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Bit-commitment-based quantum coin flipping
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In this paper we focus on a special framework for quantum coin-flipping protocols,bit-commitment-based
protocols,within which almost all known protocols fit. We show a lower bound of 1/16 for the bias in any such
protocol. We also analyze a sequence of multiround protocols that tries to overcome the drawbacks of the
previously proposed protocols in order to lower the bias. We show an intricate cheating strategy for this
sequence, which leads to a bias of 1/4. This indicates that a bias of 1/4 might be optimal in such protocols, and
also demonstrates that a more clever proof technique may be required to show this optimality.
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I. QUANTUM COIN FLIPPING

Coin flipping is the communication problem in which tw
distrustful parties wish to agree on a common random bit,
‘‘talking over the phone’’@1#. When the two parties follow a
protocol honestly, the bit they agree on is required to be 0
1 with equal probability. Ideally, they would also like that
any ~dishonest! party deviates from the protocol, they do n
agree on any particular outcome with probability more th
1/2. It is known that ideal coin flipping is impossible in bo
the classical and the quantum setting@2,3#. In fact, in any
classical protocol, one of the two parties can force the o
come of the protocol to a value of her choice with probabil
1. In @4#, Aharonov, Ta-Shma, Vazirani, and Yao showed t
it is possible to design a quantum coin-flipping protocol
which no player can force the outcome of the protocol w
probability more than a constant 1/21e, with bias a constan
e,1/2. In other words, any cheating player in such protoc
is detected with constant probability. Later, Ambainis@5#
gave an improved protocol with bias at most 1/4. A simi
protocol with bias 1/4 was independently discovered by Sp
kens and Rudolph@6#.

Formally, a quantum coin-flipping protocol with biase is
a two-party communication game in the style of@7#, in which
the players start with no input and compute valuescA ,cB
P$0,1%, respectively~or declare that the other player
cheating!. The protocol satisfies the following addition
properties.

~1! If both players are honest~i.e., follow the protocol!,
then they agree on the outcome of the protocol:cA5cB , and
the outcome is 0 or 1 with equal probability: Pr(cA5cB
5b)51/2, for bP$0,1%.

~2! If one of the players is honest~i.e., the other player
may deviate arbitrarily from the protocol in his or her loc
computation!, then the outcome of the protocol has bias
moste: for any bP$0,1%, Pr(cA5cB5b)<1/21e.
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Almost all quantum coin-flipping protocols with a bia
that is provably smaller than a half@4–6# are based on the
notion of bit commitment. In other words, they have t
following form, when the parties flipping the coin, Alice an
Bob, are honest.1

Protocol schemeP

The following steps describe the protocol schemeP.

~1! First, Alice and Bob each pick a random bit,a andb,
respectively, and privately construct statesra and sb . The
states are over three sets of qubits, acommitmentpart, a
revelation part, and averification part. The revelation par
consists of one qubit that contains the value of the bit pick

~2! Next, theycommitto their respective bitsa andb by
sending each other the commitment part of their statesra
andsb . They may do this over several rounds of commu
cation, in which they send messages alternately.

~3! Then, theyreveal to the other party the bitsa,b they
picked ~in some order!, and follow that up by sending the
rest of the statesra ,sb ~the verification part!. This may
again be over several rounds of communication. This allo
each party to check via suitable measurements that the
with which the other, Alice~or Bob!, committed to her~his!
bit is indeed consistent witha ~b!.

The result of the protocol isc5a% b, if neither player is
detected cheating during the third~verification! stage.

For example, in the case of the protocol in@5#, Alice uses
the right half of the following state to commit to her bita,
and the left half to help Bob check her commitment:

ra5 (
s50,1

1
2 ua,s&^a,su ^ uca,s&^ca,su,

where

1We were recently informed@8# of a protocol of a different kind
that also achieves a bias of 1/4.
©2003 The American Physical Society04-1
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uca,s&5
1

&
@ u0&1~21!sua11&].

Bob skips the commit stage, and directly reveals his bitb. In
the final stage, Bob checks that the state of the qutrit A
sent in the first round is indeed consistent witha,s, by mea-
suring it in a basis containinguca,s&.

Protocols of the form described above may be recas
the following terms. First, Alice and Bob each pick a rando
bit. Then, they successively send each other qubits which
not depend on the qubits sent by the other party in the
vious rounds. The qubits sent by Alice represent a comm
ment to her bita along with auxiliary information required
by Bob to check if she is cheating. The same is true for
qubits sent by Bob. Thus, after all communication is ov
the states Alice and Bob sent to each other for 0 and 1
perfectly distinguishable. They measure the states rece
from the other party~possibly with some ancilla! according
to a von Neumann measurement to determine the bitsa,b or
to detect cheating. The outcome of the coin flip isa% b if no
cheating is detected. In this description we have assum
without loss of generality@9#, that all measurements are don
at the end. Note that the description is also slightly m
general in that the players may not explicitly reveal the b
they intend to commit to, and the commitment and the ve
fication stages may be interleaved. We will henceforth re
to such protocols as bit-commitment-based protocols.

