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Abstract

Considerthe finite regular language L,, = {w0 | w €
{0,1}*,Jw| < n}. In [3] it wasshownthat while this lan-
guage is acceptedby a deterministicfinite automatonof
sizeO(n), any one-wayquantumfinite automaton(QFA)
for it has size 2°%("/19sm)  This was basedon the fact
that the evolution of a QFA is required to be reversible
Whenarbitrary intermediatemeasuementsare allowed,
this intuition breaksdown. Nonethelesswe showa 2"
lower bound for such QFA for L,, thus also improving
the previousbound. Theimproved boundis obtainedfrom
simpleentopy argumentsasedon Holevo's theoem|8].
Thismethodalsoallows usto obtain an asymptoticallyop-
timal (1 — H(p))n boundfor the densequantumcodes
(randomaccesscodes)introducedin [3]. We thenturn
to Holevo's theoem, and showthat in typical situations,
it may be replacedby a tighter and more transpaent in-
probability bound.

1. Intr oduction

One-vay quantumfinite automata(QFA) were defined
in [11, 9] andhave drawn muchinterestsincebecausehey
reflect the capabilitiesof currently feasible experimental
guantumcomputers.Moreover, their study providesmuch
insightinto thenatureof quantumcomputation Resultdike
thoseof [2] and[3] shav that the laws underlyingquan-
tum computatiorarea mixed blessing.[2] shavs how one
mayusesuperpositionto designQFA for certainlanguages
thatareexponentiallymoresuccinctthanthecorresponding
classicaFA. In contrastptherresultsfrom [3] shav thatthe
reversibility requirementf quantummechanicamposes
seriouslimits on the power of QFA—they shav that QFA
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for certainotherlanguagesreexponentiallylargerthanthe
correspondingdFA. In this paperwe considera different
model of QFA (called enhancedQFA) wherethe stateof
the QFA canbe measuredvhile eachsymbolis processed.
In the caseof moregeneraimodelssuchasquantumTuring
machinessuchintermediateneasurementdo not increase
the power of the model,sincemeasurementsanalwaysbe
replacedby safestorage.However, in the caseof QFA, the
spacdimitationsinherentin thedefinitionprecludethe pos-
sibility of similar reasoning.Moreover, in this nexv model,
the evolution of the systemis no longerreversible,so the
intuition from [9, 3] no longer applies. Indeed,this new
modelof QFA wassuggestedby Dorit Aharonos asamore
physicallyappropriatenodelthatmight not suffer from un-
necessanhandicapgesultingfrom the reversibility prop-
erty embeddedn thedefinitionsfrom [11, 9].

In this paper we shav thatenhancedFA arealsoex-
ponentiallylarger thanthe correspondinddFA for certain
languagesTheconceptuaframeawvork for our proofis com-
pletelydifferentfrom thatin [3]. We considerthe evolution
of a QFA on a randominput string and shaw that the en-
tropy of the mixed statethatit existsin canonly increase
with eachsuccessie symbolread. This holdstrue evenin
the presencef intermediatemeasurementdVoreover, for
certainlanguagesit is possibleto boundfrom belov the
increasen entropy thatresultsfrom processingeachsym-
bol, by appealingo Holevo's theorem[8]. Finally, we can
boundthe total information capacityof the QFA in terms
of the numberof statesof the QFA, andthereforeobtaina
lower boundon the numberof statesrequiredto correctly
recognizestringsof thelanguage The newv boundwe getis
tight, andthereforeanswersanissueleft openin [3].

The paper[3] also introducedthe novel possibility of
densequantumcodesthat seemto violate Holevo's bound
by exploiting the factthatin generalmeasurementgo not
commute.Thisraisedthepossibility of (for instanceparsi-
moniouslyencodinganentiretelephonealirectorysuchthat
ary singlenumbercould be extractedfrom it via a suitable
measuremenExamplesof suchrandomaccessodeswvere



givenin [3] that have no classicalcounterparts.However,
it was also shavn that no more than a logarithmic factor
compressiolis achiezable.We canusethe sameconceptual
framewvork asdescribedaboreto give alinearboundonthe
numberof qubitsrequiredfor suchcodes.This boundis op-
timal upto anadditive logarithmicterm,asfollowsfrom the
classicalupperboundgivenin [3]. Thus,quantumencod-
ing offersno asymptoticadvantageover classicalencoding
in this scenario Thisresohesanopenquestionfrom [3].

