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Abstract

We show how two recently developed quantum information theoretic tools can be applied to obtain
lower bounds on quantum information complexity. We also develop new tools with potential for broader
applicability, and use them to establish a lower bound on the quantum information complexity for the
Augmented Index function on an easy distribution. This approach allows us to handle superpositions
rather than distributions over inputs, the main technical challenge faced previously. By providing a
quantum generalization of the argument of Jain and Nayak [IEEE TIT’14], we leverage this to obtain a
lower bound on the space complexity of multi-pass, unidirectional quantum streaming algorithms for the
DYCK(2) language.
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1 Introduction

The first bona fide quantum computers that are built are likely to involve a few hundred qubits, and be lim-
ited to short computations. This prompted much research into the capabilities of space bounded quantum
computation, especially of quantum finite automata, during the early development of the theory of quan-
tum computation (see, e.g., Refs. [MC00, KW97, AF98, ANTV02]). More recently, this has led to the
investigation of quantum streaming algorithms [LG06, GKK™08, BKCG14].

Streaming algorithms were originally proposed as a means to process massive real-world data that cannot
be stored in their entirety in computer memory [Mut05]. Instead of random access to the input data, these
algorithms receive the input in the form of a stream, i.e., one input symbol at a time. The algorithms attempt
to solve some information processing task using as little space and time as possible, on occasion using more
than one sequential pass over the input stream.

Streaming algorithms provide a natural framework for studying simple, small-space quantum computa-
tion beyond the scope of quantum finite automata. Some of the works mentioned above (e.g., LeGall [LG06])
show how quantum streaming algorithms can accomplish certain specially crafted tasks with exponentially
smaller space, as compared with classical algorithms. This led Jain and Nayak [JN14] to ask how much more
efficient such quantum algorithms could be for other, more natural problems. They focused on DYCK(2),
a well-studied and important problem from formal language theory. DYCK(2) consists of all well-formed
expressions with two types of parenthesis, denoted below by a, @ and b, b, with the bar indicating a closing
parenthesis. More formally, DYCK(2) is the language over the alphabet ¥ = {a, a,b, 5} defined recursively
as

Dyck(2) = e+ (a-DyCK(2)-a+b-DyYCk(2)-b) Dyck(2) ,

where ¢ is the empty string, ‘-’ indicates concatenation of strings (or subsets thereof) and ‘4’ denotes set
union.

The related problem of recognizing whether a given expression with parentheses is well-formed was
originally studied by Magniez, Mathieu, and Nayak [MMN14] in the context of classical streaming algo-
rithms. They discovered a remarkable phenomenon, that providing bi-directional access to the input stream
leads to exponentially more space-efficient algorithm. They presented a streaming algorithm that makes
one pass over the input, uses O(y/nlogn ) bits, and makes polynomially small probability of error to de-
termine membership of expressions of length O(n) in DYCK(2). Moreover, they proved that this space
bound is optimal for error at most 1/(nlogn), and conjectured that a similar polynomial space bound holds
for multi-pass algorithms as well. Magniez ef al. complemented this with a second algorithm that makes
two passes in opposite directions over the input, uses only O(log2 n) space, and has polynomially small
probability of error. Later, two sets of authors [CCKM13, JN14] independently and concurrently proved the
conjectured hardness of DYCK(2) for multi-pass (unidirectional) streaming algorithms. They showed that
any unidirectional randomized T'-pass streaming algorithm that recognizes length n instances of DYCK(2)
with a constant probability of error uses space Q2(v/n/T).

The space lower bounds for DYCK(2) established in Refs. [MMN14, CCKM13, JN14] all rely on a
connection with a two-party communication problem, Augmented Index, a variant of the Index function in
two-party communication complexity. In the Index function problem, one party, Alice, is given a string x €
{0,1}", and the other party, Bob, is given an index k € [n], for some positive integer n. Their goal is to
communicate with each other and compute z, the kth bit of the string z. In the Augmented Index function
problem, Bob is given the prefix x[1, k — 1] (the first & — 1 bits of x) and a bit b in addition to the index k.
The goal of the two parties is to determine if x; = b or not. The three works cited above (see also [CK11])
all prove information cost trade-offs for Augmented Index. As a result, in any bounded-error protocol for



the function, either Alice reveals 2(n) information about her input z, or Bob reveals (1) information about
the index k (even under an easy distribution, the uniform distribution over zeros of the function).

Motivated by the abovementioned works, Jain and Nayak [JN14] studied quantum protocols for Aug-
mented Index. They defined a notion of quantum information cost for distributions with a limited form of
dependence, and then arrived at a similar tradeoff as in the classical case. This result, however, does not
imply a lower bound on the space required by quantum streaming algorithms for DYCK(2). The issue is that
the reduction from low information cost protocols for Augmented Index to small space streaming algorithms
breaks down in the quantum case (for the notion of quantum information cost they proposed). They left open
the possibility of more efficient unidirectional quantum streaming algorithms.

We establish the following lower bound on the space complexity of T-pass, unidirectional quantum
streaming algorithms for the DY CK(2) language, thus solving the question left open by Jain and Nayak [JN14].

Theorem 1 For anyT' > 1, any unidirectional T'-pass quantum streaming algorithm that recognizes length
n instances of DYCK(2) with a constant probability of error uses space Q(v/n/T?).

This shows that, possibly up to logarithmic terms and the dependence on the number of passes, quantum
streaming algorithms are no more efficient than classical ones for this problem. In particular, this provides
the first natural example for which classical bidirectional streaming algorithms perform exponentially better
than unidirectional quantum streaming algorithms.

Theorem 1 is a consequence of a lower bound, holding for any quantum protocol II computing the
Augmented Index function, on the quantum information cost evaluated on an easy distribution pg: the
uniform distribution over the zeros of the function. Due to the asymmetry of the Augmented Index function,
we distinguish between the amount of information Alice transmits to Bob, denoted QIC,_,g(IL, 110) and
the amount of information Bob transmits to Alice, denoted QICg_, o (II, 10); formal definitions for these
notions are stated in Section 2.3. Our key technical contributions go into showing the following trade-off.

Theorem 2 In any t-round quantum protocol 11 computing the Augmented Index function f, with constant
error ¢ € [0,1/4) on any input, either QIC s _,5(I1, pg) € Q(n/t?) or QICy_, A (11, 110) € Q(1/t2).

A more precise statement is presented as Theorem 5. Establishing a lower bound on the quantum information
cost for such an easy distribution is necessary; the direct sum argument that allows us to link quantum
streaming algorithms to quantum protocols for Augmented Index crucially hinges on this.

Since the notion of quantum information cost that we use is a lower bound on quantum communication,
this provides the first lower bounds on the communication complexity of quantum protocols for Augmented
Index. The fact that Alice and Bob share part of the input for this function makes lower bound proofs more
difficult in general. In terms of information lower bound, the work of Jain, Radhakrishnan and Sen [JRS09]
can be understood as providing a lower bound on the quantum information cost of any bidirectional protocol
that computes the Index function. However, the information is measured with respect to a hard distribution
and their techniques do not seem to apply to the analysis of quantum information cost with respect to easy
distributions.

In order to obtain the above quantum information cost trade-off for Augmented Index, we develop new
tools for quantum communication complexity that we believe have broader applicability.

One tool is a generalization of the well-known average encoding theorem of (classical and) quantum
complexity theory, which formalizes the intuition that weakly correlated systems are nearly independent.
We call this generalized version the superposition-average encoding theorem, as it allows us to deal with
arbitrary superpositions rather than only classical distributions over inputs to quantum communication pro-
tocols. A key technical ingredient in the proof of this result is the breakthrough result by Fawzi and Ren-



ner [FR15], linking the conditional quantum mutual information to the optimal recovery map acting on the
conditioning system.

The analysis of superpositions over inputs was the main bottleneck faced by previous attempts at obtain-
ing strong lower bounds on the quantum information cost of protocols for Augmented Index. In particular,
Jain and Nayak [JN14] considered a different notion of quantum information cost for which they derive a
trade-off similar to that in Theorem 2. While their definition is tailored to deal with superpositions over
classical inputs, they sacrifice two properties which are crucial in the notion of quantum information cost
we use: that it is a lower bound on quantum communication, and that it satisfies a direct sum property. These
two properties are essential for linking quantum streaming algorithms for DYCK(2) and quantum protocols
for Augmented Index. Showing how to maintain these properties while also maintaining near-independence
of superpositions over inputs in low information protocols is perhaps our most important technical contribu-
tion. We believe that our approach with the use of the superposition-average encoding theorem is of broader
applicability.

We go a step further; we provide an alternative way to achieve a similar result, by using a method which
is more tailored to the Augmented Index problem. An important stepping stone in this approach is the
recently developed Information Flow Lemma due to Lauriére and Touchette [LT16]. This approach allows
us to obtain a slightly better round-dependence in the information cost trade-off.

