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Abstract

Lower bounds for Quantum Computation and Communication

by

Ashwin V. Nayak

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Umesh Vazirani, Chair

The description of the state of an n-bit quantum system requires 2n − 1 com-

plex numbers. This exponentially large information capacity of quantum states has been

exploited in recent results showing both exponential speed-up, and exponential savings in

communication costs in solving certain problems using quantum computers. In this dis-

sertation, we establish limitations on the ways in which the exponentially many degrees of

freedom hidden in quantum states may be accessed. More specifically, we give tight bounds

for random access codes, which allow us to encode classical information using quantum bits

such that only a small portion of the encoded information may be recovered via a measure-

ment. This also sheds light on the power of computing with a finite number of quantum

bits—using these techniques, we show an exponential size lower bound for quantum finite

automata for a problem which can be solved on a linear size classical automaton. We

then consider the complexity of solving certain problems in the quantum black-box model,

an information theoretic model that has been a rich source of insights into the nature of

quantum computation. We derive nearly optimal lower bounds for several problems in this

model, including that of approximating the median. We also give new, optimal algorithms

for approximate medians and other order statistics.

Professor Umesh Vazirani
Dissertation Committee Chair
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Chapter 1

Introduction

The study of the intrinsic complexity of computational problems is based on the

modern version of the Church-Turing Thesis, which says that all reasonable models of com-

putation can be simulated efficiently by a probabilistic Turing machine. In 1982, Feynman

raised the question as to whether quantum physics could be simulated efficiently on con-

ventional computers [43]. The issue here is that an n-component quantum system (such as

a collection of n nuclear spins) in general exists in a superposition of all its observable con-

figurations (all the 2n possible combinations of “up” and “down” in the case of spins), and

so any straightforward method of simulating its behaviour suffers an exponential slowdown.

Feynman suggested computers with quantum mechanical parts as a way of overcoming this

limitation, thus implicitly challenging the very foundations of computer science. The task

of formalising these ideas was taken up only a little later [36, 37], and a sequence of re-

sults earlier this decade due to Bernstein and Vazirani [16], and Simon [72], culminating

in the polynomial time algorithms for Discrete Logarithms and Factoring due to Shor [71]

convincingly demonstrated the potential of quantum mechanical computers to provide ex-

ponential speed-up over classical ones. Since then, the power of quantum physical primitives

in computing has been established in many different contexts. In 1995, Grover discovered

an algorithm for searching an unordered database that is quadratically faster than possible

classically [46]. In 1997–98, it was shown that certain communication tasks can be per-

formed by exchanging significantly (even exponentially) fewer quantum bits as compared to

classical bits [24, 9, 68]. More recently, Watrous proved that PSPACE has constant-round

quantum interactive proof systems [75]. Tremendous effort has also been invested in the

experimental realisation of quantum computation and communication. There are numerous



2

proposals for experimental systems such as those based on ion traps [30] and nuclear mag-

netic resonance (NMR) [45, 33]. Simple quantum algorithms have also been implemented

using NMR (see, for example, [29, 53]) and quantum key distribution protocols have been

tested over increasingly larger distances [51].

The computational and information-theoretic advantages of using quantum me-

chanical primitives can perhaps be traced back to the phenomena of entanglement and

interference in the exponential size Hilbert space in which quantum states reside. Con-

sider, for example, the following situation. Alice has an n-bit secret x that Bob wishes to

know. However, she only agrees to give cryptic answers to questions asked by Bob: on

a query y, she replies with x · y =
∑
i xi yi (mod 2). Classically, every reply to a ques-

tion by Bob reveals only one bit of information about x, and so Bob has to query Alice n

times to learn x. On the other hand, by querying Alice with a superposition of points,

Bob can determine x by asking a single question! He queries Alice with a uniform su-

perposition of points 2−n/2
∑
y |y〉 and inverts the phase of points where x · y = 1 to get

the state |φx〉 = 2−n/2
∑
y(−1)x·y |y〉. The states {|φx〉} are all mutually orthogonal for

different x, so Bob can identify x by making a suitable measurement of his state. This

was the basis of a result of Bernstein and Vazirani [16] which gave the first evidence of the

super-polynomial speed-up possible with quantum computers.

As seen in the example above, results showing the superiority of quantum com-

puting seem to defy all conventional intuition about computation. It is therefore of crucial

importance to understand the limits of the power of quantum computation. One obstacle to

proving strong results in this direction is that P ⊆ BQP ⊆ PSPACE [16, 1]1. Thus, showing

that any non-trivial problem is not in BQP would imply a separation of P from PSPACE,

a long standing open problem in complexity theory. However, we can still get insights into

the limitations of quantum computing by looking at restricted models such as the black-box

model. In this model, information about the input is provided to an algorithm by an oracle.

An oracle may be seen as a subroutine whose code is inaccessible and expensive to run,

and we would like to solve problems by making the minimum number of invocations of the

subroutine.

The black-box model allows us to formalise and evaluate strategies for solving

1P is the class of problems decidable in polynomial time on a deterministic Turing machine and PSPACE
is the class decidable with polynomial amount of space. BQP is the class of problems that can be solved on
a quantum Turing machine in polynomial time and with bounded probability of error.
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outputinput

queries replies

Algorithm

Figure 1.1: In black-box computation, an algorithm communicates with an oracle to solve
problems. The input to the oracle subroutine is called the query and its output, the reply.

problems. For example, we could model “brute-force search” in the case of the satisfiablility

problem by assuming that we are given an oracle that tells us whether a given assignment

of truth values to the variables in a boolean formula (hidden from the algorithm) satisfies

it or not. The aim would be to determine satisfiability of the hidden formula by querying

the oracle as few times as possible. The black-box model is closely related to the two-party

communication model, where two “players” wish to compute a joint function of their private

inputs with as little communication as possible. Computing in this model is, in effect,

a communication game between the algorithm and the oracle, where the communication

follows a specific query-reply format (see Figure 1.1). The model thus lies at the intersection

of quantum computing and quantum communication and reinforces the need to investigate

the properties of quantum physical primitives from both perspectives.

In this thesis, we first study the information theoretic properties of quantum states

in the context of the general quantum communication model. We consider different ways

of encoding classical information in low dimensional quantum states and and prove tight

limits on how much compression can be achieved via such encoding. Our study finds an

unexpected application in the realm of computing—that of showing a size lower bound for

quantum finite automata. Next, we concentrate on the black-box model itself, and consider

the complexity of solving certain problems for which quantum algorithms provably more

efficient than classical ones were discovered recently. We show that the algorithms are

nearly optimal in some cases and present new, optimal algorithms in others. We elaborate

on these results below.
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1.1 Results on quantum encoding and communication

Quantum physics provides us with a new means of transmitting information—via

the exchange of quantum bits (or simply qubits, two-state quantum systems such as polarised

photons). The state of a collection of n qubits is given by a unit vector (a superposition)

in the n-fold tensor product of the two-dimensional complex Hilbert space generated by

the two (basis) states. Thus, the state is a unit vector in a 2n-dimensional vector space.

Now consider a situation where one party, Alice, wishes to send some message (a bit string)

to another party, Bob. Could she exploit this fact to encode her message into much fewer

quantum bits such that Bob could recover the message without incurring much error? While

the exponential description of quantum states offers an attractive possibility for encoding

information, the amount of information that can be extracted from them is limited by the

nature of the measurement process. A fundamental result from quantum information theory,

Holevo’s theorem [50], says that n qubits cannot be used to transmit more than n bits of

classical information. Given this result, it is tempting to conclude that the exponentially

many degrees of freedom latent in the description of a quantum system must necessarily

stay hidden or inaccessible. However, one can convey information in highly non-obvious

ways via the exchange of quantum states. For example, Ambainis, Schulman, Ta-Shma,

Vazirani and Wigderson [9] show how to deal cards over a quantum phone exponentially

more efficiently than is possible classically. They show that two communicating parties may

pick disjoint subsets of {0, . . . , n− 1} of size
√
n almost uniformly at random by transmitting

only O(log n) quantum bits, whereas Ω(
√
n) bits are required classically. The properties of

quantum states are thus very subtle, and a deeper study of quantum information is called

for.

Holevo’s theorem bounds the mutual information between two classical random

variables X and Y , where Y is obtained by making some measurement on a quantum

encoding of X. It thus forms a very basic tool for proving lower bounds in communication

scenarios. Indeed, it has been used to prove lower bounds for the communication complexity

of problems such as computing the inner product [55, 31]. We re-examine the problem of

encoding classical information into states of as few quantum bits as possible, and give a tight

analysis of the probability of decoding it correctly [61]. This gives us an alternative proof

of the fact that we cannot transmit classical data using much fewer quantum resources.

Theorem 1.1.1 Let X be a random variable over bit strings which are encoded into states
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over m qubits and let P (X, d) denote the net probability of the d most likely strings in the

sample space of X. If Y is any random variable obtained by making some measurement of

the encoding of X, then for any decoding function D, Pr[D(Y ) = X] ≤ P (X, 2m).

In typical situations, Holevo’s bound is applied by converting a statement about

the probability of correct decoding into a statement about mutual information. Our bound

thus obviates the need for a translation of in-probability statements into statements in terms

of entropy in these cases, also giving better bounds than Holevo’s theorem in the process.

It is perhaps worth mentioning that the proof of Holevo’s theorem (which is closely related

to the strong subadditivity property of von Neumann entropy) is quite involved while our

result is fairly transparent.

Next, we consider a situation slightly different from that in Holevo’s theorem,

where the recipient of the encoding of a certain number of classical bits is interested in

only one, a priori unknown bit of the original set. In this scenario, Holevo’s theorem

doesn’t apply, since the measurement the recipient makes to extract one bit could potentially

destroy some or all of the remaining encoded information. This allows us to encode, for

example, classical two bits into one qubit such that any one of the bits can be retrieved with

probability ≈ 0.85 by choosing one of two measurements appropriately. Such compression

is not possible classically [8]. More generally, we can define an (n,m, p)-random access

encoding as a function f that maps n-bit strings into states over m qubits such that, for

every i ∈ {1, . . . , n}, there is a measurement Oi with outcome 0 or 1 that has the property

that for all x ∈ {0, 1}n,

Pr [Oi(f(x)) = xi] ≥ p.

There is no a priori reason to rule out the existence of random access encoding of cn bits

into n quantum bits for a constant c > 1, although this is not possible classically. In

fact, even though Ck can accommodate only k mutually orthogonal unit vectors, it can

accommodate ck almost mutually orthogonal unit vectors (i.e., vectors such that the inner

product of any two has absolute value less than, say, 1
10) for some c > 1. Could this be

converted into a random access encoding? Such quantum encoding, if possible, would serve

as a powerful primitive in quantum communication. For instance, it would be possible

to compress the contents of an entire telephone directory into a few quantum bits such

that the recipient of these qubits could, via a suitably chosen measurement, look up any

single telephone number of his choice. However, we show that the above intuition is ill-
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founded [8, 61]. Despite the promise shown by quantum encodings, random access codes

require a linear number of quantum bits. In fact, our lower bound asymptotically matches

the classical upper bound we give for the problem.

Theorem 1.1.2 For any p > 1
2 , there is a classical (n,m, p)-random access encoding

with m = (1 − H(p))n + O(log n). Moreover, any quantum (n,m, p)-random access en-

coding has m ≥ (1−H(p))n.

Interestingly, our lower bound uses a general principle based on Holevo’s theorem,

although the theorem itself does not apply to this situation. We give a novel applica-

tion of this principle to showing a lower bound on the size of one-way quantum finite

automata (QFAs) [61].

Theorem 1.1.3 Let Ln be the language {w0 | w ∈ {0, 1}∗, |w| ≤ n}. Then,

1. Ln is recognised by a deterministic finite automaton of size O(n),

2. Ln is recognised by some QFA, and

3. Any QFA recognising Ln with some constant probability greater than 1
2 has 2Ω(n) states.

QFAs model quantum computers that work with a finite set of quantum bits. They

have drawn much interest not only because their study provides insight into the nature

of quantum computation, but also because they closely model the capability of currently

feasible experimental quantum computers.

Kondacs and Watrous [54] introduced a model of QFA that allowed limited ob-

servations during the computation process, and showed that not every language recognised

by a (classical) deterministic finite automaton (DFA) is recognised by such QFAs. On

the other hand, Ambainis and Freivalds [7] showed how we may exploit the exponential

resources afforded by quantum states to design QFAs for certain problems that are expo-

nentially smaller than the corresponding classical automata. It remained open whether,

for any language that can be recognised by a one-way finite automaton both classically

and quantum-mechanically, a classical automaton can be simulated efficiently by a QFA.

In [8] we gave a partial answer to this question by demonstrating that the requirement

of reversible evolution seriously limits the efficiency of the QFAs of [54]. The arguments

of [54, 8] break down when arbitrary quantum operations (in particular, measurements)
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on a fixed set of quantum bits are allowed, since the evolution of their state is no longer

reversible. Our result, Theorem 1.1.3, settles this issue by extending (and strengthening)

the result of [8] for general QFAs as well by using completely different information theoretic

techniques.

1.2 Results on quantum black-box complexity

Bennett, Bernstein, Brassard and Vazirani [13] first studied the problem of whether

NP-complete problems can be solved efficiently on a quantum computer. Despite parallelism

and the potential for interference inherent in quantum computation, it was suspected that

BQP does not contain NP. Bennett et al. gave an exponential lower bound for an NP

problem in the quantum black-box model, thus giving formal evidence in support of this

belief. Underlying the problem considered by them is the fundamental search problem.

Their problem may be viewed as searching for a “one” (e.g., a satisfying assignment for a

boolean formula in n variables) in a database of 2n bits (the truth table for the formula),

or as distinguishing the case when there are no 1s from the case when there is at least one.

This problem was later studied by Grover [46], who gave an O(2n/2) query algorithm for

it, thus showing that the lower bound of [13] is optimal. More generally, there is an O( 1√
ε
)

query algorithm that distinguishes the all zeros case from the case when there are an ε

fraction of ones [20].

A related problem is that of distinguishing a fraction half of ones from a frac-

tion 1
2(1 + ε) of ones. In 1996, Grover gave an O(1

ε ) quantum algorithm for this prob-

lem [47, 48] in the context of approximating the median of a sequence of numbers. This

is quadratically better than possible on a classical computer. (The problem is closely re-

lated to that of telling a random coin with bias δ from an unbiased coin. Classically, it

takes Θ( 1
δ2

) coin tosses to identify which of the two coins one has.) However, it was open

whether this algorithm could be improved upon. In particular, the hybrid argument of [13]

(see also [73]) yields a lower bound of Ω( 1√
ε
), whereas Grover’s algorithm was suspected to

be optimal. We prove that this is indeed the case by showing a lower bound of Ω(1
ε ) queries

for the problem.

Theorem 1.2.1 Let ε ≥ 2
n . Let X = (x0, . . . , xn−1) ∈ {0, 1}n such that either |X| =∑

i xi = n
2 or |X| = (1 + ε)n2 . Given X as an oracle, any quantum algorithm that decides
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correctly whether |X| = n
2 or |X| = (1 + ε)n2 makes at least Ω(1

ε ) queries to X.

Our result is based on the polynomial method, which was recently introduced to

quantum complexity theory by Beals, Buhrman, Cleve, Mosca and de Wolf [11]. They show

that the acceptance probability of a quantum algorithm making T queries to a boolean oracle

can be expressed as a real multilinear polynomial of degree at most 2T in the oracle input.

Thus, if an algorithm computes a boolean function of the oracle input with probability at

least 2
3 , the corresponding polynomial approximates the function to within 1

3 at all points

in the boolean hypercube. So, by proving a lower bound on the degree of polynomials

approximating the boolean function, we can derive a lower bound on the number of queries T

the quantum algorithm makes. We cannot, however, follow this route directly for the

problem of approximating the median, since the restriction of the problem to boolean inputs

does not yield a well-defined function. Nonetheless, the restriction does yield a boolean

relation. The main component of our result is thus a degree lower bound for polynomials

that “approximate” symmetric boolean relations. (Section 4.2 contains a precise statement

of the lower bound.) This degree bound generalises a result due to Paturi [63] and also

gives lower bounds for the problems of approximating the kth smallest element or the mean

of a sequence of numbers, and approximately counting the number of ones of a boolean

function.

We then present a new, optimal algorithm for approximating the kth-smallest

element. This yields an O(1
ε ) query algorithm for approximate medians, thus improving

over Grover’s algorithm [47, 48]. (The complexity of Grover’s algorithm is Õ(1
ε logM), when

the numbers are drawn from a domain of size M .) The algorithm is a natural generalization

of the minimum finding algorithm discovered by Dürr and Høyer [39]. The basic technique

is that of randomised divide and conquer using which we reduce the problem to that of

uniform sampling and approximate counting.

Both the lower and the upper bounds we obtain for computing order statistics

such as the median hold also in the comparison tree model, which focuses on the number

of comparisons between the input elements required to solve a problem. As a corollary, we

obtain optimal comparison algorithms for selecting the kth-smallest element on a quantum

computer.

Theorem 1.2.2 Any comparison tree quantum algorithm that computes the kth-smallest

element of a list of n numbers makes Ω(
√
k(n− k + 1) ) comparisons. Moreover, there is a
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quantum algorithm that solves this problem with O(
√
k(n− k + 1) ) comparisons.

An O(
√
n ) comparison algorithm for the minimum was already known [39]. Our algorithm

stands in interesting contrast to the classical case, where Θ(n) comparisons are required for

any k [19].

1.3 Organisation of the text

The rest of the dissertation is arranged as follows. Chapter 2 describes the formal-

ism of quantum information processing and the models we will be working with. Chapter 3

deals with the problems in quantum encoding and communication mentioned above and

some of their ramifications. Chapter 4 focuses on the quantum black-box complexity of

several problems of a statistical nature alluded to above. Some backgroud material from in-

formation theory and the theory of approximations necessary for our results is summarised

in Appendix A. The appendix also contains the proofs of some claims made in Chapter 4.
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Chapter 2

Models for quantum information

processing

In this chapter, we briefly describe the formalism of quantum computation and

communication. We first define quantum circuits and then move to the two-party quantum

communication model. In the end, we focus on quantum computers that work with finite

space, namely quantum finite automata. This involves the notion of a density matrix and

some of its properties; these are given in detail in Section A.1 of the appendix.

