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Abstract

Considerthe finite regular language �������
	���
�	����������������
 	�
��! "� . In [3] it wasshownthat while this lan-
guage is acceptedby a deterministicfinite automatonof
size #%$& (' , any one-wayquantumfinite automaton(QFA)
for it has size )+*�, ��-�. /10���2 . This was basedon the fact
that the evolution of a QFA is required to be reversible.
Whenarbitrary intermediatemeasurementsare allowed,
this intuition breaksdown. Nonetheless,we showa )+*3, ��2
lower bound for such QFA for � � , thus also improving
thepreviousbound. Theimprovedboundis obtainedfrom
simpleentropy argumentsbasedon Holevo’s theorem[8].
Thismethodalsoallowsusto obtainan asymptoticallyop-
timal $4�65879$;:<'4'; bound for the densequantumcodes
(randomaccesscodes)introducedin [3]. We then turn
to Holevo’s theorem, and showthat in typical situations,
it may be replacedby a tighter and more transparent in-
probabilitybound.

1. Intr oduction

One-way quantumfinite automata(QFA) weredefined
in [11, 9] andhavedrawn muchinterestsincebecausethey
reflect the capabilitiesof currently feasibleexperimental
quantumcomputers.Moreover, their studyprovidesmuch
insightinto thenatureof quantumcomputation.Resultslike
thoseof [2] and [3] show that the laws underlyingquan-
tum computationarea mixedblessing.[2] shows how one
mayusesuperpositionsto designQFA for certainlanguages
thatareexponentiallymoresuccinctthanthecorresponding
classicalFA. In contrast,otherresultsfrom [3] show thatthe
reversibility requirementsof quantummechanicsimposes
seriouslimits on the power of QFA—they show that QFA=
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for certainotherlanguagesareexponentiallylargerthanthe
correspondingDFA. In this paperwe considera different
model of QFA (called enhancedQFA) wherethe stateof
theQFA canbemeasuredwhile eachsymbolis processed.
In thecaseof moregeneralmodelssuchasquantumTuring
machinessuchintermediatemeasurementsdo not increase
thepowerof themodel,sincemeasurementscanalwaysbe
replacedby safestorage.However, in thecaseof QFA, the
spacelimitationsinherentin thedefinitionprecludethepos-
sibility of similar reasoning.Moreover, in this new model,
the evolution of the systemis no longer reversible,so the
intuition from [9, 3] no longer applies. Indeed,this new
modelof QFA wassuggestedby Dorit Aharonov asa more
physicallyappropriatemodelthatmightnotsuffer from un-
necessaryhandicapsresultingfrom the reversibility prop-
erty embeddedin thedefinitionsfrom [11, 9].

In this paper, we show that enhancedQFA arealsoex-
ponentiallylarger than the correspondingDFA for certain
languages.Theconceptualframework for ourproof is com-
pletelydifferentfrom thatin [3]. We considertheevolution
of a QFA on a randominput string andshow that the en-
tropy of the mixed statethat it exists in canonly increase
with eachsuccessive symbolread. This holdstrue even in
thepresenceof intermediatemeasurements.Moreover, for
certainlanguages,it is possibleto boundfrom below the
increasein entropy that resultsfrom processingeachsym-
bol, by appealingto Holevo’s theorem[8]. Finally, we can
boundthe total informationcapacityof the QFA in terms
of the numberof statesof the QFA, andthereforeobtaina
lower boundon the numberof statesrequiredto correctly
recognizestringsof thelanguage.Thenew boundwegetis
tight, andthereforeanswersanissueleft openin [3].

The paper[3] also introducedthe novel possibility of
densequantumcodesthat seemto violate Holevo’s bound
by exploiting the fact that in generalmeasurementsdo not
commute.This raisedthepossibilityof (for instance)parsi-
moniouslyencodinganentiretelephonedirectorysuchthat
any singlenumbercouldbeextractedfrom it via a suitable
measurement.Examplesof suchrandomaccesscodeswere

1



given in [3] that have no classicalcounterparts.However,
it was also shown that no more than a logarithmic factor
compressionis achievable.Wecanusethesameconceptual
framework asdescribedaboveto givea linearboundon the
numberof qubitsrequiredfor suchcodes.Thisboundis op-
timal upto anadditivelogarithmicterm,asfollowsfrom the
classicalupperboundgiven in [3]. Thus,quantumencod-
ing offersno asymptoticadvantageover classicalencoding
in this scenario.This resolvesanopenquestionfrom [3].

Finally weturnourattentionto Holevo’sbound[8] itself.
Typically in quantumcomputationapplications(thoughnot
in this paper),Holevo’sboundis appliedby converting,of-
ten implicitly, a statementaboutthe probability of correct
decodinginto a statementin termsof entropy, whena ran-
domvariable? is transmittedover a quantumchannelus-
ing @ quantumbits. Wegiveatight boundonthisdecoding
probability by a direct argumentwhich allows us to infer
lowerboundsfor @ without resortingto Holevo’s theorem.
Since the probability bound is tight, the inferred bounds
areat leastasgoodasthoseimplied by Holevo’s theorem.
We also provide an examplewhereit givesa strictly bet-
ter boundthanthelatter. We shouldmentionthat theproof
of Holevo’s bound(which is essentiallyequivalent to the
strongsubadditivity propertyof von Neumannentropy) is
ratherinvolved,while theproofof theprobabilityboundsis
quitetransparent.