Another key ingredient in the proof of Theorem 2 is a Quantum Cut-and-Paste Lemma, a variant of
a technique used in Refs. [JRS03, JN14], that allows us to deal with easy distributions over inputs. The
cut-and-paste lemma for randomized communication protocols connects the distance between transcripts
obtained by running protocols on inputs chosen from a two-by-two rectangle {z, 2’} x {y, y'}. The cut-and-
paste lemma is very powerful, and a direct quantum analogue does not hold. We can nevertheless obtain the
following weaker variant, linking any four possible pairs of inputs in a two-by-two rectangle: if the states
for a fixed input y to Bob are close up to a local unitary operator on Alice’s side and the states for a fixed
input x to Alice are close up to a local unitary operator on Bob’s side, then, up to local unitary operators on
Alice’s and Bob’s sides, the states for all pairs (z”,y") of inputs in the rectangle {x, 2’} x {y,y’} are close
to each other. This lemma allows us to link output states of protocols on inputs from an easy distribution,
all mapping to the same output value, to an output state corresponding to a different output value. This
helps derive a contradiction to the assumption of low quantum information cost, as states corresponding to
different outputs are distinguishable with constant probability.

2 Preliminaries

2.1 Quantum Communication Complexity

We refer the reader to text books such as [Wat15, Will3] for standard concepts and the associated notation
from quantum information.

We use the following notation for interactive communication between two parties, called Alice and
Bob by convention. An M -message protocol IT for a task with input registers A;, By, and output registers
Aout Bout 1s defined by a sequence of isometries Uy, ..., Ups4+1 along with a pure state ¢ € D(TATB)
shared between Alice and Bob, for some arbitrary but finite dimensional registers TATB. We refer to v
as the pre-shared entanglement. We have M + 1 isometries in an M -message protocol, as one isometry is
applied before each message, and a final isometry is applied after the last message is received. We assume
that Alice sends the first message. In the case of even M, the registers A1 A3 - - - Ap;_1 A’ are held by Alice,
the registers BoBy - - - Byy_o B’ are held by Bob, and the registers C1C5Cy - - - Cyy represent the quantum



messages exchanged by Alice and Bob. The M -+ 1 isometries act on these registers as indicated below (also
see Figure 1):

ApnTA— A C BinTBC1—B>C:! A1C3—A3C: B>C3—B4C.
U]_ 1 1’ lj’2 1 2 27 U31 2 3 37 U42 3 4 47
Burr—2Cr—1—Bouws B'Cyr Ap—1Cp—Aout A
- UM , UMJrl . 2.1)

We adopt the convention that, at the outset, Ag = A TA, By = B TB; forodd i with 1 < i < M,
B; = B;_1;foreveniwith 1 < i < M, A; = A;_1;also By = Byji1 = BowtB',and App1 = Agut A’
In this way, after the application of U;, Alice holds register A;, Bob holds register B; and the communication
register is C;. In the case of an odd number of messages M, the registers corresponding to Uy, Ups41 are
changed appropriately. We slightly abuse notation and also write IT to denote the channel from A;, Bi, to
Aout Bout implemented by the protocol. That is, for any p € D(Aiy Bin),

H(p) = TI'A/B/ [UM+1UM te U2U1(p ® w)} . (22)

The registers A’ and B’ that are discarded by Alice and Bob, respectively, are two of the registers at the end
of the protocol.

We restrict our attention to protocols with classical inputs XY, with A;, B;, initialized to XY, and to
so-called “safe protocols”. Safe protocols only use A;, Bi, as control registers. As explained in Section 2.3,
this does not affect the results presented in this article.

We imagine that the joint classical input XY is purified by a register R. We often partition the purifying
register as R = Rx Ry, indicating that the classical input XY, distributed as v, and represented by the
quantum state p,:

= > vy )N @y " (2.3)
x,y

is purified as

o) = > ulay) |wayy) R (2.4)
x’y

We also use other partitions more appropriate for our purposes, corresponding to particular preparations of
the inputs X and Y.
We define the quantum communication cost of 1I from Alice to Bob as

QCCx_p(I) Z log |C2i11] , (2.5)

0<i<(M—1)/2

and the quantum communication cost of II from Bob to Alice as

QCCp_A(I) = > log|Cyl, (2.6)
1<i<M/2

where for a register D, the notation |D| stands for the dimension of the state space associated with the
register. The total communication cost of the protocol is then the sum of these two quantities.
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Figure 1: Depiction of an interactive quantum protocol, adapted from Ref. [Toul4, Figure 1], the full version
of Ref. [Toul5].



2.2 Information Theory
2.2.1 Distance Measures

In order to distinguish between quantum states, we use two related distance measures: trace distance and
Bures distance.

Trace Distance. The trace distance between two states p* and o on the same register is denoted as
|pA — o4y , where

|04y = T ((O*Oﬁ) 2.7)

is the trace norm for operators on system A. We sometimes omit the superscript if the system is clear from
context. In operational terms, the trace distance between the two states p” and o4 is four times the best
possible bias with which we can distinguish between the two states, given a single unknown copy of one of
the two.

We use the following properties of trace distance. First, it is a metric, so it is symmetric in p, o, non-
negative, evaluates to 0 if and only if p = o, and it satisfies the triangle inequality. Moreover, it is monotone
under the action of channels: for any py, p» € D(A) and channel N4~ from system A to system B,

IN(p1) =N(p2)ll1 < lpr = p2llr - (2.8)

For isometries, the inequality is tight, a property called isometric invariance of the trace distance. Hence,
for any p1, p» € D(A) and any isometry U475, we have

[U(p1) =Ulp2)llr = llpr—p2l1 - 2.9)
Trace distance obeys a joint linearity property: for a classical system X and two states p{( 4= > . px(x)-

) (z|* @ pfl, and p5 A = 30, px(2) - |2)(2* ® i,

lor=p2li = D px(@) llpre — p2all - (2.10)
xr

Bures Distance. Bures distance b is a fidelity based distance measure, defined for p, o € D(A) as

h(p,0) = 1-F(p,o), 2.11)

where fidelity F is defined as F(p, o) := ||\/p/0 1.

We use the following properties of Bures distance. First, it is a metric, so it is symmetric in p, o; non-
negative; evaluates to 0 if and only if p = o; and it satisfies the triangle inequality. Moreover, it is monotone
under the action of a channel: for any p1, p2 € D(A) and quantum channel A A—B,

BN (1), N(p2)) < blp1,p2) - (2.12)

For isometries, the inequality is tight, a property called isometric invariance of the Bures distance.
It is sometimes convenient to work with the square of the Bures distance. In particular, the square obeys

a joint linearity property: for a classical system X and two states pi4 = 3 px () - [2)(z|* pfz and
X
pa = px (@) - |2){al” @ phly.
B2 (p1p2) = D px(@) b (praspax) - (2.13)
T



It also satisfies a weaker version of the triangle inequality: for any p;, p2 and o € D(A),
b2(pr.p2) < 20%(p1,0) +20%(0,p2) (2.14)

Local Transition Lemma. The following lemma, a direct consequence of the Uhlmann theorem, is called
the local transition lemma [KNTZ07], especially when expressed in terms of other metrics.

Lemma 1 Let py, py € D(A) have purifications pif, p™2, with |Ry| < |Ra|. Then, there exists an

isometry VL= R2 sych that

h(pipd) = b(V(pf‘Rl)mg‘Rz)- (2.15)

Bures distance is related to trace distance through a generalization of the Fuchs-van de Graaf inequali-
ties [FvdG99]: for any pi, p2 € D(A) , it holds that

1
h%(p1,p2) < 5”01—,02\\1 < V2h(p1,p2) - (2.16)

2.2.2 Information Measures

In order to quantify the information content of a quantum state, we use a basic measure, von Neumann
entropy, defined as

H(A), = —Tr(plogp)

for any state p € D(A). Here, we follow the convention that 0log 0 = 0, which is justified by a continuity
argument. The logarithm is in base 2. Note that H is invariant under isometries applied on p. If the state
in question is clear from the context, we may omit the subscript. We also note that if system A is classical,
then von Neumann entropy reduces to Shannon entropy.

For a state p2¢ € D(ABC), the mutual information between registers A, B is defined as

I(A:B), = H(A)+H(B)-H(A4B) ,
and the conditional mutual information between them, given C, as
I(A:B|C), := 1(A:BC)-1(A:C) .

If X is a classical system, I(X : B) is also called the Holevo information.