In this paper we study coin-flipping protocols that fall in
the special framework described above, that of b
commitment-based protocols. We show a lower bound
1/16 for the bias in any such protocol~Theorem 2.2!. This
provides a single proof that these protocols, including
one proposed in@10#, cannot lead to arbitrarily small bias
Tokunaga@11# has independently attempted, albeit unsu
cessfully, to show a lower bound of 1/16 for arbitrary prot
cols using the same cheating strategy that leads to our lo
bound. Spekkens and Rudolph~Corollary 1 in @6#! have
shown a lower bound of 0.19... for protocols as in schemP
above, in which only one party commits to a bit—the oth
directly sends his bit in the revelation phase of the protoc
Our lower bound thus applies to a more general kind
protocol.

Next, we analyze a sequence of protocols that tries
overcome the drawbacks of the previously proposed pr
cols, and also tries to circumvent the cheating strategy
leads to this above lower bound. We show an intricate ch
ing strategy for the sequence of protocols, which leads
bias of 1/4. This indicates that a bias of 1/4 might be optim
in such protocols, and also demonstrates that a cleverer p
technique than the one used in Theorem 2.2 is require
show this optimality.

Recently, Kitaev has shown a lower bound of (1/&)
2(1/2)50.2071... for the bias in arbitrary quantum coi
flipping protocols@12#. This is bigger than the bias of 1/1
50.0625 that we show~and it applies to any coin-flipping
protocol!. In more detail, Kitaev’s result states that the pro
uct of the optimum cheating probabilities for the two part
is at least 1/2. We leave it as an open question whether t
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optima sum to at least 3/2, as is the case in all known p
tocols, including the ones considered in this paper.

Kitaev’s (1/&)2(1/2) lower bound does not seem to a
ply to quantum games in which the two parties involv
compete to ‘‘win’’ by getting a particular value of the coin a
the outcome~say Alice wins if the outcome is 0, and Bo
wins if the outcome is 1!. This is also known as weak coi
flipping in the literature. Protocols for weak coin flippin
with bias less than 1/4 have been discovered. Kerenidis
Nayak@13# have shown a protocol with cheating probabili
at most 0.739... . Ambainis@14# and Spekkens and Rudolp
@15# have shown protocols with an even lower cheating pr
ability of at most 1/&50.707... . No lower bound is known
for the bias in weak coin flipping; arbitrarily small bias ma
still be possible.

II. A LOWER BOUND ON THE BIAS

We first show that any bit-commitment-based protoc
may be reduced to an extremely simple protocol of the sa
type, with bias at most that in the original protocol, and
increasing the number of rounds by at most 1.

Lemma 2.1. For any bit-commitment-based coin-flippin
protocolP ~of the formP, or more generally, as described
Sec. I!, there is another such protocolP8 so that we have the
following.

~1! The statesra ,sb are pure:ra5uca&^cau and sb
5ufb&^fbu, whereuc0&'uc1& and uf0&'uf1&.

~2! Alice measures the state she received from Bob
cording to the measurement given by the operatorsP0
5uf0&^f0u, P15uf1&^f1u, and Pc5I 2P02P1 , to deter-
mine Bob’s bit or to check if he is cheating. Bob does
analogous measurement given byQ0 ,Q1 ,Qc on the state he
receives from Alice.

~3! The bias is at most the bias ofP.
Proof. The protocolP8 is obtained by stipulating that th

players use a fixedpurification uca&,ufb& of the statesra ,
sb used in the original protocolP. Since the statesr0 ,r1 are
perfectly distinguishable, their purifications are orthogon
Similarly with f0 ,f1 . All but the last two rounds ofP8 are
as in the original one. We stipulate that the players send
entire~purified! stateca or fb in P8. Thus, the last player to
send a message inP sends the qubits used in the purificatio
in the penultimate round ofP8. In the final round, the othe
player sends the qubits used in purifying her state. We a
alter the measurement to the ones mentioned in the lem

We now show that this modification of the protocol resu
in bias at most that in the original one. We do this by sho
ing that any cheating strategy of a player in the modifi
protocol P8 that achieves a bias ofe leads to a cheating
strategy in the original protocolP with at least the same bias

For concreteness, we consider a cheating strategy for
ice in the protocolP8. ~The argument for the case of Bob
similar.! In her strategy inP, Alice acts exactly as in the
original strategy, except that she is not required to send
‘‘purification qubits’’ meant for her last message inP8. We
need only show that the probability with which the measu
ment inP yields 0 or 1 dominates the same probability f
P8.