2. Summary of results

A QFA (as definedin [9]) differs from a DFA in that
its stateis in generala superpositionof theclassical(basis)
states.It startsin sucha state,andwhena new input sym-
bol A is seen,acorrespondingunitaryoperatorB�C is applied
to it. Thestateis thenmeasuredto checkfor acceptance,re-
jectionor continuation.If theresultof themeasurementis
‘continue,’ the next symbol is read,otherwisethe input is
acceptedor rejected. A QFA recognizesa languageif all
thestringsin it (or not in it) areaccepted(respectively, re-
jected)with constantprobability boundedaway from ��DE) .
SeeSection3.2 for a moreprecisedefinitionof QFA.

We start by showing an exponential lower bound for
QFA.

Theorem2.1 Let �3� bethelanguage

�
	��F
G	H�I���J�G��� � �K
 	�
L�� "��M
Then,

1. ��� is recognizedbya DFA of size #%$& (' ,
2. ��� is recognizedbysomeQFA, and

3. AnyQFA recognizing � � with someconstantprobabil-
ity greaterthan NO has )+*�, ��2 states.

Notethata )+*�, ��2 versus#%$& (' separationis thebestpossi-
ble if only finite languages(or regular languageswith suf-
ficiently high probabilityof acceptanceby a QFA) arecon-
sidered:suchlanguagesarerecognizedby reversible(deter-
ministic) FA that areat mostexponentiallylarger thanthe
correspondingDFA [2].

We then considerenhancedQFA, in which insteadof
only applying a unitary transformationwhena new input
symbol is seen,we allow a combinationof unitary opera-
tors andorthogonalmeasurements.With the introduction
of irreversibility via measurements,it mayappearthatsuch
automatabeat leastaspowerful asDFA. However, it is not
hard to verify (by applyinga techniqueof [14], alsoused
in [9]) that enhancedQFA acceptonly regular languages.
Moreover, we show that theboundof Theorem2.1 contin-
uesto hold.

Theorem2.2 Thestatementsof Theorem2.1 hold also for
enhancedQFA.

It alsofollowsfrom theproofof this theoremthatenhanced
QFA acceptonly astrict subsetof theregularlanguages.

Randomaccessencodingwasintroducedin [3] asa po-
tentially powerful primitive in quantuminformation pro-
cessing.An $; P�Q@R�Q:<' -randomaccessencodingis a func-
tion S thatmaps -bit stringsto mixedstatesover @ qubits
such that, for every TU���V�W��MEM�M��Q "� , there is a measure-
ment XZY with outcome� or � thathasthepropertythat for
all [9�\�����G�+� � ,] ^`_ X Y $aS�$&[b'4'b�R[ Ydcfe :�M
Serialencodingwasdefinedsimilarly, exceptthatthemea-
surementX Y is allowed to dependon all the subsequent
bits [ Yhg Nji�iEi [ � of theencodedstring. The techniqueused
in proving Theorem2.1 also yields a boundfor suchen-
coding. This bound matchesthe classicalupper bound
of $4�k5l79$;:<'1'& �mn#%$po&q+rb (' shown in [3] up to the loga-
rithmic additive term.

Theorem2.3 Any $& P�a@I�a:<' -randomaccess(or serial) en-
codinghas@ e $4�s5�79$;:<'1'& .

To finish, we presenta simple alternative to Holevo’s
bound[8].

Theorem2.4 Let ? bea randomvariableover bit strings
which are encodedas mixed statesover @ qubits and
let t%$&?9��uv' denotethe net probability of the u mostlikely
stringsin thesamplespaceof ? . If w is anyrandomvari-
ableobtainedbymakingsomemeasurementof theencoding
of ? , then

1. there is a decodingprocedure xky such that] ^G_ x y $Qwz'{�I? c|e )�}�~ ,���� � 2 �
where 7\$&?�
�w�' is the conditional Shannonentropy
of ? with respectto w ; and



2. for anydecodingfunctionx ,] ^G_ x�$Qwz'b�\? c � t%$&?9�1)���'QM
In particular, this implies that when ? is distributeduni-
formly, themutualinformation �j$;?��Gwz' of ? and w is at
most @ . Typical applicationsof the Holevo’s boundsuch
asthatin [10, 3] involveonly this weaker form. Our bound
thus obviates the needfor a translationof in-probability
statementsinto statementsabout mutual information in
thesecases,alsogiving betterboundsthanHolevo’s theo-
remin theprocess.

3. Preliminaries

First, in Section3.1, we review the basicelementsof
quantuminformationtheory. Then,in Section3.2, we de-
fine enhancedQFA formally using someof the concepts
presentedthere.

3.1. Inf ormation theory basics

Weusethefollowingnotationin thispaper. Let ? and w
be two randomvariables. 79$&?�' denotesthe Shannonen-
tropy of ? ; 79$;?�
hw�' , the conditional Shannonentropy
of ? with respectto the variable w ; and ��$&?���w�' , the
mutualinformationof thetwo variables? and w . We also
use 7�� _ ���G� cK� _ ���G� c to denotethe binary entropy func-
tion. We refer thereaderto [7] for thedefinitionandprop-
ertiesof thesestandardconceptsfrom classicalinformation
theory.