Mutual information and conditional mutual information are symmetric in A, B, and invariant under a
local isometry applied to A, B or C'. Since all purifications of a state are equivalent up to an isometry on the
purification registers, we have that for any two pure states |¢)"? CR and 1) ABER guch that pABC = ABC,

I(C:R'|B)y = I(C:R|B)y . (2.17)
For any state p € D(ABC'), we have the bounds

0 < H(A)
0 < I(A:B|C)

log|4]| , (2.18)

<
< 2H(A4) . (2.19)



For a multipartite quantum system ABC'D, conditional mutual information satisfies a chain rule: for any
p € D(ABCD),

I(AB:C|D) = I(A:C|D)+I(B:C|AD) . (2.20)

For any product state p1 514252 .— p‘l“lBl ® p’;?B?, entropy is additive across the bi-partition, so that, for
example,

H(A145) = H(A)+H(Ay) | (2.21)

and the conditional mutual information between product systems vanishes:
I[(A1: A2 |B1B2) = 0. (2.22)

Two important properties of the conditional mutual information are non-negativity and the data processing
inequality, both equivalent to a deep result in quantum information theory known as strong subadditiv-
ity [LR73). For any state p € D(ABC), channel N5~5', and state o := N (p), we have

I(A:B|C), > 0, (2.23)
I(A:B|C), > I(A:B'|C), . (2.24)
For classical systems, conditioning is equivalent to taking an average: for any pABCX .= > Dx(x) -

|z) (z|X @ pABC with a classical system X and some appropriate p, € D(ABC),

T

I(A:B|CX), = Y px(x)-1I(A:B[C),, . (2.25)

Average Encoding Theorem. The following lemma, known as the Average Encoding Theorem [KNTZ07],
formalizes the intuition that if a classical and a quantum registers are weakly correlated, then they are nearly
independent.

Lemma 2 Forany pX4 =3 px(z) - |z) (z|X @ p2 with a classical system X and states p, € D(A),

pr(x) - h? (pf, ,oA) < I(X:4), . (2.26)

Fawzi-Renner inequality. We use the following breakthrough result by Fawzi and Renner [FR15]. It
provides a lower bound on the quantum conditional mutual information in terms of the fidelity for the
optimal recovery map.

Lemma 3 For any tripartite quantum state p*C, there exists a recovery map RA74C from register A to
registers AC satisfying
I(C:R|A) > —2-logy F(p*“" R(p*T)) . (2.27)
In particular, it follows that
I(C:R|A) > B2(p*“H R(p*)) . (2.28)



2.3 Quantum Information Complexity

We rely on the notion of quantum information cost of a two-party communication protocol introduced by
Touchette [Toul5]. We follow the notation associated with a two-party quantum communication protocol
introduced in Section 2.1, and restrict ourselves to protocols with classical inputs XY distributed as v.
Quantum information cost is defined in terms of the purifying register R, but is independent of the
choice of purification. Given the asymmetric nature of the Augmented Index function, we consider the
quantum information cost of messages from Alice to Bob and the ones from Bob to Alice separately. Such
an asymmetric notion of quantum information cost was previously considered in Refs. [KLGR16, LT16].

Definition 1 Given a quantum protocol 11 with classical inputs distributed as v, the quantum information
cost (of the messages) from Alice to Bob is defined as

QIC, p(Ly) = > I(R:Ci|By) , (2.29)
i odd

and the quantum information cost (of the messages) from Bob to Alice is defined as

QICp (ML) = Y I(R:Ci|A) . (2.30)

i even

It is immediate that quantum information cost is bounded above by quantum communication.

Remark 1 For any quantum protocol 11 with classical inputs distributed as v, the following holds:

QIC,_5(ILv) < 2QCC,5() , 2.31)

As a result, we may bound quantum communication complexity of a protocol from below by analysing its
information cost.

We further restrict ourselves to “safe protocols”, in which the registers Aj,, B;, are only used as control
registers in the local isometries. This restriction does not affect the results in this article, for the following
reason. Let IT be any protocol with classical inputs distributed as v, in which the two parties may apply
arbitrary isometries to their quantum registers. In particular, these registers include Aj,, B;, which are
initialized to the input. Let IT' be the protocol with the same registers as II and two additional quantum
registers A{ , B! of the same sizes as Ain, Bin, respectively. In the protocol IT', the two parties each make

m’
a coherent local copy of their inputs into A , B! , respectively, at the outset. The registers A! , B! are

n’ 1’
never touched hereafter, and the two parties simulate the original protocol II on the remaining registers.
Lauriere and Touchette [LT16] show that the quantum information cost of II is at least as much as that of

the protocol IT':

QICAHB (H,, V) QICAaB (Ha V) ) and
QICE_ A (H,a V) QICE 4 (Ha V) .

Thus, the quantum information cost trade-off we show for safe protocols holds for arbitrary protocols as
well.

We use another result due to Lauriere and Touchette [LT16]. The result states that the total gain in
(conditional) information by a party over all the messages is precisely the net (conditional) information gain
in the protocol. It allows us to keep track of the flow of information during interactive quantum protocols.
For completeness, a proof is provided in Appendix B.

<
<



Lemma 4 (Information Flow Lemma) Given a protocol 11, an input state p with purifying register R with
arbitrary decompositions R = RaAR{}R? = RBRPRB, the following hold:

> I(RP:Coip1 | RYBoit1) — > I(RE:Cyi| RY By)

>0 >1
= I(RE:B,wB'|RP) —I(RE:Bi,|RY) , and

Y IR :Coiga | R Aiva) = > 1Ry : Coiyr | Ry Azi)
i>0 i>0

= I(R}:AguA'| R} —I(RY: Ain | RY) .

2.4 Quantum Streaming Algorithms

We refer the reader to the text [MutO5] for an introduction to classical streaming algorithms. Quantum
streaming algorithms are similarly defined, with restricted access to the input, and with limited workspace.

In more detail, an input x € X", where X is some alphabet, arrives as a data stream, i.e., letter by
letter in the order x1,x2,...,x,. An algorithm is said to make a pass on the input, when it reads the
data stream once in this order, processing it as described next. For an integer 7' > 1, a T-pass (unidirec-
tional) quantum streaming algorithm A with space s(n) and time ¢(n) is a collection of quantum chan-
nels {A;, : i € [T],0 € ¥}. Each operator .4;, is a channel defined on a register of s(n)-qubits, and can be
implemented by a uniform family of circuits of size at most ¢(n). On input stream z € 3",

1. The algorithm starts with a register W of s(n) qubits, all initialized to a fixed state, say |0).
2. A performs T sequential passes, i = 1,...,7, on x in the order x1, 2, . .., Tp.
3. In the ith pass, when symbol o is read, channel A;, is applied to W.

4. The output of the algorithm is the state in a designated sub-register Wy, of W, at the end of the T'
passes.

We may allow for some pre-processing before the input is read, and some post-processing at the end of the T’
passes, each with time complexity different from ¢(n). As our work applies to streaming algorithms with
any time complexity, we do not consider this refinement.

The probability of correctness of a streaming algorithm is defined in the standard way. If we wish to
compute a family of Boolean functions g,, : 3™ — {0, 1}, the output register W consists of a single qubit.
On input z, let A(z) denote the random variable corresponding to the outcome when the output register is
measured in the standard basis. We say A computes g,, with (worst-case) error ¢ € [0, 1/2] if for all x,
PrlA(z) = gn(z)] > 1 —e.

In general, the implementation of a quantum channel used by a streaming algorithm with unitary opera-
tions involves one-time use of ancillary qubits (initialized to a fixed, known quantum state, say |0)). These
ancillary qubits are in addition to the s(n)-qubit register that is maintained by the algorithm. Fresh qubits
may be an expensive resource in practice, for example, in NMR implementations, and one may argue that
they be included in the space complexity of the algorithm. The lack of ancillary qubits severely restricts the
kind of computations space-bounded algorithms can perform; see, for example, Ref. [ANTV02]. We choose
the definition above so as to present the results we derive in the strongest possible model. Thus, the results

10



also apply to implementations in which the “flying qubits” needed for implementing non-unitary quantum
channels are relatively easy to prepare.

In the same vein, we may provide a quantum streaming algorithm arbitrary read-only access to a se-
quence of random bits. In other words, we may also provide the algorithm with a register S of size at
most ¢(n) initialized to random bits from some distribution. Each quantum channel 4;, now operates on
registers ST, while using .S only as a control register. The bounds we prove hold in this model as well.

3 Reduction from Augmented Index to DYCK(2)

The connection between low-information protocols for Augmented Index and streaming algorithms for
DYCK(2) contains two steps. The first is a reduction from an intermediate multi-party communication
problem ASCENSION, and the second is the relationship of the latter with Augmented Index.

3.1 Reduction from ASCENSION to DYCK(2)

In this section, we describe the connection between multi-party quantum communication protocols for the
problem ASCENSION(m,n), and quantum streaming algorithms for DYCK(2). The reduction is an immedi-
ate generalization of the one in the classical case discovered by Magniez, Mathieu, and Nayak [MMN14],
which also works with appropriate modifications for multi-pass classical streaming algorithms [CCKM13,
JN14]. For the sake of completeness, we describe the reduction below.

Multi-party quantum communication protocols involving point-to-point communication may be defined
as in the two-party case. As it is straightforward, and detracts from the thrust of this section, we omit a
formal definition.

