = [0, 0, 0, 0, 1]T , β0 =
1

2
[0, 0, 0, 1, 1]T , β1 =

1

2
[0, 0, 1, 0, 1]T

which satisfies α0 = α1 and has all four (computationally verified) cheating probabilities
equal to 3/4. Tables 20 and 21 display the zoning-in searches for these two protocols with
threshold exactly 3/4. Note we use mesh precisions up to 10−16 which, by Lemma 8.2, can
guarantee us a change in bias up to 4× 10−8. A (computationally verified) change in bias
of this magnitude could be argued to be an actual decrease in bias and not an error due to
finite precision arithmetic.

64

Ta
bl

e
20

:
Th

e
nu

m
be

r
of

fo
ur

-r
ou

nd
pr

ot
oc

ol
s

th
at

ge
tp

as
te

ac
h

st
ra

te
gy

w
he

n
zo

ni
ng

-i
n

on
th

e
fir

st
ne

ar
-o

pt
im

al
pr

ot
oc

ol
(s

ho
w

in
g

F1
an

d
on

ly
th

e
ot

he
r

st
ra

te
gi

es
th

at
he

lp
ed

to
w

ee
d

ou
tp

ro
to

co
ls

).

d
=

5
ν

=
1/

10
1
0

ν
=

1/
10

1
1

ν
=

1/
10

1
2

ν
=

1/
10

1
3

ν
=

1/
1
01

4
ν

=
1/

10
1
5

ν
=

1/
1
01

6

F1
11

9,
5
7
4,

2
25

1
19
,5

74
,2

25
11

9,
57

4,
22

5
11

9,
57

4,
22

5
11

9,
57

4
,2

2
5

11
9,

5
74
,2

25
1
19
,5

74
,2

25

F2
20
,2

53
,8

07
2
0,

25
3,

80
7

20
,4

11
,2

71
21
,0

67
,3

71
20
,2

53
,8

0
7

20
,2

53
,8

07
6
,3

37
,9

26

F3
4
9
3,

5
57

49
3,

55
7

49
3,

55
7

58
1,

50
3

49
3
,5

5
7

4
98
,5

04
3
3,

27
9

F6
4
9
3,

5
57

49
3,

55
7

49
3,

55
7

57
6,

81
9

49
3
,5

5
7

4
80
,2

76
1
3,

69
5

F7
98

1
98

1
98

1
1,

24
5

9
81

8
55

0

F8
0

0
0

0
0

2
9

0

F1
0

0
0

0
0

0
0

0

Ta
bl

e
21

:T
he

nu
m

be
ro

ff
ou

r-
ro

un
d

pr
ot

oc
ol

s
th

at
ge

tp
as

te
ac

h
st

ra
te

gy
w

he
n

zo
ni

ng
-i

n
on

th
e

se
co

nd
ne

ar
-o

pt
im

al
pr

ot
oc

ol
(s

ho
w

in
g

F1
an

d
on

ly
th

e
ot

he
r

st
ra

te
gi

es
th

at
he

lp
ed

to
w

ee
d

ou
tp

ro
to

co
ls

).

d
=

5
ν

=
1/

1
01

0
ν

=
1/

10
1
1

ν
=

1/
10

1
2

ν
=

1/
10

1
3

ν
=

1/
10

1
4

ν
=

1/
1
01

5
ν

=
1/

10
1
6

F1
9,

2
77
,2

54
9
,2

77
,2

54
9
,2

77
,2

54
9,

27
7,

25
4

9
,2

77
,2

54
8,

51
6,

1
78

4
,9

5
3
,5

5
5

F3
90

7,
60

8
90

7
,6

08
91

3
,4

96
91

2,
86

4
90

7
,6

0
8

82
8,

9
52

1
,0

3
0
,1

5
2

F6
69

3,
57

6
69

3
,5

76
69

5
,0

16
71

3,
42

4
69

3
,5

7
6

41
2,

3
92

8
,6

24

F7
4
5,

37
6

45
,3

76
45
,3

76
55
,0

64
43
,2

6
4

3,
1
36

5
,0

56

F8
0

0
0

0
0

68
3
,1

40

F9
0

0
0

0
0

8
2
,0

72

F1
0

0
0

0
0

0
0

0

65

Note that not all filter strategies are useful in the zoning-in tests. For example, if the
strategy F1 ≈ 1/2 < 3/4 for the protocol we are zoning-in on, then it never filters out
any protocols with the precisions considered. Considering this, and by examining the
tables, we see that most strategies filter out many protocols, or none at all. Also from the
tables, we see that no protocols get through the entire filter. Notice that we needed to use
more strategies than were needed in previous tables, namely F9 and F10. In the previous
searches, F8 was the last filter strategy needed, thus demonstrating some protocols which
F8 fails to filter out (noting a larger threshold was used here than in the previous tests). It
is worth noting the efficiency of the four-round filter. The algorithm did not need to solve
for any optimal cheating values in any of the four-round zoning-in tests.

These tables suggest that perturbing the entries of the parameters defining these two
near-optimal protocols does not yield better bias.

Six-round version

For the six-round search, we fix a message dimension d = 2 and use precision pa-
rameters ν ∈ {1/7, 1/8, 1/9, 1/10, 1/11, 1/12}. For ν > 1/12, the test results were similar
to the four-round version, that all of the protocols tested had one of the following three
properties:

• α0 = α1,

• 〈β0, β1〉 = 0,

• max
{
P ∗A,0, P

∗
A,1, P

∗
B,0, P

∗
B,1

}
≥ 0.7521.

We choose the following two near-optimal protocols to represent the first two condi-
tions:

α0 =
1

2
[0, 0, 1, 1]T , α1 =

1

2
[0, 1, 0, 1]T , β0 = [0, 0, 0, 1]T , β1 = [0, 0, 1, 0]T ,

which satisfies β0 ⊥ β1 = 0, and

α0 = [0, 0, 0, 1]T , α1 = [0, 0, 0, 1]T , β0 =
1

2
[0, 0, 1, 1]T , β1 =

1

2
[0, 1, 0, 1]T ,

which satisfies α0 = α1. Both of these protocols have all four (computationally verified)
cheating probabilities equal to 3/4.

However, when ν = 1/12, we found several protocols with a (computationally found)
bias of 0.25. We therefore searched for all protocols with bias 0.2501 or less. We discov-
ered the following 4 protocols, no two of which are equivalent to each other with respect
to symmetry. Note that these protocols bear no resemblance to any bias 1/4 protocols
previously discovered. These protocols are below:

66

α0 =
1

3
[0, 1, 1, 1]T , α1 =

1

3
[1, 1, 0, 1]T , β0 =

1

12
[0, 3, 0, 9]T , β1 =

1

12
[0, 3, 9, 0]T

and

α0 =
1

3
[0, 1, 1, 1]T , α1 =

1

3
[1, 1, 0, 1]T , β0 =

1

12
[1, 2, 0, 9]T , β1 =

1

12
[1, 2, 9, 0]T

and

α0 =
1

3
[0, 1, 1, 1]T , α1 =

1

3
[1, 1, 1, 0]T , β0 =

1

12
[0, 3, 0, 9]T , β1 =

1

12
[0, 3, 9, 0]T

and

α0 =
1

3
[0, 1, 1, 1]T , α1 =

1

3
[1, 1, 1, 0]T , β0 =

1

12
[1, 2, 0, 9]T , β1 =

1

12
[1, 2, 9, 0]T .

Note that these four protocols have the property that all the filter strategies for them
have cheating probabilities strictly less than 3/4. Since many of these strategies are de-
rived from optimal three-round strategies, this property makes them especially interest-
ing. (Other six-round protocols were found. However, these were equivalent to the ones
above, under the equivalence relation described in Section 6.)

We now zone in on these six protocols as indicated in the following tables. Note that
we decrease the radius of the balls to ν for the third, fourth, fifth, and sixth protocol (com-
pared to 2ν for the other protocols). This is for two reasons. One is that most the entries
are bounded away from 0 or 1, making the intersection of the ball and valid probability
vectors large. Second, the filter has to work harder in this case since many of the filter
cheating probabilities are bounded away from 3/4 and thus more computationally expen-
sive cheating probabilities need to be computed.

