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In this paper we focus on a special framework for quantum coin-flipping protdaidlspmmitment-based
protocols,within which almost all known protocols fit. We show a lower bound of 1/16 for the bias in any such
protocol. We also analyze a sequence of multiround protocols that tries to overcome the drawbacks of the
previously proposed protocols in order to lower the bias. We show an intricate cheating strategy for this
sequence, which leads to a bias of 1/4. This indicates that a bias of 1/4 might be optimal in such protocols, and
also demonstrates that a more clever proof technique may be required to show this optimality.
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I. QUANTUM COIN FLIPPING Almost all quantum coin-flipping protocols with a bias
that is provably smaller than a hg#—6] are based on the
Coin flipping is the communication problem in which two notion of bit commitment. In other words, they have the
distrustful parties wish to agree on a common random bit, byollowing form, when the parties flipping the coin, Alice and
“talking over the phone’[1]. When the two parties follow a Bob, are honest.
protocol honestly, the bit they agree on is required to be 0 or
1 with equal probability. Ideally, they would also like that if Protocol schemell
any (dishonestparty deviates from the protocol, they do not
agree on any particular outcome with probability more than
1/2. 1t is known that ideal coin flipping is impossible in both (1) First, Alice and Bob each pick a random kitandb,
the classical and the quantum settif®gy3]. In fact, in any  regpectively, and privately construct staggsand o, . The
classical protocol, one of the two parties can force the Outgiates are over three sets of qubitscanmitmentpart, a
come of the protocol to a value of her choice with probability eyejation part, and averification part. The revelation part
1. In[4], Aharonov, Ta-Shma, Vazirani, and Yao showed thaleonsists of one qubit that contains the value of the bit picked.
it is possible to design a quantum coin-flipping protocol in(2) Next, theycommitto their respective bita andb by
which no player can force the outcome of the protocol Withsending each other the commitment part of their states
probability more than a constant 2, with bias a constant 444, . They may do this over several rounds of communi-
€<1/2. In other words, any cheating player in such protocolg:ation, in which they send messages alternately.
is detected with constant probability. Later, Ambaifi (3) Then, theyrevealto the other party the bita,b they
gave an improved protocol with bias at most 1/4. A similaricked (in some ordey, and follow that up by sending the
protocol with bias 1/4 was independently discovered by Spekrest of the stateg,,o,, (the verification pajt This may
kens and Rudolpf6]. o o again be over several rounds of communication. This allows
Formally, a quantum coin-flipping protocol with biass  each party to check via suitable measurements that the state
a two-party communication game in the stylg @f, inwhich  ith which the other, Alicefor Bob), committed to hethis)
the players start with no input and compute valegscs  pjt is indeed consistent with (b).
€{0,1}, respectively(or declare that the other player is
cheating. The protocol satisfies the following additional The result of the protocol is=a®b, if neither player is
properties. detected cheating during the thifderification stage.
(1) If both players are honegt.e., follow the protocol, For example, in the case of the protocol§], Alice uses
then they agree on the outcome of the protocgk=cg, and  the right half of the following state to commit to her laif
the outcome is 0 or 1 with equal probability: BxEcg and the left half to help Bob check her commitment:
=hb)=1/2, forbe{0,1}.
(2) If one of the players is honesti.e., the other player _ 1
may deviate arbitrarily from the protocol in his or her local Pa—szzo'l 2(2,5)(a.5|@|da.s)(Vadl,
computation, then the outcome of the protocol has bias at
moste: for anybe{0,1}, Pr(ca=cg=b)<1/2+€. where

The following steps describe the protocol scheihe

*Email address: nayak@cs.caltech.edu We were recently informef] of a protocol of a different kind
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1 optima sum to at least 3/2, as is the case in all known pro-
[has)=—[]0)+(—1)%a+1)]. tocols, including the ones considered in this paper.

V2 Kitaev's (1#2)— (1/2) lower bound does not seem to ap-
ply to quantum games in which the two parties involved
compete to “win” by getting a particular value of the coin as
éhe outcome(say Alice wins if the outcome is 0, and Bob
wins if the outcome is )L This is also known as weak coin

Bob skips the commit stage, and directly reveals hisbih
the final stage, Bob checks that the state of the qutrit Alic

sent in the first round is indeed consistent witl by mea- flipping in the literature. Protocols for weak coin flipping

Surllonrgtgclgls gfatsr:sé (;g?é?'gg]sbéai‘gé d above mav be recast iWith bias less than 1/4 have been discovered. Kerenidis and
y IT\Iayak[lS] have shown a protocol with cheating probability

the following terms. First, Alice and Bob each pick a random S
. . ) . at most 0.739.... Ambainigl4] and Spekkens and Rudolph
bit. Then, they successively send each other qubits which d 5] have shown protocols with an even lower cheating prob-