Let m, n be positive integers. The (2m)-party communication problem ASCENSION(m,n) consists of
computing the logical OR of m independent instances of f;,, the Augmented Index function. Suppose we
denote the 2m parties by A1, Ag, ..., A, and By, Bo, ..., B,,. Player A; is given zt e {0, 1}", player B; is
given k' € [n], a bit 2, and the prefix 2°[1,k* — 1] of 2°. Letx = (2!, 2%,...,2™), k = (K}, k2,... k™),

andz = (2!, 22,...,2™). The goal of the communication protocol is to compute

fo(z k2 = \/(xl[kl]ééz’),

i=1

Fon(x,k,z) =

-

I
—

(2

which is 0 if ¢ [k’] = 2* for all i, and 1 otherwise.
The communication between the 2m parties is required to be 1" sequential iterations of communication
in the following order, for some 1" > 1:

AfL B —-Ay—>By—---A, = B,
= A, A= Ay AL (3.1

In other words, fort =1,2,...,T,
— for i from 1 to m — 1, player A; sends register Cp, ; to B;, then B; sends register Cp, ; to A; 1,
— A, sends register Cp,, ¢ to By, then B,,, sends register Cp,, ¢ to Ay,

— for ¢ from m down to 2, A; sends register C'/A\i c10A; .

11



Al B2 Am A2 Al

Figure 2: An instance of the form described in (3.2), as depicted in [MMNI14, JN14]. A line segment with
positive slope denotes a string over {a, b}, and a segment with negative slope denotes a string over {E, B}.
A solid dot depicts a pair of the form Zz for some z € {a,b}. The entire string is distributed amongst 2m
players A1, By, A2, Ba, ..., Ay, By, in @ communication protocol for ASCENSION(m, n) as shown.

At the end of the T iterations, A; computes the output.

There is a bijection between instances of ASCENSION(m, n) and a subset of instances of DYCK(2) that
we describe next. For any string z = 21 --- 2, € {a,b}", let Z denote the matching string z, Z,—1 -+ 2z1
corresponding to z. Let z[i, j] denote the substrlng 2izig1 -2 if 1 <1 < j < n, and the empty string €
otherwise. We abbreviate z[i, 4] as z[i] if 1 < i < n. Consider strings of the form

w = (etytlztyl) (@?y2222292) - (aMym 2 M y™) 2 - g2 gl (3.2)
where for every i, 2° € {a,b}", and ¢’ is a suffix of 2, ie., y* = z'[n — k' + 2,n] for some k* €
{1,2,...,n}, and 2* € {a,b}. The string w is in DYCK(2) if and only if, for every i, 2* = 2'[n — k% + 1].
Note that these instances have length in the interval [2m(n + 1), 4mn].

The bijection between instances of ASCENSION (m n) and DYCK(2) arises from a partition of the
string w amongst the 2m players: player A; is given z° (and therefore z%), and player B; is given y’, z*
(and therefore Yy, 2'). See Figure 2 for a pictorial representation of the partition. For ease of notation, the
strings z" in ASCENSION(m, n) are taken to be the ones in DYCK(2) with the bits in reverse order. This
converts the suffixes 4’ into prefixes of the same length.
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As a consequence of the bijection above, any quantum streaming algorithm for DYCK(2) results in a
quantum protocol for ASCENSION(m, n), as stated in the following lemma.

Lemma 5 Foranye € [0,1/2], n,m € N, and for any e-error (unidirectional) T-pass quantum streaming
algorithm A for DYCK(2) that on instances of size N € ©(mn) uses s(N) qubits of memory, there exists an
e-error, T-round sequential (2m)-party quantum communication protocol for ASCENSION(m, n) in which
each message is of length s(N). The protocol may use public randomness, but does not use pre-shared
entanglement between any of the parties. Moreover, the local operations of the parties are memory-less, i.e.,
do not require access to the qubits used in generating the previous messages.

Proof. Any random sequence of bits used by the streaming algorithm is provided as shared randomness to
all the 2m parties in the communication protocol for ASCENSION(m, n). Each input for the communication
problem corresponds to an instance of DYCK(2), as described above. In each of the T iterations, a player
simulates the quantum streaming algorithm on appropriate part of the input for DYCK(2), and sends the
length s(N') workspace to the next player in the sequence. (If needed, non-unitary quantum operations may
be replaced with an isometry, as follows from the Stinespring Representation theorem [Wat15].) The output
of the protocol is the output of algorithm, and is contained in the register held by the final party A;. =

3.2 Reduction from Augmented Index to ASCENSION

Recall that ASCENSION(m, n) is composed of m instances of Augmented Index on n bits. Magniez, Math-
ieu, and Nayak [MMN14] showed how we may derive a low-information classical protocol for Augmented
Index f,, from one for ASCENSION(m, n) through a direct sum argument (see Refs. [CCKM13, JN14] for
the details of its working in the multi-pass case). This is not as straightforward to execute as it might first
appear; it entails deriving a sequence of protocols for Augmented Index in which the communication from
Alice to Bob corresponds to messages from different parties in the original multi-party protocol. We show
that the same kind of construction, suitably adapted to the notion of quantum information cost we use, also
works in the quantum case.

Let po be the uniform distribution on the O-inputs of the Augmented Index function f,. If X is a uni-
formly random n-bit string, K is a uniformly random index from [n] independent of X, and the random
variable B is set as B = X[, the joint distribution of X, K, X[1, K — 1], B is pg. We denote the random
variables K, X [1, K — 1], B given as input to Bob by Y. Since X = B under this distribution, we abbre-
viate Bob’s input as K, X[1, K|. Let p be the uniform distribution over all inputs. Under this distribution,
the bit B is uniformly random, independent of X K, while X K are as above.

Lemma 6 Suppose € € [0,1/2], n,m € N and that there is an e-error, T-round sequential quantum proto-
col Tl psc for ASCENSION(m, n), that is memory-less, does not have pre-shared entanglement between any
of the parties (but might use public randomness), and only has messages of length at most s (cf. Lemma 5).
Then, there exists an s-error, 21 -message, two-party quantum protocol 1l a1 for the Augmented Index func-
tion f, that satisfies

QIC, _.g(Iar, t0)
QICE_ A (ITar, 10)

2sT | (3.3)

<
< 2sT/m . (3.4)

Proof. Starting from the (2m)-party protocol IIxsc for ASCENSION(m,n), we construct a protocol II;
for f,, for each j € [m].
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Fix one such j. Suppose Alice and Bob get inputs x and y, respectively, where y := (k, z[1,k — 1], b).
They embed these into an instance of ASCENSION(m,n): they set ; = z, and y; = y. They sample
the inputs for the remaining m — 1 coordinates independently, according to po. Let X;Y;, with ¥V; =
(K, X;[1, K;]), be registers corresponding to inputs drawn from i in coordinate 7. Let R; be a purification
register for these, which we may decompose as RZX RZY, denoting the standard purification of the X;Y;
registers. Let S .Sp be registers initialized to ) _, /75 |ss), so as to simulate the public random string S ~ v
used in the protocol ITagc.

For each i # j, we give X; to Alice, and (K, X;[1, K;]) to Bob. For i > j, we give R; to Bob, and
fori < j, we give R; to Alice. Then Alice and Bob simulate the roles of the 2m parties (A;, B;);c|y in the
following way for each of the 7" rounds in [Ipgc. Fort =1,2,... 1"

1. Alice simulates Ay — By — Ay — --- — Aj, accessing the inputs for B;, for i« < j, in the
register I2;. We denote the ancillary register she uses to simulate A;’s local isometry by D;1, and for
all other ¢ < j, the ancillary registers she uses for B; and A;; together by Dy;.

2. Alice transmits the message from A; to B, to Bob.

3. Bob simulates B; — A1 — --- — By, accessing the input for A;, for i > j, in the register ;.
For all ¢ such that j <7 < m we denote the ancillary registers Bob uses for simulating B; and A;;;’s
local isometry together by Dy;, and the ancillary register he uses for B,;, by Dy,.

4. Bob transmits the message from B,,, to A,, to Alice.

5. Alice simulates A,;, — A1 — --- — Aj. We denote the ancillary registers Alice uses for simulat-
ing the local isometries of A, Ay—1, ..., A1 by Fj.

We let Ey denote a dummy register initialized to a fixed state, say |0).

Since the inputs for Augmented Index for 7 # j are distributed according to jig, the protocol II; com-
putes Augmented Index for the instance (z,y) with error at most €.

The quantum information cost from Alice to Bob QIC,_,(II;, A) is bounded by 2sT', for any distribu-
tion A over the inputs, as each of her 7" messages has at most s qubits.

The bound on quantum information cost from Bob to Alice arises from the following direct sum result.
Suppose that the inputs for the protocol II; for Augmented Index are drawn from the distribution zi9. Denote
these inputs by XY}, with Y; = (K, X;[1, K;]), and the corresponding purification register by R;. We
are interested in the quantum information cost QICy_, 5 (I, 10).