Preliminary tests show that when zoning-in on some of these 6 protocols, the default
SDP solver precision is not enough to determine whether the bias is strictly less than
3/4, or whether it is numerical round-off. To provide a further test, we add an extra
step for those protocols that get through the filter and SDPs, we increase the SDP solver
accuracy (set pars.eps = 0 in SeDuMi) and let the solver run until no more progress is
being made. The row ”Better Accuracy” shows how many protocols get through this
added step. Furthermore, we use the maximum of the primal and dual values when
calculating the optimal cheating values since we are not guaranteed exact feasibility of
both primal and dual solutions in these computational experiments.

67

Ta
bl

e
22

:
T

he
nu

m
be

r
of

si
x-

ro
un

d
pr

ot
oc

ol
s

th
at

ge
t

pa
st

ea
ch

st
ra

te
gy

w
he

n
zo

ni
ng

-i
n

on
th

e
fir

st
ne

ar
-o

pt
im

al
pr

ot
oc

ol
(s

ho
w

in
g

G
1

an
d

on
ly

th
e

ot
he

r
st

ra
te

gi
es

th
at

he
lp

ed
to

w
ee

d
ou

tp
ro

to
co

ls
).

d
=

2
η

=
1/

10
1
0

η
=

1/
10

1
1

η
=

1/
10

1
2

η
=

1/
10

1
3

η
=

1/
10

1
4

η
=

1/
10

1
5

η
=

1/
1
01

6

G
1

1
,4

76
,2

25
1,

47
6,

22
5

1
,4

76
,2

25
1
,4

76
,2

25
1,

47
6,

22
5

1
,4

76
,2

25
1
,4

7
6
,2

2
5

G
2

8
74
,8

00
87

4,
80

0
87

4
,8

00
87

9
,1

74
87

4,
80

0
87

4
,8

0
0

60
1
,4

2
5

G
3

5
33
,4

39
53

3,
43

9
53

3
,6

55
53

8
,3

26
53

3,
43

9
44

8
,0

6
5

14
9
,0

4
0

G
5

20
,4

34
20
,4

34
20
,4

34
21
,2

50
20
,4

3
4

1
4,

49
4

3
59

G
7

65
6

65
6

66
8

68
5

57
9

4
55

0

G
8

7
0

70
70

76
42

21
0

G
9

0
0

0
0

0
0

0

Ta
bl

e
23

:T
he

nu
m

be
r

of
si

x-
ro

un
d

pr
ot

oc
ol

s
th

at
ge

tp
as

te
ac

h
st

ra
te

gy
w

he
n

zo
ni

ng
-i

n
on

th
e

se
co

nd
ne

ar
-o

pt
im

al
pr

ot
oc

ol
(s

ho
w

in
g

G
1

an
d

on
ly

th
e

ot
he

r
st

ra
te

gi
es

th
at

he
lp

ed
to

w
ee

d
ou

tp
ro

to
co

ls
).

d
=

2
η

=
1/

10
1
0

η
=

1/
10

1
1

η
=

1/
10

1
2

η
=

1/
10

1
3

η
=

1/
1
01

4
η

=
1/

10
1
5

η
=

1/
10

1
6

G
1

93
,3

12
93
,3

12
93
,3

12
93
,3

12
9
3,

31
2

8
6
,0

2
2

4
0,

82
4

G
4

38
,0

61
38
,0

61
38
,0

61
38
,0

61
3
8,

06
1

2
8
,1

2
5

4
,9

9
5

G
5

2
,6

64
2,

66
4

2
,6

64
2
,7

16
2,

66
4

1
,4

1
8

0

G
6

2
,3

76
2,

37
6

2
,3

76
2
,4

20
2,

37
6

1
,1

7
4

0

G
9

1
,2

70
0

0
0

0
0

0

G
10

77
4

0
0

0
0

0
0

SD
PA

0
53

8
0

0
0

0
0

0

SD
PA

1
47

4
0

0
0

0
0

0

Be
tt

er
A

cc
ur

ac
y

0
0

0
0

0
0

0

68

Ta
bl

e
24

:
T

he
nu

m
be

r
of

si
x-

ro
un

d
pr

ot
oc

ol
s

th
at

ge
t

pa
st

ea
ch

st
ra

te
gy

w
he

n
zo

ni
ng

-i
n

on
th

e
th

ir
d,

fo
ur

th
,fi

ft
h

an
d

si
xt

h
ne

ar
-o

pt
im

al
pr

ot
oc

ol
s

(s
ho

w
in

g
G

1
an

d
on

ly
th

e
ot

he
r

st
ra

te
gi

es
th

at
he

lp
ed

to
w

ee
d

ou
tp

ro
to

co
ls

).

d
=

2
η

=
1/

10
1
0

η
=

1/
10

1
1

η
=

1/
10

1
2

η
=

1/
10

1
3

η
=

1/
10

1
4

η
=

1/
10

1
5

η
=

1/
1
01

6

G
1

3
4,

99
2

34
,9

92
34
,9

92
34
,9

92
34
,9

92
3
4,

99
2

34
,9

92

SD
PB

0
9
,7

2
0

9,
72

0
9
,7

20
9
,7

20
9,

7
20

9
,7

2
0

27
,2

15

SD
PA

0
0

0
0

0
0

0
0

d
=

2
η

=
1/

1
01

0
η

=
1/

10
1
1

η
=

1/
10

1
2

η
=

1/
10

1
3

η
=

1/
10

1
4

η
=

1/
1
01

5
η

=
1/

10
1
6

G
1

99
,1

44
99
,1

44
93
,3

12
99
,1

44
99
,1

4
4

9
9,

14
4

9
9,

14
4

SD
PB

0
0

0
0

0
0

0
0

d
=

2
η

=
1/

10
1
0

η
=

1/
10

1
1

η
=

1/
10

1
2

η
=

1/
10

1
3

η
=

1/
10

1
4

η
=

1/
10

1
5

η
=

1/
1
01

6

G
1

3
4,

99
2

34
,9

92
34
,9

92
34
,9

92
34
,9

92
3
4,

99
2

34
,9

92

SD
PB

0
9
,7

2
0

9,
72

0
9
,7

20
9
,7

20
9,

7
20

9
,7

2
0

27
,2

15

SD
PA

0
0

0
0

0
0

0
0

d
=

2
η

=
1/

1
01

0
η

=
1/

10
1
1

η
=

1/
10

1
2

η
=

1/
10

1
3

η
=

1/
10

1
4

η
=

1/
1
01

5
η

=
1/

10
1
6

G
1

99
,1

44
99
,1

44
93
,3

12
99
,1

44
99
,1

4
4

9
9,

14
4

9
9,

14
4

SD
PB

0
0

0
0

0
0

0
0

69

We see in Tables 22, 23, and 24 that zoning-in on the six protocols yields no protocols
with bias less than 1/4. The zoning-in tests for the second near-optimal protocol are the
only ones where we needed the added step of increasing the SDP solver accuracy. We see
that this added step removed the remaining protocols.

We remark on the limitations of using such fine mesh precisions. For example, when
zoning-in on the fourth and sixth protocol, only two strategies were used, G1 and SDPB0.
These are both strategies for Bob which suggests that there are some numerical precision
issues. We expect that some perturbations would decrease Bob’s cheating probability, for
example when α0 and α1 become “closer” and β0 and β1 remain the same. However, the
precisions used in these searches do not find any such perturbations.

From the outcome of the zoning-in tests, along with the computational evidence from
all the other tests we conducted, we conjecture that any strong coin-flipping protocol
based on bit-commitment as defined formally in Section 3.3 has bias at least 1/4 (Con-
jecture 1.1 in Section 1.3).

9 Conclusions

We introduced a parameterized family of quantum coin-flipping protocols based on bit-
commitment, and formulated the cheating probabilities of Alice and Bob as simple semidef-
inite programs. Using these semidefinite programming formulations, we designed an
algorithm to search for parameters yielding a protocol with small bias. We exploited sym-
metry and developed cheating strategies to create a protocol filter so that a wider array of
protocols can be searched. For example, without the heuristics used in this paper, it would
have taken over 69 million years to search the same 3× 1016 protocols that we tested.