not depend on the qu.'tS sent by th_e other party in the pr ability of at most 1¥2=0.707.... No lower bound is known
vious rounds. The qubits sent by Alice represent a comm|tf o NP L :
: . A ; . or the bias in weak coin flipping; arbitrarily small bias may
ment to her bita along with auxiliary information required still be possible
by Bob to check if she is cheating. The same is true for the '
qubits sent by Bob. Thus, after all communication is over, Il. ALOWER BOUND ON THE BIAS
the states Alice and Bob sent to each other for 0 and 1 are
perfectly distinguishable. They measure the states received We first show that any bit-commitment-based protocol
from the other partypossibly with some ancillaaccording may be reduced to an extremely simple protocol of the same
to a von Neumann measurement to determine theabliter ~ type, with bias at most that in the original protocol, and by
to detect cheating. The outcome of the coin flimisb if no  increasing the number of rounds by at most 1.
cheating is detected. In this description we have assumed, Lemma 2.1For any bit-commitment-based coin-flipping
without loss of generality9], that all measurements are done protocol P (of the formlI, or more generally, as described in
at the end. Note that the description is also slightly moreSec. ), there is another such protocBl so that we have the
general in that the players may not explicitly reveal the bitsfollowing.
they intend to commit to, and the commitment and the veri- (1) The statesp,,o, are pure:p,=|y.){¥s and oy
fication stages may be interleaved. We will henceforth refer=|¢,){ dp|, Where|yg)L|¢:) and|do)L|pq).
to such protocols as bit-commitment-based protocols. (2) Alice measures the state she received from Bob ac-
In this paper we study coin-flipping protocols that fall into cording to the measurement given by the operatBgs
the special framework described above, that of bit-=|¢g){(dg|, P1=|p1){p41|, and P.=1—Py—P,, to deter-
commitment-based protocols. We show a lower bound ofnine Bob’s bit or to check if he is cheating. Bob does an
1/16 for the bias in any such protoc@fheorem 2.2 This  analogous measurement given Qy,Q,,Q. on the state he
provides a single proof that these protocols, including theaeceives from Alice.
one proposed i10], cannot lead to arbitrarily small bias. (3) The bias is at most the bias &t
Tokunaga[11] has independently attempted, albeit unsuc- Proof. The protocolP’ is obtained by stipulating that the
cessfully, to show a lower bound of 1/16 for arbitrary proto- players use a fixegurification |,),| #,) of the states,,
cols using the same cheating strategy that leads to our lower, used in the original protocd?. Since the states,,p; are
bound. Spekkens and Rudolgorollary 1 in [6]) have perfectly distinguishable, their purifications are orthogonal.
shown a lower bound of 0.19... for protocols as in schéne Similarly with ¢, ;. All but the last two rounds oP’ are
above, in which only one party commits to a bit—the otheras in the original one. We stipulate that the players send the
directly sends his bit in the revelation phase of the protocolentire (purified statey, or ¢, in P’. Thus, the last player to
Our lower bound thus applies to a more general kind ofsend a message i sends the qubits used in the purification
protocol. in the penultimate round dP’. In the final round, the other
Next, we analyze a sequence of protocols that tries tgplayer sends the qubits used in purifying her state. We also
overcome the drawbacks of the previously proposed protoalter the measurement to the ones mentioned in the lemma.
cols, and also tries to circumvent the cheating strategy that We now show that this modification of the protocol results
leads to this above lower bound. We show an intricate cheain bias at most that in the original one. We do this by show-
ing strategy for the sequence of protocols, which leads to éng that any cheating strategy of a player in the modified
bias of 1/4. This indicates that a bias of 1/4 might be optimalbrotocol P’ that achieves a bias of leads to a cheating
in such protocols, and also demonstrates that a cleverer proefrategy in the original protoc@ with at least the same bias.
technique than the one used in Theorem 2.2 is required to For concreteness, we consider a cheating strategy for Al-
show this optimality. ice in the protocolP’. (The argument for the case of Bob is
Recently, Kitaev has shown a lower bound of vy  similar) In her strategy inP, Alice acts exactly as in the
—(1/2)=0.2071... for the bias in arbitrary quantum coin- original strategy, except that she is not required to send the
flipping protocols[12]. This is bigger than the bias of 1/16 “purification qubits” meant for her last message . We
=0.0625 that we showand it applies to any coin-flipping need only show that the probability with which the measure-
protoco). In more detail, Kitaev's result states that the prod-ment inP yields 0 or 1 dominates the same probability for
uct of the optimum cheating probabilities for the two partiesp’.
is at least 1/2. We leave it as an open question whether these Suppose that Bob uses a von Neumann measurement
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given by the projection operatoRy,R;,R. in P. We con-  transformation on the qubitd, which achieves maximum
centrate on the probability that Alice can convince Bob thaffidelity betweenpoy.p1x [16], i.e.,

she had picke@=0. The other probability may be bounded 2 _ 1

similarly. SinceRopoRo= po, the purification ) lies in the Kol V) P=Fas=Fpox.pr) =1
range ofl ®Ry. The states of the qubits sent to Bob by Alice \oreover, we may assume thag,|U| i) is real and non-
and her private qubits irP’ are together given by some negative.

mixed stateX;u;|£;)(&;| (where the stateft;) are over the Alice may cheat as follows. She constructs the state
space ofp, and the purification spagelt thus suffices to

show that for any statg)  {|£;)}, )= |ho) + Ul ¢h1)
[+ U |
1@ Ro| E)IP=NK ol ). and uses this state in the protocol until thet(1)th round.