Thequantummechanicalanalogueof a randomvariable
is a probabilitydistribution oversuperpositions,alsocalled
a mixedstate. Considerthe mixed state ��: Y �G
h� Y1� � , where
the superposition
h�LY � is drawn with probability :�Y . The
behaviour of this mixed stateis completelycharacterized
by its densitymatrix ��� Y :�YL
h�LY �4� ��Y1
 . We will therefore
identify amixedstatewith its densitymatrix.

The following propertiesof densitymatricesareimme-
diatefrom thedefinition.For any densitymatrix � ,

1. � is Hermitian,i.e., �����j� .
2. � hasunit trace,i.e., � ^ $p�"'{� Y �"$&T��QT�'{�n� .
3. � is positive semi-definite,i.e., �;� 
a�F
 ����e � for

all 
 ��� .
Thus,every densitymatrix is unitarily diagonalizableand
hasnon-negative real eigenvaluesthat sum up to � . The
vonNeumannentropy �"$��P' of adensitymatrix � is defined
as �($p�"'6��5 Yv� YWo&q+r � Y , where � � Ya� is the multisetof
all theeigenvaluesof � . In otherwords, �"$p�P' is theShan-
nonentropy of the distribution inducedby the eigenvalues

of � on thecorrespondingeigenvectors.For a comprehen-
sive introductionto this conceptandits properties,see,for
instance,[15, 12, 13].

The densitymatrix correspondingto a mixedstatewith
superpositionsdrawn from aHilbert space� is saidto have
supportin � . First,we notethefollowing.

Fact 3.1 If � is a densitymatrix with supportin a Hilbert
spaceof dimensionu , then �"$p�('{��o&q+rKu .
This is becausethe probability distribution inducedby the
eigenvaluesof � hassupportof sizeatmost u . TheShannon
entropy of any suchdistribution is atmost o&q+rKu .

Whena unitary operatorB is appliedto a mixed state,
thecorrespondingdensitymatrix � is transformedto B��bBZ� .
Sincetheeigenvaluesof BJ�bBK� arethesameasthoseof � ,
we concludethat entropy is invariantunderunitary opera-
tions.

Fact 3.2 For anydensitymatrix � andunitary operator B ,
wehave �"$QBJ�bBK��'b�!�"$p�"' .
On theotherhand,whenwe make anorthogonalmeasure-
menton a mixed state,the the entropy of the systemcan
only increase.1 If a mixedstate� is measuredaccordingto
an orthogonalsetof projections �+t���� , it is easilyverified
thattheresultingdensitymatrix is givenby � t � �Pt � .
Fact 3.3 Let � be the densitymatrix of a mixedstate in
a Hilbert space� and let the set of orthogonal projec-
tions ��t � � definea measurementin � . Further, let  v¡��� t � �{t � bethedensitymatrix resultingfroma measure-
ment of the mixed state with respectto this observable.
Then �"$��<¡a' e �"$��P' .
It is not hardto seethat this is in facta consequenceof the
propertyof densitymatricesthattheentropy of any random
variableobtainedby making a measurementon a mixed
stateis at leastasmuchastheentropy of its densitymatrix.
A proof of this propertymay be found in [12, Chapter9,
pp.262–263].

3.2. Enhancedone-wayquantum finite automata

An enhancedone-way quantumfinite automaton(QFA)
is a theoreticalmodel for a quantumcomputerwith finite
workspace.Modelsfor suchspace-restrictedquantumcom-
puterswere first consideredby [11, 9]. However, these
modelsdid not includethefull rangeof operationsallowed

1This fact may appearto becounterintuitive at first, sincetheentropy
of a systemis usually understoodto quantify our ignoranceof the state
of thesystem,andmakingameasurementrevealssomeinformationabout
its state. However, it shouldbe notedthat the increasein entropy is not
claimedin thestateof thesystemconditionedon thestateof theobserver,
but in thestateof thesystemwith thestateof theobserver tracedout.



by thelawsof quantummechanics.In particular, themodel
of [11] doesnotincludemeasurementsasintermediatesteps
in acomputation,andthemodelof [9] allowsonly measure-
mentsthatcheckfor acceptance,rejectionor continuation.
Themodelwe describebelow rectifiesthis situationby al-
lowing any orthogonal measurementasa valid intermedi-
atecomputationalstep. Our modelmaybeseenasa finite
memoryversionof themixedstatequantumcomputersde-
fined in [1]. Note that we do not allow the moregeneral
“positive operatorvaluedmeasurements”becausethe im-
plementationof suchmeasurementsinvolvesthe joint uni-
tary evolution of the stateof the automatonwith a fresh
set of ancilla qubits, which runs againstthe (fixed finite
workspace)spirit of themodel.

In abstractterms,we may definean enhancedQFA as
follows. It hasa finite setof basisstates¢ , which consists
of threeparts: acceptingstates,rejectingstatesand non-
halting states. The setsof accepting,rejectingand non-
halting basisstatesare denotedby ¢K£¥¤Q¤���¢K¦�§Q¨ and ¢K©E/¥© ,
respectively. Oneof the states,ª1y , is distinguishedas the
startingstate.