Using the search algorithm, we searched four and six-round protocols from a mesh
over the parameter space, with messages of varying dimension and with varying fineness
for the mesh. After the initial systematic searches, no protocols having all four cheating
probabilities less than 0.7499 were found. We then performed a search over a randomly
translated mesh to avoid any anomalies that may have occurred while testing structured
parameter sets. These tests also did not find any protocols with cheating probabilities less
than 0.7499. Our final tests zoned-in on protocols with maximum cheating probability 3/4
to test whether there are protocols with cheating probabilities between 0.7499 and 0.75. A
computational search to find such protocols yielded 8 equivalence classes of protocols
representing all the protocols with cheating probabilities equal to 3/4. Four of these pro-
tocols bear no resemblance to previously known protocols with bias 1/4. Zoning-in on
these protocols showed that we cannot improve the bias by perturbing the parameters
defining the protocols. Improvements to the algorithm may yield computer aided proofs
of bounds on the bias of new sets of protocols.

An obvious open problem is to resolve the conjecture that all the protocols in the fam-
ily we study have bias at least 1/4. It seems the smallest bias does not decrease when

70

the number of messages increases from four rounds to six. We conjecture the smallest
bias does not decrease even if more messages are added. One way to show this is to find
closed-form expressions of the optimal objective values of the SDP formulations. This
would be of great theoretical significance since very few highly interactive protocols (such
as those examined in this paper) have been characterized by closed-form expressions for
their bias or even by a description of optimal cheating strategies.

Acknowlegdements

We thank Andrew Childs, Michele Mosca, Peter Høyer, and John Watrous for their com-
ments and suggestions. A.N.’s research was supported in part by NSERC Canada, CIFAR,
an ERA (Ontario), QuantumWorks, and MITACS. A part of this work was completed at
Perimeter Institute for Theoretical Physics. Perimeter Institute is supported in part by
the Government of Canada through Industry Canada and by the Province of Ontario
through MRI. J.S.’s research is supported by NSERC Canada, MITACS, ERA (Ontario),
ANR project ANR-09-JCJC-0067-01, and ERC project QCC 306537. L.T.’s research is sup-
ported in part by Discovery Grants from NSERC.

References

[ABDR04] Andris Ambainis, Harry Buhrman, Yevgeniy Dodis, and Hein Röhrig. Multi-
party quantum coin flipping. In Proceedings of the 19th IEEE Annual Conference
on Computational Complexity, pages 250–259. IEEE Computer Society, 2004.

[ACG+13] Dorit Aharonov, André Chailloux, Maor Ganz, Iordanis Kerenidis, and Loı̈ck
Magnin. A simpler proof of existence of quantum weak coin flipping with
arbitrarily small bias. Manuscript, 2013.

[AG03] Farid Alizadeh and Donald Goldfarb. Second-order cone programming. Math-
ematical Programming, 95:3–51, 2003.

[Amb01] Andris Ambainis. A new protocol and lower bounds for quantum coin flip-
ping. In Proceedings of 33rd Annual ACM Symposium on the Theory of Computing,
pages 134 – 142. ACM, 2001.

[Amb02] Andris Ambainis. Lower bound for a class of weak quantum coin flipping
protocols. Available as arXiv.org e-Print quant-ph/0204063, 2002.

[ATVY00] Dorit Aharonov, Amnon Ta-Shma, Umesh Vazirani, and Andrew Chi-Chih
Yao. Quantum bit escrow. In Proceedings of 32nd Annual ACM Symposium on
the Theory of Computing, pages 705–714. ACM, 2000.

71

[BB84] Charles Bennett and Gilles Brassard. Quantum cryptography: Public key dis-
tribution and coin tossing. In Proceedings of the IEEE International Conference
on Computers, Systems, and Signal Processing, pages 175–179. IEEE Computer
Society, 1984.

[Blu81] Manuel Blum. Coin flipping by telephone. In Allen Gersho, editor, Advances
in Cryptology: A Report on CRYPTO 81, CRYPTO 81, IEEE Workshop on Com-
munications Security, Santa Barbara, California, USA, August 24-26, 1981, pages
11–15. U. C. Santa Barbara, Dept. of Elec. and Computer Eng., ECE Report No.
82-04, 1982, 1981.

[BV97] Ethan Bernstein and Umesh V. Vazirani. Quantum complexity theory. SIAM
Journal on Computing, 26(5):1411–1473, 1997.

[CK09] André Chailloux and Iordanis Kerenidis. Optimal quantum strong coin flip-
ping. In Proceedings of 50th IEEE Symposium on Foundations of Computer Science,
pages 527–533. IEEE Computer Society, 2009.

[CK11] André Chailloux and Iordanis Kerenidis. Optimal bounds for quantum bit
commitment. In Proceedings of the 52nd Annual IEEE Symposium on Founda-
tions of Computer Science, pages 354–362. IEEE Computer Society Press, Octo-
ber 2011.

[FvdG99] Christopher A. Fuchs and Jeroen van de Graaf. Cryptographic distinguishabil-
ity measures for quantum mechanical states. IEEE Transactions on Information
Theory, 45:1216–1227, 1999.

[GW07] Gus Gutoski and John Watrous. Toward a general theory of quantum games.
In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Comput-
ing, pages 565–574, New York, NY, USA, 2007. ACM.

[Kit02] Alexei Kitaev. Quantum coin-flipping. Unpublished result. Talk in the 6th
Annual workshop on Quantum Information Processing, QIP 2003, Berkeley,
CA, USA, December 2002, 2002.

[KN04] Iordanis Kerenidis and Ashwin Nayak. Weak coin flipping with small bias.
Information Processing Letters, 89(3):131–135, 2004.

[LC97] Hoi-Kwong Lo and Hoi Fung Chau. Is quantum bit commitment really possi-
ble? Physical Review Letters, 78(17):3410–3413, 1997.

[LC98] Hoi-Kwong Lo and Hoi Fung Chau. Why quantum bit commitment and ideal
quantum coin tossing are impossible. Physica D: Nonlinear Phenomena, 120(1–
2):177–187, September 1998. Proceedings of the Fourth Workshop on Physics
and Consumption.

72

[LC99] Hoi-Kwong Lo and Hoi Fung Chau. Unconditional security of quantum key
distribution over arbitrarily long distances. Science, 283:2050–2056, 1999.

[May97] Dominic Mayers. Unconditionally secure quantum bit commitment is impos-
sible. Physical Review Letters, 78(17):3414–3417, 1997.

[May01] Dominic Mayers. Unconditional security in quantum cryptography. Journal of
the ACM, 48(3):351–406, 2001.

[Mit03] Hans D. Mittelmann. An independent benchmarking of SDP and SOCP
solvers. Computational semidefinite and second order cone programming: the
state of the art. Mathematical Programming, 95(2):407–430, 2003.

[Moc04] Carlos Mochon. Quantum weak coin-flipping with bias of 0.192. In Proceedings
of the 45th Annual IEEE Symposium on Foundations of Computer Science, pages 2–
11. IEEE Computer Society, 2004.

[Moc05] Carlos Mochon. A large family of quantum weak coin-flipping protocols.
Physical Review A, 72(2):022341, 2005.

[Moc07] Carlos Mochon. Quantum weak coin flipping with arbitrarily small bias.
Available as arXiv.org e-Print quant-ph/0711.4114, 2007.

[MVW12] Abel Molina, Thomas Vidick, and John Watrous. Optimal counterfeiting at-
tacks and generalizations for Wiesner’s quantum money. In Proceedings of the
7th Conference on Theory of Quantum Computation, Communication, and Cryptog-
raphy, pages 45–64, 2012.

[NC00] Michael Nielsen and Isaac L. Chuang. Quantum computation and quantum in-
formation. Cambridge University Press, New York, NY, USA, 2000.

[NN94] Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms
in Convex Programming. Society for Industrial and Applied Mathematics, 1994.

[NS03] Ashwin Nayak and Peter W. Shor. On bit-commitment based quantum coin
flipping. Physical Review A, 67(1):012304, 2003.

[PS00] John Preskill and Peter W. Shor. Simple proof of security of the BB84 quantum
key distribution protocol. Physical Review Letters, 85(2):441–444, 2000.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Computing,
26(5):1484–1509, October 1997.

73

[SR01] Robert W. Spekkens and Terence Rudolph. Degrees of concealment and bind-
ingness in quantum bit commitment protocols. Physical Review A, 65:012310,
2001.