For t € [T, let C; denote the tth message from Bob to Alice in the protocol II;. At the time Alice
receives message Cy, her other registers are Xy - - X, Sa, R1 -+ Rj_1, (Ey—1Dy1Dyo - - - DTj)re[t]- Note
that the corresponding state p; at that point on registers

Xl c Xm SA (ErlerlDTZ t Drm)re[t] Rl te Rm Ct

is the same for all derived protocols II;, as all of them simulate IIosc on the same input distribution u?m,
using the above registers.
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We have

QICE_, 4 (11}, po)
= > IR;j:Cy| Xy XpnSa(Er—1Dy1Dy2 -+ Dyj)repg R+ Rjz1) p,

te(T)

< Y URi(Drj)rey : Co | X1+ XimSa(Er 1D Dyg -+ Dyjo1))rep R+ Rj1)p, -
te|T)

Using the chain rule, we get

> QICE 2 (115, o)

J€m]

< Z I(Rl T Rm(Dv'lDTZ T Drm)re[t] : Gy ‘ Xy--- XmSA(ET—l)T‘E[t])Pt .
te[T]

Since each summand in the expression above is bounded by 2 log |C| < 2s, we have that the sum is bounded
by 2sT'. It follows that there exists an index j* such that

QICE A (ILx, o) < 2sT/m (3.5)

as desired. As noted before, QIC_,g(I;+, 10) < 2sT'. This completes the reduction. m

4 QIC Lower Bound for Augmented Index

In this section, we develop the tools needed to analyze the quantum information cost of protocols for Aug-
mented Index, and then establish a lower bound for this cost.

Throughout this section, we deviate slightly from the notation for the registers used in the definition
of two-party protocols presented in Section 2.1; we adapt it for safe quantum protocols with classical in-
puts. We refer to the input registers Aj,, Bin by X, Y, respectively. Since we focus on safe protocols, the
registers XY are only used as control registers. We express Alice’s local registers after the ith message is
generated as X A;, and the local registers of Bob by Y B;. As before, the message register is not included in
any of the local registers, and is denoted by C;.

4.1 Superposition-Average Encoding Theorem

We first generalize the Average Encoding Theorem [KNTZ07], to relate the quality of approximation of
any intermediate state in a two-party quantum communication protocol to its information cost. This also
allows us to analyze states arising from arbitrary superpositions over inputs in such protocols. Informally,
the resulting statement is that if the (incremental) information contained in the messages received by a party
is “small”, then she can approximate the message entirely on her own correspondingly well. The main
technical ingredient of its proof is the Fawzi-Renner inequality [FR15].

Theorem 3 (Superposition-Average Encoding Theorem) Given any safe quantum protocol 11 with input
registers XY initialized according to distribution v, let

A;B;C;
i) = D V(my) lsayy) gty
'Z,7y

15



be the state on registers XY RA; B;C; in round i with the register R initially purifying the registers XY,
with a decomposition Rx Ry into coherent copies of X and Y, respectively. Let ¢; :== I(R:C;|Y B;) for
odd i, and e; := I(R:C; | X A;) for even i. There exist registers E;, isometries V; and states

00 = Yl y) fewyy) T gy BB
z,Y

for odd i satisfying

GRS D DENCRIR

p<i, p odd

B,C,E;
Vily)" )" @ 167)

)

and states

) = Y ) e R gy A
x’y

for even 1 satisfying

B(pfXAC fXAC) < S s and
p<i, p even
Ve = 0¥ e lon e

Proof. The result for odd and even 4’s is proved similarly; we focus on even i’s. Given e, = I(R:C)p, | X 4;)
for even p, let RI),{AP X4 be the recovery map given by the Fawzi-Renner inequality, Lemma 3, such

that

RXA,C, RXA
[](Pp ppva(Pp p)) < Vé,

XAp—XA,CpF, . . . . . .
and take URp p 2 AeEr I (6 be an isometric extension of Rp. Since register 12 contains a coherent copy of

. . XAp—XApCpFy .
X, we can assume without loss of generality that URP P ArEPIP i of the form

Ué;p%XApCpr |£E>X |¢x>ApGp — |fL'>X |¢Q>ApCprGP

)

for any ancillary register G;p,. L.e., X is used only as a control register. Consider an isometry VOX —XTaTs

such that for all z,
Volo)® = [a)¥ [p)"2 "

i.e., Vp is an isometry that locally creates the same state W)TATB, used as pre-shared entanglement in II, for
any input z. Let p,, denote the purified initial state of the protocol:

o) =YV u(ay) feayy)t Y
:1“7y
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We show that the isometry V;, state o;, and register I; defined as follows

Vi = UrUi1---Ugr,UsUr, U1 Vpy ,
loiy = Vilp) , and
E, = TRCIOFHRC3QF,®Q - RC;_1QF;

satisfy the conditions of the theorem. We show this by induction on .
First, note that V; is of the desired form, and uses X as a control register. For the base case, i = 2, we
start with

>XYRXRyTATB >XYRXRy

lpo Vo oy

)

apply U;* "a7 X410 6 obtain | py )Y Xy AT and furthermore apply Uy “757Y 252 16 obtain | p) =
UsU1Vy | pu) XY BXBY 1t holds that

< Ve,
RX As RX A,

in which we used that p; = p] since the registers Y Cy By on which Us acts have been traced out,
and Ay = A;. Since it also holds that Ra(pf™ ") = Tryr,c, 1, (Ury, Ui Vo |py)) = o5 42¢2  the result
follows.

For the induction step, we note that for even ¢ > 2, V; = Ug,U;—1Vi—2, E; = F; ® C;_1 ® E;_9, and
|oi) = Ur,Ui—1 |oi—2). The result follows from the chain of inequalities below:

RX AsC XA X AsC: RXA RX AsC XA —XAC: RXA
b(ﬂz 2 27R2 2—> 2 2(p2 2)) h(ﬂz 2 27722 1— 2 z(pl 1))

h(pZRXAiCi7 O_iRXAiCi> < h(pZRXAiCi7 RZXAi—>XAiCi (pZRXAi))
T h<R;XAﬁXAiCi ( pZRXAi% UZRXA¢C¢>
< e+ f)(prAi, Tre, yvE,_, (Ui |0'i72>)>
< V(O )
< VEt Y, Ve

p<i—2, p even

The first step is an application of the triangle inequality, and the second follows by the definition of R; and

monotonicity of i under the CPTP map R; = Trp, o Ugr,. The third inequality holds because pRX Ai =

i
RXA;_1

P 1 = Tre, ,vB,_, (Ui—1|pi—2)), the isometry U;_; does not act on registers E;_s or Y B;_, and by
the monotonicity of & under the map Trc, |, o U;_1. The last inequality holds by the induction hypothesis.
]

4.2 Quantum Cut-and-Paste Lemma

The direct quantum analogue to the Cut-and-Paste Lemma [BJKS04] from classical communication com-
plexity does not hold. We can nevertheless obtain the following weaker property, linking the states in a
two-party protocol corresponding to any four possible pairs of inputs in a two-by-two rectangle. The result
says that if the states corresponding to two inputs x, z’ to Alice and a fixed input 3 to Bob are close up to a
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local unitary operation on Alice’s side, and the states for two inputs ¥, 4’ to Bob and a fixed input z to Alice
are close up to a local unitary operation on Bob’s side, then, up to local unitary operations on Alice’s and
Bob’s sides, the states for all pairs (z”,y”) of inputs in the rectangle {x, 2’} x {y, 3’} are close. The lemma
is a variant of the hybrid argument developed in Refs. [JRS03, JN14]. A similar, albeit slightly weaker
statement may be inferred from the said hybrid argument.

Lemma 7 (Quantum Cut-and-Paste) Given any safe quantum protocol 11 with classical inputs, consider
distinct inputs x, x’ for Alice, and v,y for Bob. Let \po)AOBO be the shared initial state of Alice and Bob for
any pair (2", y") € {x,2'} x {y,y'} of inputs. (The state py may depend on the set {x,z'} x {y,y'}.) Let
!pi,muyu ABiC bo the state on registers A; B;C; after the ith message is sent, when the input is (x”,y").
For odd 1, let

o B;Ci B;C;
h’i T h(pzxy7p1xy>
and VZ mz ', denote the unitary operation acting on A; given by the local transition lemma (Lemma 1) such
that
hi = 0(VAL o) s lpin))
For even i, let
A;Cy  AC
hi = h(pl xy 7p1 g;y )
and VZ y’ Ly , denote the unitary operation acting on B; given by the local transition lemma such that
hi = f)( Zy%y | Piay)s )
Define Vo%)—w/ := 159 and hy := 1. Recall that B; = B;_; for odd i and A; = A;_1 for even i. It holds
that for odd 1,
0(V25yy 1o i) = i (4.1
i—2
D (VAL VP 1P [piary)) < Bt b 423 by (4.2)
j=1
and for even i,
A; _
OVt Pt i) = hica “3)
i—2
0 (VL Vi i) [pra)) < it hia 423 by (44)
j=1

Proof. We have ‘ Po,x“y”> = |po), and define C to be a trivial register. For odd 4, let U; ,.» be the protocol
isometry U; conditional on the content of X being x”. Then we have that
U'Ai—lci—l‘}AiCi

iz

Ai—1Bi—1Ci1

A;B;C;
110,11 = ‘pl x//y// v
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It follows by the isometric invariance of & and because V;_1 ,,_,,» and U; , act on distinct registers that

) = (VP i) o)
= hiq .