Inputs to a QFA are words over a finite alphabet « .
We shall alsousethe symbols‘ ¬ 
 ’ and ‘ ­ ’ that do not be-
long to « to denotethe left and the right end-marker, re-
spectively. The set ®¯�°«�±²��¬ 

��­�� denotesthe work-
ing alphabetof the QFA. For eachsymbol A��!® , an en-
hancedQFA hasacorresponding“superoperator”³3C which
is given by a compositionof a finite sequenceof uni-
tary transformationsandorthogonalmeasurementson the
spacé{µ . An enhancedQFA is thusdefinedby describ-
ing ¢¶�E¢Z£1¤Q¤G�E¢K¦d§Q¨·��¢K©E/¥©��Eª1y+��« , and³ C for all A���® .

At any time, the stateof a QFA canbe describedby a
densitymatrix with supportin ´ µ . Thecomputationstarts
in the state 
�ª y��1� ª y 
 . Then transformationscorresponding
to the left endmarker ‘ ¬ 
 ,’ the lettersof the input word [
and the right endmarker ‘ ­ ’ are appliedin successionto
the stateof the automaton,unlessa transformationresults
in acceptanceor rejectionof the input. A transformation
correspondingto asymbol A¸�6® consistsof two steps:

1. First, ³3C is appliedto � , the currentstateof the au-
tomaton,to obtainthenew state�j¡ .

2. Then, �j¡ is measuredwith respectto the observ-
able ¹b£¥¤Q¤LºF¹b¦d§Q¨EºF¹b©�/1© , where¹P£1¤Q¤��R»¥¼L½+¾��V
hª � 
Lª¿�¢K£¥¤Q¤G� , ¹b¦�§Q¨À�Á»1¼L½V¾j�+
�ª � 
�ªÂ�Ã¢Z¦�§Q¨Q� , ¹b©�/1©Ä�»1¼�½+¾j�+
�ª � 
%ª��Å¢K©�/1©L� . The probability of observ-
ing ¹"Y is equalto � ^ $Qt<Yd�j¡Æ' , wheret<Y is theorthogonal
projectiononto ¹"Y . If we observe ¹b£¥¤Q¤ (or ¹P¦�§Q¨ ), the
input is accepted(or rejected).Otherwise,thecompu-
tation continues(with the state t ©�/1© ��¡Çt ©E/¥© ), andthe
next transformation,if any, is applied.

Weregardthesetwo stepstogetherasreadingthesymbol A .

0

σ1

U0

U1 U1 U1

U0 U0σ σ

Quantum System0/1

σ

=

= σ

Figure 1. A streamof randombits determiningthe
evolutionof a quantumsystem.

A QFA È is saidto accept(or recognize) a language�
with probability :UÉ�NO if it acceptsevery word in � with
probabilityat least: , andrejectsevery word not in � with
probabilityat least: .

Thesizeof afinite automatonis definedasthenumberof
(basis)statesin it. The“spaceusedby theautomaton”refers
to thenumberof (qu)bitsrequiredto representanarbitrary
automatonstate.

The model of QFA as definedin [9] differs from this
model in that the superoperators³{C areall requiredto be
givenby unitarytransformationsB3C .
4. The automataand coding lower bounds

In this section,we prove thefirst threetheoremsof Sec-
tion 2. They areall basedon a commonframework which
wepresentin Section4.1.

4.1. The conceptualframework

Considerthe evolution of the a quantumsystemunder
a randomsequenceof unitary transformations$aÊvY¥' , where
each Ê�Y is either B`y or B N (seeFigure 1). Now suppose
that the transformationsB�y and B N are distinguishablein
the sensethat for every superposition
�� � of the system,B y 
�� � canbedistinguishedfrom B N 
h� � with successprob-
ability, say, )�D�Ë by somefixedmeasurement.At eachstep,
the systemgainssomeinformation aboutthe transforma-
tion appliedto it, andwe expectthe entropy of thesystem
to increaseaccordingly. In general,we couldapplyoneof
two arbitrarybut distinguishablequantumoperationsonthe
system,andwe would expectthesameincreasein entropy.
This is theessentialcontentof our key lemma:

Lemma 4.1 Let ÌÍy and Ì N be two densitymatrices,and
let ÌÅ� NO $pÌ y m�Ì N ' be a randommixture of thesematri-
ces. If X is a measurementwith outcome� or � such that



makingthemeasurementon ÌZÎ yieldsthebit Ï with average
probability : , then

�($pÌ%' e �) _ �"$pÌÍyv'jm��($pÌ N ' c m�$4�s5U79$&:j'4'aM
This lemmais a simplecorollaryof theclassicHolevo the-
orem[8] from quantuminformation theorywhich bounds
the amountof informationwe canextract from a quantum
encodingof classicalbits.