2.1 Quantum oracle circuits

We now make precise the model of quantum computation and what it means

to compute with access to an oracle in this context. We will discuss quantum circuits,

since these are particularly convenient to work with. Quantum networks, the precursors

to circuits, were introduced by Deutsch [37]. Yao [78] singled out quantum circuits as a

special subclass of the network model and showed their equivalence in computational power

to the quantum Turing machine model of Deutsch [36] and Bernstein and Vazirani [16].

Aharonov, Kitaev and Nisan [2] introduced a more general model of quantum circuits that

is more appropriate in contexts such as computing in the presence of noise [70, 3] or with

limited space [76].

Quantum circuits may be defined in a fashion analogous to classical boolean cir-

cuits. They consist of a sequence of wires and quantum gates. Each wire carries a quantum

bit (or qubit), which is physically a two-state quantum system, such as the spin of an atomic
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Figure 2.1: Some classical reversible gates useful in quantum computation.

nucleus. The state of a qubit is in general a superposition of its basis states, which are la-

belled as 0 and 1. Formally, this is a unit vector in a two-dimensional complex Hilbert space.

Similarly, the joint state of the different wires is a unit vector in the Hilbert space corre-

sponding to the tensor product of the complex spaces of the sequence of wires. The state

of a quantum system is usually expressed in the Dirac “bra-ket” notation. For example, a

superposition of n quantum bits is written as
∑
x∈{0,1}n αx |x〉. Here, the vectors {|x〉} are

the basis vectors of the 2n-dimensional tensor product of n two-dimensional complex Hilbert

spaces, and αx, also called the amplitude of |x〉, is the component of the state vector along

the basis element |x〉. The amplitudes satisfy the property that
∑
x |αx|

2 = 1. We also use

the notation |φ〉 to denote superpositions that are not necessarily basis states. It may also

be understood to mean that the superposition is being represented in column vector form.

The notation 〈φ| is used for the linear functional that maps a vector to its inner product

with the superposition |φ〉. It may also be understood as the conjugate transpose of the

column vector |φ〉.
The quantum gates are drawn from a small set of gates universal for quantum

computation (see, e.g., [10]). The gates are described by local unitary operations, i.e., by

linear transformations U that act as identity on all but a small (constant) number of the

quantum bits (or wires), and satisfy the property that UU † = I, where U † is the adjoint

of U . In matrix representation, U † is the conjugate transpose of the matrix U . It is

convenient to describe the gates by specifying the list of wires on which the gate acts along

with a unitary operator on those wires.

Examples of quantum gates are single qubit rotation, Hadamard gate, controlled

not and controlled-controlled not (or Toffoli gate). The latter two are reversible versions of

classical boolean gates and are depicted in Figures 2.1. The rotation gate rotates the basis
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Figure 2.2: Two single qubit quantum gates and their action on basis states.

states by some angle θ:

|0〉 7→
∣∣0′〉 = cos θ |0〉+ sin θ |1〉

|1〉 7→
∣∣1′〉 = − sin θ |0〉+ cos θ |1〉 ,

and the Hadamard gate effects the Fourier transform over Z2:

|0〉 7→
∣∣0′〉 =

1√
2

(|0〉+ |1〉)

|1〉 7→
∣∣1′〉 =

1√
2

(|0〉 − |1〉).

These are depicted in Figure 2.2. The set of all one-bit quantum gates and the two-bit

controlled not gate together form a universal basis for quantum computation [10].

Some of the wires in the circuit are designated as input wires and some as output.

Others form the workspace for the computation. Given a quantum circuit, the computation

on an input x ∈ {0, 1}n proceeds as follows. First, the input wires are initialised to |0〉
or |1〉 according to the bits of x, and the rest of the wires are set to |0〉. Next, the quantum

gates are applied to the specified wires in sequence. Finally, the state of the output wires is

observed by making a measurement in the standard (0/1) basis1. The measurement process

has the following effect. If the final state of the wires is given by the superposition |φ〉 =∑
y,z αy,z |y, z〉, where the y-part corresponds to the output wires, outcome y is observed

1Sometimes it is convenient to specify measurements in other bases. These correspond to first applying a
unitary transformation (via a circuit) that effects a change of basis from the specified basis to the standard
one, and then observing the state as before.
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Figure 2.3: A quantum oracle circuit that computes parity.

with probability p = ‖
∑
z αy,z |y, z〉 ‖

2, and the state of the wires “collapses” to the part of

the superposition that is consistent with the observed value. In other words, the state of the

wires becomes 1√
p

∑
z αy,z |y, z〉, where

√
p is the normalising factor. We say that a quantum

circuit computes a function f : {0, 1}n → {0, 1}m if the probability that f(x) is observed

on input x is at least, say, 2
3 . We will use the terms algorithm and circuit interchangeably

in this thesis.

In the black-box model, in addition to the usual quantum gates, we are provided

with an oracle gate, which may act on more than a constant number of wires. We will

be interested only in classical oracles, i.e., gates that compute classical functions of the

type g : {0, 1}` → {0, 1}k. Such gates act on `+ k wires. In a quantum oracle circuit, `+ k

of the wires are designated as oracle wires, the first ` corresponding to the query, and the

rest to the reply to the query. The oracle gate may only be applied to the oracle wires in

a circuit. The action of the gate on basis states {|u, v〉} is given by |u, v〉 7→ |u, g(u)⊕ v〉,
where ⊕ is the bit-wise exclusive-or operation on strings. Thus, if the last k of the oracle

wires are all set to 0, the oracle replies with the value of g at the query point. Figure 2.3

shows an example of a quantum circuit with an oracle gate.

As explained earlier, oracle gates allow us to abstract out certain sets of operations

(or an entire subroutine) that are often repeated in the process of computation. The pa-

rameter of interest in quantum oracle circuits is the number of oracle gates used to compute

a function of interest. This will also be referred to as the number of queries (or calls) made

to the oracle. The query complexity of computing a function given an oracle gate is the

least number of such oracle gates required to compute the function using an oracle circuit.

We now describe a simple example to illustrate the concepts introduced above.

Consider oracle gates for functions g : {0, 1} → {0, 1}. Given such an oracle gate, the

problem is to compute the parity (exclusive-or) of the two function values g(0) and g(1).
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The circuit shown in Figure 2.3 computes this with no error using one oracle gate. To

see this, we follow the evolution of the state of the wires as we apply the different gates

and check that the output wire carries the desired result. Note that the state of the wires

immediately before the oracle query is made is

1

2
(|0〉+ |1〉)(|0〉 − |1〉).

The key observation is that the state |b〉 |0〉−|1〉√
2

(for b = 0, 1) is an eigenvector of the oracle

gate with eigenvalue (−1)g(b). Thus, the state of the wires immediately after the oracle

query is
1

2
((−1)g(0) |0〉+ (−1)g(1) |1〉)(|0〉 − |1〉).

Applying the Hadamard gate to the first qubit results in

(−1)g(0)

√
2
|g(0)⊕ g(1)〉 (|0〉 − |1〉),

which contains the required output in the first wire.

2.2 The two-party model

The two-party quantum communication model was introduced by Yao [78] and

studied in (among others) [55, 31, 24, 9, 68]. Formally, a two-party communication protocol

for a function is a partition of a quantum circuit for the function into two sets, where the

input wires and the gates may be divided arbitrarily amongst the two, but all the output

wires lie in one of the sets. The complexity of the protocol is the number of wires crossing

between the two parts of the circuit.

In practice, it is more convenient to work with the following informal description.

The model consists of two quantum players, say Alice and Bob, who wish to compute a joint

function of the inputs supplied to them. The players follow a previously agreed protocol in

order to compute the function. The protocol consists of a number of steps. In each step, one

of four actions may occur: Alice may apply a unitary transformation to her set of qubits,

Bob may apply a unitary transformation to his set, Alice may send some of her qubits to

Bob, or vice-versa. At the end of all the steps, one player makes a measurement of her

or his state to obtain the output. In cases where a specific player is required to know the

answer, that player makes the measurement. The protocol is said to compute a function
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Figure 2.4: A three-round quantum communication protocol.

if the output is equal to the function value with “high” probability. We will mostly be

interested in protocols that compute functions with probability at least 2
3 . The complexity

of the protocol is the total number of quantum bits exchanged by the two players. The

number of rounds taken by the protocol is the number of alternations in the exchange of

bits between the players.

Note that there is no loss of generality in not allowing the players to measure a

subset of their quantum bits in the intermediate steps of a protocol. This is because all

measurements may be postponed to the end by the principle of safe storage [16]. Instead of

making a measurement in some basis, the players may transform their state into that basis,

copy the contents of the qubits to be measured on a fresh set of qubits (called the ancilla),

and reverse the basis transformation.

The quantum communication complexity of a function is the complexity of a pro-

tocol that computes the function with the least number of quantum bits exchanged. It is

possible to define other flavours of quantum communication complexity, depending on how

much and what kind of error is allowed in the computation, but we will not delve into this

here.

We will for the most part concentrate on communication in one round, since many
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protocols of interest to us can be transformed to one-round protocols. These have a very

simple structure. In such a protocol, Alice prepares some quantum bits in a superposition

depending on her input and sends a subset of her qubits (the encoding of her input) to

Bob, who measures it in a basis determined by his input. Below, we give an example of a

one-round quantum communication protocol (or equivalently, a quantum encoding) for the

equality function EQ to illustrate this.

The inputs to the function EQ are two n-bit strings x and y (given to Alice and

Bob respectively), and the output is 1 if the two strings are equal, and 0 otherwise. Alice

and Bob agree in advance on a binary error-correcting code C ⊂ {0, 1}m, of size at least 2n,

minimum distance at least d, and maximum distance at most m − d, for m and d to be

specified later. Each n-bit string x is identified with a distinct codeword x̂ ∈ C. On input x,

Alice prepares the state

|φx〉 =
1√
m

m−1∑
i=0

(−1)x̂i |i〉 ,

and sends this encoding to Bob. On input y, Bob applies a unitary transformation Uy

to |φx〉 and measures it to check if the result is |0〉. He answers 1 if yes, and 0 otherwise.

The only restriction on Uy is that it map |φy〉 to |0〉.
We claim that the protocol above solves EQ with probability at least 2

3 if m, d are

chosen appropriately. If Alice and Bob have the same string x, then the result of Bob’s

measurement is always |0〉, and so the correct answer is obtained with probability one. If

Bob has a string y different from Alice’s string x, then the probability with which Bob

gets |0〉 is

|〈0|Uy |φx〉|2 = | 〈φy|φx〉|2

=

∣∣∣∣∣ 1

m

m−1∑
i=0

(−1)x̂i+ŷi

∣∣∣∣∣
2

=

∣∣∣∣1− 2
d(x̂, ŷ)

m

∣∣∣∣2 ,
where d(x̂, ŷ) is the Hamming distance between the strings (i.e., number of bit positions i

where x̂i 6= ŷi). If

min
x,y

d(x̂, ŷ) ≥ d ≥ m

2
(1− 1√

3
), and

max
x,y

d(x̂, ŷ) ≤ m− d ≤ m

2
(1 +

1√
3

),
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the above probability is at most 1
3 . Thus, Bob will get the correct answer with probability

at least 2
3 .

It is well known (and can easily be shown by a counting argument) that for ev-

ery d < m
2 there is a code of size at least 2m(1−H( d

m
))−1 in {0, 1}m, with minimum distance

at least d, and maximum distance at most m− d, where H is the binary entropy function.

Thus, choosing d to be a suitable constant fraction of m, and m = O(n) to be sufficiently

large, we get an O(log n) quantum bit protocol (or encoding) for EQ.

2.3 One-way quantum finite automata

A one-way quantum finite automaton (QFA) is a theoretical model for a quantum

computer with finite workspace. Models for such space-restricted quantum computers were

first considered by [59, 54]. However, these models allow only a limited set of observations

to be made during the computation process. The model we describe below rectifies this

situation by allowing any orthogonal measurement as a valid intermediate computational

step. Our model may be seen as a finite memory version of mixed state quantum computers

(cf. [2]). Note that we do not allow the more general “positive operator valued measure-

ments” [66] because the implementation of such measurements involves the joint unitary

evolution of the state of the automaton with a fresh set of ancilla qubits, which runs against

the (fixed finite workspace) spirit of the model.

In abstract terms, we may define an enhanced QFA as follows. It has a finite

set of basis states Q, which consists of three parts: accepting states, rejecting states and

non-halting states. The sets of accepting, rejecting and non-halting basis states are denoted

by Qacc, Qrej and Qnon, respectively. One of the states, q0, is distinguished as the starting

state.

Inputs to a QFA are words over a finite alphabet Σ. We shall also use the sym-

bols ‘c| ’ and ‘$’ that do not belong to Σ to denote the left and the right end-marker,

respectively. The set Γ = Σ ∪ {c| , $} denotes the working alphabet of the QFA. For each

symbol σ ∈ Γ, a QFA has a corresponding “superoperator” Uσ which is given by a com-

position of a finite sequence of unitary transformations and orthogonal measurements on

the space CQ. A QFA is thus defined by describing Q,Qacc, Qrej, Qnon, q0,Σ, and Uσ for

all σ ∈ Γ.

At any time, the state of a QFA can be described by a density matrix with support
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in CQ. The computation starts in the state |q0〉〈q0|. Then transformations corresponding

to the left end marker ‘c| ,’ the letters of the input word x and the right end marker ‘$’

are applied in succession to the state of the automaton, unless a transformation results in

acceptance or rejection of the input. A transformation corresponding to a symbol σ ∈ Γ

consists of two steps:

1. First, Uσ is applied to ρ, the current state of the automaton, to obtain the new state ρ′.

2. Then, ρ′ is measured with respect to the observable Eacc⊕Erej⊕Enon, where Eacc =

span{|q〉 | q ∈ Qacc}, Erej = span{|q〉 | q ∈ Qrej}, Enon = span{|q〉 | q ∈ Qnon}. The

measurement has the following effect. The outcome Ei is observed with probability

equal to Tr(Piρ
′), where Pi is the orthogonal projection onto Ei, and the state “col-

lapses” to Piρ
′Pi (suitably normalised). If we observe Eacc (or Erej), the input is ac-

cepted (or rejected). Otherwise, the computation continues with the state Pnonρ
′Pnon

(normalised), and the next transformation, if any, is applied.

We regard these two steps together as reading the symbol σ.

The model of QFA as defined in [54] differs from this model in that the superop-

erators Uσ are all required to be given by unitary transformations Uσ.

A QFA M is said to accept (or recognize) a language L with probability p > 1
2 if

it accepts every word in L with probability at least p, and rejects every word not in L with

probability at least p.

A reversible finite automaton (RFA) is a QFA such that, for any σ ∈ Γ and q ∈ Q,

Uσ |q〉 = |q′〉 for some q′ ∈ Q. In other words, the operator Uσ is a permutation over the

basis states.

The size of a finite automaton is defined as the number of (basis) states in it. The

“space used by the automaton” refers to the number of (qu)bits required to represent an

arbitrary automaton state.
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Chapter 3

Bounds for quantum

communication

This chapter concentrates on results in quantum communication complexity. Most

of these have previously been reported in [8] and [61].

The model of quantum communication is introduced in Section 2.2 of Chapter 2.

Background material from information theory required for this chapter is summarised in

Section A.1 of the appendix. We first discuss the classical information content of a quantum

state in Section 3.1. We then turn to a study of quantum random access codes and their

applications in Section 3.2. The technique developed in Section 3.2 has a novel application

to computing, which we present in Section 3.3. We finish with a discussion of the chapter

and open problems in the area of quantum communication.

3.1 An alternative to Holevo’s theorem

Holevo’s theorem [50], a fundamental result from quantum information theory,

bounds the amount of classical information one can extract from a quantum encoding. If

the encoding is over m qubits, the theorem says that it reveals no more than m bits of

information about the message encoded. More precisely,

Theorem 3.1.1 (Holevo) Let x 7→ σx be any quantum encoding of bit strings into mixed

quantum states, let X be a random variable over the strings with a distribution given

by Pr [X = x] = px, and let σ =
∑
x pxσx be the state corresponding to the encoding of
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the random variable X. If Y is any random variable obtained by performing a measurement

on the encoding, then

I(X :Y ) ≤ S(σ)−
∑
x

pxS(σx).

Often we wish to bound not the mutual information I(X : Y ), but instead the probability

of decoding X correctly from its encoding, i.e., Pr [Y = X], in terms of the number of

qubits used in the encoding (see, e.g., [55, 8]). A bound on the probability of correct

decoding may be obtained via Fano’s inequality [34], which says that δn−H(δ) ≤ I(X :Y ),

where δ = Pr [Y = X], and X is a random variable over n-bit strings. Since Theorem 3.1.1

implies I(X : Y ) ≤ S(σ) ≤ m, where m is the number of qubits used in the encoding (cf.

Fact A.1.1), we get δn − H(δ) ≤ m. This in turn may be used to derive a lower bound

for m.

In this section, we present a simple alternative to this route by directly bounding

the decoding probability achievable by any quantum encoding. Our bound thus obviates the

need for a translation of in-probability statements into statements about mutual information

in cases such as mentioned above.

Theorem 3.1.2 Let X be a random variable over bit strings which are encoded as mixed

states over m qubits and let P (X, d) denote the net probability of the d most likely strings in

the sample space of X. If Y is any random variable obtained by making some measurement

of the encoding of X, then

1. there is a decoding procedure D0 such that

Pr[D0(Y ) = X] ≥ 2−H(X|Y ),

where H(X|Y ) is the conditional Shannon entropy of X with respect to Y ; and

2. for any decoding function D,

Pr[D(Y ) = X] ≤ P (X, 2m).

In particular, this implies that when X is distributed uniformly, the mutual informa-

tion I(X : Y ) of X and Y is at most m. Thus, the bounds obtained from our theorem

in typical applications are always at least as good as those derived from Theorem 3.1.1.



21

Specifically, for encodings of n-bit strings which can be decoded correctly with probability

at least δ, we get m ≥ n− log 1
δ .

We illustrate how the above theorem can give us asymptotically sharper bounds on

the number of qubits used in an encoding than an application of Holevo’s theorem. Consider

an encoding of n-bits into n + 1 orthogonal states |i〉. Half the strings are encoded as |0〉,
a fourth as |1〉, an eighth as |2〉, and so on. A random codeword from this code can be

decoded with probability exactly (n+1)2−n, which yields the correct answer for the number

of qubits used by invoking our bound. On the other hand, the mutual information I(X :Y )

between the encoded string and its decoding is

1

2
+

2

22
+

3

23
+ · · ·+ n

2n
+

n

2n
,

which sums up to 2 − 2−(n−1). This gives us a lower bound of at most 2 when combined

with Holevo’s theorem.