Suppose that Bob uses a von Neumann measurem
4-2
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given by the projection operatorsR0 ,R1 ,Rc in P. We con-
centrate on the probability that Alice can convince Bob t
she had pickeda50. The other probability may be bounde
similarly. SinceR0r0R05r0 , the purificationuc0& lies in the
range ofI ^ R0 . The states of the qubits sent to Bob by Alic
and her private qubits inP8 are together given by som
mixed state( jm j uj j&^j j u ~where the statesuj j& are over the
space ofra and the purification space!. It thus suffices to
show that for any stateuj&P$uj j&%,

i I ^ R0uj&i2> z^c0uj& z2.

Note that the left-hand side~LHS! is the squared norm of th
projection ofuj& onto the range ofI ^ R0 , and the right-hand
side~RHS! is the squared norm of the projection of the sa
vector onto asubspaceof that range, the one-dimension
space spanned byuc0&. The inequality is then immediate
This shows that Alice can achieve at least the same bias
P8. j

This simple characterization of bit-commitment-bas
protocols proves useful in the analysis of the smallest b
achievable with such protocols. Using this, we show t
coin-flipping protocols based on bit-commitment cann
achieve arbitrarily small bias.

Theorem 2.2. In any quantum coin-flipping protocol base
on bit commitment, one of the parties can achieve proba
ity of cheating at least 9/16.

Proof. As shown in Lemma 2.1, any such protocol b
tween honest parties may be viewed as follows: first, Al
and Bob construct the statesuca& and ufb&, respectively,
corresponding to the random bitsa and b. Then, they send
each other a part of the statesuca&,ufb& a few qubits at a
time. Finally, they measure the qubits received from e
other using projectionsP0 ,P1 ,Pc andQ0 ,Q1 ,Qc .

Let ra,i5TrAi
(uca&^cau) be the state sent to Bob by Alic

by roundi ~so Ai are the qubits ofuca& still with Alice after
the i th round!. Let sb,i be the corresponding state sent
Alice by Bob.

Let there ben rounds in all. LetFA,i5F(r0,i ,r1,i) and
similarly FB,i5F(s0,i ,s1,i). Here, F(•,•) is the fidelity
function as defined in@16#. So FA,05FB,051. Note that
Qara,nQa5ra,n , and similarly Pbsb,nPb5sb,n , so that
FA,n5FB,n50.

Lemma 2.3. Consider a protocol with honest players. F
any constant 0<a<1, there is a player, say Alice, and
roundk>0 such that the states she sends to Bob by thekth
round ona50 and 1 have fidelity at leasta, and the fidelity
of the states she receives from Bob by the next round h
fidelity at mosta. In other words,FA,k>a andFB,k11<a.

Proof. The casea51 is trivial. Let a,1. Note that both
FA,i ,FB,i decrease from 1 to 0 through the course of
protocol. Consider the first roundi>1 such that one of these
sayFB,i , becomes<a. Roundk5 i 21 satisfies the property
we seek. j

We will devise a cheating strategy for a player as given
Lemma 2.3 above fora51/4. Say this player is Alice, and
the round identified in the lemma isk. There is a unitary
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transformation on the qubitsAk which achieves maximum
fidelity betweenr0,k ,r1,k @16#, i.e.,

z^c0uUuc1& z25FA,k5F~r0,k ,r1,k!>
1
4 .

Moreover, we may assume that^c0uUuc1& is real and non-
negative.

Alice may cheat as follows. She constructs the state

uj&5
uc0&1Uuc1&
ic01Uc1i

and uses this state in the protocol until the (k11)th round.
After this round, she makes the best possible measureme
distinguishs0,k11 ands1,k11 to guess the value ofb. If her
guessg is 0, she proceeds with the rest of the protocol. O
erwise, she appliesU† to her part ofuj& ~the qubits inAk)
and then completes the protocol.

Lemma 2.4. Pr(c50ug5b)>(11AFA,k)/2.
Proof. First, note that

ic01Uc1i25ic0i21ic1i212^c0uUuc1&52~11AFA,k!.

Supposeb50. ~The other case is similar.! Note that the prob-
ability that Alice succeeds in getting the outcomec50 given
that she guesses the value ofb correctly is

iQ0ji25
iQ0c01Q0Uc1i2

ic01Uc1i2

5
iQ0c0i21iQ0Uc1i212^c0uQ0Uuc1&

2~11AFA,k!
.