After this round, she makes the best possible measurement to

Note that the left-hand sid&HS) is the squared norm of the distinguishogy, andoy .4 10 guess the value di. If her
guesy is 0, she proceeds with the rest of the protocol. Oth-

projection of|&) onto the range of® Ry, and the right-hand . LT o
side(RHS) is the squared norm of the projection of the sameSTWISe, she applies/” to her part of|¢) (the qubits inAy)

vector onto asubspaceof that range, the one-dimensional 2d then completes_the piOtOZOL o
space spanned blyyg). The inequality is then immediate. ~ Lémma 2.4 Pr(c=0|g=b)=(1+ JFa /2.
This shows that Alice can achieve at least the same bias as in PT00F First, note that

P W o U= ol P+ gl P+ 20| U ) = 2(1+ F ).

This simple characterization of bit-commitment-based

protocols proves useful in the analysis of the smallest biagpposés= 0. (The other case is similaiNote that the prob-

achievable with such protocols. Using this, we show thalypijity that Alice succeeds in getting the outcome0 given
coin-flipping protocols based on bit-commitment cannotihat she guesses the valuelotorrectly is

achieve arbitrarily small bias.

Theorem 2.2In any quantum coin-flipping protocol based [Qotho+ QoU )

on bit commitment, one of the parties can achieve probabil- |Qoéll*= [0+ U2
ity of cheating at least 9/16.
Proof. As shown in Lemma 2.1, any such protocol be- 1Qowoll*+1QoU ¥+ 2{ 40| QoU| 41)
tween honest parties may be viewed as follows: first, Alice = :
" Y 2(1+ JFayp)

and Bob construct the statég,) and |¢y), respectively,

corresponding to the random biéssand b. Then, they send Now Qo| o) = : ; ;

: ol o) =wo), since| ) is the state Alice would have
each other a part of the statps.),|¢y) a few qubits at @ | saq if she were honest. So the first term in the numerator
time. Flr)ally, they measure the qubits received from eacr(lalbove is 1, and the last term iS/E 5 . The second term may
other using projection®o,P,Pc andQo,Q1.Qc. . be bounded from below by noting that sina,) belongs to

Letpa, :TrAi(| Ya)(#al) be the state sent to Bob by Alice the range ofY,, the square norm of the projecti@yU| )

by roundi (soA; are the qubits ofy,) still with Alice after s at least y|U| 41)2=F 4 . Thus, the probability of cheat-
the ith round. Let ay,; be the corresponding state sent t0ing is at least

Alice by Bob.
Let there ben rounds in all. LetF,;=F(pgj,p1;) and 1+Fp +2VFar 1+VFay
similarly Fg;=F(og;,01;). Here, F(-,-) is the fidelity : —= > =,
function as defined if16]. So Fao=Fgo=1. Note that 2(1+ VFaw)
QapanQa=pan. and similarly Pyoy,nPp=0p,, SO that  hich is the bound claimed. m
Fan=Fgn=0. The probability that Alice correctly guesseésis (using

Lemma 2.3Consider a protocol with honest players. For Bayes's strategy
any constant & a<1, there is a player, say Alice, and a

roundk=0 such that the states she sends to Bob bykthe 1 ookr1—T1krlle
round ona=0 and 1 have fidelity at least, and the fidelity Prig=b)= A —

of the states she receives from Bob by the next round have

fidelity at mosta. In other wordsF, =« andFg \1<a. By a result of Fuchs and van de Grdaf],

Proof. The casex=1 is trivial. Let «<1. Note that both .
Fai.Fg,; decrease from 1 to O through the course of the  [[Tox+1— T1xs1ll=2(1—VFpy1)=2(1-3)=1.
protocol. Consider the first rounié=1 such that one of these,

sayFg ., becomes<a. Roundk=i— 1 satisfies the property The net probability that Alice succeeds in biasing the coin

towards O is therefore

we seek. |

We will devise a cheating strategy for a player as given by Pr(c=0)=Pr(c=0|g=b)Prg=b)=2%=2.
Lemma 2.3 above forw=1/4. Say this player is Alice, and
the round identified in the lemma iIs There is a unitary This proves the theorem. |
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Ill. A SEQUENCE OF HIGHLY INTERACTIVE A. The three-round version

PROTOCOLS We start by analyzing the protoc®!; with one round of

In this section we look at a sequence of bit-commitment-Commitment. This happens to be a parametrized version of
based protocols in which Alice and Bob very gradually sendn€ three-round protocol due to Ambairjis]. We prove a
each other information about their bits in the commit stageP"OPerty of this protocol that helps us analyze protocols with
Intuitively, such protocols seem to be good candidates foP0reé rounds. _ _
achieving bias much smaller than 1/4, since a dishonest The protocol may be described with a parameter
player does not get much information about the other’s pit= [0:7] [such that tan{/2) = ye/(1- €)] as follows:
until a significant number of rounds have elapsed, and h? (1) Alice picks a’SE.R{O’l}.’ and sends ?’Ob the state
would have heavily committed to some bit by then. How- Yas), where the state is defined as follows:
ever, this intuition appears to be mistaken, and we give in- o o
tricate cheating strategies for each of the players with which |¢ays>=cos§|0>+(— 1)Ssin§|a+ 1). 1
at least one of them can achieve bias at least as high as 1/4.
This suggests that the optimal bias for this kind of protocol
might be 1/4, and also that proving this optimality might
require ideas more sophisticated than those in Theorem 2.2.

Define, forx,se{0,1},

(2) Bob picksb e g{0,1} and sends it to Alice.
(3) Alice then reveals the bita,sto Bob, who checks for
consistency with the state initially sent by Alice.