Finally weturnourattentionto Holevo’'sbound[8] itself.
Typically in quantumcomputatiorapplicationgthoughnot
in this paper),Holevo’s boundis appliedby cornverting, of-
tenimplicitly, a statementboutthe probability of correct
decodinginto a statementn termsof entropy, whenaran-
domvariable X is transmittedover a quantumchannelus-
ing m quantunbits. We give atight boundonthisdecoding
probability by a direct agumentwhich allows us to infer
lower boundsfor m without resortingto Holevo’stheorem.
Sincethe probability boundis tight, the inferred bounds
areat leastasgoodasthoseimplied by Holevo's theorem.
We also provide an examplewhereit givesa strictly bet-
ter boundthanthelatter. We shouldmentionthatthe proof
of Holevo’s bound (which is essentiallyequivalentto the
strongsubadditvity propertyof von Neumannentropy) is
ratherinvolved,while the proof of the probabilityboundss
quitetransparent.

2. Summary of results

A QFA (asdefinedin [9]) differs from a DFA in that
its stateis in generala superpositiorof the classicalbasis)
states.It startsin sucha state,andwhena new input sym-
bol ¢ is seenacorrespondingnitaryoperatoi/,, is applied
toit. Thestateisthenmeasuredo checkfor acceptancege-
jectionor continuation.If theresultof the measuremeris
‘continue; the next symbolis read,otherwisethe input is
acceptedr rejected. A QFA recognizesa languageif all
the stringsin it (or notin it) areacceptedrespectiely, re-
jected)with constantprobability boundedaway from 1/2.
SeeSection3.2for amoreprecisedefinitionof QFA.

We start by shaving an exponentiallower bound for
QFA.

Theorem2.1 Let L,, bethelanguage
{wO |w € {0,1}", |w| < n}.
Then,
1. L, is recanizedby a DFA of sizeO(n),
2. L, isrecanizedby someQFA, and

3. AnyQFArecaynizingL,, with someconstanprobabil-
ity greaterthan 1 has2(™ states.

Notethata 24 versusO(n) separations the bestpossi-
ble if only finite languagegor regularlanguagesvith suf-
ficiently high probability of acceptancéy a QFA) arecon-
sidered:suchlanguagesrerecognizedy reversible(deter
ministic) FA thatare at mostexponentiallylarger thanthe
correspondindFA [2].

We then considerenhancedQFA, in which insteadof
only applying a unitary transformatiorwhen a new input
symbolis seen,we allow a combinationof unitary opera-
tors and orthogonalmeasurementsWith the introduction
of irreversibility via measurements, may appeathatsuch
automatee atleastaspowerful asDFA. However, it is not
hardto verify (by applyinga techniqueof [14], alsoused
in [9]) thatenhanced)FA acceptonly regular languages.
Moreover, we shav thatthe boundof Theorem2.1 contin-
uesto hold.

Theorem 2.2 Thestatement®f Theoem?2.1 hold alsofor
enhanced)FA.

It alsofollows from the proof of thistheoremthatenhanced
QFA accepbnly astrict subsebf theregularlanguages.

Randomacces®ncodingwasintroducedin [3] asa po-
tentially powerful primitive in quantuminformation pro-
cessing. An (n,m, p)-randomaccessencodingis a func-
tion f thatmapsn-bit stringsto mixedstatesover m qubits
suchthat, for everyi € {1,...,n}, thereis a measure-
mentO; with outcome0 or 1 thathasthe propertythat for
allz € {0,1}",

Pr{0;(f(z)) = zi]

Serialencodingwasdefinedsimilarly, exceptthatthe mea-
surementO; is allowed to dependon all the subsequent
bits ;1 - - - 2, of theencodedstring. Thetechniqueused
in proving Theorem2.1 alsoyields a boundfor suchen-
coding. This bound matchesthe classicalupper bound
of (1 — H(p))n + O(logn) shavn in [3] up to the loga-
rithmic additive term.