[Stu99] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11:625–653, 1999.

[Stu02] Jos F. Sturm. Implementation of interior point methods for mixed semidefi-
nite and second order cone optimization problems. Optimization Methods and
Software, 17(6):1105–1154, 2002.

[TW12] Levent Tunçel and Henry Wolkowicz. Strong duality and minimal representa-
tions for cone optimization. Computational Optimization and Applications, pages
1–30, 2012.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, January 1983.

[WSV00] Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe, editors. Hand-
book of Semidefinite Programming. Kluwer Academic Publishers, 2000.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive
computing. In Proceedings of the Eleventh Annual ACM Symposium on Theory
of Computing, STOC ’79, pages 209–213, New York, NY, USA, 1979. ACM.

[Yao93] Andrew Chi-Chih Yao. Quantum circuit complexity. In Proceedings of the 34th
Annual IEEE Symposium on Foundations of Computer Science, pages 352–361, Los
Alamitos, CA, USA, 1993. IEEE Computer Society Press.

A SDP characterization of cheating strategies

In this section, we present proofs for Lemmas 4.1 and 4.2, originally due to Kitaev.

Proof of Lemma 4.1: The matrix constraints in the SDP may readily be rewritten as linear
constraints on the variables ρj , so the optimization problem is an SDP. The variables are
the density matrices of qubits under Alice’s control after each of Bob’s messages. The
partial trace is trace-preserving, so any feasible solution satisfies

Tr(ρF) = Tr(ρn) = · · · = Tr(ρ1) = Tr(ψψ∗) = 1.

Since ρ1, . . . , ρn, ρF are constrained to be positive semidefinite, they are quantum states.
Bob sends the B1 qubits to Alice replacing the A1 part already sent to him. Being the

density matrix Alice has after Bob’s first message, ρ1 satisfies

TrB1(ρ1) = TrA1(ψψ∗),

74

since the state of the qubits other than those in A1, B1 remains unchanged. Similarly, we
have the constraint

TrBj (ρj) = TrAj (ρj−1), for j ∈ {2, . . . , n},

for each ρj after Bob’s j’th message. Also ρF , the state Alice has at the end of the protocol,
satisfies

TrB′×B′0(ρF) = TrA′×A′0(ρn).

She then measures ρF and accepts c with probability 〈ρF ,ΠA,c〉.
These constraints are necessary conditions on the states under Alice’s control. We may

further restrict the states to be real matrices: the real parts of any complex feasible solution
also form a feasible solution with the same objective function value.

We now show that every feasible solution to the above problem yields a valid cheating
strategy for Bob with success probability equal to the objective function value of the fea-
sible solution. He can find such a strategy by maintaining a purification of each density
matrix in the feasible solution. For example, suppose the protocol starts in the state ψ⊗φ′,
where φ′ ∈ CK := CB0 ⊗ CB′0 ⊗ CB ⊗ CB′ ⊗ CK′ where CK′ is extra space Bob uses to
cheat. Consider τ ∈ CA0 ⊗ CA′0 ⊗ CA ⊗ CA′ ⊗ CK a purification of ρ1 and η := ψ ⊗ φ′ a
purification of ψψ∗. Since TrB1(ρ1) = TrA1(ψψ∗),

TrA1×K(ττ∗) = TrB1(ρ1) = TrA1(ψψ∗) = TrA1×K(ηη∗).

Thus, there exists a unitary U which acts on CA1 ⊗ CK which maps τ to η. If Bob applies
this unitary after Alice’s first message and sends the B1 qubits back then he creates ρ1

under Alice’s control. The same argument can be applied to the remaining constraints.
The states corresponding to honest Bob yield a feasible solution. Attainment of an

optimal solution then follows from continuity of the objective function and from the com-
pactness of the feasible region. An optimal solution yields an optimal cheating strategy.
�

The characterization of Alice’s cheating strategies is almost the same as that for cheat-
ing Bob; we only sketch the parts that are different.

Proof of Lemma 4.2: There are two key differences from the proof of Lemma 4.1. One is
that Alice sends the first message and Bob sends the last, explaining the slightly different
constraints. Secondly, Bob measures only the CB0 ⊗CA′0 ⊗CA ⊗CA′ part of his state after
Alice’s last message, i.e., he measures TrB′0×B′(σF). Note that the adjoint of the partial
trace can be written as Tr∗B′0×B′

(Y) = Y ⊗ IB′0×B′ . Therefore we have〈
TrB′0×B′(σF),ΠB,c

〉
=
〈
σF ,ΠB,c ⊗ IB′0×B′

〉
,

which explains the objective function. �

75

B Derivations of the reduced cheating strategies

In this appendix, we show the derivation of Alice’s reduced cheating strategy (the deriva-
tion of Bob’s is very similar and the arguments are the same). We show that if we are
given an optimal solution to Alice’s cheating SDP, then we can assume it has a special
form while retaining the same objective function value. Then we show this special form
for an optimal solution can be written in the way desired.

Technical lemmas

We now discuss some of the tools used in the proofs in the rest of the appendix.

Lemma B.1 Suppose A is a finite set. Suppose p =
∑

x∈A px ex ⊗ ex ∈ ProbA×A and σ ∈ SA+ is
a density matrix. Then we have

max
ρ∈SA×A+

{〈√
p
√
pT, ρ

〉
: TrA(ρ) = σ

}
≤ max

ρ∈SA×A+

{〈√
p
√
pT, ρ

〉
: TrA(ρ) = Diag(σ)

}
,

where Diag restricts to the diagonal of a square matrix. Moreover, an optimal solution to the
problem on the right is ρ :=

√
q
√
qT, where q =

∑
x∈A[σ]x,x ex ⊗ ex ∈ ProbA×A, yielding an

objective function value of F(p, q).

Proof: Consider ρ̄ as defined in the statement of the lemma. Since TrA(ρ̄) = Diag(σ),
it suffices to show that for any density matrix ρ ∈ SA×A+ satisfying either TrA(ρ) = σ

or TrA(ρ) = Diag(σ), we have
〈√

p
√
pT, ρ

〉
≤
〈√

p
√
pT, ρ̄

〉
= F(p, q).

Expanding the first inner product, and using the Cauchy-Schwartz inequality, we get〈√
p
√
pT, ρ

〉
=
∑
x,y∈A

√
pxpy(ex⊗ex)Tρ (ey⊗ey)≤

∑
x,y∈A

√
pxpy ‖

√
ρ (ex ⊗ ex)‖·‖√ρ (ey ⊗ ey)‖ .

We can simplify this by noting

‖√ρ (ex ⊗ ex)‖2 =(ex ⊗ ex)Tρ (ex ⊗ ex) ≤
∑
z∈A

(ez ⊗ ex)Tρ (ez ⊗ ex) = eT
xTrA(ρ)ex = [σ]x,x

implying
〈√

p
√
pT, ρ

〉
≤
∑

x,y∈A
√
pxpy ([σ]x,x[σ]y,y)

1
2 =

(∑
x∈A

√
px[σ]x,x

)2
= F(p, q), as

desired. �

Definition B.2 We define the partial Diag operator over the subspace CA, denoted DiagA, as
the operator that projects density matrices over CB ⊗ CA onto the diagonal only on the subspace
CA:

DiagA(ρ) =
∑
x∈A

(IB ⊗ eT
x) ρ (IB ⊗ ex)⊗ exeT

x .

76

We may write DiagA as the superoperator I⊗DiagA, where I is the identity superoperator
acting on the rest of the space. Similarly, we may write the partial trace over A as the
superoperator TrA := I⊗Tr(·) where Tr(·) acts only on CA. Using this perspective, we see
that the partial trace and the partial Diag operators commute when they act on different
subspaces. Also, TrA◦DiagA = TrA since the trace only depends on the diagonal elements.

We also make use of the following lemma.

Lemma B.3 Consider a matrix ρ ∈ SA×B+ . If TrA(ρ) = ψψ∗ for some vector ψ ∈ CB , then ρ can
be written as ρ = ρ̃⊗ ψψ∗, for some ρ̃ ∈ SA+.

This is easily proven using the fact that the half-line emanating through a rank one
positive semidefinite matrix forms an extreme ray of the cone of positive semidefinite ma-
trices, or more directly by expressing ρ using an orthogonal basis for CB that includes ψ.