Now Q0uc0&5uc0&, sinceuc0& is the state Alice would have
used if she were honest. So the first term in the numer
above is 1, and the last term is 2AFA,k. The second term may
be bounded from below by noting that sinceuc0& belongs to
the range ofQ0 , the square norm of the projectionQ0Uuc1&
is at least̂ c0uUuc1&

25FA,k . Thus, the probability of cheat
ing is at least

11FA,k12AFA,k

2~11AFA,k!
5

11AFA,k

2
,

which is the bound claimed. j
The probability that Alice correctly guessesb is ~using

Bayes’s strategy!

Pr~g5b!5
1

2
1

is0,k112s1,k11i tr

4
.

By a result of Fuchs and van de Graaf@17#,

is0,k112s1,k11i tr>2~12AFB,k11!>2~12 1
2 !51.

The net probability that Alice succeeds in biasing the c
towards 0 is therefore

Pr~c50!>Pr~c50ug5b!Pr~g5b!> 3
4

3
4 5 9

16 .

This proves the theorem. j
4-3
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III. A SEQUENCE OF HIGHLY INTERACTIVE
PROTOCOLS

In this section we look at a sequence of bit-commitme
based protocols in which Alice and Bob very gradually se
each other information about their bits in the commit sta
Intuitively, such protocols seem to be good candidates
achieving bias much smaller than 1/4, since a dishon
player does not get much information about the other’s
until a significant number of rounds have elapsed, and
would have heavily committed to some bit by then. Ho
ever, this intuition appears to be mistaken, and we give
tricate cheating strategies for each of the players with wh
at least one of them can achieve bias at least as high as
This suggests that the optimal bias for this kind of proto
might be 1/4, and also that proving this optimality mig
require ideas more sophisticated than those in Theorem

Define, forx,sP$0,1%,

uc~x,s!&5A12eu0&1~21!sAeux11&.

These states provide the best trade-off between how m
information they reveal and how much cheating in comm
ment they allow.

The protocolPn , nP$1,2,3,•••%, goes as follows. Alice
picksaPR $0,1%, and Bob picksbPR $0,1%. Then they alter-
nately send each other, for a total ofn rounds, the states
uc(a,s)& and uc(b,s)&, respectively, for independently cho
sen random signs, starting with Alice. The last player to
receive such a state then reveals the bit he/she chose
lowed by the other player. Then, they reveal the signs use
their states in the opposite order, and the other party che
the state he/she received against the claimed bit and sig
no cheating is detected, the players declare thec5a% b as
the result of the protocol.

More formally,
~1! For i 51,2,3, . . . ,n, if i is odd, Alice picks si

PR $0,1% and sendsuc(a,si)& to Bob, or if i is even, Bob
picks siPR $0,1% and sendsuc(b,si)& to Alice.

~2! If n is even, Alice sendsa to Bob, and then Bob send
b to Alice. Otherwise, ifn is even they reveal their bits in th
opposite order.

~3! For i 5n,n21,n22, . . . ,1, theplayer that pickedsi
reveals it to the other player. In other words, the ‘‘sign
used in the states are revealed in the opposite order: Ifi is
odd, Alice sendssi to Bob, else Bob sendssi to Alice. The
player that receives this bit checks via a measurement
the state sent to her/him in thei th round of the protocol is
indeed consistent with the bit and the sign that the ot
player sent. Note that the order of revealing signs is desig
so that the naı¨ve strategy of reusing a state that a player
in a previous round does not work.

~4! If all the checks are passed, the outcome of the p
tocol is c5a% b.

Before we give cheating strategies for these protocols,
analyze general versions ofP1 and P2 . This illustrates the
main approach taken in the strategies forPn , n>3.
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A. The three-round version

We start by analyzing the protocolP1 with one round of
commitment. This happens to be a parametrized version
the three-round protocol due to Ambainis@5#. We prove a
property of this protocol that helps us analyze protocols w
more rounds.

The protocol may be described with a parametera
P@0,p# @such that tan(a/2)5Ae/(12e)] as follows:

~1! Alice picks a,sPR $0,1%, and sends Bob the stat
uca,s&, where the state is defined as follows:

uca,s&5cos
a

2
u0&1~21!s sin

a

2
ua11&. ~1!

~2! Bob picksbPR $0,1% and sends it to Alice.
~3! Alice then reveals the bitsa,s to Bob, who checks for

consistency with the state initially sent by Alice.

The output of the protocol is given byc5a% b, if all the
checks are passed.

Lemma 3.1. If Bob is honest, then Pr(c50)< 1
4 (3

1cosa).
Proof. A cheating Alice creates a qutrit in some state~to

be sent in the first round!, and retains some qubits entangle
with this qutrit. Without loss of generality we may assum
that in the third round, Alice sendsa5b, which is the bit that
Bob sends in the second round. This only increases
chance of getting outcome 0. The following lemma no
bounds the probability that Alice succeeds in cheating B
given the bitb.