B;
h(‘/z 1,y—y’ |pl 501/

Similarly, for even 1,

UBi—1Ci—1—>BiCi ”>Ai—1Bi—1ci—1 >AiBiCi
7Y Y

= }pi,:ﬂ”y”

and

,>) - i .

We show by induction on ¢ that (4.2) and (4.4) hold for odd and even ¢’s, respectively. For the base case
(1 = 1), we have that

A;
b (Vi—l,x—m’ ’pi,xy>7

oL PO U AAC ot
is independent of 3”. So
Pray) = lpray) . and  pray) = |pray)
and the result follows by taking Vj; ; Ly = [ Bo:
A
b(vl,xl%x’ 1p1,2y) ’Pl,x/y’>> = h.

For the induction step, the case of even and odd 7’s are proven similarly; we focus on even ¢’s. Assume
the result holds for ¢« — 1, we show it also holds for ¢ by the following chain of inequalities, which are
explained below:

[]<V"é Y=y’ Vil P32y |pi,x’y/>> = b(‘/z Y=y Vit |pizy)s Villaoa Pi,xy’>)
Ay
+ [)(V'—l T—z’ ! )
= hi+ h( 1 z—m }pl 1xy’ > ‘pifl,x/y/>)
Ai_ Bi—
< it b (VA oy ) VT Vs i) )
+ h( 1:1:%:1:"/ Zy—)y |p’i*1,:13y>a / )
i—3
< hi+hi—a+hi—1+hi—2+ 2Zhj
j=1

The first step is by the triangle inequality. In the second step, we used the unitary invariance of h along
with the definition of h; for the first term, and along with the property that VA1 and U i1Ci12 BiC b on
distinct registers for the second term. The next step is by the triangle inequality, and the last by Eq. (4.1) for
one term, and by Eq. (4.2) and the induction hypothesis for the other term. m

19



4.3 Relating Alice’s states to QICy_, 4

We study the quantum information cost of protocols for Augmented Index on input distribution pg (the
uniform distribution over f,,1(0)), and relate it to the distance between the states on two different inputs.
We first focus on the quantum information cost from Bob to Alice, arising from the messages with even 7’s.
We show that if this cost is low, then Alice’s reduced states on different inputs for Bob are close to each
other. (This high level intuition is the same as that described in Ref. [JN14].)

We state and prove our results for inputs with even length n; a similar result can be shown for odd n by
suitably adapting the proof.

We consider the following purification of the input registers, corresponding to a particular preparation
method for the K register, and to a preparation of the X register also depending on the preparation of
register K. Recall that the content k of register K is uniformly distributed in [n]. The following registers are
each initialized to uniform superpositions over the domain indicated: R}q over {0, 1} (with a coherent copy
in R%), register R}, over indices j € [n/2] (with a coherent copy in R%), register R} over £ € [n/2 + 1,n]
(with a quantum copy in R?). Register Ry holds a coherent copy of register K, whose content  is set to
the value j in R}] when R}; is 0, and to £ when Ré is 1. Depending on the value ¢ of le:, the following
registers are initialized to uniform superpositions to prepare the X register, itself in uniform over {0, 1}":
register R}, over z € {0, 1}¢, and register RII/V over w € {0,1}"¢. The register X is set to x = zw, so
together RlzR%V hold a coherent copy of X, and a second coherent copy is held in RzzR%V. If ¢ is clear from
the context, we sometimes use the notation Z and W to refer to the parts of the X register holding z and
w, respectively. Depending on the value j of Rtl], we also refer to a further decomposition z = 2’2" with
2/ € {0,1}7 and 2" € {0,1}*~7. We denote by X x the register held by Bob and containing the first k& — 1
bits of x and the verification bit b, always equal to x; under pg (X1x thus contains the first k bits of z in
this case); it is set to 2’ when Rg is 0, to z when R}q is 1, and register Ry, , holds a coherent copy of it.

In summary, the resulting input state pffOK X1k distributed according to p is purified by register R,
which decomposes as

R := R}R%R}R}RLR%Rl, R}y RLRERKRx,, -
Using the normalization factor ¢ := 1/+/(n/2) - (n/2) - 2¢ - 2n—¢. 2, the purified state is:
o) XX = o ST etz zww) (\oo> 12") [zw) X 2/ Y 5 11 [02) |2w) ¥ \zz>KX1K)
j7£727w

(4.5)

TATg

Starting with the above purification and using pre-shared entanglement |v) in the initial state, the

state p; after round ¢ in the protocol is

o) = e Y Lggtezzww) (100) [j2') [zw) [12') |07 07 ) (11} ez) 2w) fez) [ 07D
j?e7z’w
(4.6)
where pf’(k’x[l’k])> denotes the pure state in registers A;B;C; conditional on input (x, (k, z[1, k])).
RAXA;C;

Define R := RY R} RLRk Ry, RY,. Allof Ra’s sub-registers except Riy, R, are classical in p;

7 k
since one of their coherent copies is traced out from the global purification register . The Z part of the X
register is also classical. We can write the reduced state of p; on registers R4 X A;C; as

plaX N = 30 @ (107)(07] @ 120217 @ pigeger + 1O @20 (217 @ pigec)
j7e7z
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in which we used normalization ¢/ := 1/((n/2) - (n/2) - 2¢ - 2) and the shorthands

Pisckepy] = Trp, (plfzkx[1,k]><pfzkz[1,k]‘) . where @7

2

p{zkx[1,k}> — 1/\/2TL7*€Z|www>RéVR‘2”Wp
w

zw,(k,m[l,k}>>AiBiCi
[

(4.8)

)

The indices ¢zkx[1, k| have the following meaning: ¢ and z indicate that Alice’s input register X is in
superposition after the length ¢ prefix z = x[1,¢], and k and z[1, k] tell us the index k in Bob’s input,
the prefix x[1,k — 1] of = given as input to Bob, and Bob’s verification bit b (which is equal to x; under
o), respectively. Using this notation along with the superposition-average encoding theorem, we show the
following result.

Lemma 8 Given any even n > 2, let J and L be random variables uniformly distributed in [n/2] and
[n] \ [n/2], respectively. Conditional on some value { for L, let Z be a random variable chosen uniformly
at random in {0, l}f. The following then holds for any M -message safe quantum protocol 11 for Augmented
Index fy, for any even i < M:

RY, R, WA;C; RY,R%L,WAC )}

1
QICp AL o) = 577 Ejeenirz [hz<ﬂi,sz P gzt

Proof. Considering the same purification of the input state as in (4.5), we get the following states from the
superposition-average encoding theorem

o) = e 3 littzzwn) (J00) [5) [zw) [52') [0 HO5 4 11) [62) [zw) 02} [o7) MOE
j?ZVZ?w
satisfying
B(pf A oAy < N IGR X 4)
p<i, p even
The reduced state of o; on registers Ra X A;C; is

oAXNC = ST @ (107005 @ |2z
J.b,z

7 @i+ 1010 ©12) (7 @ i)

in which we use the shorthands

Tigz = TrEi(afz><afz) , Wwhere
1 1 p2 R
O_fz> — Z|www)RWRWW Jizw>AlClE,
\/on—t
w
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The lemma then follows from the next chain of inequalities, as explained below:

Y

% > HCp:R|[XAp) > I(Cp:R| X Ap)

p<i, p even p<i, p even

> f)2< RAZWACi [ RAZW A; c)
= P; 0
1 RL R2 WA;C; RL R2,WA;C;
2 IASZ3 AT
= 5 IEjészLZ |:b <pi XJZ/W y 0 4‘2«/ v >}
1 RYL, R2,WA;C; _RY, R2,WA;C,
) witw it
+ 5 Ejenirz [h (PZ 020z 1Ttz )}
s lg RY,R2,WA;C; Rl R3,WAC
= Bie~irz b ( p; i, s Pidoe

The first inequality is by the concavity of the square root function and the Jensen inequality, and the second
by the superposition-average encoding theorem along with the monotonicity of h under tracing part of
R. The equality is by the joint-linearity of h2, by expanding the expectation over R}g and by fixing &
accordingly. The last inequality is by the weak triangle inequality of h?. m

4.4 Relating Bob’s states to QIC, .5

We continue with the notation from the previous section, and now focus on the quantum information cost
from Alice to Bob, arising from messages with odd ¢’s. We go via an alternative notion of information cost
used by Jain and Nayak [JN14], and studied further by Lauriere and Touchette [LT16]. This notion is a direct
generalization of the internal information cost of classical protocols (see, e.g., Refs. [BIKS04, BBCR13]),
and is called the Holevo information cost in Ref. [LT16].

Definition 2 Given a safe quantum protocol 11 with classical inputs, and distribution v over inputs, the
Holevo information cost (of the messages) from Alice to Bob in round i is defined as

QIC, 5(ILy) = I(X:BGi|Y),

and the cumulative Holevo information cost from Alice to Bob is defined as

(Q\I/CA%B (H, V) = Z QTéiAaB (Ha V) : (4.9)
i odd

Given a bit string z of length at least £ > 1, let 2 denote the string in which z, has been flipped. The
following result can be inferred from the proof of Lemma 4.9 in Ref. [JN14].