Derivations of Alice’s reduced cheating strategy

Assume (σ1, σ2, . . . , σn, σF) is optimal for Alice’s cheating SDP. We now define

(σ′1, σ
′
2, . . . , σ

′
n, σ

′
F) = (σ1,DiagB′1(σ2), . . . ,DiagB′1×···×B′n−1

(σn),DiagB′×A′0(σF))

and show it is also optimal. All we need to show is feasibility since the objective function
value is preserved because ΠB,c ⊗ IB′0×B′ is diagonal in the space SB

′×A′0
+ .

The first constraint is satisfied since σ′1 = σ1 is part of a feasible solution. From
Lemma B.3, we can write σ′1 = φφ∗ ⊗ σ̃1 for some σ̃1 ∈ SA1

+ . We can write

TrB1(σ′1) =
∑
y1∈B′1

ey1e
∗
y1 ⊗ φy1φ

∗
y1 ⊗ σ̃1,

where φy1,...,yj :=
∑
b∈B0

∑
yj+1∈B′j+1

· · ·
∑
yn∈B′n

1√
2

√
βb,y eb ⊗ eb ⊗ eyj+1 ⊗ eyj+1 ⊗ · · · ⊗ eyn ⊗ eyn ,

which is in CB0×B′0×Bj+1×B′j+1×···×Bn×B′n . Therefore, TrB1(σ′1) is diagonal in B′1 and

TrB1(σ′1) = DiagB′1(TrB1(σ′1)) = DiagB′1(TrB1(σ1)) = DiagB′1(TrA2(σ2)) = TrA2(σ′2). (18)

Therefore, the second constraint is satisfied. Since σ′2 is diagonal in B′1 we can write it as

σ′2 =
∑
y1∈B′1

ey1e
∗
y1 ⊗ σ2,y1 , for some σ2,y1 ∈ SB0×B′0×A1×A2×B2×···×Bn×B′2×···×B′n

+ .

By feasibility, TrA2(σ′2)=
∑
y1∈B′1

ey1e
∗
y1 ⊗ TrA2(σ2,y1)=TrB1(σ′1)=

∑
y1∈B′1

ey1e
∗
y1 ⊗ φy1φ

∗
y1 ⊗ σ̃1,

therefore σ′2 =
∑

y1∈B′1
ey1e

∗
y1 ⊗ φy1φ

∗
y1 ⊗ σ̃2,y1 , where σ̃2,y1 ∈ SB0×B′0×A1×A2

+ satisfies

77

TrA2(σ̃2,y1) = σ̃1 for all y1 ∈ B′1. Using similar arguments, we may show that the rest
of the first n constraints are satisfied. For every j ∈ {3, . . . , n}, we have

σ′j =
∑
y1∈B′1

· · ·
∑

yj−1∈B′j−1

ey1e
∗
y1 ⊗ · · · ⊗ eyj−1e

∗
yj−1
⊗ φy1,...,yj−1φ

∗
y1,...,yj−1

⊗ σ̃j,y1,...,yj−1 ,

where σ̃j,y1,...,yj−1 ∈ SB0×B′0×A1×···×Aj
+ satisfies TrAj (σ̃j,y1,...,yj−1) = σ̃j−1,y1,...,yj−2 for all y1 ∈

B′1, . . . , yj−1 ∈ B′n−1. Note that TrBn(σ′n) =
∑

y∈B′ eye
∗
y ⊗ φyφ∗y ⊗ σ̃n,y1,...,yn−1 which is

helpful in proving feasibility of the last constraint. For the last constraint, we can use a
similar reduction as in Equation (18) to show TrA′×A′0(σ′F) = TrBn(σ′n) proving (σ′1, . . . , σ

′
n, σ

′
F)

is feasible. We now use this feasible solution to simplify the problem.
We can clean up σ′F by noting that it is diagonal in CB′ and CA′0 and write it as

σ′F =
∑
a∈A′0

∑
y∈B′

eae
∗
a ⊗ eye∗y ⊗ σF,a,y, for some σF,a,y ∈ SB0×B′0×A×A′

+ .

Thus, TrA′×A′0(σ′F) =
∑

a∈A′0

∑
y∈B′ eye

∗
y⊗TrA′(σF,a,y) =

∑
y∈B′ eye

∗
y⊗
(∑

a∈A′0
TrA′(σF,a,y)

)
.

Similarly, by feasibility, we have TrA′×A′0(σ′F) = TrBn(σ′n) =
∑

y∈B′ eye
∗
y⊗φyφ∗y⊗σn,y1,...,yn−1 .

Thus,
σ′F =

∑
a∈A′0

∑
y∈B′

eae
∗
a ⊗ eye∗y ⊗ φyφ∗y ⊗ σ̃F,a,y,

by writing σF,a,y = φyφ
∗
y⊗σ̃F,a,y where σ̃F,a,y ∈ SA×A

′
+ satisfies

∑
a∈A′0

TrA′(σ̃F,a,y) = σn,y1,...,yn−1

for all a ∈ A′0 and y ∈ B′.
The objective function becomes

〈
σ′F ,ΠB,0 ⊗ IB′0×B′

〉
= 1

2

∑
a∈A′0

∑
y∈B′ βa,y 〈σ̃F,a,y, ψaψ∗a〉.

At this point, we note that
〈
σ′F ,ΠB,1 ⊗ IB′0×B′

〉
= 1

2

∑
a∈A′0

∑
y∈B′ βā,y 〈σ̃F,a,y, ψaψ∗a〉, prov-

ing that evaluating Alice’s success probability of cheating towards 0 or 1 with this strategy
is a matter of switching Bob’s two probability distributions.

78

Carrying on with P ∗A,0, we get the following SDP

sup 1
2

∑
a∈A′0, y∈B′

βa,y 〈σ̃F,a,y, ψaψ∗a〉

subject to TrA1(σ̃1) = 1,
TrAj (σ̃j,y1,...,yj−1) = σ̃j−1,y1,...,yj−2 , ∀j ∈ {2, . . . , n} ,

∀y1 ∈ B′1,
...

∀yj−1 ∈ B′j−1,∑
a∈A′0

TrA′(σ̃F,a,y) = σ̃n,y1,...,yn−1 , ∀y ∈ B′,
σ̃j,y1,...,yj−1 ∈ SA1×···×Aj

+ , ∀j ∈ {1, . . . , n},
∀y1 ∈ B′1,

...
∀yj−1 ∈ B′j−1,

σ̃F,a,y ∈ SA
′×A

+ , ∀a ∈ A′0, y ∈ B′.

By Lemma B.1, the following restrictions can only improve the objective function value:

s1 := diag(σ̃1),

s
(y1)
2 := diag(σ̃2,y1), ∀y1 ∈ B′1,

...
s(y1,...,yn−1)
n := diag(σ̃n,y1,...,yn−1), ∀y1 ∈ B′1, . . . , yn−1 ∈ B′n−1,

s(a,y) := diag(TrA′(σ̃F,a,y)), ∀a ∈ A′0, y ∈ B′,
TrA′(σ̃F,a,y) = Diag(s(a,y)), ∀a ∈ A′0, y ∈ B′,

where the superscripts are the restrictions of the vectors as before. With these new vari-
ables, and using Lemma B.1, we can write the new objective function as

1

2

∑
a∈{0,1}

∑
y∈B

βa,y F(s(a,y), αa),

where (s1, . . . , sn, s) ∈ PA. Any feasible solution to the reduced SDP also gives us a
feasible solution to the original SDP, so their optimal values are equal. �

This proof shows that the reduced cheating problem does not eliminate all of the op-
timal solutions of the corresponding SDP. We can also show that the reduced problems
capture optimal solutions to the corresponding SDPs by examining the dual SDPs. How-
ever, the primal SDPs are more important for the purposes of this paper and this proof is
more illustrative.

79

C Developing the strategies in the filter

In this appendix, we prove Theorems 5.2 and 5.3 by developing the cheating strategies
used in the filter for Alice and Bob.

Cheating Alice

Recall Alice’s optimization problem

P ∗A,0 = max

1

2

∑
a∈{0,1}

∑
y∈B

βa,y F(s(a,y), αa) : (s1, . . . , sn, s) ∈ PA

 .