Lemma 3.2. Suppose that Alice and Bob share a joint sta
( i 50

2 uf i&u i &. Alice now does some local computation an
sends Bob a sign bits, and Bob does a measurement to che
if the state of his qutrit isuca,s&. The probability with Bob’s
test is passed is at most (if0iA12d1ifa11iAd)2, where
d5sin2(a/2). In other words, this probability is at most th
fidelity F(r,ra), wherer is the density matrix of Bob’s par
of the joint state, if measured in theu0&,u1&,u2& basis, andra is
the density matrix he would have if Alice were honest, i.
ra5(1/2)(uca,0&^ca,0u1uca,1&^ca,1u).

Proof. We prove the statement fora50; the other case is
similar. Note that in this case, Bob rejects with probability
the part of his state where his qutrit isu2&. Thus we may
restrict ourselves to the stateuf0&u0&1uf1&u1&.

Suppose Alice applies a transformationU on an ancilla
u0̄& and her part of the shared state, and thatUuf i&
5uf i0&u0&1uf i1&u1&, where the trailing qubit contains th
sign that Alice sends to Bob. When the sign Alice sends is,
the ~unnormalized! density matrix of the Bob’s state i
(xyux&^yu^fxsufys&. Now the probability that this state
passes Bob’s test may be seen to be

~12d!if0si21dif1si21~21!s2Ad~12d! Rê f0suf1s&.

Summing up overs50,1, and using the fact thatif i0i2

1if i1i25if i i2, we see that the net probability is
4-4
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~12d!if0i21dif1i2

12Ad~12d! Re@^f00uf10&2^f01uf11&#.

Now,

zRe@^f00uf10&2^f01uf11&# z

<if00i•if10i1if01i•if11i

<~ if00i21if01i2!1/2~ if10i21if11i2!1/2

5if0i•if1i .

Therefore, the net probability of passing Bob’s test is at m

~A12dif0i1Adif1i !2,

as claimed. j
Averaging over the two choices for the bitb which Bob

picks randomly, we see that Alice’s cheating probability i

Pr~c50!<
F~r0 ,r!1F~r1 ,r!

2
, ~2!

wherer is the state of Bob after the first round, andr0 ,r1
are the analogous states corresponding tob50,1 respec-
tively, if Alice were honest:

ra5
1

2
~ uca,0&^ca,0u1ca,1&^ca,1u!,

andF(s0 ,s1)5iAs0As1i tr
2 denotes the fidelity of two den

sity matrices@16#.
We show in Lemma 3.3 below that the expression in E

~2! is bounded above by

1
2 @11F~r0 ,r1!1/2#.

SinceF(r0 ,r1)5cos4(a/2), the bound on Alice’s cheating
probability follows. j

We now prove the lemma mentioned above. The lem
has also been proved by Spekkens and Rudolph~Lemma 2 in
@6#!.

Lemma 3.3. For any two density matricess0 ,s1 ,

max
s

F~s0 ,s!1F~s1 ,s!511F~s0 ,s1!1/2.

Proof. Let s be the density matrix that achieves the ma
mum, and letufx& be a purification ofsx , for x50,1. Let
ujx& be the purification ofs that achieves maximum fidelity
with sx @16#:

F~s0 ,s!5 z^fxujx& z2.

Sinceuj0&,uj1& are the purifications of the same density m
trix s, there is a local unitary operatorU such thatuj1&
5Uuj0&. Now,
01230
st

.

a

-

-

F~s0 ,s!1F~s1 ,s!5 z^f0uj0& z21 z^f1uj1& z2

5 z^f0uj0& z21 z^f1uUuj0& z2

<max
uj&

$ z^f0uj& z21 z^f1uUuj& z2%

511 z^f1uUuf0& z ~3!

<11 max
local U

z^f1uUuf0& z

511F~s0 ,s1!1/2. ~4!

Equation~3! above follows by noticing that the stateuj& that
achieves the maximum is the vector that bisects the an
betweenuf0& andUuf1&. Another way of getting the bound
is by noticing that the expression is the maximum eigenva
of the matrix uf0&^f0u1Uuf1&^f1uU†. The last step—Eq.
~4!—follows from a characterization of fidelity due to Joz
@16#.

To see that the above inequality is tight, we may constr
the density matrixs above as follows. Consider any tw
purificationsuzx& (x50,1) of sx that achieve the fidelity of
the density matrices:u^z0uz1&u5F(s0 ,s1)1/2. Let

uz&5
uz0&1uz1&
iz01z1i .