Theorem4.2(Holevo) Let [8Ð� ÌZÑ be any quantumen-
codingof bit strings,let ? bea randomvariablewith a dis-
tributiongivenby

] ^`_ ?Ò�\[ c �\: Ñ , andlet ÌÓ� Ñ : Ñ Ì Ñ
be the statecorrespondingto the encodingof the random
variable ? . If w is any randomvariableobtainedby per-
forminga measurementon theencoding, then

�j$;?Ô�Qwz'Ã� �"$�Ì%'�5 Ñ : Ñ �"$�Ì Ñ 'QM
Proof of Lemma 4.1: ConsiderÌZÎ to be an encodingof
the bit Ï . If ? is an unbiasedbooleanrandomvariable,
thenÌ representstheencodingof ? . Let w betheoutcome
of themeasurementof thisencodingaccordingto X . By the
hypothesisof thelemma,

] ^`_ wÕ�R? c �R: . It is easyto see
from theconcavity of theentropy functionthat

��$&?Ô�aw�' e �s5U79$&:j'
(cf. Fano’s inequality [7]). The lemmanow follows from
Theorem4.2.

4.2. The caseof quantum automata

We now prove Theorem2.1 usingthis framework. The
first two partsof thetheoremareeasy;weturnto part3. We
needthefollowing definitionfrom [3].

Definition 4.1 An Ö -restricted one-way QFA for a lan-
guage � is a one-wayQFA that recognizesthe language
with probability :×É NO , andwhich haltswith non-zero prob-
ability before seeingthe right end-marker only after it has
readÖ lettersof theinput.

We first prove a boundof )�, N }J~ ,�Ø 2�2·� for thenumberof
basisstatesin any  -restrictedQFA È for � � . Note that
the evolution of È on readingstreamof randombits cor-
respondsexactly to that of the quantumsystemdescribed
in Section4.1 during the first  steps. So, at the end of
readinga random -bit string, the stateof È hasentropy
at least $4��5Ó79$&:j'4'; . However, this entropy is bounded
by o&q+rZ
�¢%
 by Fact 3.1 above, where ¢ is the setof basis
statesof È . This givesustheabove bound.Sincewe will
referto this argumentlater, we formalizeit below.

Let �`Ù be the stateof the QFA È after the Ú th symbol
of a random -bit input hasbeenread(�F�ÛÚÜ�R ).

Claim 4.3 �($p� Ù ' e $4�Í5U79$;:<'4'aÚ .
Proof: Let B�C betheunitaryoperatorof È corresponding
to thesymbol A . Let ¹ y bethespanof theacceptingbasis
statesof È andlet ¹ N bethesubspaceorthogonalto it. De-
fine themeasurementX asapplyingthetransformationB�Ý
(recall that ‘$’ is theright end-marker)andthenmeasuring
with respectto theobservable ¹ y ºU¹ N . We cannow prove
theclaimby induction.

For ÚF��� , thestateof theautomatonis pure,so �($p� y '{�� . Now assumethat �"$p� Ù } N ' e $1�Í5�79$&:j'4'4$aÚ%5²�+' . After
the Ú th randominput symbol is read, the stateof È be-
comes

� Ù � �) $aB y � Ù } N B �y m�B N � Ù } N B �N 'aM
By the definition of È , measuringB Î � Ù } N B �Î according
to X yields Ï with probability at least :�É NO . So by
Lemma4.1,wehave

�"$p� Ù ' e �) ÎÇÞ y+ß N
�"$aB�Î4� Ù } N B �Î 'jm�$4�s5U79$;:<'4'aM (1)

But the entropy of a mixed stateis preserved by unitary
transformations(Fact3.2),so

�"$aB Î � Ù } N B �Î '�� �"$�� Ù } N ' e $4�s5U79$&:j'4'1$QÚ¶5��+'QM
Inequality(1) now givesustheclaimedbound.

To passfrom a boundon restrictedQFA to onefor gen-
eral QFA for the language,we now invoke the following
lemmafrom [3].

Lemma 4.4 Let È bea one-wayQFA with 
�¢%
 statesrec-
ognizing a language � with probability : . Thenthere is
an Ö -restrictedone-wayQFA È²¡ with #%$&ÖZ
�¢%
&' statesthat
recognizes� with probability : .
Thus,any generalQFA for �3� using 
�¢%
 basisstatesyields
an  -restrictedQFA thatuses#%$& ×
&¢%
�' states.By thelower
boundderivedabove,we thenhave


&¢%
 e ) , N }J~ ,�Ø 2�2·� } . /¥0J� }�à , N 2 �
theboundstatedin Theorem2.1.

4.3. Robustnessof the automata lower bound

As mentionedin Section1, QFA in which generalin-
termediatemeasurementsare allowed (which we call en-
hancedQFA), weresuggestedasa way of overcomingthe
restrictionof reversibleevolution thatleadsto theexponen-
tial lowerboundshown in [3] (andin theprevioussection).
Theorem2.2rulesout this possibility. We provethis next.

Armedwith the formalismof densitymatrices,it is not
hardto verify (by usinga techniqueof [14], which is also



usedin [9]) that enhancedQFA acceptonly regular lan-
guages.Moreover, the lower boundof Theorem2.1 con-
tinuesto hold for suchQFA, asweshow below. Thisessen-
tially follows from the fact that the entropy of a quantum
systemcannotdecreaseunderthe actionof a sequenceof
unitaryoperationsandorthogonalmeasurements.

We now sketchhow the proof of Theorem2.2 may be
completed.We proceedasin the previous sectionby first
showing theboundfor restrictedenhancedQFA, which are
definedanalogously. Lemma4.4, which extendseasily to
enhancedQFA, thengivesustheclaimedbound.