To get a feasible solution, suppose Alice guesses b before she reveals a in the following
way. If Bob reveals y ∈ B, then Alice guesses b = 0 if β0,y ≥ β1,y and b = 1 if β0,y < β1,y.
Let Alice’s guess be denoted by f(y), so

f(y) = arg max
a
{βa,y} ∈ {0, 1} ,

and we set f(y) = 0 in the case of a tie. We have chosen a way to satisfy the last constraint
in Alice’s cheating polytope, but we can choose how Alice sends her first n messages
s1, . . . , sn. We make one more restriction, we set sn = d⊗ eB1×···×Bn−1 and optimize over
d ∈ ProbA. We can easily satisfy the rest of the constraints given any d by choosing each
variable as the corresponding marginal probability distribution.

Under these restrictions, we have that Alice’s reduced problem can be written as

max
d∈ProbA

1

2

∑
y∈B

βf(y),yF(d, αf(y))

 = max
d∈ProbA

{η F(d, α0) + τ F(d, α1)} .

We can simplify this using the following lemma.

Lemma C.1 For nonnegative vectors {z1, . . . , zn} ⊂ Rn+, we have that

max

{
n∑
i=1

F(p, zi) : p ∈ Probn
}

= λmax

(
n∑
i=1

√
zi
√
zi

T

)
.

Furthermore, an optimal solution is the entry-wise square of the normalized principal eigenvector.

Proof: Since
∑n

i=1 F(p, zi) =
∑n

i=1

〈√
p
√
pT,
√
zi
√
zi

T
〉

=
√
pT
(∑n

i=1

√
zi
√
zi

T
)√

p,

where
√
· is the entry-wise square root, the maximization problem reduces to

max

{
√
pT

(
n∑
i=1

√
zi
√
zi

T

)
√
p : p ∈ Probn

}
.

80

Let x̂ ∈ Rm be the restriction of a vector x onto ∪ni=1supp(zi). Then the optimal objective
value of the above optimization problem is equal to that of

max

{√
p̂

T

(
n∑
i=1

√
ẑi
√
ẑi

T

)√
p̂ : p̂ ∈ Prob∪

n
i=1supp(zi)

}
.

If the nonnegativity constraint were not present, the optimum value would be attained
by setting

√
p̂ to be the normalized principal eigenvector of the matrix

∑n
i=1

√
ẑi
√
ẑi

T.
Because

∑n
i=1

√
ẑi
√
ẑi

T has positive entries, we know the principal eigenvector is also
positive by the Perron-Frobenius Theorem. Since this does not violate the nonnegativ-
ity constraint in the problem, p̂, where

√
p̂ is the normalized principal eigenvector, is an

optimal solution yielding an optimal objective value of λmax

(∑n
i=1

√
ẑi
√
ẑi

T
)

. Notice

that
∑n

i=1

√
ẑi
√
ẑi

T is the matrix obtained by removing the zero rows and columns from∑n
i=1

√
zi
√
zi

T and thus has the same largest eigenvalue. �

Using this lemma, Alice can cheat with probability

1

2
λmax

(
η
√
α0
√
α0

T + τ
√
α1
√
α1

T
)
,

which we call Alice’s eigenstrategy.
We can find a lower bound on this value using the following two lemmas.

Lemma C.2 For β0, β1, η, and τ defined above, we have η + τ = 1 + ∆(β0, β1).

Proof: Notice that we can write
∑
y∈B

max
a∈{0,1}

{βa,y}+
∑
y∈B

min
a∈{0,1}

{βa,y} = 2 and we can also

write
∑
y∈B

max
a∈{0,1}

{βa,y} −
∑
y∈B

min
a∈{0,1}

{βa,y} = 2∆(β0, β1). With this, we can conclude that

η + τ =
∑
y∈B

max
a∈{0,1}

{βa,y} = 1 + ∆(β0, β1), as desired. �

The above lemma can be restated as
∑

y∈B maxa∈{0,1} {βa,y} = 1 + ∆(β0, β1) for any
probability distributions β0 and β1. This is helpful when looking at Bob’s cheating strate-
gies as well.

Lemma C.3 For η, τ ∈ R and p, q ∈ Probn, we have

λmax

(
η
√
p
√
pT + τ

√
q
√
qT
)

=
1

2

(
η + τ +

√
(η − τ)2 + 4ητ F(p, q)

)
.

81

Proof: Since we can write F(p, q) =
(√
pT√q

)2
, we can apply a unitary to both

√
p and

√
q

and both sides of the equality we want to prove are unaffected. Choose a unitary U such
that

U
√
p = [1, 0, 0, . . . , 0]T and U

√
q = [sin θ, cos θ, 0, . . . , 0]T,

for some θ ∈ [0, 2π). Then we can write F(p, q) = sin2 θ. Let λmax be the largest eigenvalue
of η
√
p
√
pT + τ

√
q
√
qT, or equivalently, of ηU

√
p
√
pTU∗ + τU

√
q
√
qTU∗, and let λ2 be the

second largest eigenvalue. Then

λmax + λ2 = Tr(η
√
p
√
pT + τ

√
q
√
qT) = η + τ

and, by taking the determinant of the only nonzero block, we get

λmax · λ2 = ητ cos2 θ = ητ(1− F(p, q))

implying λmax = 1
2

(
η + τ +

√
(η − τ)2 + 4ητF(p, q)

)
, as desired. �

Note that Lemma C.3 shows that switching the roles of η and τ does not affect the largest
eigenvalue.

Using the above two lemmas, we have

1

2
λmax

(
η
√
α0
√
α0

T + τ
√
α1
√
α1

T
)

=
1

4

(
η + τ +

√
(η − τ)2 + 4ητ F(α0, α1)

)
≥ 1

4

(
η + τ +

√
(η − τ)2 F(α0, α1) + 4ητ F(α0, α1)

)
=

1

4

((
1 +

√
F(α0, α1)

)
(η + τ)

)
=

(
1

2
+

1

2

√
F(α0, α1)

)(
1

2
+

1

2
∆(β0, β1)

)
.

This lower bound has a natural interpretation. This is the strategy where Alice ignores
all of Bob’s messages until CBn is sent. Then she measures it to learn b with probability
1
2 + 1

2∆(β0, β1). Conditioned on having the correct value for b, she tries to get past Bob’s
cheat detection and can do so with probability 1

2 + 1
2

√
F(α0, α1). We call this Alice’s three-

round strategy since it combines optimal strategies for the three-round protocol example
in Subsection 3.2. It makes sense that this is a lower bound on the success probability of
Alice’s eigenstrategy since her eigenstrategy is optimized from the same restrictions that
apply to her three-round strategy.

We can also examine how Alice can choose her last message optimally supposing she
has already sent her first nmessages in a particular way. I.e., suppose sn := c⊗ eB1×···×Bn−1

for some c ∈ ProbA (as in the eigenstrategy). From this we can find s1, . . . , sn−1 satisfying

82

the first n − 1 constraints of her cheating polytope by taking the corresponding marginal
distributions of c. We want to optimize over s satisfying TrA′0(s) = sn ⊗ eBn = c⊗ eB . In
this case, this constraint can be written as

∑
a∈{0,1} s

(a,y) = c, for each y ∈ B, where again,
s(a,y) is the restriction of s with a and y fixed. Now we get the following optimization
problem

max 1
2

∑
a∈{0,1}

∑
y∈B βa,y F(s(a,y), αa)

subject to
∑

a∈{0,1} s
(a,y) = c, for all y ∈ B,
s(a,y) ≥ 0,

where c is now constant. If we rewrite this as

max 1
2

∑
y∈B

∑
a∈{0,1} F(s(a,y), βa,yαa)

subject to
∑

a∈{0,1} s
(a,y) = c, for all y ∈ B,
s(a,y) ≥ 0,

we have a separable problem over y ∈ B. That is, for each fixed ỹ ∈ B, Alice needs to
solve the optimization problem

Gỹ(c) := max

1

2

∑
a∈{0,1}

F(s(a,ỹ), βa,ỹαa) :
∑

a∈{0,1}

s(a,ỹ) = c, s(a,ỹ) ≥ 0, ∀a ∈ {0, 1}

 .

This optimization problem has a special structure.