It is now not hard to see thatiz01z1i252@1
1AF(s0 ,s1)#, and thatz^zuzx& z511AF(s0 ,s1). The state
s obtained by tracing out the purification space fromuz& thus
achieves the maximum. j

B. The five-round protocol

Next, we give a tight analysis for a general five-rou
version of the protocolP2 described above. This version o
the protocol still does not improve over the bias of 1
achieved by the three-round protocol of@5#. However, it sug-
gests a better cheating strategy for the many-rounds ver
than the one given in the proof of Theorem 2.2.

The version of the protocolP2 we consider has the fol
lowing five rounds with honest players.

~1! Alice picks a,sPR $0,1% and sends Bob the stat
uca,s&, where the state is defined as follows:

uca,s&5cos
a

2
u0&1~21!s sin

a

2
ua11& ~5!

for an anglea to be specified later.
~2! Similarly, Bob picksb,s8PR $0,1% and sends Alice the

stateufb,s8&, where the state is defined as follows:

ufb,s8&5cos
b

2
u0&1~21!s8 sin

b

2
ub11&, ~6!

for an angleb to be specified later.
~3! Alice then reveals the bita to Bob.
4-5
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~4! Bob reveals bothb ands8 to Alice, and Alice verifies,
by an appropriate measurement, that the state sent by B
consistent withb,s8.

~5! Alice now disclosess as well, and Bob verifies that th
state sent by Alice in the first round is consistent witha,s.

The output of the protocol, the coin flipc, is given by the
exclusive-or of two bits,c5a% b ~provided no cheating is
detected!.

In the case where the players are honest, Pr(c50)
5Pr(c51)51/2. Below we prove an upper bound on th
probability that any player can achieve~by deviating from
the protocol! for an outcome of their choice. In the followin
discussion, we will assume, without loss of generality, tha
dishonest player prefers the outcomec50. First, we prove a
bound on the probability that a dishonest Bob can achie
provided Alice is honest.

Lemma 3.4. If Alice is honest, then Pr(c50)<1
2 1

2 cos2(a/2)sin2(b/2).
Proof. We claim that Bob’s optimal cheating strategy is

measure the state received from Alice in the standard ba
and then commit to a state according to the outcome. If
observesu1& or u2&, he can cheat with probability 1 in the re
of the protocol. In case he observesu0&, his probability of
cheating successfully is bounded by a constant less than
This gives us the bound, as explained below.

Note that the last round is of no consequence to Bo
cheating strategy, and we may trace the sign bits out after
Alice sends the first message~and eliminate the last round!.
The protocol then becomes equivalent to one in which
first round takes the following form: Alice picksb
PR $0,1%, and sendsu0& with probability cos2(a/2), and ub
11& with probability sin2(a/2). This reduces the protocol t
a convex combination of two protocols, with weigh
cos2(a/2) and sin2(a/2). In the first protocol, the first mes
sage is the same regardless of the value ofb, and in the
second, the first message revealsb entirely.

In the first case, the protocol reduces to a three-ro
protocol of the type studied in Sec. III A, with the role o
Alice and Bob reversed. We may now use Lemma 3.1
bound the probability that Bob can cheat by (31cosb)/4.

In the second case, the protocol becomes trivial, and
can cheat with probability 1.

The probability of convincing Alice thatc50 is thus
bounded by

31cosb

4
cos2

a

2
1sin2

a

2
,

which reduces to the bound we seek. j
Bob can easily achieve the probability bound stated in

lemma by following a cheating strategy as in Ref.@5#,
Lemma 10. This shows that the analysis in our proof is
timal.

We now turn to the case where Alice is dishonest. T
following lemma bounds Alice’s cheating probability.

Lemma 3.5. If Bob is honest, then Pr(c50)< 1
2 @1

1cos2(a/2)sin2(b/2)#.
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Proof. Suppose that Alice commits with one-half of th
following state in the first round:

uj0&u0&1uj1&u1&1uj2&u2&,

where the statesuj i& are held by Alice, and are such tha
( i ij i i251.

When she receives a qutrit from Bob in the second rou
Alice applies a unitary transformationU to some ancilla, her
part of the above shared state, and the qutrit sent by B
This computes a bita to send to Bob, and represents the
she claims to have committed to in the first round. LetU
have the following behavior:

u0̄&uj i&u j &°uj i j 0&u0&1uj i j 1&u1&.

Suppose Bob had sent her a qutrit in stateufb,s8& corre-
sponding to the random bitsb,s8. Their joint state after the
third round is then

(
i 50

2

(
a50,1

~A12euj i0a&1~21!s8Aeuj i ,b11,a&) ^ ua,i &B ,

wheree5sin2(b/2). The part of the joint state correspondin
to the final outcome 0 is~whena5b):

(
i 50

2

~A12euj i0b&1~21!s8Aeuj i ,b11,b&) ^ ub,i &B .