> D

Theorem 2.3 Any (n, m, p)-randomaccesgor serial) en-
codinghasm > (1 — H(p))n.

To finish, we presenta simple alternatve to Holevo'’s
bound[8].

Theorem 2.4 Let X bearandomvariable over bit strings
which are encodedas mixed statesover m qubits and
let P(X,d) denotethe net probability of the d mostlikely
stringsin thesamplespaceof X. If Y is anyrandomvari-
ableobtainedby makingsomemeasuemenbftheencoding
of X, then

1. thereis a decodingprocedue D, suc that
Pr[Do(Y) = X] > 27 H&XIY),

where H(X|Y) is the conditional Shannonentropy
of X with respecto Y'; and



2. for anydecodingfunctionD,

Pr[D(Y)=X] < P(X,2™).

In particular this implies that when X is distributed uni-
formly, the mutualinformationZ(X :Y) of X andY is at
mostm. Typical applicationsof the Holevo's boundsuch
asthatin [10, 3] involve only this wealer form. Our bound
thus obviatesthe needfor a translationof in-probability
statementsinto statementsabout mutual information in
thesecasesalsogiving betterboundsthanHolevo’s theo-
remin theprocess.

3. Preliminaries

First, in Section3.1, we review the basic elementsof
guantuminformationtheory Then,in Section3.2, we de-
fine enhancedQFA formally using someof the concepts
presentedhere.

3.1 Information theory basics

We usethefollowing notationin this paper Let X andY
be two randomvariables. H (X) denoteshe Shannoren-
tropy of X; H(X]|Y), the conditional Shannonentropy
of X with respectto the variableY’; and I(X : Y), the
mutualinformationof the two variablesX andY. We also
useH : [0,1] — [0, 1] to denotethe binary entrogy func-
tion. We referthereaderto [7] for the definitionandprop-
ertiesof thesestandardconceptdrom classicainformation
theory

The quantummechanicabnalogueof arandomvariable
is a probability distribution over superpositionsalsocalled
amixedstate Considerthe mixed state{p;, |¢;)}, where
the superposition¢;) is drawvn with probability p;,. The
behaviour of this mixed stateis completelycharacterized
by its densitymatrix p = >, p; [¢:)(¢i|. We will therefore
identify a mixed statewith its densitymatrix.

The following propertiesof densitymatricesareimme-
diatefrom thedefinition. For any densitymatrix p,

1. pisHermitian,i.e.,p = p'.
2. p hasunittrace,i.e., Tr(p) = >, p(i,i) = 1.

3. p is positive semi-definite,i.e., (4| p|y) > 0 for
all ).

Thus, every densitymatrix is unitarily diagonalizableand
hasnon-negyative real eigervaluesthat sumup to 1. The
vonNeumanrentopy S(p) of adensitymatrix p is defined
asS(p) = —>_; Ailog\;, where{\;} is the multiset of
all the eigervaluesof p. In otherwords, S(p) is the Shan-
non entropy of the distribution inducedby the eigervalues

of p onthecorrespondingigervectors.For a comprehen-
sive introductionto this conceptandits properties see for
instance[15, 12, 13).

The densitymatrix correspondindo a mixed statewith
superpositiongravn from a Hilbert spacel is saidto have
supportin H. First,we notethefollowing.

Fact3.1 If p is a densitymatrix with supportin a Hilbert
spaceof dimensioni, thenS(p) < logd.

This is becausehe probability distribution inducedby the
eigernvaluesof p hassupporiof sizeatmostd. TheShannon
entropy of any suchdistributionis atmostlog d.

Whena unitary operatorU is appliedto a mixed state,
thecorrespondinglensitymatrix p is transformedo UpU .
Sincethe eigervaluesof UpUt arethe sameasthoseof p,
we concludethat entroyy is invariantunderunitary opera-
tions.

Fact 3.2 For anydensitymatrix p andunitary operator U,
wehaveS(UpU') = S(p).

On the otherhand,whenwe make an orthogonalmeasure-
menton a mixed state,the the entropy of the systemcan
only increasé. If amixedstatep is measuredccordingto
an orthogonalsetof projections{P;}, it is easily verified
thattheresultingdensitymatrix is givenby > ; PipP;.