We now give a proof of Theorem 3.1.2. We first prove the lower bound on the

decoding probability.

Consider random variables X and Y as in the statement of Theorem 3.1.2. We

describe a natural decoding procedure D0 and then show that it satisfies the requirement of

the theorem. On input y, the decoding algorithm outputs x such that px|y = maxx′ px′|y,

where px|y = Pr[X = x|Y = y]. Let pmax
y denote this probability and let xy denote the

corresponding x.

Claim 3.1.3 The procedure D0 decodes correctly with probability at least 2−H(X|Y ).

Proof: The probability of correct decoding is equal to

Pr[D0(Y ) = X]

=
∑
y

Pr[X = xy|Y = y] · Pr[Y = y]

= E [pmax
Y ] .

Now, H(X|Y = y) = −
∑
x px|y log px|y ≥ − log pmax

y . So pmax
y ≥ 2−H(X|Y=y). Taking

expectation over Y , and noting that 2−(·) is a convex function, we have

E [pmax
Y ] ≥ E

[
2−H(X|Y=y)

]
≥ 2−E[H(X|Y=y)]

= 2−H(X|Y ),
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which gives us the claimed lower bound on the decoding probability.

We now turn to the upper bound on the probability of correct decoding. Consider

any encoding of strings x 7→ {qx,i, |φx,i〉} into mixed states over m qubits, and any decoding

procedure D. The output of D may be viewed as the outcome of a measurement given

by orthogonal projections {Px} in the Hilbert space of the encoding augmented with some

ancilla. The probability may then be bounded as

Pr[D(Y ) = X]

=
∑
x

Pr[D(Y ) = x] · Pr[X = x]

=
∑
x

px
∑
i

qx,i ‖Px |φx,i〉 ‖2

≤
∑
x

px ‖Px |φx〉 ‖2 , (3.1)

where px = Pr[X = x], and |φx〉 is the pure state |φx,i〉 that maximises the probabil-

ity ‖Px |φx,i〉 ‖2 of obtaining the correct outcome x when its encoding is measured. (In

all the expressions in this section, the ancilla qubits used in the measurement have been

suppressed for ease of notation.) We can now bound the decoding probability by using the

following claim.

Claim 3.1.4
∑
x ‖Px |φx〉 ‖

2 ≤ 2m.

Proof: Let E be the subspace spanned by the codewords |φx〉, and let Q be the projection

onto E. Since the codes are over m qubits, E has dimension at most 2m. Let {|ei〉} be an

orthonormal basis for E. Let {|êx,j〉} be an orthonormal basis for the range of Px. The

union of all these bases {|êx,j〉} is an orthonormal basis for the entire decoding Hilbert

space. Now,

‖Px |φx〉 ‖2 =
∑
j

| 〈êx,j |φx〉|2

≤
∑
j

‖Q |êx,j〉 ‖2 .

The last inequality follows because the length of the projection of any vector onto a space W

is at least the length of its projection onto a subspace V of W . Observe that ‖Q |êx,j〉 ‖2 =∑
i | 〈ei| êx,j〉|

2. So, ∑
x

‖Px |φx〉 ‖2 ≤
∑
i

∑
x,j

| 〈ei| êx,j〉|2



23

≤
∑
i

‖ ei ‖2

≤ 2m,

since the orthonormal basis {|ei〉} for E has size at most 2m, which is a bound on the

dimension of E.

By (3.1), the probability of correct decoding is at most
∑
x px ‖Px |φx〉 ‖

2. From

the claim above, this expression is equal to
∑
x pxλx, where 0 ≤ λx ≤ 1 and

∑
x λx ≤ 2m.

The maximum over all such {λx} of this quantity may easily be seen to be bounded by the

sum of the 2m largest probability masses px, i.e., by P (X, 2m). Moreover, for any given X

and m, there is a natural pair of encoding and decoding functions that achieves this bound.

This implies that the bound is tight.

Finally, we clarify how Theorem 3.1.2 may be applied in a communication com-

plexity context (as opposed to a coding context) where more than one message may be

exchanged by the communicating parties. The missing link is the following lemma due to

Kremer [55] based on a technique of Yao [78].

Lemma 3.1.5 (Kremer) Let P be an m-qubit communication protocol between two par-

ties, Alice and Bob, such that Bob’s actions are independent of his input. Then the state of

Bob at the end of the protocol has support in a fixed 2m dimensional subspace.

In other words, while Bob’s state may depend on Alice’s input, it has support in a subspace

that is independent of Alice’s input. In such a case, we may always convert any multiple

round protocol into a single round protocol that uses the same number of quantum bits, as

in [9]. Alice and Bob agree on a common mapping between the standard basis over m qubits

and the 2m dimensional subspace prior to executing the protocol. Alice then simulates the

entire original protocol herself, encodes Bob’s part of the state into m qubits according to

the agreed upon mapping, and sends it across to Bob. Bob can then retrieve the state in

the original protocol by inverting the basis change. We thus end up with an m-qubit coding

protocol to which our theorem may be applied.

3.2 Random access codes

In light of the limitation of quantum states in encoding classical information ex-

posed in the previous section, it is tempting to conclude that the exponentially many degrees
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Figure 3.1: A two-into-one quantum encoding with probability of success ≈ 0.85.

of freedom latent in the description of a quantum system must necessarily stay hidden or

inaccessible. However, the situation is more subtle, since in quantum mechanics, the re-

cipient of a set of qubits has a choice of measurement he can make to extract information

about their state. In general, these measurements do not commute. Thus making a partic-

ular measurement will, in general, disturb the system, thereby destroying some or all the

information that would have been revealed by another possible measurement. This opens

up the possibility of quantum random access encoding.

Definition 3.2.1 An (n,m, p)-random access encoding is a function f that maps n-bit

strings to mixed states over m qubits such that, for every i ∈ {1, . . . , n}, there is a measure-

ment Oi with outcome 0 or 1 that has the property that for all x ∈ {0, 1}n,

Pr [Oi(f(x)) = xi] ≥ p.

Such quantum random access encoding with n � m does not necessarily violate Holevo’s

bound: the recipient of the encoded string cannot make the measurements corresponding

to the n different bits in succession to recover all the encoded bits with a good chance of

success.

Indeed, this intuition is reinforced by the following encoding of two bits into one

quantum bit.

Example: Let |u0〉 = |0〉, |u1〉 = |1〉, and |v0〉 = 1√
2
(|1〉 + |0〉), |v1〉 = 1√

2
(|1〉 − |0〉).

Define f(x1, x2), the encoding of the string x1x2 to be |ux1〉+|vx2〉 normalised, unless x1x2 =
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01, in which case it is − |u0〉+ |v1〉 normalised (see Figure 3.1). The decoding functions are

defined as follows: for the first bit x1, we measure the message qubit according to the u

basis and associate |u0〉 with x1 = 0 and |u1〉 with x1 = 1. Similarly, for the second bit,

we measure according to the v basis, and associate |v0〉 with x2 = 0 and |v1〉 with x2 = 1.

It is easy to verify that for all four codewords, and for any i = 1, 2, the angle between the

codeword and the correct subspace is π/8. Hence the success probability is cos2(π/8) ≈ 0.85.

However, it is not possible to recover both the bits simultaneously with good probability.

A similar encoding of three bits into one qubit with success probability ≈ 0.78 is

possible [28]. The next lemma shows that such classical encoding is not possible.

Lemma 3.2.1 No classical (2, 1, p)-random access encoding exists for any p > 1
2 .

Proof: Suppose for contradiction that there is a such a classical encoding. Let f : {0, 1}2×
R 7→ {0, 1} be the corresponding probabilistic encoding function and Vi : {0, 1}×R′ 7→ {0, 1}
the probabilistic decoding functions. If we let yi be the random variable Vi(f(x, r), r′), then

for any x ∈ {0, 1}2, and any i ∈ {1, 2}, Prr,r′(yi = xi) ≥ p.
We first give a geometric characterisation of the decoding functions. Each Vi clearly

depends only on the encoding, which is either 0 or 1. Define the point P j (for j = 0, 1) in

the unit square [0, 1]2 as P j = (aj1, a
j
2), where aji = Prr′(Vi(j, r

′) = 1). The point P 0 char-

acterises the decoding functions when the encoding is 0, and P 1 characterises the decoding

functions when the encoding is 1. For example, P 1 = (1, 1) means that given the encoding 1,

the decoding functions return y1 = 1 and y2 = 1 with certainty, and P 0 = (0, 1
4) means that

given the encoding 0, the decoding functions return y1 = 0 and with probability 1
4 , y2 = 1.

Now fix the decoding functions V1, V2. They define two points P 0 and P 1 in [0, 1]2.

Given Bob’s strategy and an input x ∈ {0, 1}2 Alice can choose (based on r) whether to

encode x as 0 or 1. Let us say that Alice encodes x as 0 with probability px. Let us denote

by P x = (a1(x), a2(x)) the point with ai(x) = Prr,r′(yi = 1). As x is encoded as 0 with

probability px and as 1 with probability 1− px it follows that

P x = pxP
0 + (1− px)P 1

Thus, for any x, P x lies on the line segment connecting the two points P 0 and P 1. However,

for the encoding to be a valid two-into-one encoding, the point P x should lie strictly inside

the quarter of the unit square [0, 1]2 closest to (x1, x2). The line connecting P 0 and P 1
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Figure 3.2: A geometric characterisation of the probabilistic decoding functions of a two-
into-one code.

intersects the interiors of only three of the four quarters of the unit square [0, 1]2. For

instance, if P 0 and P 1 are as in the example above, then the line connecting them does not

pass through the lower right quarter (see Figure 3.2). Thus, for the string x1x2 which is

favoured by that quarter (e.g., the string x = 10 in the example), either V1 or V2 errs with

probability at least a half—a contradiction.

We can, in fact, give quite a precise characterisation of how much compression

classical encoding can achieve asymptotically.

3.2.1 Bounds for classical codes

We first prove a lower bound on the number of bits required for classical random

access encoding, and then show that there are classical codes that nearly achieve this bound.

Theorem 3.2.2 Let 1
2 < p ≤ 1. For any classical (n,m, p) random access encoding, m ≥

(1−H(p))n.

Proof: Suppose there is such a (possibly probabilistic) encoding f . Let X = X1 · · ·Xn be

chosen uniformly at random from {0, 1}n, and let Y = f(X) ∈ {0, 1}m be the corresponding

encoding. Let Z be the random variable with values in {0, 1}n obtained by generating the

bits Z1 · · ·Zn from Y using the n decoding functions.
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The mutual information of X and Y is clearly bounded by the number of bits in Y :

I(X : Y ) ≤ H(Y ) ≤ m.

We now that it is, in fact, bounded from below by (1 − H(p))n, thus getting our lower

bound. We have

I(X : Y ) = H(X)−H(X|Y ) = n−H(X|Y ).

Using standard properties of Shannon entropy, we get

H(X|Y ) ≤ H(X|Z) ≤
n∑
i=1

H(Xi|Z) ≤
n∑
i=1

H(Xi|Zi).

Given that Pr [Zi = Xi] ≥ p, it is not difficult to show (by using the concavity of entropy)

that H(Xi|Zi) ≤ H(p). It follows that H(X|Y ) ≤ H(p)n, and that I(X : Y ) ≥ (1−H(p))n,

as we intended to show.

We now present a classical encoding scheme that asymptotically matches the lower

bound derived above.

Theorem 3.2.3 For any p > 1
2 there is a classical (n,m, p)-random access encoding with

m = (1−H(p))n+O(log n).

Proof: If p > 1− 1
n , H(p) ≤ logn+2

n and there is a trivial encoding—the identity map. So

we turn to the case where p ≤ 1− 1
n .

We use a code S ⊆ {0, 1}n such that, for every x ∈ {0, 1}n, there is a y ∈ S within

Hamming distance (1− p− 1
n)n. It is known (see, e.g., [32]) that there is such a code S of

size

|S| = 2(1−H(p+ 1
n

))n+2 logn ≤ 2(1−H(p))n+4 logn.

Let S(x) denote the codeword closest to x. One possibility is to encode a string x by S(x).

This would give us an encoding of the right size. Further, for every x, at least (p+ 1
n)n out of

the n bits would be correct. This means that the probability (over all bits i) that xi = S(x)i

is at least p + 1
n . However, for our encoding we need this probability to be at least p for

every bit, not just on average over all bits. So we introduce the following modification.

Let r be an n-bit string, and π be a permutation of {1, . . . , n}. For a string x ∈
{0, 1}n, let π(x) denote the string xπ(1)xπ(2) · · ·xπ(n).
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Consider the encoding Sπ,r defined by Sπ,r(x) = π−1(S(π(x+r))+r. We show that

if π and r are chosen uniformly at random, then for any x and any index i, the probability

that the ith bit in the encoding is different from xi is at most 1−p− 1
n . First, note that if i

is also chosen uniformly at random, then this probability is clearly bounded by 1− p− 1
n .

So all we need to do is to show that this probability is independent of i.

If π and r are uniformly random, then π(x + r) is uniformly random as well.

Furthermore, for a fixed y = π(x + r), there is exactly one r corresponding to any per-

mutation π that gives y = π(x + r). Hence, if we condition on y = π(x + r), all π (and,

hence, all π−1(i)) are equally likely. This means that the probability that xi 6= Sπ,r(x)i

(or, equivalently, that π(x + r)π−1(i) 6= (S(π(x + r))π−1(i)) for random π and r is just the

probability of yj 6= S(y)j for random y and j. This is clearly independent of i (and x).

Finally, we show that there is a small set of permutation-string pairs such that

the desired property continues to hold if we choose π, r uniformly at random from this

set, rather than the entire space of permutations and strings. We employ the probabilistic

method to prove the existence of such a small set of permutation-string pairs.

Let ` = n3, and let the strings r1, . . . , r` ∈ {0, 1}n and permutations π1, . . . , π` be

chosen independently and uniformly at random. Fix x ∈ {0, 1}n and i ∈ [1..n]. Let Xj be 1

if xi 6= Sπj ,rj (x)i and 0 otherwise. Then
∑`
j=1Xj is a sum of ` independent Bernoulli random

variables, the mean of which is at most (1−p− 1
n)`. Note that 1

`

∑`
j=1Xj is the probability of

encoding the ith bit of x erroneously when the permutation-string pair is chosen uniformly

at random from the set {(π1, r1), . . . (π`, r`)}. By the Chernoff bound, the probability that

the sum
∑`
j=1Xj is at least (1 − p − 1

n)` + n2 (i.e., that the error probability 1
`

∑`
j=1Xj

mentioned above is at least 1 − p) is bounded by e−2n4/` = e−2n. Now, the union bound

implies that the probability that the ith bit of x is encoded erroneously with probability

more than 1 − p for any x or i is at most n2ne−2n < 1. Thus, there is a combination of

strings r1, . . . , r` and permutations π1, . . . , π` with the property we seek. We fix such a set

of ` strings and permutations.

We can now define our random access code as follows. To encode x, we select j ∈
{1, . . . , `} uniformly at random and compute y = Sπj ,rj (x). This is the encoding of x. To

decode the ith bit, we just take yi. For this scheme, we need log(`|S|) ≤ log ` + log |S| =

(1−H(p))n+ 7 log n bits. This completes the proof of the theorem.
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Figure 3.3: Combining two distinguishable mixed states results in a state with higher entropy.

3.2.2 Accumulation of information

In general, there is no a priori reason to rule out the existence of a (cm,m, p)-

encoding for constants c > 1, p > 1
2 although this is not possible classically, for the reasons

cited in Chapter 1. However, we showed in [8] that no more than a logarithmic factor

compression is possible in the quantum case.

Theorem 3.2.4 If a quantum (n,m, p) encoding exists with p > 1
2 a constant, then m ≥

Ω( n
logn).

Thus, even though quantum random access encodings can beat classical encodings, they

cannot be much more succinct.

Theorem 3.2.4 was based on amplification (by repetition of the code) which re-

sulted in an encoding of all the original bits, as was shown by a hybrid argument originally

due to [13] (and made explicit in [73]). Below, we derive a much stronger lower bound using

very different, yet simpler techniques from quantum information theory.

The principle behind the lower bound may be described as that of “accumulation

of information.” Consider two mixed quantum states each with entropy at least s. Suppose

we pick one of these with probability a half each. What is the entropy of the resulting mixed

state? Clearly, if these mixed states were the same, the entropy would remain unchanged.

On the other hand, if we could distinguish between them with success probability, say, 2/3

by making some measurement, then the two states differ substantially in at least a single bit

position (in some basis). The mixture of the two states would then have approximately one

bit more of randomness, and we expect the entropy of the system to increase accordingly.

This is the essential content of our key lemma:
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Lemma 3.2.5 Let σ0 and σ1 be two density matrices, and let σ = 1
2(σ0 +σ1) be a random

mixture of these matrices. If O is a measurement with outcome 0 or 1 such that making the

measurement on σb yields the bit b with average probability p, then

S(σ) ≥ 1

2
[S(σ0) + S(σ1)] + (1−H(p)).

This lemma is a simple corollary of the classic Holevo theorem [50] stated as Theorem 3.1.1

above.

Proof of Lemma 3.2.5: Consider σb to be an encoding of the bit b. If X is an unbiased

boolean random variable, then σ represents the encoding of X. Let Y be the outcome

of the measurement of this encoding according to O. By the hypothesis of the lemma,

Pr [Y = X] = p. It is easy to see from the concavity of the entropy function that

I(X :Y ) ≥ 1−H(p)

(cf. Fano’s inequality [34]). The lemma now follows from Theorem 3.1.1.

This principle of accumulation of information is applicable in other situations as

well, as we will later see in Section 3.3.

3.2.3 The quantum lower bound

The principle presented in the previous section yields a bound for quantum random

access codes that matches the classical upper bound of (1 − H(p))n + O(log n) shown in

Section 3.2.1 up to the logarithmic additive term.

Theorem 3.2.6 Any quantum (n,m, p)-random access encoding has m ≥ (1−H(p))n.

We now prove this theorem. Consider any random access encoding with parame-

ters n,m, p. Let ρx denote the density matrix corresponding to the encoding of the n-bit

string x. The density matrix of a random codeword is given by ρ = 1
2n
∑
x ρx. We can

bound the entropy of ρ by m by Fact A.1.1. Using Lemma 3.2.5, we can also prove a lower

bound for the entropy of ρ, and hence obtain a lower bound on m.