From Lemma 3.2, the probability that Alice now pass
Bob’s final check is bounded by

~A12diz0~s8!i1Adizb11~s8!i !2

5~12d!iz0~s8!i21dizb11~s8!i2

12Ad~12d!iz0~s8!i•izb11~s8!i ,

where

uz i~s8!&5A12euj i0b&1~21!s8Aeuj i ,b11,b&.

Averaging it over the choices ofs8 that Bob makes, this
probability may be bounded as

~12d!m01dmb1112Ad~12d!m0mb11,

where

m i5~12e!ij i0bi21eij i ,b11,bi2.

Here, we have used the parallelogram law, i.e.,iu1vi2

1iu2vi252(iui21ivi2), and the Cauchy-Schwartz in
equality. Note that we may boundijb11,j ,bi by ijb11i and
ij0,b11,bi by ij0i . So the probability above may be bounde
as

~12d!@~12e!ij00bi21eij0i2#1dijb11i2

12Ad~12d!ijb11i@~12e!ij00bi21eij0i2#1/2.
4-6
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Averaging it over the choice ofb that Bob makes, and usin
the Cauchy-Schwartz inequality once again, we see that
probability is bounded by

1

2
@~12d!~11e!ij0i21d~12ij0i2!

12Ad~12d!~11e!ij0i$12ij0i2%1/2#.

The maximum value of this expression asij0i varies be-
tween 0 and 1 is

1

2
@11e~12d!#5

1

2 S 11sin2
b

2
cos2

a

2 D .

This completes the proof of the lemma. j
Next, we describe a cheating strategy for Alice th

achieves the outcome of her choice with probability as h
as in the upper bound above, showing that our analysi
optimal.

Lemma 3.6. If Bob is honest, Alice can achieve Pr(c
50)> 1

2 @11cos2(a/2)sin2(b/2)#.
Proof. Alice constructs the following entangled state a

sends one half of it to Bob in the first round:

uj&5A12lu0,0&1Al

2
u1,1&1Al

2
u2,2&,

where

l5

sin2
a

2

S 11sin2
b

2 D cos2
a

2
1sin2

a

2

,

and so the density matrix of the qutrit with Bob isr
5diag(12l,l/2,l/2) in the 0,1,2 basis.

After Alice receives a qutrit from Bob in the secon
round, she applies a unitary transformation to ‘‘guess’
value for b to maximize her chances of gettingc50. This
transformation acts on the qutrit she received from Bob,
entangled qutrit from the first round, and an ancilla qubit
can be written as

u0&^0u ^ ~ u0&^0u ^ H1u1&^1u ^ I 1u2&^2u ^ sx!

1u1&^1u ^ I ^ I 1u2&^2u ^ I ^ sx .

whereH is the Hadamard transform, andsx is the Pauli ‘‘bit
flip’’ matrix. In other words, Alice guessesa5b, if the qutrit
from Bob reveals the identity ofb. Otherwise, if she com-
mitted with aud& (d51,2) she saysa5d21, since this com-
mitment is irrevokable. If she committed withu0&, she says
a50,1 with equal amplitude. It is crucial that she does thisin
superposition.

In the fourth round, Bob reveals the state of the qutrit
sent. If Alice sees that the bit Bob picked is different fro
her guess, i.e.,bÞa, then she sends, say,s50 ~an arbitrary
value, since she has lost the game!. Otherwise, she tries to
01230
is

t
h
is

r
t

e

pick the bests possible to maximize her chance of passi
Bob’s check. We describe her actions whenb50, s850; the
other cases are similar.

The unnormalized density matrix of the qutrit she sent
the first round, whenb50, s850, conditioned on her reply
beinga50 is

cos2
b

2 S 12l

2
u0&^0u1

l

2
u1&^1u D1sin2

b

2
r.

Note that she knows the state of all their qubits, givenb,s8,
a. She can thus transform her part of the state so that t
joint state looks like

A12l

2 S 11sin2
b

2 D u00&1Al

2
u11&1Al

2
sin

b

2
u22&.

She sendss50 if the entangled bit is 2. If her entangle
qutrit is not 2, she does a Hadamard transform on her
tangled qubit, and sends that to Bob ass. The probability
with which Bob acceptsa5b,s is then

SA12l

2 S 11sin2
b

2 D cos
a

2
1Al

2
sin

a

2 D 2

,

which evaluates to the expression stated in the lemma.
can achieve the same probability of success for all ot
values ofb,s8 as well. Thus, the overall chance of her su
ceeding in cheating is also given by this expression. j

The properties we established above show that this pr
col still has a bias of 1/4: the cheating probability for Alic
and Bob are of the form1

2 1d and 12d, respectively@with
d5 1

2 cos2(a/2)sin2(b/2)], and their maximum is minimized
whend51/4.