The output of the protocol is given m=a®b, if all the

|(%,9)) = 1— €] 0)+(—1)5\e|x+1). checks are passed.
Lemma 3.1 If Bob is honest, then Pc=0)<3(3
+cosa).

These states provide the best trade-off between how much Proof. A cheating Alice creates a qutrit in some stéie
information they reveal and how much cheating in commit-be sent in the first roundand retains some qubits entangled
ment they allow. with this qutrit. Without loss of generality we may assume
The protocolP,, ne{1,2,3;:-}, goes as follows. Alice thatin the third round, Alice sends=b, which is the bit that
picksae g{0,1}, and Bob pickd € gr{0,1}. Then they alter- Bob sends in the second round. This only increases her
nately send each other, for a total ofrounds, the states chance of getting outcome 0. The following lemma now
|#(a,s)) and|4(b,s)), respectively, for independently cho- bounds the probability that Alice succeeds in cheating Bob,
sen random sigrs, starting with Alice. The last player to given the bitb.
receive such a state then reveals the bit he/she chose, fol- Lemma 3.2Suppose that Alice and Bob share a joint state
lowed by the other player. Then, they reveal the signs used inZ ol ¢i)|i). Alice now does some local computation and
their states in the opposite order, and the other party checksends Bob a sign bg and Bob does a measurement to check
the state he/she received against the claimed bit and sign. iffthe state of his qutrit i$¢, s). The probability with Bob's
no cheating is detected, the players declarecdh@®b as  test is passed is at mostd||\V1— 6+ ¢4z 1] \/6)?, where
the result of the protocol. 5=sir’(a/2). In other words, this probability is at most the
More formally, fidelity F(p,pa), Wherep is the density matrix of Bob’s part
(1) For i=1,23...n, if i is odd, Alice pickss;  of the joint state, if measured in th@,|1),|2) basis, ang, is
er{0,1} and sendgy(a,s;)) to Bob, or ifi is even, Bob the density matrix he would have if Alice were honest, i.e.,
pickss; e g{0,1} and send$z//(b,si)> to Alice. pa=(1/2) (| '/’a,O)(‘//a,0| + | Wa,1><'70a,1|)-
(2) If nis even, Alice senda to Bob, and then Bob sends Proof. We prove the statement far=0; the other case is
b to Alice. Otherwise, ifn is even they reveal their bits in the similar. Note that in this case, Bob rejects with probability 1
opposite order. the part of his state where his qutrit [8). Thus we may
(3) Fori=n,n—1n-2,...,1, theplayer that pickeds;  restrict ourselves to the stalteo)|0)+|$1)|1).
reveals it to the other player. In other words, the “signs”  Suppose Alice applies a transformatibhon an ancilla
used in the states are revealed in the opposite orderis|f @ and her part of the shared state, and thap,)
odd, Alice sends;; to Bob, else Bob sends to Alice. The  —| 4. y/0)+|¢;,)|1), where the trailing qubit contains the
player that receives this bit checks via a measurement tha§gyn that Alice sends to Bob. When the sign Alice sends is
the state sent to her/him in théh round of the protocol is  the (unnormalizedl density matrix of the Bob’s state is

indeed consistent with the bit and the sign that the chegxy|x><y|<¢xs| ¢y Now the probability that this state
player sent. Note that the order of revealing signs is designegasses Bob's test may be seen to be

so that the nae strategy of reusing a state that a player got
in a previous round does not work.

(4) If all the checks are passed, the outcome of the pro-(1— | podl >+ 8l p1d >+ (—1)52V8(1— &) RE pos| P1s)-
tocol isc=a@b.

Before we give cheating strategies for these protocols, we
analyze general versions & andP,. This illustrates the Summing up overs=0,1, and using the fact thalip|?
main approach taken in the strategies Ry, n=3. + | i 1lI2=]#il|?, we see that the net probability is
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(1= 8)[| ol 2+ 8] 412 F(o0,0)+F(o1,0) = ol &o) P+ K pal£1) P
+2/8(1— 8) R dod d10) — ( o #12)]- =Kol €0)*+ K palU|E0)P
Now, S”“g";‘)@“((ﬁd§>|2+ KpalUIEF}
|RE{ pod P10) —( Porl P10 ]| =1+|(p1|U|do)l 3
<l ool 1l + | bl - | 411 1+ maxl(égUldo)
< (| odl>+ | ol D YA P10 2+ || p14H) M2 local U
=l ol -l bl =1+F(0g,0)" )

Therefore, the net probability of passing Bob's test is at mosEquation(3) above follows by noticing that the sta# that
achieves the maximum is the vector that bisects the angle

(V1= 3| ol + V3l b4])2 between ¢,) andU|¢,). Another way of getting the bound
’ is by noticing that the expression is the maximum eigenvalue
as claimed. m ofthe matrix| ¢o){ dol + U] h1)(p|UT. The last step—EQq.

Averaging over the two choices for the titwhich Bob (4)—follows from a characterization of fidelity due to Jozsa

picks randomly, we see that Alice’s cheating probability is [16] , o
To see that the above inequality is tight, we may construct

F(po,p)+F(p1,p) the_gjen_sny matrlxi above as foIIows._ConS|der_ any two
Pric=0)< 5 , (2 purifications|,) (x=0,1) of o, that achieve the fidelity of
the density matricesd{{o|¢1)|=F(0q,01) Y2 Let
wherep is the state of Bob after the first round, apgl,p, 120+ 4)
are the analogous states correspondingote0,1 respec- |g>=¥_
tively, if Alice were honest: [0+ 4l
1 It is now not hard to see that|Zo+(4]?°=2[1
Pa=75 (| a0 ¥ad + ) (Yadl), +F(0q,01) 1, and tha{(Z| £,)|= 1+ VF (0o, 01). The state
o obtained by tracing out the purification space frginthus
achieves the maximum. |

andF(oq,04)=|\Joo Vo] denotes the fidelity of two den-
sity matriceq 16].