For any y ∈ {0, 1}k, where 0 ≤ k ≤ n, let

ρy =
1

2n−k

∑
z∈{0,1}n−k

ρzy.

We claim that
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Claim 3.2.7 S(ρy) ≥ (1−H(p))(n− k).

Proof: The proof is by downward induction on k. The base case k = n is satisfied

easily: S(ρy) ≥ 0 for all n-bit strings y.

Suppose the claim is true for k + 1. We have

ρy =
1

2
(ρ0y + ρ1y).

By hypothesis,

S(ρby) ≥ (1−H(p))(n− k − 1),

for b = 0, 1. Moreover, since the two density matrices are mixtures arising from strings

that differ in the (n − k)th bit, the measurement On−k distinguishes them correctly with

probability p. Thus, by Lemma 3.2.5, we get

S(ρy) ≥
1

2
(S(ρ0y) + S(ρ1y)) + (1−H(p)),

which gives us the claimed bound.

Theorem 3.2.6 now follows by combining the claim (with y chosen to be the empty

string) and the upper bound of m on the entropy. Observe that we could allow the measure-

ment Oi to depend on the subsequent bits of the encoded string without affecting the lower

bound. This means that the bound holds for serial codes, a type of code we introduced

in [8], as well. Lower bounds for these codes imply space lower bounds for quantum finite

automata. Rather than elaborating on this further, we will later present a slightly different

proof for the space lower bound based on the same principle.

3.2.4 The effect of shared entanglement

Quantum communication with shared entanglement is an analogue of public coin

randomised communication. In this model, the two communicating players are allowed to

start with an arbitrarily large shared quantum state (independent of their inputs) at no

cost to the protocol. Shared entanglement enables us to transfer information in highly

non-intuitive ways, as demonstrated by the “teleportation” technique of [14].

Next, we address the question as to whether shared entanglement helps reduce

the amount of communication required to construct random access codes. The situation

here is that Alice is given the classical string to be encoded and Bob wishes to acquire a

random access encoding of it. Can they accomplish this by exchanging fewer quantum bits
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if they are allowed to set up an arbitrary (but fixed) shared state before the start of the

protocol? The superdense coding technique of [15] can be used to halve the communication

requirement given by the classical encoding scheme presented in Section 3.2.1. We show

that this is essentially all that can be done by exploiting shared entanglement.

Theorem 3.2.8 Any protocol for random access encoding of n bits with success probability p

has complexity at least (1−H(p))n. Moreover, Alice sends at least 1
2(1−H(p))n quantum

bits to Bob in the protocol.

To see that this implies our claim, notice that Bob may do all the communication required

to set up the initial shared state.

The proof of Theorem 3.2.8 is based on a different view of the principle presented in

Section 3.2.2. It makes use of properties of von Neumann entropy more involved than those

presented in Section A.1. These properties are discussed in detail in [66]. The first part

of the theorem is relatively simple. We consider the protocol on a random input to Alice,

and show that the entropy of Bob’s state increases only when there is some communication

between the two players, and it increases only by one per qubit exchanged. The lower bound

for random access codes from the previous section now implies the bound. For the second

part, we show that the mutual information between the input and Bob’s state may increase

only when Alice sends him some of her qubits. This increase may be at most two per qubit

sent by Alice. (This part of the argument is identical to one used by Cleve, van Dam,

Nielsen and Tapp [31].) On the other hand, since Bob’s state can be used to extract an

arbitrary bit of the input, we can show that it encodes a lot of information about the input.

Proof of Theorem 3.2.8: Consider the protocol on a random n-bit input to Alice.

Let Bk be Bob’s state after k qubits have been exchanged during the protocol (k ≥ 0). We

claim by induction that S(Bk) ≤ k. Initially, S(B0) = 0. This entropy remains unchanged

if either Alice or Bob applies some unitary transformation to her/his quantum bits. If

Alice sends Bob qubit Q as the kth qubit in the protocol, then S(Bk) = S(QBk−1) ≤
S(Q) + S(Bk−1) ≤ 1 + (k − 1) by the subadditivity property of entropy. If Bob sends

Alice the qubit, then Bk−1 = QBk, and by the Araki-Lieb inequality we have S(Bk−1) ≥
S(Bk)− S(Q) ≥ S(Bk)− 1, so S(Bk) ≤ k. Since Bob’s state is a random access encoding

of Alice’s input, it has entropy at least (1−H(p))n at the end of the protocol. This proves

the first part of the theorem.
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The second part of the theorem is a little more involved. Let B be the state of

Bob at the end of the protocol on random input X = X1 · · ·Xn, and Bx the state on a

particular input x. Similarly, let Bk, Bk
x now be defined as the state of Bob after Alice has

sent k qubits to him.

We first prove a lower bound of (1−H(p))n for I(X : B). By Equation (A.1), we

have

I(B : X1 · · ·Xn) = I(B : Xn) + I(BXn : X1 · · ·Xn−1)− I(Xn : X1 · · ·Xn−1)

= I(B : Xn) + I(BXn : X1 · · ·Xn−1).

The second equality follows because all the Xi are independent classical random variables

(hence I(Xn : X1 · · ·Xn−1) = 0). Continuing this way, and applying inequality (A.2) we

get

I(B : X) =
n∑
i=1

I(BXi+1 · · ·Xn : X1 · · ·Xi)

≥
n∑
i=1

I(BXi+1 · · ·Xn : Xi).

Now, given BXi+1 · · ·Xn, we can use the measurement Oi for the random access

code to construct a random variable Zi such that Pr [Zi = Xi] ≥ p. Thus, we have

I(BXi+1 · · ·Xn : Xi) = I(BXi+1 · · ·XnZi : Xi) ≥ I(Zi : Xi).

As before, I(Zi : Xi) ≥ 1−H(p). Putting it all together we get

I(B : X) ≥
n∑
i=1

I(BXi+1 . . . Xn : Xi)

≥
n∑
i=1

I(Zi : Xi)

≥ (1−H(p))n.

Furthermore, since S(XB) = S(X) + 2−n
∑
x S(Bx), we have

I(X : B) = S(B)− 2−n
∑
x

S(Bx).

The quantity on the right is the accessible information χ(B) in B. To bound this, we

show by induction that χ(Bk) ≤ 2k. Initially, χ(B0) = 0. This quantity remains un-

changed when Alice and Bob do some computation on their parts of the system. By the
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monotonicity property of accessible information, it only decreases when Bob sends Alice

any of his quantum bits. When Alice sends Bob her kth qubit Q (Qx on a particular

input x), we have, as before, S(Bk) = S(QBk−1) ≤ S(Q) + S(Bk−1) = 1 + S(Bk−1),

and S(QxB
k−1
x ) ≥ S(Bk−1

x ) − S(Qx) = S(Bk−1
x ) − 1. So χ(Bk) ≤ χ(Bk−1) + 2 ≤ 2k.

Combining this with the lower bound on the mutual information obtained above, we get

the claimed result.

3.2.5 Rounds in communication complexity

Recently, Buhrman and de Wolf [26] observed that any one-round quantum com-

munication protocol for the disjointness function (DISJ) gives rise to random access codes,

and thus our lower bound applies there as well. For completeness, we include the argument

here. In the problem DISJ, the two parties are given a subset of [n] = {0, 1, . . . , n− 1}
each. The problem is to determine whether the subsets are disjoint or not. If we represent

the two subsets by x, y ∈ {0, 1}n, their characteristic vectors, we may express the function

as DISJ(x, y) = ∨i(xi ∧ yi). We may assume, w.l.o.g., that Alice sends the first message

(based on her input x). Since at this point Bob should be able to infer DISJ(x, y) for any

input y, he may chose y to corresponding to any singleton set {i}, and thus infer any bit

of x he wishes to learn. Alice’s message therefore defines a random access encoding, and has

length Ω(n) for any bounded-error protocol. On the other hand, there is an O(
√
n)-round

protocol for DISJ that uses O(
√
n log n) quantum bits, as shown by Buhrman, Cleve and

Wigderson [24]. Thus, by allowing more exchange of messages, the number of quantum bits

transmitted to solve a communication task may be reduced substantially.

We show next that our results imply a much stronger exponential separation

between quantum protocols differing in the number of rounds of communication. More

specifically, we show that a natural problem has one-round quantum communication com-

plexity Ω(n/ log n), whereas there is a classical two-round protocol for it with complex-

ity O(log n).

We now define the communication problem mentioned above. Let m ≥ 1 be an

integer. Alice, the first player in the communication game, gets as input an element i ∈
[m] = {0, . . . ,m− 1} and a subset M ⊂ [m]. Bob, the second player, gets a function f :

[m]→ [m]. The problem is to determine if f(i) ∈M . We refer to this problem as Π2 in the

sequel.
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Note that n, the problem size, is Θ(m logm). The two-round O(log n) classical

protocol for Π2 is straightforward: Alice sends Bob the element i and Bob returns Alice

the element f(i) it is mapped to by the function f . Alice then knows the answer to the

problem, which can be relayed to Bob. The protocol involves O(logm) = O(log n) bits of

communication. It is perhaps worth mentioning that the quantum communication complex-

ity of Π2 is Ω(log n). This follows from the proof of the Ω(log n) lower bound for DISJ given

by Buhrman and de Wolf [26, Proposition 1]. They show that a special case of DISJ—when

Alice has an arbitrary subset of [n] and Bob has an arbitrary singleton subset of [n]—has

quantum communication complexity Ω(log n). This is clearly equivalent to the restriction

of our problem when the input i to Alice is fixed (to, say, 0).

We now turn to one-round protocols for Π2. First, note that the problem may

be solved with O(m) bits of classical communication in one round: Alice can send both i

and M to Bob. Since the subset M may be represented as an m-bit vector, we get the

abovementioned bound. We claim that this is the best possible (up to a constant factor)

even when quantum communication is allowed. This quantum lower bound for Π2 is proven

by showing that any k-qubit protocol for it with probability p > 1
2 of success results in

an (m, k, p)-random access encoding.

Theorem 3.2.9 Any one-round quantum protocol for Π2 uses at least Ω(m) = Ω(n/ log n)

qubits of communication.

Proof: A one-round k-qubit protocol for Π2 in which Alice sends the first message defines

a (m, k, p)-random access code as follows. We consider messages sent by Alice when i is

fixed to be 0. Every m-bit string x is identified in the natural way with a subset M ⊆ [m].

The encoding of x is then defined as the message sent by Alice on input i,M . To recover

the jth bit of x for an arbitrary j ∈ [m], Bob does the measurement given by the one-round

protocol on any input function f such that f(0) = j. By Theorem 3.2.6, k = Ω(m).

A similar bound holds for protocols in which Bob initiates the communication.

Consider inputs to Π2 where the input subset M is fixed to {1}, and the functions f are

such that f(j) ∈ {0, 1} for all j. Each binary string of length m may be identified with

one such function f . The messages of Bob on the 2m different strings define an (m, k, p)-

random access encoding: to recover an arbitrary bit xj of an encoded string, Alice may use

the measurement defined by the protocol on input i = j and M = {1}. Thus, we again

have k = Ω(m).
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Thus, the one-round quantum communication complexity is exponentially larger

than its optimal (two-round) classical complexity.

3.3 Implications for finite automata

A quantum finite automaton (QFA) as defined by Kondacs and Watrous [54] differs

from a deterministic finite automaton (DFA) in that its state is in general a superposition of

the classical (basis) states. It starts in such a state, and when a new input symbol σ is seen,

a corresponding unitary operator Uσ is applied to it. The state is then measured to check

for acceptance, rejection or continuation. If the result of the measurement is ‘continue,’

the next symbol is read, otherwise the input is accepted or rejected. A QFA recognises

a language if all the strings in it (or not in it) are accepted (respectively, rejected) with

constant probability bounded away from 1/2. In [8], we gave an exponential size lower bound

for QFAs for checking if the input is a small even number, which is an almost immediate

consequence of our lower bound for random access codes.

In this thesis, we study more general QFAs, in which instead of only applying a

unitary transformation when a new input symbol is seen, we allow a combination of unitary

operators and orthogonal measurements. (We refer the reader to Section 2.3 of Chapter 2

for a more formal definition of QFAs.) In the case of more general models such as quantum

Turing machines such intermediate measurements do not increase the power of the model,

since measurements can always be replaced by safe storage. However, in the case of QFAs,

the space limitations inherent in the definition preclude the possibility of similar reasoning.

Moreover, in this new model, the evolution of the system is no longer reversible, so the

intuition from [54, 8] no longer applies. Indeed, this new model of QFA was suggested

by Dorit Aharonov as a more physically appropriate model that might not suffer from

unnecessary handicaps resulting from the reversibility property embedded in the definitions

from [59, 54]. However, it is not hard to verify (by applying a technique of [67], also used

in [54]) that such QFAs accept only regular languages. Moreover, we show that a stronger

version of the bound of [8] continues to hold.

Theorem 3.3.1 Let Ln be the language {w0 | w ∈ {0, 1}∗, |w| ≤ n}. Then,

1. Ln is recognised by a DFA of size O(n),

2. Ln is recognised by some QFA, and
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Figure 3.4: A DFA that accepts the language Ln = {w0 | w ∈ {0, 1}∗, |w| ≤ n}.

3. Any QFA recognising Ln with some constant probability greater than 1
2 has 2Ω(n) states.

A 2Ω(n) versus O(n) separation is the worst possible if only finite languages are considered:

it is not hard to see that a finite language with largest word-length n is accepted by a

reversible finite automaton of size 2O(n). Moreover, any DFA for it has size at least n, for

otherwise, by the Pumping Lemma, the DFA would accept infinitely many words. We also

point out that the proof of this theorem implies that QFAs accept only a strict subset of

the regular languages.

We now give the proof of Theorem 3.3.1, which compares classical and quantum au-

tomata for checking if a given input is a small even number (an even number less than 2n+1).

The first two parts of Theorem 3.3.1 are easy. Figure 3.4 shows a DFA with 2n + 3 states

for the language Ln. Part 3 of the theorem may be shown to follow from the lower bound

argument we give for random access codes (as we show in [8]) if only unitary operations are

allowed during the computation. However, we will take a slightly different path based on

the “principle of accumulation of information” (Lemma 3.2.5) that applies to general QFA

as well.

Consider the evolution of the a quantum system under a random sequence of uni-

tary transformations (Vi), where each Vi is either U0 or U1 (see Figure 3.5). Now suppose

that the transformations U0 and U1 are distinguishable in the sense that for every super-

position |φ〉 of the system, U0 |φ〉 can be distinguished from U1 |φ〉 with success probability,

say, p > 1
2 by some fixed measurement. At each step, the system gains some information

about the transformation applied to it, and we expect the entropy of the system to increase

accordingly. In general, we could apply one of two arbitrary but distinguishable quantum

operations on the system, and we would expect the same increase in entropy. This is exactly

what Lemma 3.2.5 formalises.
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Figure 3.5: A stream of random bits determining the evolution of a quantum system.

We now prove Theorem 3.3.1 using this framework. We need the following defini-

tion first.

Definition 3.3.1 An r-restricted one-way QFA for a language L is a one-way QFA that

recognises the language with probability p > 1
2 , and which halts with non-zero probability

before seeing the right end-marker only after it has read r letters of the input.

We begin with a bound of 2(1−H(p))n for the number of basis states in any n-

restricted QFA M for Ln that has success probability p. Note that the evolution of M on

reading stream of random bits corresponds exactly to that of the quantum system described

above. We prove that, at the end of reading a random n-bit string, the state of M has

entropy at least (1 −H(p))n. However, this entropy is bounded by log |Q| by Fact A.1.1,

where Q is the set of basis states of M . This gives us the above bound.

Let ρk be the state of the QFA M after the kth symbol of a random n-bit input

has been read (0 ≤ k ≤ n).

Claim 3.3.2 S(ρk) ≥ (1−H(p))k.

Proof: Let Uσ be the superoperator of M corresponding to the symbol σ. Let E0 be

the span of the accepting basis states of M and let E1 be the subspace orthogonal to it.

Define the measurement O as applying the transformation U$ (recall that ‘$’ is the right

end-marker) and then measuring with respect to the observable E0⊕E1. We can now prove

the claim by induction.

For k = 0, S(ρ0) ≥ 0. Now assume that S(ρk−1) ≥ (1 − H(p))(k − 1). After
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the kth random input symbol is read, the state of M becomes

ρk =
1

2
(U0(ρk−1) + U1(ρk−1)).

By the definition of M , measuring Ub(ρk−1) according to O yields b with probability at

least p > 1
2 . So by Lemma 3.2.5, we have

S(ρk) ≥
1

2

∑
b=0,1

S(Ub(ρk−1)) + (1−H(p)). (3.2)

But the entropy of a mixed state is preserved by unitary transformations (Fact A.1.2) and

only increases on orthogonal measurement (Fact A.1.3), so

S(Ub(ρk−1)) ≥ S(ρk−1) ≥ (1−H(p))(k − 1).

Inequality (3.2) now gives us the claimed bound.

It only remains to show that the lower bound on the size of restricted QFA obtained

above implies a lower bound on the size of general (i.e., unrestricted) QFA accepting Ln.

We do this by showing that we can convert any one-way QFA to an r-restricted one-way

QFA which is only O(r) times as large as the original QFA. It follows that the 2Ω(n) lower

bound on number of states of n-restricted QFA recognising Ln continues to hold for all QFA

for Ln, exactly as stated in Theorem 3.3.1.

The idea behind the construction of a restricted QFA, given any QFA, is to carry

the halting parts of the state of the original automaton as “distinguished” non-halting parts

of the state of the new automaton till at least r more symbols of the input have been read

since the halting part was generated or until the right end marker is encountered, and then

mapping them to accepting or rejecting subspaces appropriately.

Lemma 3.3.3 Let M be a QFA with |M | states recognising a language L with probabil-

ity p. Then there is an r-restricted QFA M ′ with O(r |M |) states that recognises L with

probability p.

Proof: Let M be a QFA with Q as the set of basis states, Qacc as the set of accepting

states, Qrej as the set of rejecting states, and q0 as the starting state. Let M ′ be the

automaton with basis state set

Q ∪ (Qacc × {0, 1, . . . , r + 1} × {acc,non}) ∪
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(Qrej × {0, 1, . . . , r + 1} × {rej,non}).