As before, we consider the state of a restrictedau-
tomatonfor � � with acceptanceprobability : after a ran-
dom  -bit input has beenread. Its entropy is bounded
by o�qVrZ
�¢%
 , where ¢ is the setof its basisstates.Follow-
ing Lemma4.3,we arguethattheentropy of theautomaton
stateincreasesby at least �Z5Û79$&:j' every time a new ran-
dominput symbolis read.Claim 4.3 extendseasilyto this
caseaswell: initially, �"$�� y ' e � , andwe needonly prove
that �"$;³ Î ��Ù } N ' e �($p��Ù } N ' for ÏÜ�À����� , where ³ Î is the
superoperatorcorrespondingto thebit Ï , and � Y is theden-
sity matrixof theautomatonstateafterT inputsymbolshave
beenread.Since³{Î is thecompositionof a finite sequence
of unitary operatorsandorthogonalmeasurements,this is
immediatefrom the monotonicitypropertyof densityma-
tricesimplied by Facts3.2and3.3.

As a simpleconsequence,weobtain:

Theorem4.5 Theregular language �E���G�+�V�a� cannotbeac-
ceptedby any enhancedQFA with probability bounded
awayfrom NO .
To seethis,wenotethatany enhancedQFA thatsupposedly
recognizesthis languagealsocorrectlyrecognizesall words
of lengthat most  of the language�3� , for every  . The
proofof Theorem2.2now tells usthatthenumberof states
in theQFA is )V*�, �W2 for every  , which is a contradiction.

4.4. Random accesscodes

We now prove Theorem2.3. Considerany randomac-
cessencodingwith parameters P�Q@R�Q: . Let � Ñ denotethe
densitymatrix correspondingto the encodingof the  -bit
string [ . Thedensitymatrixof a randomcodeword is given
by �À� NO�á Ñ � Ñ . We canboundthe entropy of � by @
by Fact3.1. UsingLemma4.1,we canalsoprove a lower
boundfor theentropy of � , andhenceobtaina lowerbound
on @ .

For any âã�\�����G�+� Ù , where�F�nÚz�R , let

�`äÃ� �) � } Ù å�æ�ç y+ß N1è á�é�ê
� å ä�M

We claim that

Claim 4.6 �($p� ä ' e $4�Í5U79$&:j'4'1$& ë5�Ú�' .
Proof: The proof is by downward induction on Ú . The
basecaseÚ��� is satisfiedeasily: �"$p� ä ' e � for all  -bit
stringsâ .

Supposetheclaim is truefor Ú¶m�� . We have

� ä � �) $�� y ä më� N ä 'QM
By hypothesis,

�"$p� Î ä ' e $1�s5�79$;:<'1'4$& ë5UÚ¶5��V'Q�
for Ï����J�G� . Moreover, sincethe two densitymatricesare
mixturesarisingfrom stringsthatdiffer in the $& F59ÚJ' th bit,
the measurementX � } Ù distinguishesthem correctlywith
probability : . Thus,by Lemma4.1,we get

�"$�� ä ' e �) $a�"$p� y ä 'jm��"$�� N ä '1'jmU$1�Í5U79$&:j'4'Q�
which givesustheclaimedbound.

Theorem 2.3 now follows by combining the claim
(with â chosento betheemptystring)andtheupperbound
of @ on the entropy. Notice thatwe couldallow the mea-
surementX Y to dependon the subsequentbits of the en-
codedstring in the argumentabove. This meansthat the
boundholdsfor serialcodesaswell.

We concludethis sectionby observingthattheboundof
Theorem2.3 alsogivesa communicationlower boundfor
the problemof information-theoreticallysecureprivatein-
formationretrieval with onedatabase(see,e.g.,[5]). The
problem may be describedas the following communica-
tion game.Oneparty, Alice, hasasinput an  -bit string [
(thedatabase)andthesecondparty, Bob, hasan index Tk��V���EMEM�M
�Q "� . Bob wishesto learnthe valueof the T th entry
in thedatabase[<Y (with probability :ìÉ NO ) without reveal-
ing any informationaboutT to Alice. Theprivacy condition
translatesto thefactthat in any (quantum)protocolfor this
problem,Bob’s computationandcommunicationareinde-
pendentof his input. We may alsoassume(by the princi-
ple of safestorage)thatno intermediatemeasurementsare
madeduring the quantumprotocol. A lemmadueto [10]
(basedon a techniquefrom [16]) tells us that whenever
Bob’s actionsin a protocol areoblivious to his input, his
statelies in a fixedsubspaceof dimension) � independent
of Alice’s input,if @ qubitswereexchangedduringthepro-
tocol. Sincehis stateat theendof an informationretrieval
protocol is independentof T , Bob may extract any bit [<�
from the stateby making a suitablemeasurement.Thus,
an @ -qubit protocoldefinesa randomaccesscodeover @
qubits,which impliesthat @ e $1�s5�79$;:<'1'& .

5. An alternative to Holevo’s theorem

In thissection,weproveTheorem2.4.Wefirst provethe
lowerboundon thedecodingprobability.