We show in Lemma 3.3 below that the expression in Eq. B. The five-round protocol

(2) is bounded above by Next, we give a tight analysis for a general five-round
version of the protocoP, described above. This version of
[ 1+F(po,p1) . the protocol still does not improve over the bias of 1/4

achieved by the three-round protocol[6]. However, it sug-
Since F(pg,p1) =co(al2), the bound on Alice’s cheating gests a better cheating strategy for the many-rounds version
probability follows. B than the one given in the proof of Theorem 2.2.
We now prove the lemma mentioned above. The lemma

has also been proved by Spekkens and Rud@lpmma 2 in 'I_'he \_/ersion of th(_a protocdP, we consider has the fol-
[6]). lowing five rounds with honest players.

(1) Alice picks a,seg{0,1} and sends Bob the state

Lemma 3.3For any two density matricesy,oq, ) ]
y y 071 |.s), Where the state is defined as follows:

maXF(O'O,O')+F(O’l,O')=1+F(O'0,O'1)1/2. o a
o |¢avs>=cos§|0>+(— 1)Ssin§ la+1) (5)

Proof. Let o be the density matrix that achieves the maxi- »
mum, and let¢,) be a purification ofo,, for x=0,1. Let ~ for an anglea to be SPeC'f'e‘? later. _
|£,) be the purification ofr that achieves maximum fidelity ~ (2) Similarly, Bob picksb,s’ € g{0,1} and sends Alice the

with o, [16]; state| ¢y, s/), where the state is defined as follows:
— 2 ,
Fo0,0) =Kl £0I |¢bys/>:cos§|0)+(—l)s sin§|b+ 1, (®

Since|&y),|£,1) are the purifications of the same density ma-
trix o, there is a local unitary operatdy such that|&;) for an angleg to be specified later.
=U|¢&y). Now, (3) Alice then reveals the bi to Bob.
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(4) Bob reveals botfb ands’ to Alice, and Alice verifies, Proof. Suppose that Alice commits with one-half of the
by an appropriate measurement, that the state sent by Bobfisllowing state in the first round:
consistent withb,s’.

(5) Alice now discloses as well, and Bob verifies that the |€0)[0)+|€1)[1)+(€2)[2),

state sent by Alice in the first round is consistent vath )
where the state$;) are held by Alice, and are such that

The output of the protocol, the coin flip is given by the 3| &?=1.
exclusive-or of two bitsc=a®b (provided no cheating is When she receives a qutrit from Bob in the second round,
detected Alice applies a unitary transformatids to some ancilla, her
In the case where the players are honest,cP) part of the above shared state, and the qutrit sent by Bob.
=Pr(c=1)=1/2. Below we prove an upper bound on the This computes a bia to send to Bob, and represents the bit
probability that any player can achieyby deviating from she claims to have committed to in the first round. Lkt
the protocol for an outcome of their choice. In the following have the following behavior:
discussion, we will assume, without loss of generality, that a
dishonest player prefers the outconwe 0. First, we prove a |6>|§i>|i>'%|§ijo>|0>+ |§ij1>|1>-
bound on the probability that a dishonest Bob can achieve,
provided Alice is honest. Suppose Bob had sent her a qutrit in statg ;') corre-
Lemma 3.4 If Alice is honest, then Pg=0)<1 sponding to the random bitgs’. Their joint state after the
— 3 co(al2)sirt(BI2). third round is then
Proof. We claim that Bob’s optimal cheating strategy is to
measure the state received from Alice in the standard basis, , _
and then commit to a state according to the outcome. If he 2 2 (V1= €l&ioa)+ (= 1) Vel & pi1a)) ®ali)s,
observesl) or |2), he can cheat with probability 1 in the rest 0atod
of the protocol. In case he observi@, his probability of wheree=sir?(8/2). The part of the joint state corresponding
cheatlng successfully is bounded t_)y a constant less than ong, i1« final outcome 0 iévhena=h):
This gives us the bound, as explained below.
Note that the last round is of no consequence to Bob’s 2
cheating strategy, and we may trace the signshiut after D (V1= €&y +(—1)% Ve & pi1p) ®|biYg .
Alice sends the first messagend eliminate the last round i=0
The protocol then becomes equivalent to one in which the . ,
first round takes the following form: Alice picks From Lemma 3.2, the probability that Alice now passes
cr{0,1}, and sendd0) with probability cod(e/2), and|b ~ BOP's final check is bounded by
+1) with probability sirf(a/2). This reduces the protocol to

a convex combination of two protocols, with weights (V1= Zo(s)+ V3l nsa(s))?
co(a/2) and si(a/2). In the first protocol, the first mes- =(1-8)[&o(S) 2+ 8¢y ()|
sage is the same regardless of the value,0énd in the

second, the first message revealentirely. +2y8(1—= | Lo(S)H - I Zp+1(S)I

In the first case, the protocol reduces to a three-round
protocol of the type studied in Sec. lll A, with the role of where
Alice and Bob reversed. We may now use Lemma 3.1 to

bound the probability that Bob can cheat by+(8osp)/4. 1£1(8"))=V1— €l &gy + (— 1) Vel & i 1p)-
In the second case, the protocol becomes trivial, and Bob
can cheat with probability 1. Averaging it over the choices o' that Bob makes, this