Let Qacc ∪ (Qacc×{0, 1, . . . , r+1}×{acc}) be its set of accepting states, let Qrej ∪ (Qrej×
{0, 1, . . . , r + 1} × {rej}) be the set of rejecting states, and let q0 be the starting state.

The super-operators (which consist of a finite sequence of unitary operations and

orthogonal measurements) for the new QFA are constructed as follows. All transitions

but those in the last unitary transformation corresponding to any symbol are retained as

before. The last unitary transformation is modified as below. If for a state q ∈ Q, there is

a transition

|q〉 7→
∑
q′

αq′
∣∣q′〉

in M on symbol σ, then in M ′, we have the following transitions. On the ‘$’ symbol, we

have the same transition, and on σ 6= $, we have

|q〉 7→
∑

q′ 6∈Qacc ∪ Qrej

αq′
∣∣q′〉+

∑
q′∈Qacc ∪ Qrej

αq′
∣∣q′, 0, non

〉
.

The transitions from the states not originally in M are given by the following rules. For

any symbol σ 6= $, we have

|q, i,non〉 7→


|q, i+ 1, non〉 if i < r

|q, i+ 1, acc〉 if q ∈ Qacc and i = r

|q, i+ 1, rej〉 if q ∈ Qrej and i = r

On the ‘$’ symbol we have:

|q, i,non〉 7→

 |q, i, acc〉 if q ∈ Qacc and i ≤ r
|q, i, rej〉 if q ∈ Qrej and i ≤ r

The rest of the transitions may be defined arbitrarily, subject to the condition of

unitarity.

All measurements made in M are augmented with a complete measurement of the

new states.

It is not difficult to verify that M ′ is an r-restricted one-way QFA (of size O(r |M |))
accepting the same language as M , and with the same probability.

As a simple consequence of the size lower bound derived above, we obtain:
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Theorem 3.3.4 The regular language {0, 1}∗0 cannot be accepted by any QFA with prob-

ability bounded away from 1
2 .

To see this, we note that any QFA that supposedly recognises this language also correctly

recognises all words of length at most n of the language Ln, for every n. The proof of

Theorem 3.3.1 now tells us that the number of states in the QFA is 2Ω(n) for every n, which

is a contradiction.

3.4 Concluding remarks

Holevo’s theorem is a recurring tool in shedding light on the limitations of quantum

communication. While we have given a greatly simplified explanation for it that works well

in many situations, our understanding of it is still incomplete. Apart from the case of

random access codes, where we used the theorem in its full generality, there are other

situations where it has found applications. One such is in proving communication bounds

in the presence of shared entanglement [31]. Our result does not seem to apply to this case

either. It would be useful to have an explanation of Holevo’s theorem that extends to these

cases as well.

Several open problems emerge from our study of random access codes. The first

relates to private information retrieval (see, e.g., [27]). Theorem 3.2.8 implies a linear

communication lower bound for the problem of information-theoretically secure private

information retrieval with one database when constant probability of error is allowed. It is

known that by increasing the number of databases to two, one can reduce the communication

required to O( 3
√
n), even for zero-error retrieval (see [52] for the latest developments in this

field). It might be possible to reduce this even further using quantum communication.

Another problem relates to the relative power of communication using a different

number of rounds. Generalisations of the problem Π2 of Section 3.2.5 are known to witness

exponential separation between k and k + 1 rounds of communication (k ≥ 1) in classical

complexity theory [56]. We believe that our techniques can be extended to prove the same

for quantum communication as well, and are currently investigating this.

Although information theoretic arguments prove to be useful in many contexts,

we do not know of a way to use them to get interesting bounds for, say, the set disjointness

problem discussed in Section 3.2.5. While [24] gives a general method for designing efficient

quantum communication protocols, no such general paradigm for showing the limitations of
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quantum communication is known. An approach that may be of relevance in this context

is one recently introduced in [26]—that of proving bounds via polynomials.

Our study of quantum finite automata further motivates the study of restrictions

on quantum computation forced by experimental considerations. Space requirements are

likely to be a dominant consideration in the realisation of quantum computers because of

the difficulties involved in maintaining entanglement across a large quantum system for

extended periods of time. The study of space bounded quantum computation with more

general space bounds thus assumes importance. It was recently proved [76] that quantum

computation offers limited savings in space in universal models of computation (in contrast

to the case of finite automata). A space S quantum computation can be accomplished in

deterministic space O(S2), while deterministic computations using space S can be simulated

on a quantum computer with only a constant factor increase in space. Some questions that

remain unresolved are whether there are more time-efficient quantum simulations of classical

processes that do not incur any (significant) space overhead, and whether bounded-error

quantum computations can be carried out by bounded-error probabilistic machines with

sub-quadratic blow-up in space. Answers to such questions will help us to better understand

the power of space bounded quantum devices.
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Chapter 4

Bounds for quantum computation

This chapter focuses on showing optimal (or nearly optimal) bounds for solving

some problems in the quantum black-box model. Most of these bounds have previously

been reported in [62].

Th black-box model is precisely defined in Section 2.1 of Chapter 2. We start with

the problem of approximating the median in Section 4.1, and illustrate the technique we

use to derive lower bounds using it as an example. We rely heavily on some basic results

from the theory of approximations. These are detailed in Section A.2 of Appendix A. We

then show how the technique generalises to other problems (Section 4.2). This involves a

polynomial degree lower bound which is proved in Section 4.3. Section 4.4 deals with the

optimality of the lower bounds derived, and Section 4.6 presents an optimal algorithm for

a generalisation of the approximate medians problem. We then conclude with a discussion

of our results and future directions.

4.1 Approximating the median

We begin by studying the problem of estimating the median of a sequence of

numbers. (The problem described in Section 1.2 of the Introduction occurs as a special case

of this problem.) This will help us illustrate the technique we use for deriving lower bounds

for a more general class of problems.

Let ε > 0 be any real. An ε-approximate median of a sequence X = (x0, . . . , xn−1)

of n numbers is a number xi such that the number of xj less than it and the number of xj

more than it are each less than (1+ε)n2 . Roughly speaking, an ε-approximate median is any
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number with rank in an interval of size εn around n
2 . We may allow that the statistic not

be a number from the input list. The problem of computing this quantity on a quantum

computer was first studied by Grover with this relaxed definition [47, 48].

Suppose we are given a list X of n numbers as an oracle and we wish to compute

an ε-approximate median by making as few queries to the oracle as possible. What is the

least number of queries with which one can solve the problem? In 1996, Grover [47] gave an

algorithm for this problem that makes Õ(1
ε ) queries when the numbers are all either 0 or 1.

(When the numbers are drawn from a range of size M , the bound becomes Õ(1
ε logM).)

Here, the Õ notation suppresses polylogarithmic factors. The restriction of the problem

to 0/1 inputs is essentially the well-studied problem of estimating the bias of a random coin

to within ε. It is known that it takes Θ( 1
ε2

) coin tosses to solve this problem. Thus Grover’s

quantum algorithm provided further evidence of the speed-up possible with quantum com-

puting. Could the algorithm be yet more efficient? A lower bound argument introduced by

Bennett, Bernstein, Brassard and Vazirani [13] shows that the speed-up may be at most

polynomial. More precisely, it shows that Ω( 1√
ε
) queries are necessary to compute an ε-

approximate median (see also [73]). We now show that Grover’s algorithm is essentially

optimal, that, in fact, Ω(1
ε ) queries are required.

Proving lower bounds for quantum algorithms is hard for exactly the same reasons

that make the model powerful. The features of superposition and interference effects result

in algorithms that explore exponentially many computational paths simultaneously and

combine their results in non-trivial ways. Nevertheless, Beals, Buhrman, Cleve, Mosca and

de Wolf [11] recently showed that the behaviour of quantum algorithms can effectively be

captured in a simple, yet powerful manner by polynomials.

Lemma 4.1.1 (Beals,Buhrman,Cleve,Mosca,de Wolf) Let A be a quantum algorithm

that makes T calls to a boolean oracle X. Then, there is a real multilinear polynomial p of

degree at most 2T in the variables x0, . . . , xn−1 such that the acceptance probability of A on

oracle input X = (x0, . . . , xn−1) ∈ {0, 1}n is exactly p(x0, . . . , xn−1).

Here, “acceptance probability” refers to the probability that the algorithm produces 1 as

output. The power of this characterisation of quantum algorithms lies in the observation

that if the algorithm computes some boolean function of the input X with probability at

least 1−δ, then the corresponding polynomial approximates the function to within δ: if the

function is 1 on some input, the algorithm returns 1 with probability at least 1− δ, and if
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Figure 4.1: The “projection” q of the polynomial p into one dimension.

it is 0, the probability of acceptance (and hence the value of the polynomial at that point)

may be at most δ. Thus, the task of proving a lower bound for the number of queries T

reduces to that of proving a lower bound for the degree of polynomials approximating the

function.

In the case of approximating the median, though, the restriction of the problem

to 0, 1 inputs is not quite a function: the answer may be either 0 or 1 when the number of

ones in the input list is in the range ((1− ε)n2 , (1+ ε)n2 ). The polynomial p corresponding to

any algorithm for the problem is therefore close to 0 if the number of ones is at most (1−ε)n2
and close to 1 if the number of ones is at least (1 + ε)n2 , but may assume any value in [0, 1]

on other input points. It does not necessarily approximate any boolean function, and it

would seem that we have reached a dead end. The observation that still allows us to use

this characterisation is that where the output is uniquely defined, the polynomial depends

essentially only on the number of ones in the input, and moreover, at points where the

output may be either 0 or 1, the polynomial is undetermined, but nevertheless bounded.

The polynomial still “approximates” a symmetric boolean relation. This observation may be

exploited by using the technique of symmetrisation—averaging the value of the polynomial

over all permutations of the input variables. The averaged polynomial clearly depends only

on the number of ones in the input, is multilinear, and has degree at most that of the

original polynomial. Fact A.2.1 from Section A.2 now allows us to reduce this polynomial

to a univariate one. The result of this method of projecting the n-variate polynomial p to

a univariate polynomial q is depicted in Figure 4.1.

We now are left with the problem of proving a degree lower bound for a univariate
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polynomial q that has the following properties, assuming the algorithm makes error at

most δ = 1
3 (this may be replaced by any constant less than a half):

• q(i) ≤ 1
3 for integers 0 ≤ i ≤

⌊
(1− ε)n2

⌋
,

• q(i) ≥ 2
3 for integers

⌈
(1 + ε)n2

⌉
≤ i ≤ n, and

• 0 ≤ q(i) ≤ n for all other integers in [0, n].

Intuitively, it is clear that the polynomial q has “high” degree—it is close to zero

initially, and makes a jump to one in a small interval around n
2 , i.e., it has large derivative in

that interval. Since a bounded low degree polynomial cannot have high derivative, we expect

a large degree lower bound. A result from the theory of approximations, the Bernstein

inequality (Fact A.2.5.2 in Section A.2), almost allows us to make this conclusion about q.

The inequality says that if a polynomial is bounded (by, say, 1) in the interval [−1, 1],

then its derivative at any point x in the interval is bounded by d√
1−x2 , where d is the

degree of the polynomial. The reason that this is not immediately applicable here is that

polynomials such as arise from quantum algorithms may not be bounded at all points in

the interval [0, n], although they lie between 0 and 1 at integer points. In fact, they may

have value exponential in the degree at non-integer points. To overcome this problem, we

use a technique due to Paturi [63]. We consider a polynomial obtained by multiplying q by

a low degree polynomial that “damps” the value of q outside a suitable interval. Since q

may be exponentially large in its degree d, we use the approximately the dth power of

the polynomial (1 − x2) suitably to achieve the damping. This polynomial mimics the

function e−x
2d for large x in the interval [−1, 1], and hence gives us the desired damping

effect (see Figure 4.2).

We now formally state the above argument. We first scale and translate the

polynomial q to transform the domain of interest from [0, n] to [−1, 1] to be able to apply

the Bernstein inequality. Define q̂(x) = q((1 +x)n/2). For i = 0, 1, . . . , n, let ai = 2i/n− 1.

We may assume that (1−ε)n2 and (1+ε)n2 are integers, and that ε ≤ 1
2 . Define a polynomial r

as

r(x) =

[
1− (x− ε)2

4

]cd
,

for a constant c to be specified later. We will use this polynomial as the damping function.

Let s(x) = q̂(x)r(x). The polynomial s lies between 0 and 1 at all ai, s(−ε) ≤ 1
3 , s(ε) ≥ 2

3 ,
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Figure 4.2: The low degree polynomial (1− x2)t mimics e−x
2t in the interval [−1, 1].

and has degree O(d). Furthermore, we will show that it is bounded by 1 suitably far from

the origin. By Fact A.2.2, we have |q(x)| ≤ 2d for all x ∈ [0, n], hence the same bound

applies to q̂ and s in [−1, 1] (i.e., ‖ s ‖ ≤ 2d). Also, for x ∈ [−1,−3
4 ] ∪ [3

4 , 1],

r(x) =

[
1− (x− ε)2

4

]cd

≤ exp

[
−(x− ε)2

4
cd

]
≤ exp(−cd/64),

since ε ≤ 1
2 . By choosing c = 64, we ensure that s is bounded by 1 in the abovementioned

interval.

It is now a straightforward matter to prove the degree bound. Suppose ‖ s ‖ ≤ 2.

The Mean Value Theorem implies that there is a point a ∈ [−ε, ε] such that

s′(a) ≥ s(ε)− s(−ε)
2ε

≥ 1

6ε
.

On the other hand, by Bernstein inequality,

∣∣s′(a)
∣∣ ≤ (2c+ 1)d ‖ s ‖√

1− a2

≤ 258d√
3/4

,

which gives us an Ω(1
ε ) lower bound for d. If ‖ s ‖ > 2, then |s| attains its maximum in

the interval [−3
4 ,

3
4 ]. Since |s| is bounded by 1 at points spaced 2

n apart, the Mean Value
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Theorem implies that s has derivative at least

‖ s ‖ − 1

2/n
≥ n ‖ s ‖

4

at some point a ∈ [−3
4 ,

3
4 ]. Another application of Bernstein inequality gives us

∣∣s′(a)
∣∣ ≤ (2c+ 1)d ‖ s ‖√

1− a2

≤ 129d ‖ s ‖√
7/16

,

which implies that d = Ω(n). We summarise our conclusion below.

Theorem 4.1.2 The quantum query complexity of computing an ε-approximate median

is Ω(min{1
ε , n}).

A natural measure of complexity of computing order statistics (such as the mini-

mum and the median) is the number of comparisons between the input elements required

for the computation. To study this aspect of such problems, one considers algorithms in the

comparison tree model. In this model, the algorithm is provided with an oracle that replies

with the result of the comparison xi < xj when given a pair of indices (i, j), rather than an

oracle that returns the number xi on a query i as considered above. The query complexity

of a problem is then the number of comparisons required to solve the problem. The lower

bound for estimating the median continues to hold in the comparison tree model, since any

comparison between two input numbers can be simulated by making at most four queries

to an oracle of the sort we consider above.

4.2 Other problems of interest

The techniques we used to derive the degree lower bound in the previous section

are quite general, and may be extended to derive lower bounds for several other problems

of a statistical nature that have been studied recently. These include approximating the

mean and approximate counting, for which only weaker lower bounds were known before.

We define these problems now and then state the more general polynomial degree lower

bound that enables us to infer their complexity.

Let X = (x0, . . . , xn−1) be a sequence of (rational) numbers, and let ε,∆ > 0 be

(rational) parameters. We may assume ε to be in the range [ 1
2n , 1) and ∆ to be in [1

2 , n).

We define the following statistics:
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1. ∆-approximate kth-smallest element. (Defined for 1 ≤ k ≤ n.) A number xi

that is the jth-smallest element of X for some j in the range (k −∆, k + ∆).

2. ε-approximate mean. A number µ such that |µ− µX | < ε, where µX = 1
n

∑n−1
i=0 xi

is the mean of the n input numbers.

3. ∆-approximate count. (Defined when xi ∈ {0, 1} for all i.) A number t such

that |t− tX | < ∆, where tX = |X| =
∑n−1
i=0 xi is the number of ones in X.

4. ε-approximate relative count. (Defined when xi ∈ {0, 1} for all i.) A number t

such that |t− tX | < εtX , where tX is defined as above.

Some of these statistics are very closely related to each other. The first is a natural generali-

sation of an approximate median. The third is a scaled version of the second restricted to 0, 1

inputs, and the last is a version of it in which we are interested in bounding relative rather

than additive error. As in the case of approximate medians, we may relax the condition

that the approximate statistic be a number from the input list (with a suitable modification

to the definition above); our results continue to hold with the relaxed definition.

The feature that the above quantities have in common with approximate median is

that when the sequence of input numbers is restricted to be over {0, 1}, they correspond to

certain boolean relations. Thus, as in the case of the median problem, we may prove lower

bounds for algorithms computing these statistics by showing degree bounds for polynomials

approximating these relations. We make this precise below.

Consider a boolean relation f : {0, 1}n → 2{0,1}. We say a real n-variate polyno-

mial p approximates the relation f to within c, for a constant 0 ≤ c < 1/2, if

1. for all X ∈ {0, 1}n, p(X) ∈ [−c, 1 + c], and

2. for all points X at which f(X) ∈ {0, 1}, |p(X)− f(X)| ≤ c.

Our main theorem, which we prove in Section 4.3, gives a degree lower bound for polynomials

approximating relations of the of the following type. For X = (x0, . . . , xn−1) ∈ {0, 1}n,

let |X| =
∑n−1
i=0 xi be the number of ones in X. Let `, `′ be integers such that 0 ≤ ` 6= `′ ≤ n.

Define the boolean relation f`,`′ on {0, 1}n as

f`,`′(X) =


1 if |X| = `

0 if |X| = `′

{0, 1} otherwise
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Let m ∈ {`, `′} be such that
∣∣n

2 −m
∣∣ is maximised, and let ∆` = |`− `′|.

Theorem 4.2.1 Let p be any real n-variate polynomial which approximates the boolean

relation f`,`′ to within c, for some constant c < 1/2. Then, the degree of p is Ω(
√
n/∆` +√

m(n−m)/∆`).

This theorem generalises a degree lower bound given by Paturi [63] for polynomials approx-

imating symmetric total boolean functions.