Considerrandomvariables? and w asin thestatement
of Theorem2.4. We describea naturaldecodingproce-
durexky andthenshow thatit satisfiestherequirementof the
theorem.Oninput â , thedecodingalgorithmoutputs[ such
that : Ñ � ä �Uíz½+î ÑGï : Ñ ï � ä , where: Ñ � ä �

] ^�_ ?Ò�R[3
�wH��â c .
Let :vð £1ñä denotethis probabilityandlet [ ä denotethecor-
responding[ .

Claim 5.1 Theprocedure x�y describedabovedecodescor-
rectlywith probabilityat least) }�~ ,���� � 2 .
Proof: Theprobabilityof correctdecodingis equalto] ^�_ xky�$Qwz'{�I? c

� ä
] ^�_ ?Ä�R[ ä 
�wÕ�Iâ c i

] ^G_ wÕ�Iâ c
� ò _ : ð £¥ñ� c M

Now, 79$;?�
hwó�Óâ`'¶�|5 Ñ : Ñ � ä o&q+r3: Ñ � ä e 56o&q+r�:vð £1ñä .
So : ð £1ñä e ) }J~ ,h�¿� � Þ ä 2 . Takingexpectationover w , and
notingthat ) } ,�ô 2 is a convex function,we have

ò _ : ð £¥ñ� cõe ò ) }J~ ,���� � Þ ä 2
e ) }Lö�÷ ~ ,���� � Þ ä 2�ø
� )�}J~ ,h�¿� � 2 �

which givesus the claimedlower boundon the decoding
probability.

We now turn to the upperboundon the probability of
correctdecoding. Considerany encodingof strings [ùÐ���ª¥Ñ ß Y �G
h�LÑ ß Y4� � into mixedstatesover @ qubits,andany de-
codingprocedurex . The outputof x may be viewed as
theoutcomeof a measurementgivenby orthogonalprojec-
tions �+t�ÑL� in theHilbert spaceof theencodingaugmented
with someancilla.Theprobabilitymaythenbeboundedas] ^�_ x¸$Qw�'P�\? c

� Ñ
] ^�_ x�$awz'{�R[ c i

] ^�_ ?Ò�I[ c
� Ñ :�Ñ Y ª�Ñ ß Y�ú t<ÑÍ
��LÑ ß Y4�`ú

O

� Ñ :�Ñ ú t<ÑÍ
��LÑ ��ú
O � (2)

where : Ñ �
] ^G_ ?û�Õ[ c , and 
�� Ñ � is the purestate 
�� Ñ ß Y �

that maximizesthe probability ú t Ñ 
h� Ñ ß Y �`ú O of obtaining
thecorrectoutcome[ whenitsencodingis measured.(In all
theexpressionsin thissection,theancillaqubitsusedin the
measurementhave beensuppressedfor easeof notation.)
We cannow boundthe decodingprobability by using the
following claim.

Claim 5.2 Ñ ú t�ÑK
h�LÑ ��ú O �U) � .

Proof: Let ¹ be the subspacespannedby the code-
words 
��LÑ � , and let ¢ be the projection onto ¹ . Since
thecodesareover @ qubits, ¹ hasdimensionat most ) � .
Let �V
�ü�Y � � be an orthonormalbasisfor ¹ . Let �+
�ýü Ñ ß � � � be
anorthonormalbasisfor therangeof t Ñ . Theunionof all
thesebases�+
Çýü Ñ ß � � � is an orthonormalbasisfor the entire
decodingHilbert space.Now,

ú t Ñ 
h� Ñ �`ú O � � 
 � ýü Ñ ß �G
�� Ñ � 

O

� � ú ¢�
Çýü�Ñ ß �G�`ú
O M

The last inequality follows becausethe lengthof the pro-
jection of any vectoronto a spaceþ is at leastthe length
of its projection onto a subspaceÊ of þ . Observe
that ú ¢�
dýü Ñ ß � �`ú O � Y 
 � ü
Y4
�ýü Ñ ß � � 
 O . So,

Ñ ú t<ÑÍ
��LÑ �`ú O � Y Ñ ß � 
 � ü Y 
�ýü�Ñ ß ��� 

O

� Y ú ü�Y ú
O

� ) � �
since the orthonormal basis �+
hü
Y � � for ¹ has size at
most ) � , which is a boundon thedimensionof ¹ .

By (2), the probability of correct decoding is at
most Ñ :�Ñ ú t<ÑÍ
���Ñ �`ú O . From the claim above, this ex-
pressionis equal to Ñ :�Ñ � Ñ , where �Ã� � ÑÃ� �
and Ñ � Ñ²�Å) � . The maximumover all such � � Ñ�� of
this quantitymayeasilybeseento beboundedby thesum
of the ) � largestprobabilitymasses:�Ñ , i.e., by t%$&?\�4) � ' .
Moreover, for any given ? and@ , thereis a naturalpair of
encodinganddecodingfunctionsthatachievesthis bound.
Thisshows thattheboundis tight.