The probability of convincing Alice that=0 is thus probability may be bounded as

bounded by
(1= 0) ot Spp+1T2VS(1— ) pottp+1s
3+cospB a where
TCO§E+SIn2§,
wi= (1= )| &opll?+ €l & b+ 10l
which reduces to the bound we seek. [ |

\ \ . ! Here, we have used the parallelogram law, illes;+v|?
Bob can easily achieve the probability bound stated in the+||u—v\|2=2(||u||2+||u||2) and the Cauchy-Schwartz in-

lemma by following a cheating strategy as in Red], o ; _
; gy : quality. Note that we may bourd . 1 /| by [|£,+4] and
Lemma 10. This shows that the analysis in our proof is OpT|§o,b+1,b|| by [|&,]l. So the probability above may be bounded

timal. as
We now turn to the case where Alice is dishonest. The
following lemma bounds Alice’s cheating probability. 1= (1—€ 24 dléd21+ s 2
Lemma 3.5 If Bob is honest, then Pe=0)<3[1 ( 1 Mool I€0l71+ Ol
+c0s(al2)sir(B/2)]. +28(1= )| &1/l (1~ )| onpll >+ €| £0ll* 1>
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Averaging it over the choice di that Bob makes, and using pick the bests possible to maximize her chance of passing
the Cauchy-Schwartz inequality once again, we see that thiBob’s check. We describe her actions when0, s’ =0; the
probability is bounded by other cases are similar.

The unnormalized density matrix of the qutrit she sent in

1 the first round, wherl=0, s’ =0, conditioned on her repl
(A= )L+ )&+ o1&l boInga=0 iv i

+2y8(1-8)(1+ e)|| &lI{1— [ &l 4.

The maximum value of this expression &) varies be-
tween 0 and 1 is

B(1

-\ A
COSZE(T|O><O|+ §|1><1| +Sil’]2§p.

Note that she knows the state of all their qubits, gibesi,
B o a. She can thus transform her part of the state so that their
1+sin2§ 00525). joint state looks like

1+sin2§) |00) + \/§|11)+ \[%sin§|22>.

he sends=0 if the entangled bit is 2. If her entangled
qutrit is not 2, she does a Hadamard transform on her en-
tangled qubit, and sends that to Bob ssThe probability
with which Bob accepta=b,s is then

LB a \ﬁ _a)|?
1+S|n2§ cosy + /5 sinz |,

A A
|£)=V1-\[0,0+ \/;|1,1>+ \[E|2’2>’ which evaluates to the expression stated in the lemma. She
can achieve the same probability of success for all other
values ofb,s’ as well. Thus, the overall chance of her suc-
ceeding in cheating is also given by this expression. H
The properties we established above show that this proto-

1 B 1
§[1+ 6(1—5)]— E

This completes the proof of the lemma. | \/1—)\

Next, we describe a cheating strategy for Alice that 2
achieves the outcome of her choice with probability as hig
as in the upper bound above, showing that our analysis i
optimal.

Lemma 3.6 If Bob is honest, Alice can achieve [r(
=0)=3[1+ coS(a/2)sirF(B/2)].

Proof. Alice constructs the following entangled state and (

1-x

2

sends one half of it to Bob in the first round:

where

o
sin2§ col still has a bias of 1/4: the cheating probability for Alice
A= , and Bob are of the forng + & and 1— &, respectively{with
1+sinZE) 02 4 sip s 5= 3 co(al2)sirf(B/2)], and their maximum is minimized
2 2 2 when 6= 1/4.

and so the density matrix of the qutrit with Bob js
=diag(1-\\2\/2) in the 0,1,2 basis.

After Alice receives a qutrit from Bob in the second Let An(€),Bn(€) be the maximum value of Alice and
round, she applies a unitary transformation to “guess” aBob’s cheating probability in the protocdP,, when the
value forb to maximize her chances of getting=0. This  Other party is honest.
transformation acts on the qutrit she received from Bob, her Bob’s optimal strategy may be reduced to a strategy for
entangled qutrit from the first round, and an ancilla qubit. ItAlice as in the proof of Lemma 3.4. Alice always starts the

C. Cheating strategies forP,

can be written as protocol, and also sends the last message. Since the last mes-
sage does not affect Bob’s cheating strategy, we may trace it
|0)(0]® (]OY0|@H+|1){1]|®@1+|2)(2|®ay) out of the protocol when analyzing his optimal strategy. The
protocol P, then reduces to a mixture of protocols where
+H1)(1elel+[2)(2[a®0y. Alice sends|0) in the first round with probability % € (i.e.,

) ) i does not reveal any information about the #&jt and sends
whereH is the Hadamard transform, awd is the Pauli “bit |54 1) with probability e (i.e., completely reveals the .