Fact 3.3 Let p be the densitymatrix of a mixed statein
a Hilbert space’t and let the set of orthogonal projec-
tions { P;} definea measuementin . Further, let p’ =
> i PipP; be the densitymatrix resultingfroma measue-
ment of the mixed state with respectto this observable
ThenS(p') > S(p).

It is not hardto seethatthisis in facta consequencef the
propertyof densitymatriceshattheentrogy of ary random
variable obtainedby making a measuremendn a mixed
stateis atleastasmuchastheentroyy of its densitymatrix.
A proof of this propertymay be foundin [12, Chapter9,
pp.262—-263].

3.2 Enhancedone-wayquantum finite automata

An enhance@ne-way quantumfinite automaton(QFA)
is a theoreticalmodel for a quantumcomputerwith finite
workspaceModelsfor suchspace-restrictequantumcom-
puterswere first consideredby [11, 9]. However, these
modelsdid notincludethefull rangeof operationsallowed

1This factmay appearto be counterintuitie at first, sincethe entrofy
of a systemis usually understoodo quantify our ignoranceof the state
of thesystem andmakinga measuremenevealssomeinformationabout
its state. However, it shouldbe notedthat the increasein entropy is not
claimedin the stateof the systemconditionedon the stateof the obserer,
butin the stateof the systemwith the stateof the obserer tracedout.



by thelaws of quantummechanicsin particulay the model
of [11] doesnotincludemeasurementsintermediatesteps
in acomputationandthemodelof [9] allows only measure-
mentsthat checkfor acceptancesejectionor continuation.
The modelwe describebelow rectifiesthis situationby al-
lowing arny orthogonal measuremendsa valid intermedi-
atecomputationaktep. Our modelmay be seenasa finite
memoryversionof the mixed statequantumcomputergde-
finedin [1]. Note thatwe do not allow the more general
“positive operatorvalued measurementshecausehe im-
plementatiorof suchmeasurementsvolvesthe joint uni-
tary evolution of the stateof the automatonwith a fresh
set of ancilla qubits, which runs againstthe (fixed finite
workspace}ppirit of themodel.

In abstractterms,we may definean enhancedQFA as
follows. It hasafinite setof basisstates), which consists
of three parts: acceptingstates,rejecting statesand non-
halting states. The setsof accepting,rejectingand non-
halting basisstatesare denotedby Qacc, Qrej aNd Qnon,
respectiely. One of the statesy, is distinguishedasthe
startingstate.

Inputs to a QFA are words over a finite alphabetX.
We shall alsousethe symbols‘¢’ and‘$’ that do not be-
long to X to denotethe left andthe right end-marler, re-
spectvely. Thesetl’ = X U {¢,$} denotesthe work-
ing alphabetof the QFA. For eachsymbolc € T', anen-
hancedQFA hasacorrespondingsuperoperatori{, which
is given by a compositionof a finite sequenceof uni-
tary transformationsand orthogonalmeasurementsn the
spaceC®. An enhanced)FA is thusdefinedby describ-
iNg @, Qacc, @rejs @non, o, 2, andif, forallo € T

At ary time, the stateof a QFA canbe describedby a
densitymatrix with supportin C%. The computatiorstarts
in the state|qo){qo|. Thentransformationsorresponding
to the left endmarker ‘¢, the lettersof the input word =
andthe right end marler ‘$’ are appliedin successiorio
the stateof the automatonunlessa transformatiorresults
in acceptancer rejectionof the input. A transformation
correspondingo asymbolo € T' consistof two steps:

1. First, U, is appliedto p, the currentstateof the au-
tomaton to obtainthe new statep’.

2. Then, p’ is measuredwith respectto the observ-
ableFycc ® Frej @ Enon, WhereE, .. = span{|q) | ¢ €
Qacc}v Erej = Span{|Q> | q € Qrej}a Ewon =
span{|q) | ¢ € Quon}. The probability of observ-
ing E; is equalto Tr(P;p’), whereP; istheorthogonal
projectiononto £;. If we obsene E,.. (or E;), the
inputis acceptedor rejected).Otherwise the compu-
tation continues(with the state Pyon p’ Puon), andthe
next transformationif ary, is applied.