Lemma 9 Given any even n > 2, let J and L be random variables uniformly distributed in [n/2] and
[n] \ [n/2], respectively. Conditional on some value { for L, let Z be a random variable chosen uniformly
at random in {0, 1}£. The following holds for any M -message safe quantum protocol 11 for the Augmented
Index function f,, for any odd i < M:

1 1 BC,
- QICALp(Luo) = 1= Bjeanirz [52 (pl P ez(%z )} ;

with p; ¢ ;. defined by Egs. (4.7) and (4.8).
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For completeness, we provide a proof of this lemma in Appendix A using our notation.
Lauriere and Touchette [LT16] prove that Holevo information cost is a lower bound on quantum infor-
mation cost QIC.

Lemma 10 Given any M -message quantum protocol 11 and any input distribution v, the following holds
forany oddi < M:

QIC,_p(I,y) < QIC,5(ILv) .

This may be derived from the Information Flow Lemma (Lemma 4) by initializing the purification register R
so that RP is be a coherent copy of X and RI]? is a coherent copy of Y, and R is a coherent copy of
both X, Y.

4.5 Lower bound on QIC

We are now ready to prove a slightly weaker variant of our main lower bound on the quantum information
cost of Augmented Index, i.e., Theorem 5.

Theorem 4 Given any even n, the following holds for any M-message safe quantum protocol I1 computing
the Augmented Index function f, with error at most € on any input:

1

Z(l — 25) < <2(]W+1)2

1/2 3 1/2
- 'QICAHB(H3M0)> + <4 - QICE, 4 (I, Mo)) . 410)

The stronger version is proven similarly in Section 5 using a strengthening of Lemma 8. Our argument
follows ideas similar to those in Ref. [JN14]. Using the notation from the two previous sections, we start by
fixing values of j, ¢, z in their respective domains, and defining 4; = R‘I,VRIQ,VWAi. Define, for odd 7,

. . BiCi B;C;
hi(]a& Z) T b(pi,ézjlz’ ’ piyé&)jg’)
B VAi 0252 A;B;C; 0202 AiB;C;
= Vi l.o|pi » |Pi )
and for even 1,
. . A0 A0
hi(§,¢,2) = b(pi,ézjz”pi,ézéz)
~ VBi 0252 A;B;C; 020 A;B;C;
= 05,2 )= (£,2) P; y | P )

where the unitary operations szii_m(g) and ‘/i?;',z’) y(e,z) Are given by the Local Transition Lemma. We

define the following states, analogous to the states consistent with g in Egs. (4.7) and (4.8):

. 020y 020y
Piz0pz = Trp, ( Pi Z><piz - ) )
plfz(f)éz> L 1 Z ]www>RéVR‘2/VW pz“)w,(f,z) AiBiCi
1 T —7 7
V2" "

Given protocol I1, we define a protocol I1(j, ¢, z) that behaves as II but starts with preshared entangle-
ment |1) 7275 @ [y ), with [iby) == /172703 ]www>R%VR%VW given to Alice. We consider runs of
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I1(4,£, z) on four pairs of inputs: Alice gets inputs u = z or v/ = 2(), and Bob gets inputs y = (j, 2')
ory’ = (¢,z). On these inputs u, u’ of length ¢ for Alice, II(j, ¢, z) uses the content w of register W to
complete an input of length n for Alice in order to run II. Note that regardless of w, the only input pair for
I1(j, ¢, z) for which Augmented Index evaluates to 1is (u/, ') = (29, (¢, 2)).

If M is even, denote by p;‘ﬁf(% whalL K] the reduced state of pW M CM he[LA]

W. The function £, has different values on inputs (29w, (j, 2')) and (z(g)w, (¢,2)). Since the protocol IT

has error at most € on any input, we can distinguish between these two values With probability at least 1 — ¢
c c

for any w, by applying Uy, 4 ), to the corresponding states p’ ; Au ijz and p Mf”zz Mw By relationship

of trace distance with distinguishability of states, and its monoton1c1ty under quantum operations, we get

that

for a particular content w of

pWAMC]\/[ i pWAMCM
M Lz(0) 5! M, z(®) 0z

_ E ’ AMCM pAMCM
2n on—~ M@z Owjz' M0z wez

> 2—48.

Here we also used the joint linearity of the trace distance to expand over the values W takes. We now link
the h;(j, ¢, z)’s to the above inequality:

1

—(1—2¢

1-22)

WANCyp WANCy

S 2\/> HpM,Ez(Z)jz pMéz(Z)éz

WANCym WANCym
< h(pM 020520 pMZz“Mz)

Bu Ay By Cor Ay By Cum
S h VM,(j,z’)—>(€,z) > ’ pM7Z3(5)£3>
AymBuCu R
By B An ApBuyCiy
< h(VvM (jj 2" —(¢,2z) pM,€z<e)j2/> ’ Mi@,z’)—)(l,z)v —1,2—2(0 ’PM lzj2' > >
B A, AvBuC Ap By Cuyr
+h <V G Vart sos Pagezger )M, pM,ZZ“’fZ> >
M—-2
S hM—l(j7 E, Z) + hM(]? £7 Z) + hM—l(ja E? Z) +2 Z hz(]a Ea Z)
=1
M
< 2) hiljlz)
=1

The second inequality follows from Eq. (2.16), and the third from monotonicity of ) under partial trace. The
fourth inequality follows by the triangle inequality, and the fifth by the quantum cut-and-paste lemma using
A,- = RII,VR%/VWAZ' as Alice’s local register in round ¢.

In order to relate this to quantum information cost, we use Lemma 8 together with the concavity of the
square root function and Jensen’s inequality to obtain, for any even ¢,

V2M - QICs A (M, o) > Ejmgrzlhi(h, 4, 2)] - 4.11)

Similarly, using Lemma 9 for any odd i,

16 — .
\/n QICAﬁB(H ro) = Ejegrzlhi(j,l, 2)] .
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Combining the above and Lemma 10, we get

1 8 1/2
1% = > (n - QICAQB(H,uo)) + ) (M- QIC A (I, o)) ? (4.12)
3 odd 7 even
; 1/2 1/2
4(M +1 — WE
= <(n+) . Z QICA—>B(1_LNO)) + <4 -QICE_, A (1T, MO)) (4.13)
i odd
2(M +1)? 1/2 M3 1/2

which completes the proof in the case that M is even.
The proof for odd M is similar, and follows by comparing states pf}%?}f and pﬁ”@i% o, The different
outputs can then be generated by applying Upr41,(¢,-) to these states.

5 A Stronger QIC Trade-off for Augmented Index

We consider a different notion of quantum information cost, more specialized to the Augmented Index
function, for which we obtain better dependence on M for the information lower bound, from M 3to M.
We also show that this notion is at least 1 /M times QICy_, 5, and thus we get an overall improvement by a
factor of M for the M -pass streaming lower bound. The following is a precise statement of Theorem 2.

Theorem 5 Given any even n, the following holds for any M -message quantum protocol 11 computing the
Augmented Index function f, with error € on any input:

2(M +1)?
n

1 1/2 M2 1/2
1(1 —2) < ( ‘QICA%B(H,MO)> + (2 : QICB%A(H,MO)> . (5.1)

Our lower bound on quantum streaming algorithms for DYCK(2), Theorem 1, follows by combining
this with Lemmas 5 and 6, and taking m = n so that N € ©(n?).

We consider the same purification of the input registers as in Section 4.3, and the following alternative
notion of quantum information cost.

Definition 3 Given a safe quantum protocol 11 for Augmented Index, the superposed-Holevo information
cost (of the messages) from Bob to Alice in round i is defined as

QICh (T, o) = I(RxRYRY: Ry, Ry WACi|RLZ),,

with p; as defined in Eq. (4.6), and the cumulative superposed-Holevo information cost (of the messages)
from Bob to Alice is defined as

QICE A (T, o) = ZQ\IEJ;'B%A(HHUO)- (5.2)

7 even

We first show the following.
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Lemma 11 Given any even n > 2, let J and L be random variables uniformly distributed in [n/2] and
[n] \ [n/2], respectively. Conditional on some value { for L, let Z be a random variable chosen uniformly
at random from {0, 1}5. The following then holds for any M -message safe quantum protocol 11 for the
Augmented Index function f,, for eveni < M:

i 1 of RL.RZWA;C; RL R2,WAC;
QICE A (IL, o) > ZEsz~JLZ [f) (Piﬂjz/w  Pidoes )} ,

With p; o.kq1,k) defined by Egs. (4.7) and (4.8).