flip” matrix. In other words, Alice guesses=Db, if the qutrit  The rest of the protocol is the sameZs., with the roles of
from Bob reveals the identity df. Otherwise, if she com-  ajice and Bob reversed. Thus,

mitted with a|d) (d=1,2) she saya=d— 1, since this com-

mitment is irrevokable. If she committed with), she says By(e)=€e+(1—€)A,_1(e) for n=2. @)
a=0,1 with equal amplitude. It is crucial that she does this
superposition We already know froni5] thatB;(€) = (1+ €)/2. It thus suf-

In the fourth round, Bob reveals the state of the quitrit hefices to analyze Alice’s cheating probability in all the proto-
sent. If Alice sees that the bit Bob picked is different from cols P, .
her guess, i.eh# a, then she sends, sas=0 (an arbitrary From our analysis of the three and five round protocols,
value, since she has lost the gam®therwise, she tries to we also know that
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€ 1 1
Ae)=1-73, —[0)|y(b,0))+ —|1)]¢(b,1))
2 v v
2
By(e)=1- E+ E—, to Bob. Otherwise, if none of the above two events occurs,
2 2 she sends one half of the state
A= tr oS X X
A= 2 V1-1x;|00)+ \/;|11)+ \E|22>

We now give a lower bound for the probabiligy,(e) by
describing a cheating strategy for Alice that generalizes thén the jth commitment round. It is important that she do all
strategy that we saw in the five round protocol. this “in superposition,” i.e., via unitary operations controlled
First, we assum&n=2k—1(k=1) is odd, so that Alice by her entangled qutrits and the qutrits she receives from
hask rounds of commitment, and Bob hks-1. The case of Bob. She performs no measurements in the process.
n even is addressed later. In the first round, Alice sends one- Formally, for each qutrit that Alice is supposed to send,

half of the state she has a qutrit-qubit pair. The first serves as the “entangled
qutrit,” and the second serves as the “sign qubit.” They are

— N1 Ny all initialized to the O state. She prepares appropriate states

1=0|00+ 5110+ \ 5129 over these according to the above rules, as the protocol pro-

ceeds. The joint state of both parties together afterrthe
to Bob, and retains the other half. The half she keeps igommitment rounds then looks as given below, for an arbi-
referred to as an “entangled qutrit” below. All the parameterstrary choice ob and the signgs,;} picked by Bob. Here, the
A will be specified later. If one of the entangled qutrits shequtrits sent by Alice to Bob are underlined. The entangled
retains from any previous round is in state-1, in all the  qutrits and sign bits can be identified from the context. The
commitment rounds that follow, she sends the right half offirst sum corresponds to the part of the state where Alice
the state commits to a bi by sendingx+ 1), before she can identify
which bitb Bob has picked. The next sum has the part of the
state where Alice has not committed to any bit, and sees a
|Ib+1) in one of the qutrits Bob sent. The last term is the
remaining part of the state. Note that Alice can differentiate
and keeps the first qubitalled a “sign qubit” below. If the  between these three parts by examining her entangled qutrits
entangled qutrits are all 0, and at least one of the qutrits shand the qutrits Bob sent her. The odd lines contain the por-
received in earlier rounds from Bob is in stéte 1, then she tion of the state constructed by Alice, and the even lines

1 1
E|0>|¢(X,0)>+ E|1)|¢(X,1)>

sends the right half of the state contain the portion prepared by Bdand sent to Alicg
|
k=1 rj_q N 1 k=j
® V1-)\|00) |® \ﬁlx+ 1x+1)® —[|0)|¢(x,0)>+|l>|z//(x,1))1
x=0,1j=1||=1 2 I BV, ) R R

_ ko1 k=1r 1 k—j
©(V1=e0)i"s| @ |p(b,s)) |+ 3, | © VI=N[00) o] —10)]¢(b.0)+[1)]4(b.D)
° 2|2
k—1 k—1
®(V1—€l0)) *e[(—1)%aelb+ ]| ® [¢(bsy)|+| ©® VI=X|00)|®| VI=N00)
I=j+1 =1

A A
+\/;|1_1>+ \/;|22>)®(\/1—e|0))"1. %)

Sincen=2k—1 is odd, Bob reveals his biit first. Without loss of generality, we may assume that Alice would like to bias

the coin towards 0. She therefore semdsb in the part of her state where her entangled qutrit is not equiahtd (which
corresponds to a commitment which she cannot chaMye will consider the residual state after Alice has sent baek
signs, in reverse order. This is the unnormalized part of the g&tthat has not been rejected by Bob. We will prove by
induction that Alice can locally transform the residual state to a $tajeafter every two rounds of sign exchange. This state
is similar in form to the joint stat€8) above, except that the first part is projected onto the space whkele and there is a
factor of ; in the last term. The statep;) is displayed as
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i1 q ~ 1 i—
3, | © VI=X00) ®\@|b+1,b+1>® (10 9(b.0) +|1)[ (b, 1)))
== — T T
i-1
®(V1-€0)) "t I®.|lﬁ(ba32|)>}
=]
-1 1 i—j
+2 | ® VI=x]00) |@| — (|0)]1(b,0))+|1) (b, 1)
j=1|1=1 V2
i—1
®(V1-¢l0)) 'e[(—1)%elb+1)] @ @ lub.sa))
=j+1
i—1 )
® V1—)\|00) |® \/Mi(l—xi)|og>+\@b+1,b+1> ®(V1—€l0))' L, (9)
=1 —
where the numberg; are as follows:
=1,
(10
€
Mi—lz(l_f)zﬂi+§(3_€)-
We can now also specify the parametirs
B €l2
N et e 0

Clearly, the statég,), when none of the signs has been revealed by Alice, is of this form aithl. Assume that this is
also the case for somiesk. We will show by induction that the state after Alice has revedled +1 sign bitss,,_1,
Sok_3,.--,52i_1 May be transformed to E¢9) and that Eq(10) holds.