We regardthesetwo stepsogetheasreadingthe symbolo.

I I
! 1
) o= uocu§ |
UO - 1
L 1 1
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Figure 1. A streamof randombits determiningthe
evolutionof a quantumsystem.

A QFA M is saidto accept(or recaynize alanguagelL
with probability p > % if it acceptsevery word in L with
probability at leastp, andrejectsevery word notin L with
probabilityat leastp.

Thesizeof afinite automatoris definedasthenumberof
(basis)tatesn it. The“spaceusedby theautomaton'tefers
to the numberof (qu)bitsrequiredto representin arbitrary
automatorstate.

The model of QFA as definedin [9] differs from this
modelin that the superoperators(, areall requiredto be
givenby unitarytransformationg/,.

4. The automata and coding lower bounds

In this section,we prove thefirst threetheoremsf Sec-
tion 2. They areall basedon a commonframework which
we presenin Sectiond.1.

4.1 The conceptualframework

Considerthe evolution of the a quantumsystemunder
arandomsequencef unitary transformationgV;), where
eachV; is eitherUy or U; (seeFigurel). Now suppose
that the transformationd/y and U; are distinguishablén
the sensethat for every superposition¢) of the system,
Uy |¢) canbedistinguishedrom Uy |¢) with succesgrob-
ability, say 2/3 by somefixed measurementAt eachstep,
the systemgains someinformation aboutthe transforma-
tion appliedto it, andwe expectthe entrofy of the system
to increaseaccordingly In generalwe could apply oneof
two arbitrarybut distinguishableuantumoperationonthe
systemandwe would expectthe sameincreasan entropy.
Thisis theessentiatontentof our key lemma:

Lemma4.1l Let oy and o; be two densitymatrices,and
leto = (oo + o1) bearandommixture of thesematri-
ces. If O is a measuementwith outcome0 or 1 sud that



makingthemeasuemenbn o, yieldsthebit b with average
probability p, then

S(e) >

S18(00) +S()] + (1~ H(p)).

Thislemmais a simplecorollary of the classicHolevo the-
orem|[8] from quantuminformationtheorywhich bounds
the amountof informationwe canextractfrom a quantum
encodingof classicabits.

Theorem4.2(Holevo) Letz — o, be any quantumen-
codingof bit strings,let X bearandomvariablewith a dis-
tributiongivenby Pr [X = 2| = p,, andleto = > p,o,

be the statecorrespondingo the encodingof the random
variable X. If Y is anyrandomvariable obtainedby per

forminga measuementbntheencodingthen

I(X:Y) < S(0)- > p:S(om).

Proof of Lemma 4.1: Considero;, to be an encodingof
the bit . If X is an unbiasedbooleanrandomvariable,
theno representtheencodingof X . LetY betheoutcome
of themeasuremertf thisencodingaccordingo O. By the
hypothesiof thelemma,Pr [Y = X| = p. It is easyto see
from the concaity of theentropy functionthat

I(X:Y) > 1-H(p)

(cf. Fanos inequality[7]). Thelemmanow follows from
Theorenmd.2. [ ]

4.2 The caseof quantum automata

We now prove Theorem?2.1 usingthis framework. The
firsttwo partsof thetheoremareeasyweturnto part3. We
needthefollowing definitionfrom [3].

Definition 4.1 An r-restricted one-way QFA for a lan-
guage L is a one-wayQFA that recaynizesthe language
with probabilityp > % andwhich haltswith non-zeo prob-
ability before seeingtheright end-marler only after it has
readr letters of theinput.

We first prove a boundof 2:=H(®@) for the numberof
basisstatesin ary n-restrictedQFA M for L,,. Notethat
the evolution of M on readingstreamof randombits cor-
respondsxactly to that of the quantumsystemdescribed
in Section4.1 during the first n steps. So, at the end of
readinga randomn-bit string, the stateof M hasentropy
atleast(1 — H(p))n. However, this entropy is bounded
by log |Q| by Fact 3.1 above, where( is the setof basis
statesof M. This givesusthe abose bound. Sincewe will
referto this agumentater, we formalizeit below.

Let p, bethe stateof the QFA M afterthe kth symbol
of arandomn-bit inputhasbeenread(0 < k£ < n).