We say that an algorithm A computes a relation f if Pr [A(X) 6∈ f(X)] ≤ δ for all

inputs X, where δ is some constant less than 1/2. For boolean f , we say that the algorithm

accepts an input X if A(X) = 1. When combined with the characterisation due to Beals et

al. (Lemma 4.1.1) of the acceptance probability of a quantum algorithm on a boolean input

oracle, in terms of polynomials, Theorem 4.2.1 gives us the following result.

Corollary 4.2.2 Any quantum black-box algorithm that computes the boolean relation f`,`′,

given the input as an oracle, makes Ω(
√
n/∆` +

√
m(n−m)/∆`) queries.

Proof: Consider an oracle quantum algorithm A that computes the relation f`,`′ with

constant error probability c < 1/2 by making at most T oracle queries. From Lemma 4.1.1,

there is a real multilinear polynomial p(x0, . . . , xn−1) of degree at most 2T that gives the

acceptance probability of A on the oracle input X = (x0, . . . , xn−1). Clearly, p approxi-

mates f`,`′ to within c: p(X) ≥ 1−c when |X| = `, p(X) ≤ c when |X| = `′, and p(X) ∈ [0, 1]

for all X ∈ {0, 1}n. Theorem 4.2.1 now immediately implies the result.

Corollary 4.2.2 enables us to prove lower bounds for the query complexity of com-

puting the statistics defined above by showing reductions from relations of the sort described

above. The details of the reductions are given in Appendix A.3. We start with the gener-

alisation of an approximate median defined above.

Theorem 4.2.3 Any quantum black-box algorithm for computing a ∆-approximate kth-

smallest element given n numbers via an oracle makes at least Ω(
√
n/∆ +

√
k(n− k)/∆)

queries.

This lower bound also holds for the number of comparisons required (for the same reason

as given for approximate medians).

Grover [48] recently gave an O(1
ε log log 1

ε ) query algorithm for approximating the

mean. This is an almost quadratic improvement over classical algorithms. When the inputs
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are restricted to be 0, 1, the problem reduces to that of approximate counting to within an

additive error. We give a lower bound for this problem and in the process get an almost

tight lower bound for the general mean estimation problem.

Theorem 4.2.4 Any quantum black-box algorithm that approximates the number of ones

of a boolean oracle to within an additive error of ∆ makes Ω(
√
n/∆+

√
t(n− t)/∆) queries

on inputs with t ones.

Corollary 4.2.5 Ω(1
ε ) queries are required to compute an ε-approximate mean in the quan-

tum black-box model.

Brassard et al. [23, 60, 21] study the version of the approximate counting problem

in which one is interested in bounding the relative error of the estimate. We show that their

algorithm is optimal to within a constant factor (when the number of ones is ≤ (1− ε)n).

Theorem 4.2.6 Any quantum black-box algorithm that solves the ε-approximate relative

count problem makes

Ω

(√
n

εt+ 1
+

√
t(n− t)
εt+ 1

)
queries on input oracles with t ones.

4.3 A degree lower bound for polynomials

This section is devoted to deriving the polynomial degree lower bound stated

in Theorem 4.2.1, which gives a lower bound for polynomials approximating symmetric

relations. The bound is derived along the lines described in Section 4.1 using ideas employed

by Paturi [63] for polynomials that approximate symmetric boolean functions.

Recall from Section 4.2 that f`,`′(X) is a boolean relation on {0, 1}n which is 1

when |X| = ` and 0 when |X| = `′, that m is the one of ` and `′ which is furthest

from n/2, and that ∆` = |`− `′|. We assume that p is an n-variate polynomial of degree d

which approximates the relation f to within 1/3 in the sense defined in Section 4.2. (The

constant 1/3 may be replaced by any constant less than 1/2 and the proof continues to

hold with minor changes.) Without loss of generality, we assume that ` > `′. Otherwise,

we work with the polynomial 1− p, which approximates 1− f .

We begin by replacing p with its symmetrisation psym and then using Fact A.2.1

to transform it to an equivalent univariate polynomial q. (Since x2 = x for x ∈ {0, 1},
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we may assume that p is multilinear.) We show a degree lower bound for q, thus giving a

degree lower bound for p.

In order to apply the derivative inequalities above, we transform the polynomial q

to an equivalent polynomial q̂ over the interval [−1, 1], where q̂(x) = q((1 +x)n/2). For i =

0, 1, . . . , n, let ai = 2i/n− 1. Clearly, q̂ has the following properties:

1. q̂ has degree at most d.

2. |q̂(ai)| ≤ 4/3 for 0 ≤ i ≤ n.

3. q̂(a`) ≥ 2/3 and q̂(a`′) ≤ 1/3. Thus, by the Mean Value Theorem, there is a point a

in the interval [a`′ , a`] such that q̂′(a) ≥ (2/3− 1/3)/(a` − a`′) = n/(6∆`).

We prove two lower bounds for d, which together imply the theorem. The first of

the lower bounds follows by applying the Markov Inequality (Fact A.2.5.1) directly to q̂.

Lemma 4.3.1 d = Ω(
√
n/∆` ).

Proof: We consider two cases:

Case (a). ‖ q̂ ‖ < 2. Combining property 3 of q̂ listed above and Fact A.2.5.1, we get

d2 ≥ q̂′(a)/ ‖ q̂ ‖ ≥ n/(12∆`).

So d = Ω(
√
n/∆` ).

Case (b). ‖ q̂ ‖ ≥ 2. From property 2 of q̂ listed above, every point at which q̂ attains its

norm is no more than 2/n away from a point ai at which |q̂(x)| ≤ 4/3. Hence, by the Mean

Value Theorem, there is a point â ∈ [−1, 1] such that

∣∣q̂′(â)
∣∣ ≥ (‖ q̂ ‖ − 4/3)/(2/n) ≥ n ‖ q̂ ‖ /6.

The Markov inequality then implies d = Ω(
√
n ) = Ω(

√
n/∆` ).

The second of the lower bounds follows from an application of the Bernstein In-

equalities for algebraic and trigonometric polynomials (Facts A.2.5.2 and A.2.6, respec-

tively).

Lemma 4.3.2 d = Ω(
√
m(n−m)/∆`).

Proof: If q̂ has norm less than 2, property 3 in conjunction with Fact A.2.5.2 implies that

2d ≥ ‖ q̂ ‖ d ≥
√

1− a2 q̂′(a) ≥
√

1− a2 (n/6∆`).
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But since a ∈ [a`′ , a`], we have

1− a2 ≥ 1− a2
m = 1− (2m/n− 1)2 = 4m(n−m)/n2.

Hence, d = Ω(
√
m(n−m)/∆`).

Now suppose that ‖ q̂ ‖ ≥ 2. The proof in this case is not as straightforward as in

Lemma 4.3.1, since Fact A.2.5.2 gives a bound which is sensitive to the point at which q̂

has high derivative. However, it is possible to “damp” the value of the polynomial outside

a suitable interval, and thus obtain the required bound.

Let b be the point of smallest magnitude at which |q̂| ≥ 2, and let c be the one of b

and a` of smaller magnitude. Assume that c ≥ 0. (The proof in the other case is similar.)

Let C be a constant such that 0 < C < 0.01. We distinguish between two cases.

Case (a). c ≤ 1− C. Define the polynomial r to be:

r(x) = q̂(x+ c)(1− x2)d1

where d1 =
⌈
6/C2

⌉
d. The degree D of r is clearly O(d), so it suffices to prove the claimed

lower bound for D.

Suppose ‖ r ‖ < 2. Then, c = a`, r(0) ≥ 2/3, and r(a`′ − a`) ≤ 1/3. By the

Mean Value Theorem, there is a point â ∈ [a`′ − a`, 0] such that |r′(â)| = Ω(n/∆`). We

may assume, without loss of generality, that ∆` ≤ n/4, so that â ∈ [−1/2, 0]. (Otherwise,

the lower bound follows trivially.) By Fact A.2.5.2, we conclude that D = Ω(n/∆`) =

Ω(
√
m(n−m)/∆`).

We now focus on the case when ‖ r ‖ ≥ 2. We show in Claim 4.3.3 below that |r(x)|
is bounded by 1 for C ≤ |x| ≤ 1. This implies that ‖ r ‖ is attained within [−C,C]. Note

that |r| is bounded by 4/3 at points ai − c separated by 2/n in [−C,C]. Hence, there is a

point â ∈ [−C,C] at which |r′(â)| ≥ n ‖ r ‖ /6. Applying Fact A.2.5.2 to r at the point â,

we get D = Ω(n) = Ω(
√
m(n−m)/∆`).

It only remains to prove the following claim to complete the analysis of Case (a).

Claim 4.3.3 For all x ∈ [−1,−C] ∪ [C, 1], |r(x)| ≤ 1.

Proof: Note that ‖ q̂ ‖ = max0≤x≤n |q(x)|. By Fact A.2.2, we thus have ‖ q̂ ‖ ≤ (4/3) · 2d.
In particular, |q̂(x+ c)| ≤ (4/3) ·2d ≤ (4/3) ·e5d for x ∈ [−1, 1−c]. We give the same bound

on |q̂(x+ c)| for x ∈ [1− c, 1] by using Fact A.2.3:

|q̂(x+ c)| ≤ ‖ q̂ ‖ · Td(x+ c) ≤ (4/3) · 2d · e2
√

3 d ≤ (4/3) · e5d,
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since c ≤ 1. Further, if C ≤ |x| ≤ 1, we have (1− x2)d1 ≤ e−x
2d1 ≤ e−6d. Combining these

two inequalities, we may bound r in the region [−1,−C] ∪ [C, 1] as follows:

|r(x)| = |q̂(x+ c)| (1− x2)d1 ≤ (4/3) · e5d · e−6d ≤ 1

We now turn to the remaining case, when c is close to 1.

Case (b). c > 1 − C. Without loss of generality, we assume that ∆` ≤ `′, ` ≤ n − ∆`.

(Otherwise, the bound we seek follows from Lemma 4.3.1 above, since
√
m(n−m)/∆` ≤√

n/∆` ). This implies, in particular, that c < 1. Let αc = cos−1 c. Since 0.99 < 1 − C <

c < 1, we have 0 < αc < 1/4.

We prove a degree lower bound for a trigonometric polynomial s derived from q̂.

The polynomial s is defined as:

s(θ) = q̂(cos θ)[cos(d1(θ − αc))]d2 ,

where d1 = b1/(2αc)c and d2 = c1 dd/d1e, for some integer constant c1 ≥ 1 to be specified

later. Let D be the degree of the polynomial s.

Claim 4.3.4 D = O(d).

Proof: First, note that since cos θ ≥ 1− θ2/2 for θ ∈ [0, π/2], we have

αc ≥
√

1− cosαc =
√

1− c ≥
√

2∆`/n.

(The last inequality follows from the assumption that ` ≤ n−∆`.) Hence, d1 ≤ 1/(2αc) =

O(
√
n/∆` ), which is O(d) by Lemma 4.3.1. We may now bound D as follows:

D ≤ d+ d2d1 = d+ c1 dd/d1e d1 ≤ d+ c1(d+ d1) = O(d).

Thus, it suffices to prove a lower bound for D of Ω(
√
m(n−m)/∆`), which we do

next.

Let αi = cos−1 ai, for i = 0, . . . , n.

Again, if ‖ s ‖ < 2, we get the lower bound easily. In this case, c = a`, s(α`) ≥ 2/3,

and s(α`′) ≤ 1/3. Hence, for some α ∈ [α`, α`′ ], |s′(α)| ≥ (1/3)/(α`′ − α`). By the Mean

Value Theorem, α`′−α` = |cosα`′ − cosα`| / sin α̂, for some α̂ ∈ [α`, α`′ ]. Note that sin α̂ ≥
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sinα` ≥ sinαm =
√

1− a2
m. Thus, |s′(α)| ≥ (1/3)

√
1− a2

m/(2∆`/n). Fact A.2.6, the

Bernstein Inequality for trigonometric polynomials, then gives us D = Ω(
√
m(n−m)/∆`).

We now examine the case when ‖ s ‖ ≥ 2. Claim 4.3.5 below shows that |s(θ)| is

bounded by 1 when θ ∈ [−π,−π+αc/2] ∪ [−αc/2, αc/2] ∪ [π−αc/2, π]. We assume here

that the norm is attained in [0, π]; the proof proceeds analogously in the other case. This

point is close to some point αi ∈ [αc/2, π−αc/2] where |s(αi)| ≤ 4/3. Arguing as before, we

get that for some points α, β ∈ [αc/2, π − αc/2], |s′(α)| ≥ (‖ s ‖ /3)(sinβ)/(2/n). Further,

sinβ ≥ sin
αc
2
≥ αc

4
≥ sinαc

4
≥ sinαm

4
.

From Fact A.2.6, we now get D = Ω(
√
m(n−m)) = Ω(

√
m(n−m)/∆`).

We now prove that s is bounded in the region mentioned above.

Claim 4.3.5 For all θ ∈ [−π,−π + αc/2] ∪ [−αc/2, αc/2] ∪ [π − αc/2, π], |s(θ)| ≤ 1.

Proof: We prove the claim for θ ∈ [0, αc/2]. The analysis for θ in the other intervals is

similar. (One exploits the fact that q̂(cos θ) is an even function of θ, and that Corollary A.2.4

limits its behaviour outside [αc, π − αc].)
Let h(θ) = [cos(d1(θ − αc))]d2 . Then, for θ ∈ [0, αc],

|h(αc − θ)| = |cos(d1θ)|d2 ≤ (1− (d1θ)
2/4)d2

≤ e−d2(d1θ)2/4

≤ e−c1dθ
2/(16αc).

The first inequality follows from the fact that cosφ ≤ 1−φ2/4 for φ ∈ [0, π/2] and that 0 ≤
d1αc ≤ 1/2. In the last step, we use the fact that αc ≤ 1/4.

Further, Corollary A.2.4 gives us the following bound on the value of q̂ outside the

interval [−c, c]:
|q̂(c+ x)| ≤ 2 |Td(1 + x/c)| ≤ 2 · e2d

√
3x/c,

for x ∈ [0, 1− c]. Since for θ ∈ [0, αc], cos(αc − θ) = cosαc cos θ + sinαc sin θ ≤ c+ αcθ,

we have

|q̂(cos(αc − θ))| ≤ 2 · e2d
√

3αcθ/c ≤ 2 · e4d
√
αcθ.

Hence, for θ ∈ [0, αc/2],

|s(θ)| = |q̂(cos(αc − (αc − θ)))| |h(αc − (αc − θ))| ≤ 1,
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provided c1 is chosen large enough.

This completes the proof of Lemma 4.3.2.

Lemmas 4.3.1 and 4.3.2 together imply that

d = Ω

(
max

{√
n/∆`,

√
m(n−m)/∆`

})
,

which is equivalent to the bound stated in Theorem 4.2.1.

4.4 Optimality of the lower bounds

We saw in the previous sections that our lower bounds for the mean and the median

come within logarithmic factors of known upper bounds, while in the case of approximate

counting with relative error, the bound is optimal (for most of the inputs). An obvious

question that arises is whether it is possible further optimize the algorithms or whether our

lower bounds can be improved upon. We show new, optimal algorithms for some problems

and also show that our methods for showing lower bounds cannot be improved.

In Section 4.6 we present an algorithm for approximating the kth-smallest element

that comes within a constant factor of the optimum. This also gives us a new, optimal

algorithm for estimating the median.

Theorem 4.4.1 There is a quantum black-box algorithm that computes a ∆-approximate

kth-smallest element of n numbers, using O(
√
n/∆ +

√
k(n− k)/∆) queries.

Corollary 4.4.2 O(1
ε ) queries are sufficient for computing an ε-approximate median in the

black-box model.

Our median algorithm is an improvement over the algorithm of Grover [47, 48] (which also

depends on the size of the domain from which the input numbers are drawn). It achieves a

quadratic speed up over classical algorithms in the worst case.

The the upper bounds given above for estimating the kth-smallest element and

the median continue to hold in the comparison tree model. In particular, if we set ∆ = 1,

we get an optimal O(
√
k(n− k + 1) ) comparison algorithm for computing the kth-smallest

element (c.f. Theorems 4.2.3 and 4.4.1). (An optimal O(
√
n) comparison algorithm was

already known for computing the minimum of n numbers [39].) This should be contrasted

with the bound of Θ(n) in the classical case [19].
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Corollary 4.4.3 Let M =
√
k(n− k + 1). Any comparison tree quantum algorithm that

computes the kth-smallest element of a list of n numbers makes Ω(M) comparisons. More-

over, there is a quantum algorithm that solves this problem with O(M) comparisons.

A method due to Brassard et al. [23, 60, 21] for exact counting enables us to show

that the computation of the mean can be made sensitive to the number of ones in the input,

resulting in better bounds when |t− n/2| is large. This algorithm is optimal to within a

constant factor. (See Section 4.5 for more details.)

Theorem 4.4.4 There is a quantum black-box algorithm that, given a boolean oracle in-

put X, and an integer ∆ > 0, with high (constant) probability computes a ∆-approximate

count and makes an expected O(
√
n/∆ +

√
t(n− t)/∆) number of queries on inputs with t

ones.

Using an approximate counting algorithm of Brassard et al. [23, 60, 21], we show

in Section 4.5 that the query lower bound of Corollary 4.2.2 is optimal to within a constant

factor.

Theorem 4.4.5 The quantum query complexity of computing the relation f`,`′, given the

input as an oracle, is O(
√
n/∆` +

√
m(n−m)/∆`).

The result of Beals et al. (Lemma 4.1.1 above) then immediately implies that the degree

lower bound of Theorem 4.2.1 is also optimal to within a constant factor.

Corollary 4.4.6 For any constant 0 < c < 1/2, there is a real, n-variate polynomial p of

degree O(
√
n/∆` +

√
m(n−m)/∆`) that approximates the relation f`,`′ to within c.

In view of this result, the remaining lower bounds derived in 4.2 cannot be improved using

the methods we employ. In fact, we believe that the lower bounds for computing the mean

and approximate counting with relative error are optimal, and that the upper bounds can

be improved to match them (up to constant factors).

4.5 Algorithms based on counting

We first show how the relation f`,`′ defined in Section 4.2 may be computed op-

timally, i.e., within a constant factor of the lower bound of Corollary 4.2.2, thus proving

Theorem 4.4.5.
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Our algorithm actually computes the relation f̂`,`′ : {0, 1}n → {0, 1}, where 0 ≤
`′ < ` ≤ n, defined as:

f̂`,`′ =


1 if |X| ≥ `
0 if |X| ≤ `′

{0, 1} otherwise

Clearly, any algorithm for this relation also computes f`,`′ .