The above boundon decodingprobability can give us
sharperboundsonthenumberof qubitsusedin anencoding
thananapplicationof Holevo’s theorem.We illustratethis
with an exampleencodingof  -bits into  Rm!� orthogonal
states
 T � . Half thestringsareencodedas 
 � � , afourthas 
;� � ,
aneighthas 
 ) � , andsoon. A randomcodeword from this
codecanbedecodedwith probabilityexactly $; Im²�+'�) } � ,
which yields the correctanswerfor the numberof qubits
usedby invokingourbound.On theotherhand,themutual
information ��$&?���wz' betweenthe encodedstring and its
decodingis

�) m )) O m Ë)Vÿ m i�iEi m  ) � m  ) � �
whichsumsup to )Í5F) } , � } N 2 . Thisgivesusa lowerbound
of atmost ) whencombinedwith Holevo’s theorem.

NotethatTheorem2.4maybeappliedin a communica-
tion complexity context aswell, whencombinedwith the



lemmadueto [16, 10] mentionedin Section4.4. This im-
pliesthatif aftertheexchangeof @ quantumbits,  classi-
calbits aretransferredwith successprobabilityat least �¿É� , then @ e  �5�o&q+r N� . An applicationof Holevo’s the-
oremalongwith Fano’s inequality [7] would result in the
bound@ e �¥ k5F79$��+' . This lowerboundis acrucialingre-
dientin proving thequantumcommunicationcomplexity of
the inner productfunction [10]. Our resultgivesa bound
similar to that shown in [4] for computingInner Product,
but doesnot seemto generalizeto thecaseof entanglement
assistedcommunicationconsideredin [6].

Acknowledgements

I would like to thankDorit Aharonov for suggestingthe
possibilityof enhancedmodelsof quantumfinite automata,
which motivatedmuchof this work, Andris Ambainis for
useful commentson the paper, UmeshVazirani for many
discussionsthatleadto crucialinsightsandfor helpwith the
presentationof the results,andthe refereesfor their feed-
backon thepaper.

References

[1] D. Aharonov, A. Kitaev andN. Nisan. Quantumcir-
cuits with mixed states.Proceedingsof the Thirtieth
AnnualACM Symposiumon Theoryof Computation,
1997,pp.20–30.

[2] A. AmbainisandR. Freivalds. 1-way quantumfinite
automata:strengths,weaknessesandgeneralizations.
Proceedingsof the39thIEEESymposiumon Founda-
tionsof ComputerScience, 1998,pp.332–341.

[3] A. Ambainis,A. Nayak,A. Ta-ShmaandU. Vazirani.
Densequantumcodinganda lower boundfor 1-way
quantumautomata. Proceedingsof the Thirty-First
AnnualACM SymposiumontheTheoryof Computing,
1999.

[4] A. Ambainis, L.J. Schulman,A. Ta-Shma,U. Vazi-
rani and A. Wigderson. The quantumcommunica-
tion complexity of sampling.Proceedingsof the39th
IEEE Symposiumon Foundationsof ComputerSci-
ence, 1998,pp.342–351.

[5] B. Chor, O. Goldreich,E. Kushelivitz andM. Sudan.
Privateinformationretrieval. Proceedingsof the36th
IEEE Symposiumon Foundationsof ComputerSci-
ence, 1995, pp. 41–50.To appearin Journal of the
ACM.

[6] R.Cleve,W. vanDam,M. NielsenandA. Tapp.Quan-
tum entanglementandthecommunicationcomplexity

of the innerproductfunction. Proceedingsof the 1st
InternationalConferenceonQuantumComputingand
QuantumCommunication,LectureNotesin Computer
Science1509, 1998.

[7] T.M. CoverandJ.A.Thomas.Elementsof information
theory. Wiley, New York, 1991.

[8] A.S.Holevo. Someestimatesof theinformationtrans-
mitted by quantumcommunicationchannels. Prob-
lemy Peredachi Informatsii 9, 1973, pp. 3–11. En-
glishtranslationin Problemsof InformationTransmis-
sion9, 1973,pp.177–183.

[9] A. KondacsandJ. Watrous. On the power of quan-
tum finite stateautomata. Proceedingsof the 38th
IEEE Symposiumon Foundationsof ComputerSci-
ence, 1997,pp.66–75.

[10] I. Kremer. Quantumcommunication. Master’s thesis,
TheHebrew Universityof Jerusalem,1995.

[11] C. Moore and J. Crutchfield. Quantum au-
tomata and quantum grammars. Santa-FeInsti-
tute Working Paper97-07-062,1997.Also available
at the LANL QuantumPhysicse-Print Archive at
http://xxx.lanl.gov/archive/quant-ph/9707031.

[12] A. Peres. Quantumtheory: conceptsand methods.
Kluwer AcademicPublishers,Dordrecht,TheNether-
lands,1995.

[13] J. Preskill. Lecture notes for Physics 229: Ad-
vancedmathematicalmethodsof Physics, Califor-
nia Institute of Technology, 1998. Available at
http://www.theory.caltech.edu/people/preskill/ph229.

[14] M.O. Rabin. Probabilisticautomata.Informationand
Control 6, 1963,pp.230–245.

[15] A. Wehrl. Generalpropertiesof entropy. Reviewsof
ModernPhysics50(2), 1978,pp.221–260.

[16] A.C.-C. Yao. Quantumcircuit complexity. Proceed-
ings of the 34th IEEE Symposiumon Foundationsof
ComputerScience, 1993,pp.352–361.