Claim 4.3 S(p,) > (1 — H(p))k.

Proof: LetU, betheunitaryoperatorof M corresponding
to thesymbolo. Let Ey bethe spanof the acceptingoasis
statesof M andlet E; bethesubspacerthogonaltoit. De-
fine the measuremen® asapplyingthe transformation’s
(recallthat'$’ is theright end-marler) andthenmeasuring
with respecto theobsenable Ey & E;. We cannow prove
theclaimby induction.

For k = 0, thestateof theautomatoris pure,soS(p,) =
0. Now assumehatS(p,,_,) > (1 — H(p))(k — 1). After
the kth randominput symbolis read,the stateof M be-
comes

1 )
pr = 5(Uopy 1Ug + Urpy 1 UY).

By the definition of M, measuringprk_lUJ according
to O vyields b with probability at leastp > % So by
Lemmad4.1,we have

So) > 5 O ST U+ (- HE). (1)
b=0,1

But the entrofy of a mixed stateis presered by unitary
transformationgFact3.2),so

SWipp U = S(py1) = (1— H(p))(k — 1).

Inequality(1) now givesustheclaimedbound. ]

To passfrom a boundon restrictedQFA to onefor gen-
eral QFA for the language we now invoke the following
lemmafrom [3].

Lemma4.4 Let M bea one-wayQFA with |Q| statesrec-
ognizing a language L with probability p. Thenthere is
an r-restrictedone-wayQFA M’ with O(r |Q)|) statesthat
recagnizesL with probability p.

Thus,ary generalQFA for L,, using|Q)| basisstatesyields
ann-restrictedQFA thatusesO(n |Q|) statesBy thelower
boundderivedabore,we thenhave

Ql > 2(1—H(p))n—logn-0(1)
theboundstatedn Theorem?2.1.
4.3, Robustnessof the automatalower bound

As mentionedin Section1, QFA in which generalin-
termediatemeasurementare allowed (which we call en-
hancedQFA), were suggestedsa way of overcomingthe
restrictionof reversibleevolution thatleadsto the exponen-
tial lower boundshavn in [3] (andin the previoussection).
Theorem2.2 rulesout this possibility We prove this next.

Armed with the formalismof densitymatrices,it is not
hardto verify (by usinga techniqueof [14], which is also



usedin [9]) that enhancedQFA acceptonly regular lan-

guages.Moreover, the lower boundof Theorem2.1 con-

tinuesto hold for suchQFA, aswe shawv below. Thisessen-
tially follows from the fact that the entropy of a quantum
systemcannotdecreaseunderthe actionof a sequencef

unitary operationsandorthogonaimeasurements.

We now sketch how the proof of Theorem2.2 may be
completed.We proceedasin the previous sectionby first
shaving the boundfor restrictedenhance®@FA, which are
definedanalogously Lemma4.4, which extendseasily to
enhance®@FA, thengivesusthe claimedbound.

As before, we considerthe state of a restrictedau-
tomatonfor L,, with acceptancg@robability p after a ran-
dom n-bit input has beenread. Its entropy is bounded
by log |Q|, where( is the setof its basisstates. Follow-
ing Lemmad4.3,we arguethatthe entropy of theautomaton
stateincreasedy atleastl — H(p) every time anew ran-
dominput symbolis read. Claim 4.3 extendseasilyto this
caseaswell: initially, S(p,) > 0, andwe needonly prove
that S(Uppr_1) > S(p,_,) for b = 0,1, wherels, is the
superoperatocorrespondingo the bit b, andp; is theden-
sity matrix of theautomatorstateafter: inputsymbolshave
beenread. Sincel{, is the compositionof a finite sequence
of unitary operatorsand orthogonalmeasurementghis is
immediatefrom the monotonicitypropertyof densityma-
tricesimplied by Facts3.2and3.3.

As asimpleconsequenceaye obtain:

Theorem4.5 Theregular language {0, 1}*0 cannotbeac-
ceptedby any enhancedQFA with probability bounded
awayfrom 3.