To send the sigs,; 1, Alice does the following. The sign in part of the state in the first two summations of the| gtate
in Eq. (9) is “precomputed”(in the sign qubit To compute the sign in the last term, Alice first sbts1 to 1 in theith
entangled qutrit, does a Hadamard transform, and exchanges that entangled qubit Miitlsighequbit. She then measures the
ith sign qubit, and sends it across. It is easily seen that the unnormalized state that remains after Bob has chttketrithe
sent by Alice is as follow8.Here, we have written the last terms of the first two summations if@geparately to facilitate
the rest of the proof,

i-2 1 . 1 i—1-j
> | ® JI-X/|00) ®\f5‘|b+1,b+1>® —[]0)]#(b,0)) +|1)] (b, 1)
I=1]1=1 — | V2
_ i—1 i—2 j 1 i—1—j
o(V1=eop!~te| @ [pbsy) |+ 3 | & VI=N0g) e ‘5[|0>|w<b,0>>+|1>|¢<b,1>>]
=j = =1 _—

1
® |¢(b152|)>}

I=j+1

2 (V1-€l0)te[(~1)%=elb+1)] @

i—2 :

+ @ VI—N,|00)|® %|b+1,b+1> ®(VI—€|0)) 20| #(b,Sxi-1)))
=1 —
i—2

+| ® V1=N[00) |®(V1—A;-1]/00))
=1

2Actually, the state is a mixture of two states which are bot# limes the state given. The mixture arises because of the two possible
values of the sign bhit Alice sends fep;_,. The mixture is of course equivalent to the single state shown.
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i—2
2(V1-€l0) 2e[(—1)%20-1\elb+1)] +| ® V1-\[00)|®(VI—N\;_1/00))
I=1
®(V1—€]0)) 20 V1—€|0) ui(1—€) + e/2]V2
|
Now, when Bob sends the sigy 1) to Alice, she rotates € .
the (1 —1)th qutrit that Bob sent her in all but the last two An(e)= §+(1—€)” (1+e)/2
terms in the sum above, t6). She also rotates that qutrit in
the last two terms from (3—e€)(1l—¢) N2
—m g [1-(1-9"
[1i(1— €)+ €el2]*21— €| 0) +(— 1)%2i-1\e[b+1) 1
= m[S—ZG—(l—G)n+1J. (14)

to Vui_1/0), whereby ui_;=ui(1— €)%+ e(1—€)/2+e.
This proves the induction step. From E
gs.(13), (14), and (7), we can deduce lower
At the final round of the protocaby,, the state that they 4 nqs forB (¢) as well, forn=2. This expression matches

are left with is the one forB,(e€). Thus, for alln,
A 1 +1
Va(1-1p)[00)+ b+ 1b+1). n(f)/z(2 [3 e+(-1)"(1-¢"7]. (19

Following Alice’s strategy for computing the sign as above, To determine the bias achieved, we examine the maxi-
we see that the probability with which Alice succeeds inmum of the cheating probabilities attained by Alice and Bob.
passing Bob’s checks [sising Eq.(11)] Note thatA,(e)+B,(€)=3/2 for all n, e. Thus, the bias of
the protocolP, is at least 3/4 for anyh and e. Since we
) would like this bias to be as small as possible, we optimize
[Via(1=N1) (1= €) + VN1 €/2]?= py(1—€) + €l2. the maximum cheating probability with respecteo
(12 For oddn, A,(0)=B,(1)=1, andA,(1)=B(0)=1/2, A,

is monotonically decreasing, arigl, is monotonically in-
Solving the recurrence fou; given in Eq.(10), we get creasing with respect tee[0,1]. Thus, the maximum bias

achievable is minimized whei,(e) =B,(¢€). This condition

is satisfied where= ¢, such that

(3-¢)

=(1—e)2k D4 22— ¢)

[1-(1- €2k ),
(1-e)" =2, (16

and so that from Eq.12), for n odd,

that is,
An(e)>§+(1—e)“ %[1 (1—e)" 1]
€= n+1[Inn InNInn+O(1)].
= m[3—2e+(1—e)”+1]. (13
Using Eq.(16) we can verify that the lower bound @&%,( €g)
is 3/4.
The analysis in the case that=2k is even is similar, For evenn, A,(0)=A,(1)=1/2, andB(0)=B,(1)=1,

except for the rule Alice uses to compute the bit she sends ta | is concave,B,, is convex, andB,(e)=A,(€) for e
Bob (since she is supposed to reveal her bit before Bob re=[0,1]. Thus, the bias achievable is minimized wtgnis,
veals his bit. In this case, she sends the kiif any of her e, for e=¢, such that
entangled qutrits is in state+ 1) or, if any of Bob’s qutrits

are in stateb+1, she send#. In the remaining case, she

sends 0,1 with equal amplitudev2. This leads to a state (1—€)"
similar to|¢,) above after Bob reveals his bit, and the last

sign he used, except that heig=(1+ €)/2. So, we get for

n even, that is,

T ent 1 7
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