The algorithm D(X, `′, `) for f̂`,`′ , which we call a distinguisher, is in fact an

immediate derivative of an approximate counting algorithm of Brassard et al. [23, 60, 21],

which enables us to estimate the number of ones tY of a boolean function Y in a useful

manner.

Theorem 4.5.1 (Brassard, Høyer, Mosca, Tapp) There is a quantum black-box algo-

rithm C(Y, P ) which, given oracle access to a boolean function Y = (y0, . . . , yn−1), and an

explicit integer parameter P , makes P calls to the oracle Y and computes a number t ∈ [0, n]

such that

|tY − t| ≤
√
tY (n− tY )

P
+
|n− 2tY |

4P 2

with probability at least 2/3.

Let X be the input to the distinguisher D, and let m and ∆` be defined as in

Section 4.2. Further, let P =
⌈
c(
√
n/∆` +

√
m(n−m)/∆`)

⌉
, where c is a constant to be

specified later, and let t = C(X,P ). The algorithmD(X, `′, `) returns 0 if t < `′+∆`/2 and 1

otherwise. The correctness of the algorithm follows from the claim below; its optimality is

clear from the choice of P .

Claim 4.5.2 With probability at least 2/3, if tX ≤ `′, then t < `′ + ∆`/2, and if tX ≥ `,

then t > `′ + ∆`/2.

We give the proof of this claim in Section A.4 of the appendix. We will see in Section 4.6

that this distinguishing capability of D also helps us search for an element of a desired rank

optimally.

Next, we sketch an optimal algorithm for approximate counting to within an ad-

ditive error. Since both its form and analysis are identical to the exact counting algorithm

of Brassard et al. [23, 60, 21], we omit the details.

Recall from Section 4.2 that the problem of computing a ∆-approximate count

consists of computing a number in [0, n] which is within an additive error of ∆ from the

number of ones tX of a given boolean oracle input X = (x0, . . . , xn−1).
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The algorithm first invokes the procedure C(X,P ) of Theorem 4.5.1 a few times

(say, five times), with P =
⌈
c
√
n/∆

⌉
(for some suitable constant c), to get an estimate t̃,

taken to be the median of the approximate counts returned by C. With high (constant)

probability, this estimate is within O(min {tX , n− tX} + ∆) of the actual count tX . The

algorithm then invokes C again, with P =

⌈
c1(
√
n/∆ +

√
t̃(n− t̃)/∆)

⌉
(for a suitable

constant c1) and outputs the value returned by C. It is easy to verify that with high

(constant) probability, the approximate count obtained is within the required range. An

analysis similar to that of the exact counting algorithm mentioned above yields the bound

of Theorem 4.4.4 on the expected number of queries made by the algorithm.

4.6 Optimal approximate selection

Consider the problem of approximating the kth-smallest element in the black-

box model. Recall that when provided with a list of numbers X = (x0, . . . , xn−1) as an

oracle, and an explicit parameter ∆ > 1/2, the task is to find an input number xi (or the

corresponding index i) such that xi is a jth-smallest element for a j ∈ (k−∆, k+∆). Notice

that we may round ∆ to d∆e without changing the problem to be solved. We therefore

assume that ∆ is an integer in the sequel.

The description of the problem in terms of ranks of numbers needs to be given

carefully, since there may be repeated numbers in the list. To accommodate repetitions, we

let rank(xi) denote the set of positions j ∈ {1, . . . , n} at which xi could occur, when the

list X is arranged in non-decreasing order. A ∆-approximate kth-smallest element is thus

a number xi such that rank(xi) ∩ (k −∆, k + ∆) is non-empty. For ease of exposition, we

will use “rank(xi) is at least j” to mean “rank(xi) ∩ [1, j) = ∅” and “rank(xi) is at most j”

to mean “rank(xi) ∩ (j, n] = ∅.”
In this section we give an optimal (up to a constant factor) quantum black-box

algorithm for computing a ∆-approximate kth-smallest element. Our algorithm is inspired

by the minimum finding algorithm of Dürr and Høyer [39]. It builds upon a generalisation

of the Grover search algorithm [46] due to Boyer, Brassard, Høyer and Tapp [20] and the

distinguisher described in Section 4.4 obtained from the approximate counting algorithm of

Brassard, Høyer, Mosca and Tapp [23, 60, 21]. To compute an ε-approximate median within

the bound stated in Corollary 4.4.2, one need only run the algorithm with the parameters k

and ∆ chosen appropriately.
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4.6.1 An abstract algorithm

We first present the skeleton of our algorithm using two hypothetical procedures S

and K. For convenience, we define x−1 = −∞, and xn = ∞. The procedure S takes a

pair of inputs −1 ≤ i < j ≤ n and returns an index chosen uniformly at random from the

set of indices l such that xi < xl < xj , if such an index exists. The procedure K takes an

input 0 ≤ i < n and returns ‘yes’ when xi is a ∆-approximate kth-smallest element of X,

‘<’ if xi has rank at most k−∆ and ‘>’ if xi has rank at least k+ ∆. Our algorithm, which

we refer to as A(S,K), performs a search on the list of input numbers, with a random pivot.

It thus has the following form:

1. i← −1, j ← n.

2. `← S(i, j).

3. If K(`) returns ‘yes’, output x` (and/or `) and stop.

Else, if K(`) returns ‘<’, i← `, go to step 2.

Else, if K(`) returns ‘>’, j ← `, go to step 2.

Clearly, this algorithm always terminates and produces a correct solution. Since the running

time (which we identify with the number of oracle queries made) of the subroutines with

which we will replace S and K will depend on their inputs, we first analyse the probability

that a given number in the input list is ever selected in step 2 of the algorithm.

Lemma 4.6.1 Consider any fixed arrangement of the numbers x0, . . . , xn−1 in sorted order

and let x−1 be the 0th and xn the (n+1)th element in this order. Let pl be the probability that

the input number in position l in this sorted list is ever selected in step 2 of the algorithm.

1. If k ≤ ∆, then for all l ≥ k + ∆, pl ≤ 1
l+1 ,

2. if k ≥ n−∆, then for all l ≤ k −∆, pl ≤ 1
n−l+1 , and

3. if ∆ < k < n−∆, then

pl ≤


1

k+∆−l if l ≤ k −∆

1
l+∆−k if l ≥ k + ∆
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We defer the proof of this and all subsequent lemmas to Section A.4 of the appendix.

Our implementation of the procedure K will be somewhat different from the de-

scription given above. It will be closer to a randomised procedure K ′(·) with the following

specification. On input i (for some 0 ≤ i < n):

• if xi is a ∆
2 -approximate kth-smallest element, output ‘yes’;

• else, if rank(xi) is at most k −∆, output ‘<’;

• else, if rank(xi) is at least k + ∆, output ‘>’;

• else, if rank(xi) is at least k−∆+1 and at most k− ∆
2 , probabilistically output either

‘yes’ or ‘<’;

• else, if rank(xi) is at least k+ ∆
2 and at most k+∆−1, probabilistically output either

‘yes’ or ‘>’.

The algorithm A(S,K ′) obtained by replacing the subroutine K(·) by K ′(·) clearly

also always computes a correct solution, although it may require more iterations of steps 2

and 3 to do so. However, we show that the probability of an input number being selected in

step 2 of the algorithm does not increase by very much and thus that the expected running

time of the algorithm remains of the same order.

Lemma 4.6.2 Let X be any input oracle. The probability that an element of X is ever

picked in step 2 of A(S,K ′) with oracle X and parameter ∆ is at most the probability that

it is ever picked in step 2 of A(S,K) on input X and ∆/2.

To prove the optimality of our algorithm, we will require bounds on the expected

number of input elements (with rank in certain ranges) that are picked by the procedure S.

We derive these next. Let qi be the probability that xi is ever picked in step 2 of the

algorithm A(S,K ′). For xi with rank(xi) ∩ (k − ∆
2 , k + ∆

2 ) 6= ∅, we define ti = −1.

For any other xi, let ti be the t ≥ 0 such that rank(xi) ∩ (k − 2t∆, k + 2t∆) 6= ∅
but rank(xi) ∩ (k − 2t−1∆, k + 2t−1∆) = ∅.

Lemma 4.6.3 Let Nt be the expected number of elements xi with ti = t picked by the

sampling procedure S in step 2 of the algorithm A(S,K ′). Then, N−1 ≤ 1 and Nt ≤ 4

for t ≥ 0.
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We are now ready to analyse the expected runtime (number of queries) made by

our algorithm. Our implementation of S will be faithful to the specification above and will

have an expected runtime of order of √
n

j − 1− i

on input i, j. However, we will not be able to implement K ′ exactly. Our implementation K ′′

of K ′ will have the property that on input xi with ti = t ≥ 1, with probability 1− 2−t−5 it

will output the correct answer with a runtime of order

t

2t/2

√
n

∆
+

t

2t

√
k(n− k)

∆
.

For the rest of the xi (with ti = 0,−1), the performance is the same as that for ti = 1.

We now bound the number of queries made by our algorithm.

Lemma 4.6.4 The expected number of queries made by A(S,K ′′) conditioned on the event

that K ′′ does not make any error in any invocation is of order√
n

∆
+

√
k(n− k)

∆
.

Thus, the algorithm A(S,K ′′) terminates in optimal expected number of queries provided

that K ′′ does not make any error.

Finally, we show that the probability that our algorithm makes an error is a small

constant.

Lemma 4.6.5 The probability that A(S,K ′′) either does not terminate or terminates with

an incorrect result is at most 1
4 .

Again, we postpone giving a proof till Appendix A.4.

By Markov’s inequality, the previous two lemmas imply that if we run our algo-

rithm for a suitably large constant times the expected number of queries, it terminates and

gives the correct answer with probability at least 2/3. This completes the analysis of the

algorithm, thus proving Theorem 4.4.1. Finally, we point out that our implementations of S

and K ′ will access the input numbers only via comparisons, and thus may be adapted to

work in the comparison tree model with the same bound on the number of oracle queries.
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4.6.2 A realisation of the algorithm

We now show that it is possible to devise algorithms S and K ′′ as claimed in

the previous section. The subroutine S is derived from the generalised search algorithm of

Boyer et al. [20], which enables us to sample uniformly from the set of ones of a boolean

function.

Theorem 4.6.6 (Boyer, Brassard, Høyer, Tapp) There is a quantum black-box algo-

rithm which, given a boolean oracle Y = (y0, . . . , yn−1) with |Y | ≥ t ≥ 1, returns an index i

chosen uniformly at random from the set {j | yj = 1} with O(
√
n/t ) expected queries.

The procedure S(i, j) is implemented by defining a boolean function Y = (y0, . . . , yn−1),

with yl = 1 if and only if xi < xl < xj , and using the sampling procedure above. Each

“query” to the function Y requires four queries to the input oracle X. Thus, our sampling

procedure satisfies the requirements of Section 4.6.1.

The procedure K ′′(i) is realised by using the distinguisher D of Section 4.4 repeat-

edly to identify ti (as defined in Section 4.6.1) by looking at both the number of elements

smaller and the number of elements larger than xi. As an intermediate step, we define a

subroutine R(d, i) which with probability 2/3 meets the specifications of K ′ given in the

previous section, but with the parameter ∆ replaced by d.

Note that the probability of correctness of D may be boosted to 1 − 2Ω(T ) by

repeating the algorithm O(T ) times and returning the majority answer. We use this method

to reduce its error probability to a small constant. We can now describe R(d, i) as:

1. If k + d − 1 > n, go to step 2. Let t0 = dk + d/2e − 2, and t1 = k + d − 1. Note

that 0 ≤ t0 < t1 ≤ n, since k, d ≥ 1. Define a boolean function Y over a domain of

size n, with yj = 1 if and only if xj < xi. If the distinguisher D(Y, t0, t1) returns ‘0’,

go to step 2. Otherwise, output ‘>’.

2. If k − d < 0, return ‘yes’. Let t0 = n− bk − d/2c − 1, and t1 = n− k + d. Note that

we again have 0 ≤ t0 < t1 ≤ n. Define a boolean function Y over a domain of size n,

with yj = 1 if and only if xj > xi. If the distinguisher D(Y, t0, t1) returns ‘0’, output

‘yes’. Otherwise, output ‘<’.

It is easy to verify that this subroutine behaves as we require and makes O(
√
n/d +√

k(n− k)/d) queries to the oracle X. We are now ready to spell out the details of K ′′(i):
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1. Let t be the smallest number such that [1, n] ⊆ (k − 2t∆, k + 2t∆).

2. While t ≥ 0 do

A. Repeat R(2t∆, i) independently Θ(t) times and consider the majority answer.

B. If the answer is ‘<’ or ‘>’, stop and return that answer. Else, t← t− 1.

3. t = −1. Return ‘yes’.

Note that if the boosted version of R in step A does not make any error and ti ≥ 0, then

it returns ‘yes’ until t = ti and then returns either ‘yes’ or ‘<’ or ‘>’ probabilistically.

On t = ti − 1, however, it correctly returns ‘<’ or ‘>’ for ti > 0 and ‘yes’ for ti = 0. For xi

with ti = −1, the output is always ‘yes’ if there is no error. It is now a matter of some

simple algebra to verify that this satisfies the properties of K ′′ stated in Section 4.6.1.

4.7 Concluding remarks

The polynomial method has served as a powerful paradigm in classical complexity

theory [12]. As we saw in this chapter, the it has proved to be a powerful paradigm in

quantum complexity theory as well (see also [11]). It has more recently also been applied

to show a tight trade-off between query complexity and probability of error for the search

problem [25]. No other method is known to give tight bounds for all ranges of error. A

natural question is then whether this method always gives optimal bounds for quantum

computation. The answer for classical computation is, of course, false (consider the search

problem, for example).

While the polynomial method is very promising, proving degree lower bounds

is technically very difficult. For the problems we studied, we were able to meaningfully

transform a multivariate polynomial to a univariate one. Approximation by univariate

polynomials is a well-studied subject, but no corresponding (useful) tools are known for

reasoning about multivariate polynomials. It is as yet unclear whether the method can

yield interesting bounds in more complex situations such as that of monotone functions, or

symmetric non-boolean functions. Interestingly, it has been shown [4] that most n-variate

boolean functions cannot be approximated by polynomials of degree less than ≈ n
4 , but

degree bounds for explicit functions of interest elude us. It is also known that the degree of

the polynomial exactly representing a boolean function is within the sixth power of that of
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polynomials approximating it [11] (better bounds are known for monotone and symmetric

functions). However, no better than a quadratic separation between these is known.

A challenging problem in the area of black-box computation is that of detecting

collisions in cryptographic hash functions. These are functions h : {0, 1}n → {0, 1}n which

are, say, two-to-one, and such that it is computationally infeasible to find two points x, y

that collide (i.e., have h(x) = h(y)). Such “collision free” hash functions are of importance in

designing digital signature schemes (see, e.g., [35]). Given such a hash function h as a black-

box, any classical algorithm for finding collisions evaluates h at Θ(
√
N) points, where N =

2n. It is possible to improve the upper bound to 3
√
N using a quantum computer [22]. It

is still unknown, though, whether these collision-free hash functions exist in the face of a

quantum adversary—no non-trivial lower bound has been shown for the problem.

A breakthrough was recently made by Ambainis [6] who gave a new lower bound

argument (a sophisticated version of a technique of Grover [49]) that gives a simple, uni-

fied explanation for most known lower bounds (including those reported in this chapter),

while also improving several others. The argument may be called a “quantum adversary

argument”—one considers a superposition of input oracles as an adversary and runs an

algorithm on this input. The initially unentangled oracle state ends up entangled with the

state of the algorithm at the end of the computation. By bounding the increase in entan-

glement due to each successive oracle query, a lower bound is obtained. It is possible that

this approach will yield a meaningful lower bound for the collision problem as well.
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Appendix A

Background, definitions and details

of proofs

A.1 Information theory basics

We start with some concepts from classical information theory, state some of their

useful properties and then turn to their quantum counterparts.

The Shannon entropy H(X) of a classical random variable X that takes values x

in some finite set with probability px is defined as

H(X) = −
∑
x

px log px.

The mutual information I(X : Y ) of a pair of random variables X,Y is defined by

I(X : Y ) = H(X) +H(Y )−H(XY ),

and the conditional entropy of X with respect to Y is

H(X|Y ) = H(X)− I(X : Y ).

We also use H : [0, 1]→ [0, 1] to denote the binary entropy function

H(p) = −p log p− (1− p) log(1− p).

The following are basic properties of Shannon entropy. For any random variables X,Y, Z,

H(X|Y Z) ≤ H(X|Y )

H(XY |Z) ≤ H(X|Z) +H(Y |Z).
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For other equivalent definitions and properties of these concepts, we refer the reader to a

standard text (such as [34]) on information theory.

The quantum mechanical analogue of a random variable is a probability distri-

bution over superpositions, also called a mixed state. Consider the mixed state {pi, |φi〉},
where the superposition |φi〉 is drawn with probability pi. The behaviour of this mixed

state is completely characterised by its density matrix ρ =
∑
i pi |φi〉〈φi|. We will therefore

identify a mixed state with its density matrix.

The following properties of density matrices are immediate from the definition.

For any density matrix ρ,

1. ρ is Hermitian, i.e., ρ = ρ†.

2. ρ has unit trace, i.e., Tr(ρ) =
∑
i ρ(i, i) = 1.

3. ρ is positive semi-definite, i.e., 〈ψ|ρ |ψ〉 ≥ 0 for all |ψ〉.

Thus, every density matrix is unitarily diagonalisable and has non-negative real eigenvalues

that sum up to 1. The von Neumann entropy S(ρ) of a density matrix ρ is defined as S(ρ) =

−
∑
i λi log λi, where {λi} is the multiset of all the eigenvalues of ρ. In other words, S(ρ) is

the Shannon entropy of the distribution induced by the eigenvalues of ρ on the corresponding

eigenvectors.

The density matrix corresponding to a mixed state with superpositions drawn from

a Hilbert space H is said to have support in H. First, we note that von Neumann entropy

is always non-negative. Furthermore,

Fact A.1.1 If ρ is a density matrix with support in a Hilbert space of dimension d, then

its entropy S(ρ) is at most log d.

This is because the probability distribution induced by the eigenvalues of ρ has support of

size at most d. The Shannon entropy of any such distribution is at most log d.