To seethis, we notethatany enhance®@FA thatsupposedly
recognizeshislanguagelsocorrectlyrecognizesll words
of lengthat mostn of the languageL,,, for every n. The
proofof Theorem2.2 now tells usthatthe numberof states
in the QFA is 29(") for every n, whichis a contradiction.

4.4 Random accessodes

We now prove Theorem2.3. Considerany randomac-
cessencodingwith parameters:, m,p. Let p, denotethe
densitymatrix correspondingo the encodingof the n-bit
stringx. Thedensitymatrix of arandomcodevordis given
by p = Zln > . Pz~ We canboundthe entrogy of p by m
by Fact3.1. UsingLemma4.1, we canalsoprove a lower
boundfor theentropy of p, andhenceobtainalowerbound
onm.

Forary y € {0, 1}"”', where0 < k < n, let

1
Py = Sk Z Pzy:

2€{0,1}"~F

We claimthat

Claim 4.6 S(p,) > (1 — H(p))(n — k).

Proof: The proof is by downward inductionon k. The
basecasek = n is satisfiedeasily: S(p,) > 0 for all n-bit
stringsy.

Supposégheclaimis truefor £ + 1. We have

1

Py = 5(poy+p1y)-

By hypothesis,

S(pyy) = (1=H(p))(n—Fk-1),

for b = 0,1. Moreover, sincethe two densitymatricesare
mixturesarisingfrom stringsthatdiffer in the (n — k)th bit,
the measuremen®,,_;, distinguisheshem correctly with
probabilityp. Thus,by Lemma4.1,we get

S(,) = 5(S(po,) +S(py,)) + (1= Hp),

which givesusthe claimedbound. [ ]

Theorem 2.3 now follows by combining the claim
(with y choserto bethe emptystring) andthe upperbound
of m onthe entropy. Notice thatwe could allow the mea-
surement®; to dependon the subsequenbits of the en-
codedstring in the agumentabove. This meansthat the
boundholdsfor serialcodesaswell.

We concludethis sectionby observingthatthe boundof
Theorem2.3 also givesa communicatioriower boundfor
the problemof information-theoreticallysecureprivatein-
formationretrieval with one databasdgsee,e.g.,[5]). The
problem may be describedas the following communica-
tion game.Oneparty, Alice, hasasinput ann-bit stringz
(the databasefandthe secondparty, Bob, hasanindex i €
{1,...,n}. Bobwishesto learnthe valueof theith entry
in thedatabase:; (with probabilityp > %) without reveal-
ing ary informationabout: to Alice. The privacy condition
translatego thefactthatin ary (quantum)protocolfor this
problem,Bob’s computationandcommunicatiorareinde-
pendentof his input. We may alsoassumeby the princi-
ple of safestorage)hatno intermediateneasurementare
madeduring the quantumprotocol. A lemmadueto [10]
(basedon a techniquefrom [16]) tells us that whenever
Bob’s actionsin a protocol are oblivious to his input, his
statelies in afixed subspacef dimension2™ independent
of Alice’sinput,if m qubitswereexchangedluringthepro-
tocol. Sincehis stateat the endof aninformationretrieval
protocolis independentf i, Bob may extract any bit z;
from the stateby making a suitablemeasurement.Thus,
an m-qubit protocoldefinesa randomaccessodeover m
qubits,whichimpliesthatm > (1 — H(p))n.

5. An alternative to Holevo’s theorem

In thissectionwe prove Theoren.4. Wefirst provethe
lower boundon the decodingprobability.



ConsiderrandomvariablesX andY asin the statement
of Theorem2.4. We describea natural decodingproce-
dureD, andthenshaw thatit satisfiegherequiremenof the
theorem.Oninputy, thedecodingalgorithmoutputsz such
thatp,|, = max, p,|,, wherep,, = Pr(X = z|Y = y].
Let p;"** denotethis probability andlet z,, denotethe cor-
respondinge.