Proof. The Average Encoding Theorem along with monotonicity of conditional mutual information gives
us the desired bound, with p; ¢, the state p; p.p.[1,4) In registers R%,VR%VWAiCi averaged over registers
Rk RLRYL:
I(RxRYRL:RL, R%, W A,C;| R
Kk RjRs: Ry Ry WAC; | R Z)

1 RL R2 WA;C; RL R2.WA;C;
2 AT AT
> iEjZZNJLZ [[J (Puvzvjz/w Pigy )}

1 RL R2 WA;C; RL R2,WA;C;i
— . 2 warwW e wAtw )
+ B Ej£z~JLZ |:[7 <pi,ezgz 2 P4 0z ﬂ

1 RL R2 WA;C; RL R2,WA;Ci
. 2 wrwW 1~ wAtw 1
> 1 Ejronirz [[J (pi,[ZjZ/ s Pi 202 )}

We now show that this notion of information cost is a lower bound on QICp_, o (II, p10):

Lemma 12 Given any M-message safe quantum protocol 11 for Augmented Index and any even it < M, the
following holds:

—
QICg AL o) < QICE A (I, po) -
Proof. The lemma is implied by the following chain of inequalities, which are explained below:

(R R} Rs: Ry Ry W A;iCi | RLZ),,
= I(RkRYRY:RYy Ry, | RLZ), + H(RkRYRS: W A;Ci | RLZ Ry Ry ) s
< I(RgRLRY:ZW A;Ci| R Ry Riy),,
= Y URKRYRE:C,| ZWARLRI R,

p<i, p even
— Y KRgRYR:C,| ZWA,RL Ry Riy),, + IRk RyRE: ZW | R} Ry Riy) o,
p<i, p odd
Y I(RxRyRYRLRiy Riy:Cyp| ZWAy),, + (R Ry Ry: ZW Riy Riy | RY)
p<i, p even
= Y U(RxRYRSRLRIy Ry :Cyp| ZWA,),,
p<i, p even
1 pl . 1 1 pl. 1 2 1
+I(RxRjRs:Z|RL)p, + I(RxRjRs:W Ry Riy | ZR[) p,
= > I(RkxRYRYRLRiy Ry :Cp| ZWA,),, .

p<i, p even

IN
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The first equality holds by the chain rule. The first inequality holds because the first term evaluates to zero,
and because the second term is dominated by the subsequent expression (as may be seen by applying the
chain rule). The second equality is from the information flow lemma, the second inequality follows from the
chain rule and the non-negativity of the conditional mutual information, and the third equality is by the chain
rule. The last equality follows because R KR},R% is independent of Z and because the registers R%VR%,VW
of pg are in a pure state.

The last term is seen to be upper bounded by QICg_, 5 (I1, 1o) by applying the data processing inequality
to the R register. m

The improved lower bound on QIC follows along the same lines as in Section 4.5, but we use Lemma 11
instead of Lemma 8 for even ¢’s in Eq. (4.11). Then Eqgs. (4.12) to (4.14) become

1 8 —i 1/2 — 1/2
{0-2 < ¥ (2 Qo sw) 4 X (20 AL )

4 odd 7 even

| 12 . 1/2
(4(]\/[—’_1) . Z Cfgi@;_}B(H,uo)> + (M Z QICBaA(HaMO)>

n 4 .
7 odd 7 even

(2(M +1)2

1/2 9 1/2
'QICA—>B(H7,UJ0)> + (2 : QICB—>A(H7,UO)> ,

completing the proof of Theorem 5 for even M. The case of odd M is similar.
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A Relating Bob’s states to QIC, .5

Lemma 9 can be inferred from the proof of Lemma 4.9 in Ref. [JN14]. For completeness, we provide a
proof using our notation.

Lemma 13 Given any even n, let J and L be random variables uniformly distributed in [n/2] and [n]\[n/2],
respectively. Conditional on some value ¢ for L, let Z be a random variable chosen uniformly at random
in {0, 1}, The following then holds for any M-message safe quantum protocol 11 for the Augmented Index
function f,, for any oddi < M:

T 1 B;C; B;C;
ﬁ QICA%B(H,,U/O) > TG IEj[zNJLZ |:h2 (,OMZ]-Z/ ) piyzz(z)jz/>} )

with p; ;. defined by Eqs. (4.7) and (4.8).
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Proof. We start with the following chain of inequalities:

QICA—>B(H /‘0)
—  I(X:B,Ci| KX[L, K))

> %I(X:BZC,-\JX[I 7))
1 .
= 5 fz Z X[j+1,n):BiCi | J = j, X[1,j] = 2)
]<n/2 2
1
> —_ N ; ; 1 = 1 1 = /
> Z Z X[n/2+1,n]:B;Cs | X[j +1,n/2],J = j, X[1,j] = 2')
]<n/2 2
1 1 , . .
= > EZI(X%B@CHX[%LLE—1]7J=J,X[1,J]22')
j<n/2.4>n/2 2
1 1 .
= - > ST Y IXe:BiGi|J =4, X[1,e—1]=21,-1]) . (AD
j<n/2,>n/2 z[1,6—1]

The first equality holds by definition, the first inequality holds because we can generate the classical random
variable K by setting it equal to J with probability one half (and then equal to L also with probability one
half), the second equality follows by expanding over J and X1, J], the second inequality follows by the
chain rule and non-negativity of mutual information, the third equality holds by the chain rule, and the last
equality follows by expanding over X [j + 1,¢ — 1].

We also get the following bound by the Average Encoding Theorem (Lemma 2) and the weak triangle
inequality for b2, with Pie=[1,0-1]j- being the state p; p.[1 ¢—1]z,5. in register B;C; averaged over Xp:

I(Xg:BiC-|J:j, [1,0—1] = 2[1,0—1])

L of Bic; BC;
= 7[') <z€z3z”pz€z[1£ 1]]2>+§h (léz(é)]z/’pzéz[lé 1]j2 )

2 76 < ZKZ]Z/’ pzéz(é)]z)
Taking expectation over JLZ in the above inequality and expanding, we get the desired result by comparing
it with Eq. (A.1):
B;C;
Ejeznirz [f) (Pz b2z o P ZZ(I)JZ/)]
< 4EngNJLZ I(Xg.BiCHJ:j,X[l,f—l]:Z[l,g—l])

2
- 1(2) T g5 ¥ eBaI =X 1= L)

n
ji<n/24>n/2 z[1,6—1]

16 —
Z QICA (T, o) -

IN

B Information Flow Lemma

We use the following bound on the transfer of information in interactive quantum protocols, obtained in
Ref. [LT16]. We provide a proof for completeness.
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Lemma 14 Given a protocol 11, an input state p with purifying register R with arbitrary decompositions
R = RAR)RY = RBRBRB, the following hold:

Z I(RaB : C2i+1 ’ RbBBQi+1) — Z I(RE : Cgi | RbBBQZ)

>0 1>1
= I(R®:B,wB'|RP) —I(R2:Bi, | RY) ,

D R :Coiga | R Agiva) = > LRy : Coist | Ry Azi1)
i>0 i>0

= I(R}: AguA' | R} —TI(RY: A | RY) .

Proof. We focus on the first identity, that for the messages received by Bob; the identity for the messages
received by Alice follows similarly. In the rest of the proof, we omit the superscripts on the purifying
registers; they are meant to be B.

We show that

I(R,: Bok41Cok+1 | Ry)

= Z I(RQZCQH_;[ | RbBQi-i-l) - Z I(RaZCQi ’ RbB2i) + I(Ra3Bin ’ Rb)
0<i<k 1<i<k

by induction on k, with 2k + 1 < M. If M is odd, Bob receives the last message and I( R, : Bout B’ | Rp) =
I(R4:ByChr | Rp), and the result follows. If M is even and Bob sends the last message, the result follows
since Byy = BoutB' and I(R, : By | Ry) = W(Rg: Byy—1Cr—1 | Ry) — I(Ry : Chr | RyByy) by using the
chain rule and isometric invariance under the map that takes By;_1Cp—1 — By Chy.

The base case for the induction follows from

I(Ra:Bl(Jl | Rb) = I(Ra:Bl | Rb) + I(Raicl | RbBl)
—  I(Ru:Bin|Ry) + L(Ra:C1| RyBy) .

Here, the first equality holds by the chain rule. The second holds because By = By = Bi,1's, and because
the state in 7'p is in tensor product with the initial state in the registers R, Ry Bin.
For the induction step, we have

I(Ro: Boy3Cor13 | Ry)
= I(Ras:Bakgs| Ry) + 1(Ra:Copga | RyBogg2) + I(Ra: Copys | RoBogys)
—I(Ra: Copya | RyBoky2)
= I(Rq: Bopy2Copia | Ry) + I(Ry: Copq3 | RyBog4s) — I(Ra: Coryo | Ry Bog+2)
= I(Rq: Bog+1C2k+1 | Bp) + I(Ra: Copts | RyBogts) — L(Ra: Copv2 | RoBak+2)

in which the first equality holds by the chain rule and by adding and subtracting the same term, the second
also holds by the chain rule and because Bog 13 = Bag2, and the third holds by the isometric invariance
under the map that takes Bog11Cox+1 — Bog+2Ca;+2. The induction step follows by comparing terms. m
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