When a unitary operator U is applied to a mixed state, the corresponding density

matrix ρ is transformed to UρU †. Since the eigenvalues of UρU † are the same as those of ρ,

we conclude that entropy is invariant under unitary operations.

Fact A.1.2 For any density matrix ρ and unitary operator U , we have S(UρU †) = S(ρ).
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If a mixed state ρ is measured according to an orthogonal set of projections {Pj},
it is easily verified that the resulting density matrix is given by

∑
j PjρPj . When we make an

orthogonal measurement on a mixed state, the the entropy of the system can only increase.

Fact A.1.3 Let ρ be the density matrix of a mixed state in a Hilbert space H and let the

set of orthogonal projections {Pj} define a measurement in H. Further, let ρ′ =
∑
j PjρPj

be the density matrix resulting from a measurement of the mixed state with respect to this

observable. Then S(ρ′) ≥ S(ρ).

It is not hard to see that this is in fact a consequence of the property of density matrices that

the entropy of any random variable obtained by making a measurement on a mixed state is

at least as much as the entropy of its density matrix. A proof of this (latter) property may

be found in [64, Chapter 9, pp. 262–263].

For a comprehensive introduction to the concept of entropy and its properties, see,

for instance, [66, 77].

Now, consider a system consisting of some number of quantum bits in mixed

state X. One is often interested in parts of this larger system consisting of disjoint sub-

sets X1, X2, . . . , Xk of the qubits. The subsystems X1, X2, . . . are then identified with the

mixed states induced by X on the corresponding parts and we write X = X1X2 · · ·. We can

define the “mutual information” I(X : Y ) of two mixed states (subsystems) X,Y in analogy

with classical mutual information: I(X : Y ) = S(X) + S(Y ) − S(XY ). Note that not all

properties of classical mutual information carry over to the quantum case. For example, it

is not true in general that I(X : Y ) ≤ S(X). Nonetheless, some of the intuition we have

about mutual information still applies. For example, we have for any mixed states X,Y, Z,

I(X : Y Z) = I(X : Y ) + I(XY : Z)− I(Y : Z) (A.1)

I(X : Y Z) ≥ I(X : Y ). (A.2)

Equation (A.1) follows immediately from the definition and captures the change in mutual

information of two communicating parties when they exchange some number of quantum

bits. Equation (A.2), The proof of Equation (A.2) is much more involved; This inequality

is in fact equivalent to the strong sub-additivity property of von Neumann entropy.
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A.2 Some properties of polynomials

In this section, we present some properties of polynomials and define some concepts

that we will use for our results.

The symmetrisation psym of a multivariate polynomial p(x0, . . . , xn−1) is defined

to be

psym(x0, . . . , xn−1) =

∑
π∈Sn

p(xπ(0), . . . , xπ(n−1))

n!
,

where Sn is the set of permutations on n symbols.

If p is a multilinear polynomial of degree d, then psym is also a multilinear poly-

nomial of degree d. Clearly, psym is a symmetric function. The following fact attributed to

Minsky and Papert [58] says that there is a succinct representation for psym as a univariate

polynomial.

Fact A.2.1 If p : Rn → R is a multilinear polynomial of degree d, then there exists a poly-

nomial q : R→ R, of degree at most d, such that q(x0+x1+· · ·+xn−1) = psym(x0, . . . , xn−1)

for xi ∈ {0, 1}.

In the remainder of this section, we will deal only with univariate polynomials over

the reals.

The properties of polynomials that we use involve the concept of the uniform

or Chebyshev norm of a polynomial (denoted by ‖ p ‖), which is defined as: ‖ p ‖ =

max−1≤x≤1 |p(x)|. We will refer to the uniform norm of a polynomial as simply the norm

of the polynomial.

The first property we require is a bound on the value of a polynomial in an interval,

given a bound on its values at integer points in the interval.

Fact A.2.2 Let p be a polynomial of degree d ≤ n such that |p(i)| ≤ c for integers i =

0, . . . , n. Then |p(x)| ≤ 2d · c for all x in the interval [0, n].

This fact follows easily from an examination of the Lagrange interpolation for the polyno-

mial p; the details are omitted.

The next fact bounds the value of a polynomial outside the interval [−1, 1], in

terms of its norm (i.e., its maximum value inside the interval [−1, 1]). Let Td(x) = 1
2 [(x+

√
x2 − 1)d + (x −

√
x2 − 1)d]. This polynomial is known as the Chebyshev polynomial of

degree d. Note that |Td| is an even function of x, and that |Td(1 + x)| ≤ e2
√

2x+x2 , for x ≥ 0.
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Fact A.2.3 Let p be a polynomial of degree at most d. Then, for |x| > 1,

|p(x)| ≤ ‖ p ‖ · |Td(x)| .

A proof of this fact may be found in Section 2.7 of [69]. We require an easy corollary of

this fact.

Corollary A.2.4 Let p be a polynomial of degree at most d, with |p(x)| ≤ c for |x| ≤ a,

for some a > 0. Then, for all |x| ≥ a,

|p(x)| ≤ c |Td(x/a)|

At the heart of our lower bound proof is the following set of inequalities, due to

Bernstein and Markov, which relate the size of the derivative p′ of a polynomial p to the

degree of p. Proofs of these may be found in Section 3.4 of [65] and Section 2.7 of [69].

Fact A.2.5 Let p be a polynomial of degree d. Then, for x ∈ [−1, 1],

1. (Markov) |p′(x)| ≤ d2 ‖ p ‖;

2. (Bernstein)
√

1− x2 |p′(x)| ≤ d ‖ p ‖.

The next fact, which is a more general version of the Bernstein Inequality above,

deals with trigonometric polynomials. A trigonometric polynomial t(x) of degree d is a real

linear combination of the functions cos ix and sin ix, where i is an integer in the range [0, d].

For a trigonometric polynomial t, we define its norm to be ‖ t ‖ = max−π≤x≤π |t(x)|.

Fact A.2.6 Let t be a trigonometric polynomial of degree d. Then, for x ∈ [−π, π],

∣∣t′(x)
∣∣ ≤ d ‖ t ‖ .

A.3 Proofs of some black-box lower bounds

In this section, we show how to reduce from relation computations of the type

given in Corollary 4.2.2 to approximating the kth-smallest element and to approximate

counting, and we show how bounds for approximating the mean follow. In this way, we are

able to show new quantum query lower bounds for the computation of these approximate

statistics.
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The following two lemmas specialise Corollary 4.2.2 to cases of interest to us. The

first deals with relation f`,`′ such that neither `′ nor ` is “close” to 0 or n, and the second

covers the remaining case.

Lemma A.3.1 Let k,∆ > 0 be integers such that 2∆ < k < n − 2∆. Then, the quantum

query complexity of fk−∆,k+∆ is Ω(
√
n/∆ +

√
k(n− k)/∆).

Proof: We assume that k ≤ n/2; the other case is symmetric. In applying Corol-

lary 4.2.2, ∆` = 2∆. Since k ≤ n/2, m = k−∆. Moreover, (k−∆)(n−k+∆) > (k/2)(n−k).

Corollary 4.2.2 now gives us the claimed bound.

Lemma A.3.2 Let k,∆ be integers such that 0 < ∆ ≤ n/4 and 0 ≤ k ≤ 2∆. Then, the

quantum query complexity of f0,k+∆ is Ω(
√
n/∆ +

√
k(n− k)/∆). The same bound holds

for fk−∆,n when k ≥ n− 2∆.

Proof: We prove the first part of the lemma; the other part is symmetric. In applying

Corollary 4.2.2, ∆` = k + ∆ ≤ 3∆ and m = 0. Hence, we get a bound of Ω(
√
n/∆)

for f0,k+∆. For the lemma to hold, we need only show that the second term in the claimed

lower bound is of the order of the first term:
√
k(n− k)/∆ ≤

√
(2∆)n/∆ = O(

√
n/∆).

We now prove the rest of the lower bound theorems of Section 4.2 by exhibiting

reductions from suitable problems. We first consider the problem of estimating the kth-

smallest element.

Proof of Theorem 4.2.3: We need only prove the bound when ∆ ≤ n/4, since it

holds trivially otherwise. We assume that ∆ is integral. The same proof works with d∆e
substituted for ∆.

Note that the query complexity of computing f`,`′ is the same as that of comput-

ing fn−`,n−`′ , since we can negate the oracle responses in an algorithm for the former to get

an algorithm for the latter, and vice-versa. We now consider two cases:

Case (a). 2∆ < k < n− 2∆. Any algorithm for computing a ∆-approximate kth-smallest

element also computes fn−k+∆,n−k−∆, and hence, by Lemma A.3.1 and the observation

above, it makes at least Ω(
√
n/∆ +

√
k(n− k)/∆) queries.

Case (b). k ≤ 2∆ or k ≥ n − 2∆. If k ≤ 2∆, we reduce from the relation fn,n−k−∆.

Lemma A.3.2, along with the observation above, gives the required bound. Similarly, for k ≥
n− 2∆, we reduce from fn−k+∆,0 to get the required bound.



80

The remaining proofs for approximate counting and approximating the mean are

similar to the ones above; we only sketch them here.

Proof of Theorem 4.2.4: We may assume that ∆ < n/8, since the lower bound is trivial

otherwise. Consider any algorithm that approximately counts to within an additive error

of ∆. Fix any 0 ≤ t ≤ n. Suppose for any input X with |X| = t, the algorithm outputs

a ∆-approximate count after T queries with probability at least 2/3. We then consider the

truncated version of the algorithm which stops after making T queries and outputs 1 if the

approximate count obtained (if any) lies in the range (t−∆, t+ ∆) and 0 otherwise. Since

the original algorithm approximates to within ∆ for all inputs, the truncated algorithm

computes ft,t+d2∆e and/or ft,t−d2∆e whenever these relations are well-defined (i.e., when t+

2∆ ≤ n and/or t− 2∆ ≥ 0). Now, by considering the four cases t ≤ 4∆, n− t ≤ 4∆, 4∆ <

t ≤ n/2, and n/2 < t < n − 4∆, and by reducing from a suitable relation (either ft,t+d2∆e

or ft,t−d2∆e) in each case, we get the claimed lower bound.

Since the problem of approximate counting is a restriction of the more general

problem of estimating the mean of n numbers, the lower bound for the latter problem

follows directly from Theorem 4.2.4.

Proof of Corollary 4.2.5: If the input numbers are all 0/1, multiplying an ε-approximate

mean by n gives us an εn-approximate count. From Theorem 4.2.4, in the worst case (when

the number of ones in the input is bn/2c), the number of queries required to solve the

approximate mean problem is Ω(1/ε).

Finally, we sketch the proof of the lower bound for approximate counting to within

some relative error.

Proof of Theorem 4.2.6: To derive a lower bound on the number of queries T made by an

algorithm to approximate tX , when tX = t, we consider a truncated version of the algorithm

obtained by running the algorithm until it returns a value between (1− ε)t and (1+ ε)t with

probability at least 2/3, for such inputs. Since the algorithm correctly approximates the

count to within a relative error of ε for all inputs, we can use it to compute the relation ft,t+1

when εt ≤ 1/4, or ft′,t, where t′ = b(1− ε)t/(1 + ε)c, when 1/4 < εt. Corollary 4.2.2 now

gives us the claimed bound.

A.4 Proofs in the analysis of algorithms in Chapter 4

Proof of Claim 4.5.2: Recall that m ∈ {`, `′} is such that
∣∣n

2 −m
∣∣ is maximised, and
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that `′ < `. We prove the claim when m ≤ n/2; the analysis of the other case is symmetric.

Since m ≤ n/2, m = `′. Theorem 4.5.1 says that with probability at least 2/3,

|tX − t| ≤
√
tX(n− tX)

P
+
|n− 2tX |

4P 2
.

Then, if tX ≤ `′ = m ≤ n/2, and if c is large enough,

|t− tX | <

√
`′n

c
√
`′n/2/∆`

+
n

4(c2n/∆`)

<
∆`

2
.

In this case, t < tX + ∆`/2 ≤ `′ + ∆`/2. At the same time, we also have t ≥ g(tX),

where g(x) is the function

g(x) = x−
√
xn

P
− n

4P 2
.

We will show that g is an increasing function of x for x ≥ ` and that g(`) > ` − ∆`/2 =

`′ + ∆`/2, provided c is large enough. From this, it will follow that when tX ≥ `, t ≥
g(tX) > `′ + ∆`/2, completing the proof.

For x ≥ `, we have

g′(x) = 1−
√
n

2P
√
x

≥ 1−
√
n

2P
√
l

≥ 1−
√
n

2c
√
n/∆`

√
`
> 0,

if c is large enough, since ` ≥ ∆`. Hence, g is increasing for all x ≥ `. Moreover, if c is large

enough, we have

1. n
4P 2 ≤ n

4(c2n/∆`)
< ∆`

4 ;

2. if `′ > ∆`, then ` < 2`′,
√
`n
P ≤

√
2`′n

(c
√
`′n/2/∆`)

< ∆`
4 ;

3. if `′ ≤ ∆`, then ` ≤ 2∆`,
√
`n
P ≤

√
2∆`n

(c
√
n/∆`)

< ∆`
4 .

It follows from these observations, that

g(`) = `−
√
`n

P
− n

4P 2

> `− ∆`

2
.
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Proof of Lemma 4.6.1: We concentrate on case 3, when ∆ < k < n−∆. The analysis

in the other two cases is similar.

For any r, s such that 0 ≤ r < k − ∆ and k + ∆ < s ≤ n + 1, let p(l, r, s)

denote the probability that the lth number in the sorted list is ever chosen in step 2 of

the algorithm after i becomes the index of the rth number and j becomes the index of

the sth number in the sorted list. We would like to bound pl = p(l, 0, n+ 1) for all l in the

range [1, k −∆] ∪ [k + ∆, n]. (The sum of the probability values pl for l ∈ (k −∆, k + ∆)

is clearly 1.)

Suppose r + 1 < l ≤ k − ∆. We get the following recurrence by considering the

result of one invocation of S:

p(l, r, s) ≤ 1

s− 1− r

 l−1∑
r′=r+1

p(l, r′, s) + 1 +
s−1∑

s′=k+∆

p(l, r, s′)

 .
The inequality is due to the possibility of repetitions in the input list. Furthermore, p(l, l−
1, k + ∆) ≤ 1/(k + ∆− l). By induction, we now get

p(l, r, s) ≤ 1

k + ∆− l
,

for all 0 ≤ r < l ≤ k −∆ and k + ∆ ≤ s ≤ n+ 1. By a similar argument, we get

p(l, r, s) ≤ 1

l + ∆− k
,

when k + ∆ ≤ l < s ≤ n+ 1.

Proof of Lemma 4.6.2: Denote by a run, a possible sequence of indices generated by the

procedure S in an execution of the algorithm A. We compare runs of the algorithm A(S,K ′)

with parameter ∆ with runs of the algorithm A(S,K) with parameter ∆/2. Observe that

each run of A(S,K ′) or any prefix of it is also a prefix of runs of A(S,K), and that its

probability is at most the sum of the probabilities of the runs of A(S,K) of which it is a

prefix. The probability of an index being picked in step 2 of A(S,K ′) is the net probability

of all the runs containing it. It is now not hard to see that this is bounded by the net

probability of the runs of A(S,K) containing the index.

Proof of Lemma 4.6.3: Recall that qi is the probability that xi is ever picked in step 2

of the algorithm A(S,K ′). The expectation Nt is then exactly
∑
i:ti=t qi. Note that N−1 is

at most 1 since the algorithm halts with certainty when it picks xi with ti = −1. We claim

that for t ≥ 0, this expectation is at most 4.
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Let nt be the number of input elements xi with ti = t ≥ 0 with rank at most k −
2t−1∆. For these elements, qi ≤ 1

2t−1∆
. This holds because by Lemma 4.6.2, the probability

is at most 1
k+∆/2−l , assuming k < n−∆, and at most 1

n−l+1 for other k for every l ∈ rank(xi).

Choosing the largest such l gives us the claimed bound. Out of the elements singled out

above, at most 2t−1∆ elements have rank greater than k− 2t∆, so their contribution to Nt

is at most 1. The remaining elements are all equal, and hence include k − 2t−1∆ − nt + 1

in their rank. These numbers have qi ≤ 1
nt

. (Since qi ≤ pl for all l ∈ rank(xi), we can use

Lemma 4.6.2 with l = k − 2t−1∆ − nt + 1 to get this bound.) Their contribution to Nt is

thus also at most 1. We can similarly bound the contribution of qi for xi with ti = t but

with rank at least k + 2t−1∆ by 2.

Proof of Lemma 4.6.4: We calculate the expected number of queries made as follows.

The queries made by subroutine K ′′ given index i as input are “charged” to i. The queries

made by S on input i, j are charged to one of i, j such that the corresponding element is

closest to k in rank.

The key observation is that given that no error occurs, K ′′ behaves exactly like K ′.

Let ti and qi be as defined in Section 4.6.1. Let q0 = qn+1 = 1. Note that whenever xi

with ti = t ≥ 0 is charged something due to S, the number of queries charged is at

most O(
√
n/(2t∆)).

We may now bound the expected number of queries made by (omitting constant

factors throughout)

n+1∑
i=0

qiE [queries charged to xi]

≤
∑
t≥1

∑
i:ti=t

qi

[√
n

2t∆
+

t

2t/2

√
n

∆
+

t

2t

√
k(n− k)

∆

]
+

√
n

∆
+

√
k(n− k)

∆

≤
∑
t≥1

Nt

[√
n

2t∆
+

t

2t/2

√
n

∆
+

t

2t

√
k(n− k)

∆

]
+

√
n

∆
+

√
k(n− k)

∆

≤
√
n

∆
+

√
k(n− k)

∆

which is precisely the bound claimed.

Proof of Lemma 4.6.5: The algorithm A(S,K ′′) makes an error only if K ′′ makes an

error on some input i chosen in step 2 of the algorithm. Let Ei be the even that i is chosen
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in step 2. Then,

Pr
[
A(S,K ′′) errs

]
≤

∑
i

Pr
[
Ei occurs and K ′′ errs on i| no error occurred before

]
=

∑
i

Pr
[
K ′′ errs on i

]
· qi

=
∑
t

∑
i:ti=t

qi Pr
[
K ′′ errs on i

]
≤ 2

64
+
∑
t≥1

Nt · 2−t−5

≤ 1

4

which is the claimed error probability.