Claim 5.1 TheprocedueD, describedabovedecodegor-
rectlywith probability at least2—H (XY,

Proof: Theprobabilityof correctdecodings equalto

Pr[Dy(Y) = X]
= ZPr[X =z,|Y =y - PrlY =y]
y
~ B,

Soppa* > 27 H(XIY=v)_ Taking expectationover Y, and
notingthat2~ () is a corvex function,we have

E [TH(X\Y:y)}

o~ BIH(X|Y=y)]

B

Y

v

9 H(X|Y),

which gives us the claimedlower boundon the decoding
probability. [ ]

We now turn to the upperboundon the probability of
correctdecoding. Considerary encodingof stringsz +—
{¢z,is |#=,4)} into mixed statesover m qubits,andary de-
codingprocedureD. The outputof D may be viewed as
the outcomeof a measuremergivenby orthogonalprojec-
tions{ P, } in the Hilbert spaceof the encodingaugmented
with someancilla. The probabilitymaythenbeboundedas

Pr[D(Y) = X]
= ZPr[D(Y) =z - Pr[X = a]

= D _p ) il Prloea) |
> el Paléx) |17 (2)

IN

wherep, = Pr[X = z], and|¢,) is the purestate|¢, ;)

that maximizesthe probability || P |¢4 ;) |* of obtaining
thecorrectoutcomer whenits encodings measured(In all

theexpressionsn this sectiontheancillaqubitsusedin the
measurementave beensuppressedor easeof notation.)
We cannow boundthe decodingprobability by using the
following claim.

Claim 5.2 3| Px |a) ||* < 2.

Proof: Let E be the subspacespannedby the code-
words |¢,), andlet Q be the projectiononto E. Since
the codesareover m qubits, £ hasdimensionat most2™.
Let {|e;)} beanorthonormalbasisfor E. Let {|é; ;)} be
anorthonormalbasisfor therangeof P,. The unionof all
thesebases{|é, ;)} is anorthonormalbasisfor the entire
decodingHilbert space Now,

1Py |6:2) I = ¢2)|”

Z | <éw,j
J

D@y |1
J

The last inequality follows becausehe length of the pro-
jection of ary vectoronto a spacelV is at leastthe length
of its projection onto a subspaceV of W. Obsene

that|| Q1es.5) |* = 32 | {eil éx,5)|”. So,

DNP ) IT < D0 eil a)l

i x,]
2
D el
i

< o,

IN

A

IN

since the orthonormal basis {|¢;)} for E has size at
most2™, whichis aboundon thedimensionof £. ]

By (2), the probability of correct decoding is at
most . pa || Pz [¢2) |%. From the claim above, this ex-
pressionis equalto > p.A;, where0 < )\, < 1
and) > A, < 2™. The maximumover all such{\,} of
this quantitymay easilybe seento be boundedby the sum
of the 2™ largestprobabilitymasse9.,, i.e.,by P(X, 2™).
Moreover, for ary given X andm, thereis a naturalpair of
encodinganddecodingfunctionsthat achievesthis bound.
This shavsthatthe boundis tight.

The above boundon decodingprobability can give us
sharpeboundsonthenumberof qubitsusedin anencoding
thananapplicationof Holevo's theorem.We illustrate this
with an exampleencodingof n-bitsinto n + 1 orthogonal
statedi). Half thestringsareencodeds|0), afourthas|1),
aneighthas|2), andsoon. A randomcodavord from this
codecanbe decodedwith probability exactly (n + 1)27",
which yields the correctanswerfor the numberof qubits
usedby invoking our bound.On the otherhand,the mutual
information I(X : Y') betweenthe encodedstring and its
decodings

1 2 3 n n

st T T o
whichsumsupto 2 — 2—(»—1)_ Thisgivesusalowerbound
of atmost2 whencombinedwith Holevo’s theorem.

Notethat Theorem2.4 may be appliedin acommunica-
tion compleity context aswell, when combinedwith the



lemmadueto [16, 10] mentionedn Section4.4. Thisim-
pliesthatif aftertheexchangeof m quantumbits, n classi-
cal bits aretransferredvith succesgrobabilityatleasts >
0, thenm > n — log % An applicationof Holevo's the-
oremalongwith Fano’s inequality [7] would resultin the
boundm > dn— H(5). Thislowerboundis acrucialingre-
dientin proving thequantumcommunicatiorcomplexity of
the inner productfunction [10]. Our resultgivesa bound
similar to that shawvn in [4] for computinglnner Product,
but doesnot seemto generalizeo the caseof entanglement
assistedcommunicatiorconsideredn [6].
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