Definition C.4 The infimal convolution of the convex functions f1, f2, . . . , fn, where
f1, . . . , fn : Rm → R ∪ {∞}, is

(f1�f2� · · ·�fn)(d) := inf
x1,...,xn∈Rm

{
n∑
i=1

fi(xi) :
n∑
i=1

xi = d

}
.

We do not need to worry about the nonnegativity constraints on the variables since
we can define our convex function −F(p, q) = +∞ if p or q is not nonnegative. Note for
every p ∈ Rm+ , that −F(p, ·) is a proper, convex function, i.e., it is convex and −F(p, q) < +∞
for some q ∈ Rm+ and −F(p, q) > −∞ for every q ∈ Rm+ . Proper, convex functions have
many useful properties as detailed in this section. Using these properties and the fact that
−F(p, ·) is positively homogeneous, we show a way to express Gỹ.

Recall that for proper, convex functions f1, . . . , fn : Rm → R∪ {∞}, the convex hull of
{f1, . . . , fn} is the greatest convex function f such that f(x) ≤ f1(x), . . . , fn(x) for every
x ∈ Rm. To write down explicitly what the convex hull is, we use the following theorem.

83

Theorem C.5 ([Roc70, page 37]) Let f1, . . . , fn : Rm → R∪ {∞} be proper, convex functions.
Then we have

conv {f1, . . . , fn} (d) = inf

{
n∑
i=1

λifi(xi) :
n∑
i=1

λixi = d

}
.

For a positively homogeneous function f , we have λ f
(
λ−1x

)
= f(x), for λ > 0.

Therefore, we have the following corollary.

Corollary C.6 Let f1, . . . , fn : Rm → R ∪ {∞} be positively homogeneous, proper, convex
functions. Then we have

conv {f1, . . . , fn} = f1�f2� · · ·�fn.

Therefore, we can write Alice’s cheating probability using concave hulls as shown
below

Gỹ(c) = max

1

2

∑
a∈{0,1}

F(s(a,ỹ), βa,ỹαa) :
∑

a∈{0,1}

s(a,ỹ) = c, s(a,ỹ) ≥ 0, ∀a ∈ {0, 1}

= −min

−1

2

∑
a∈{0,1}

F(s(a,ỹ), βa,ỹαa) :
∑

a∈{0,1}

s(a,ỹ) = c, s(a,ỹ) ≥ 0, ∀a ∈ {0, 1}

= −

(
−1

2
F(·, β0,ỹα0)

)
�

(
−1

2
F(·, β1,ỹα1)

)
(c)

= −conv

{
−1

2
β0,ỹF(·, α0),

−1

2
β1,ỹF(·, α1)

}
(c)

= conc

{
1

2
β0,ỹF(·, α0),

1

2
β1,ỹF(·, α1)

}
(c).

Thus, for each c ∈ ProbA, we can write Alice’s cheating probability as

∑
y∈B

conc

{
1

2
β0,yF(·, α0),

1

2
β1,yF(·, α1)

}
(c).

Note this way of optimizing the last message works for any strategy. For a general strat-
egy, we would have a different c for every y1, . . . , yn−1.

Thus, we have Alice’s improved eigenstrategy which is when Alice chooses her first n
messages according to her eigenstrategy, yet reveals a optimally.

84

Cheating Alice in six-round protocols

In six-round protocols, Alice’s goal is to maximize the objective function

1

2

∑
a∈{0,1}

∑
y1∈B1

∑
y2∈B2

βa,y1y2F(s(a,y1y2), αa)

over (s1, s2, s) satisfying:

TrA1(s1) = 1,
TrA2(s2) = s1 ⊗ eB1 ,
TrA′0(s) = s2 ⊗ eB2 ,

s1 ∈ RA1
+ ,

s2 ∈ RA1×B1×A2
+ ,

s ∈ RA1×A2×B1×B2×A′0
+ .

We suppose that Alice chooses her commitment a based on the most likely choice of b
after seeing y1 from Bob’s first message. Let f ′(y1) = arg maxa∈A′0 {[TrB2(βa)]y1} and 0

in the case of a tie. The last constraint can be written as
∑

a∈A′0
s(a,y1y2) = s

(y1)
2 , for all

y1 ∈ B1, where s(y1)
2 is the projection of s2 with the index y1 fixed. We set s(a,y1,y2) = s

(y1)
2 ,

if a = f ′(y1), and 0 otherwise. Now we set s(y1)
2 = s0

2, if f ′(y1) = 0, and s
(y1)
2 = s1

2, if
f ′(y1) = 1, where we optimize s0

2, s
1
2 ∈ RA1×A2

+ . The new objective function can be written
as

1

2

∑
a∈A′0

∑
y1∈B1,y2∈B2

βa,y1y2F(s(a,y1y2), αa) =
1

2

∑
y1∈B1

 ∑
y2∈B2

βf ′(y1),y1y2

F(s
f ′(y1)
2 , αf ′(y1))

=
1

2
η′ F(s0

2, α0) +
1

2
τ ′ F(s1

2, α1).

Since the only constraints remaining are TrA2(s0
2) = s1 = TrA2(s1

2), we now optimize over
each choice of s0

2 and s1
2 separately using the following lemma.

Lemma C.7 For α ∈ RA1×A2
+ and c ∈ RA1

+ , we have

max {F(p, α) : TrA2(p) = c, p ≥ 0} ≥ F(c,TrA2(α)).

The inequality can be shown to hold with equality by Uhlmann’s theorem. However, we
prove the inequality by exhibiting a feasible solution which is also useful for the analysis
of cheating Bob.

85

Proof: For each x1 ∈ A1, x2 ∈ A2, define px1,x2 as

px1,x2 :=

cx1

αx1,x2
[TrA2

(α)]x1
if [TrA2(α)]x1 > 0,

cx1
1
|A2| if [TrA2(α)]x1 = 0.

Then we have p ≥ 0 is feasible since [TrA2(p)]x1 = cx1 and it has objective function value
F(p, α) = F(c,TrA2(α)), as desired. �

Using the lemma, we can write the problem as

max
c∈ProbA1

η′ F(c,TrA2(α0)) + τ ′ F(c,TrA2(α1))

which has optimal value 1
2λmax

(
η′
√

TrA2(α0)
√

TrA2(α0)
T

+ τ ′
√

TrA2(α1)
√

TrA2(α1)
T
)

and is lower bounded by
(

1
2 + 1

2

√
F(TrA2(α0),TrA2(α1))

) (
1
2 + 1

2∆(TrB2(β0),TrB2(β1))
)
.

Again, this last quantity has context. This is the strategy where Alice measures the first
message to learn b early and then tries to change the value of a. She can learn b with
probability 1

2 + 1
2∆(TrB2(β0),TrB2(β1)). She can successfully change the value of a with

probability 1
2 + 1

2

√
F(TrA2(α0),TrA2(α1)). Thus, she can cheat with probability at least(

1

2
+

1

2

√
F(TrA2(α0),TrA2(α1))

)(
1

2
+

1

2
∆(TrB2(β0),TrB2(β1))

)
.

Cheating Bob

Bob’s returning strategy is to send Alice’s messages right back to her (if the dimen-
sions agree). This way, the state that Alice checks at the end of the protocol is her own
state. This is a good strategy when Alice and Bob share the same starting states, i.e., for
a protocol with parameters α0 = β0 and α1 = β1. To calculate the cheating probability of
this strategy, for any choice of parameters, it is easier to use the original cheating SDP as
opposed to the reduced cheating SDP. This cheating strategy corresponds to the feasible
solution

ρ̄1 = ρ̄2 = · · · = ρ̄n = ρ̄F = ψψ∗

which has success probability given by the objective function value

〈ρ̄F ,ΠA,0〉 = 〈ψψ∗,ΠA,0〉 =
1

2

∑
a∈{0,1}

F(αa, βa).

This is clearly optimal when α0 = β0 and α1 = β1.

86

Recall Bob’s reduced problem below

P ∗B,0 = max

1

2

∑
a∈{0,1}

F
(
(αa ⊗ IB)Tpn, βa

)
: (p1, . . . , pn) ∈ PB

 .

There is a strategy for Bob that works for any n and is very important in the search algo-
rithm. This is the strategy where Bob ignores all of Alice’s messages and tries to choose b
after learning a from Alice. By ignoring Alice’s messages, he effectively sets pn = eA ⊗ d,
for some d ∈ ProbB , which we optimize. Under this restriction, he can cheat with proba-
bility

max
d∈ProbB

1

2

∑
a∈{0,1}

F
(
(αa ⊗ IB)T(eA ⊗ d), βa

)
= max

d∈ProbB

1

2

∑
a∈{0,1}

F (d, βa)

=
1

2
λmax

(√
β0

√
β0

T
+
√
β1

√
β1

T
)

=
1

2
+

1

2

√
F(β0, β1)

using Lemma C.1 and Lemma C.3. Note this is similar to the three-round case (discussed
in Subsection 3.2). The reason this strategy is important is that it is easy to compute, only
depends on half of the parameters, and is effective in pruning sub-optimal protocols. We
call this Bob’s ignoring strategy.

Another strategy for Bob is to measure Alice’s first message, choose b accordingly, then
play honestly. This is called Bob’s measuring strategy and succeeds with probability

1

2
+

1

2
∆(TrA2×···×An (α0) ,TrA2×···×An (α1)),

when n ≥ 2.

Cheating Bob in four-round protocols

There are cheating strategies that apply to four-round protocols, that do not extend to
a larger number of rounds. For example, Bob has all of Alice’s CA space before he sends
any messages. We show that Bob can use this to his advantage. One example is Bob’s
measuring strategy, which leads to a cheating probability of

1

2
+

1

2
∆(α0, α1) .

Similar to cheating Alice, we can develop an eigenstrategy for Bob. For the special case
of four-round protocols, notice that Bob’s cheating polytope contains only the constraints

87

TrB(p) = eA and p ∈ RA×B+ . This can be rewritten as px ∈ ProbB for all x ∈ A. Also,

F
(
(αa ⊗ IB)Tpn, βa

)
can be written as F

(∑
x∈A αa,xp

(x)
n , βa

)
, where p(x)

n is the projection
of pn with x fixed. Thus, we can simplify Bob’s reduced problem as

P ∗B,0 = max

1

2

∑
a∈{0,1}

F

(∑
x∈A

αa,xp
(x)
n , βa

)
: p(x)

n ∈ ProbB, for all x ∈ A

 .

Since fidelity is concave, we have that F
(∑

x∈A αa,xp
(x)
n , βa

)
≥
∑

x∈A αa,x F(p
(x)
n , βa). There-

fore Bob’s optimal cheating probability is bounded below by

max

1

2

∑
x∈A

∑
a∈{0,1}

αa,x F(p(x)
n , βa) : p(x)

n ∈ ProbB, for all x ∈ A

which separates over x ∈ A. That is, we choose each p(x)

n ∈ ProbB separately to maximize∑
a∈{0,1}

αa,x F(p(x)
n , βa), which has optimal objective value λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa

T

using Lemma C.1. Thus, we know that

P ∗B,0 ≥
1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa

T

 .

Since we use the concavity of the objective function, the bound we get may not be tight.
Notice that solving the smaller separated problems yields a solution which is feasible for
the original problem. Therefore, we can substitute this into the original objective function
to get a better lower bound on Bob’s optimal cheating probability. We call this Bob’s
eigenstrategy.

Since eigenvalues are expensive to compute, we can bound this quantity by

1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa

T

 ≥ min
β0,β1∈ProbB

1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa

T

=

1

2

∑
x∈A

max
a∈{0,1}

{αa,x}

=
1

2
+

1

2
∆(α0, α1) ,

where the last equality follows from Lemma C.2.

88

Since λmax(X + Y) ≤ λmax(X) + λmax(Y) for all matrices X and Y , we have that

1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa

T

 ≥ 1

2
λmax

∑
x∈A

∑
a∈{0,1}

αa,x
√
βa
√
βa

T

=

1

2
λmax

 ∑
a∈{0,1}

√
βa
√
βa

T

=

1

2
+

1

2

√
F(β0, β1) .

Therefore, Bob’s eigenstrategy performs better than both his measuring strategy and ig-
noring strategy.

Cheating Bob in six-round protocols

In six-round protocols, Bob’s goal is to maximize the objective function

1

2

∑
a∈{0,1}

F((αa ⊗ IB1×B2)Tp2, βa)

over (p1, p2) satisfying:

TrB1(p1) = eA1 ,
TrB2(p2) = p1 ⊗ eA2 ,

p1 ∈ RA1×B1
+ ,

p2 ∈ RA1×B1×A2×B2
+ .

Like in four-round protocols, we can lower bound the objective function as

1

2

∑
a∈A′0

F

(∑
x∈A

αa,xp
(x)
2 , βa

)
≥ 1

2

∑
x∈A

∑
a∈A′0

F(p
(x)
2 , αa,xβa)

and focus our attention on optimizing the function
∑
a∈A′0

F(p
(x)
2 , αa,xβa). We use the fol-

lowing lemma.

Lemma C.8 For β0, β1 ∈ RB1×B2
+ and c ∈ RB1

+ , we have

max

 ∑
a∈{0,1}

F(p, βa) : TrB2(p) = c, p ≥ 0

 ≥ F(c,TrB2(βã)),

for any ã ∈ {0, 1}.

89

Proof: Fix any ã and choose p ∈ arg max {F(p, βã) : TrB2(p) = c, p ≥ 0}. Since the fidelity
is nonnegative, the result follows by Lemma C.7. �

By setting p1 = c ⊗ eA1 , we have the constraint TrB2(p(x)) = c for all x ∈ A. We now
apply Lemma C.8 to get

max
p
(x)
2

∑
a∈A′0

F(p
(x)
2 , αa,xβa)

 ≥ αg(x),x F(c,TrB2(βg(x))),

where g(x) := arg maxa∈A′0 {αa,x}, and 0 in the case of a tie.
Substituting this into the relaxed objective function above, we have

max
c∈ProbB1

κ

2
F(c,TrB2(β0)) +

ζ

2
F(c,TrB2(β1))

=
1

2
λmax

(
κ
√

TrB2(β0)
√

TrB2(β0)
T

+ ζ
√

TrB2(β1)
√

TrB2(β1)
T
)

(19)

≥
(

1

2
+

1

2
∆(α0, α1)

)(
1

2
+

1

2

√
F(TrB2(β0),TrB2(β1))

)
. (20)

The quantity (20) corresponds to the strategy where Bob measures Alice’s second message
to try to learn a early, then tries to change the value of b. He can learn a after Alice’s second
message with probability 1

2 + 1
2∆(α0, α1). He can change the value of b with probability

1
2 + 1

2

√
F(TrB2(β0),TrB2(β1)). Thus, he can cheat with probability at least(

1

2
+

1

2

√
F(TrB2(β0),TrB2(β1))

)(
1

2
+

1

2
∆(α0, α1)

)
.

We call this Bob’s three-round strategy.
Although we used many bounds in developing the quantity (12), such as concavity

and the lower bound in Lemma C.8, we can recover some of the losses by generating its
corresponding feasible solution and computing its objective function value for the orig-
inal objective function. For example, we can calculate c as the entry-wise square of the
normalized principal eigenvector of

1

2
λmax

(
κ
√

TrB2(β0)
√

TrB2(β0)
T

+ ζ
√

TrB2(β1)
√

TrB2(β1)
T
)
,

then calculate p(x)
2 for each value of x from the construction of the feasible solution in the

proof of Lemma C.7. We call this Bob’s eigenstrategy.

90

	Introduction
	Quantum coin-flipping
	Search for explicit protocols
	The results

	Background and notation
	Linear algebra
	Convex analysis
	Quantum information
	Semidefinite programming
	Second-order cone programming

	Coin-flipping protocols
	Strong coin-flipping
	An example protocol
	A family of protocols

	Cheating strategies as optimization problems
	Characterization by semidefinite programs
	SOCP formulations for the reduced problems
	Numerical performance of SDP formulation vs. SOCP formulation

	Protocol filter
	Protocol symmetry
	Index symmetry
	Symmetry between probability distributions
	The use of symmetry in the search algorithm

	Search algorithm
	Numerical results
	Four-round search
	Six-round search
	Random offset
	Computer aided bounds on bias
	New bounds for four-round qubit protocols
	Zoning-in on near-optimal protocols

	Conclusions
	SDP characterization of cheating strategies
	Derivations of the reduced cheating strategies
	Developing the strategies in the filter