C. Cheating strategies forPn

Let An(e),Bn(e) be the maximum value of Alice and
Bob’s cheating probability in the protocolPn , when the
other party is honest.

Bob’s optimal strategy may be reduced to a strategy
Alice as in the proof of Lemma 3.4. Alice always starts t
protocol, and also sends the last message. Since the last
sage does not affect Bob’s cheating strategy, we may tra
out of the protocol when analyzing his optimal strategy. T
protocol Pn then reduces to a mixture of protocols whe
Alice sendsu0& in the first round with probability 12e ~i.e.,
does not reveal any information about the bita!, and sends
ua11& with probability e ~i.e., completely reveals the bita!.
The rest of the protocol is the same asPn21 with the roles of
Alice and Bob reversed. Thus,

Bn~e!5e1~12e!An21~e! for n>2. ~7!

We already know from@5# thatB1(e)5(11e)/2. It thus suf-
fices to analyze Alice’s cheating probability in all the prot
cols Pn .

From our analysis of the three and five round protoco
we also know that
4-7
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A1~e!512
e

2
,

B2~e!512
e

2
1

e2

2
,

A2~e!5
1

2
1

e

2
2

e2

2
.

We now give a lower bound for the probabilityAn(e) by
describing a cheating strategy for Alice that generalizes
strategy that we saw in the five round protocol.

First, we assumen52k21(k>1) is odd, so that Alice
hask rounds of commitment, and Bob hask21. The case of
n even is addressed later. In the first round, Alice sends o
half of the state

A12l1u00&1Al1

2
u11&1Al1

2
u22&

to Bob, and retains the other half. The half she keeps
referred to as an ‘‘entangled qutrit’’ below. All the paramete
l j will be specified later. If one of the entangled qutrits s
retains from any previous round is in statex11, in all the
commitment rounds that follow, she sends the right half
the state

1

&
u0&uc~x,0!&1

1

&
u1&uc~x,1!&

and keeps the first qubit~called a ‘‘sign qubit’’ below!. If the
entangled qutrits are all 0, and at least one of the qutrits
received in earlier rounds from Bob is in stateb11, then she
sends the right half of the state
01230
e

e-

is

f

he

1

&
u0&uc~b,0!&1

1

&
u1&uc~b,1!&

to Bob. Otherwise, if none of the above two events occu
she sends one half of the state

A12l j u00&1Al j

2
u11&1Al j

2
u22&

in the j th commitment round. It is important that she do a
this ‘‘in superposition,’’ i.e., via unitary operations controlle
by her entangled qutrits and the qutrits she receives fr
Bob. She performs no measurements in the process.

Formally, for each qutrit that Alice is supposed to sen
she has a qutrit-qubit pair. The first serves as the ‘‘entang
qutrit,’’ and the second serves as the ‘‘sign qubit.’’ They a
all initialized to the 0 state. She prepares appropriate st
over these according to the above rules, as the protocol
ceeds. The joint state of both parties together after thn
commitment rounds then looks as given below, for an ar
trary choice ofb and the signs$s2 j% picked by Bob. Here, the
qutrits sent by Alice to Bob are underlined. The entang
qutrits and sign bits can be identified from the context. T
first sum corresponds to the part of the state where A
commits to a bitx by sendingux11&, before she can identify
which bit b Bob has picked. The next sum has the part of
state where Alice has not committed to any bit, and see
ub11& in one of the qutrits Bob sent. The last term is t
remaining part of the state. Note that Alice can differentia
between these three parts by examining her entangled qu
and the qutrits Bob sent her. The odd lines contain the p
tion of the state constructed by Alice, and the even lin
contain the portion prepared by Bob~and sent to Alice!,
ias

by
ate
(
x50,1

(
j 51

k21 F ^

l 51

j 21

A12l l u00I &G ^Al j

2
ux11,x11& ^ F 1

&
@ u0&uc~x,0!&1u1&uc~x,1!&G k2 j

^ ~A12eu0&) j 21
^ F ^

l 5 j

k21

uc~b,s2l !&G1 (
j 51

k21 F ^

l 51

j

A12l l u00I &G ^ F 1

&
@ u0&uc~b,0!&1u1&uc~b,1!&G k2 j

^ ~A12eu0&) j 21
^ @~21!s2 jAeub11&] ^ F ^

l 5 j 11

k21

uc~b,s2l !&G1F ^

l 51

k21

A12l l u00I &G ^ SA12lku00I &

1Alk

2
u11I &1Alk

2
u22I & D ^ ~A12eu0&)k21. ~8!

Sincen52k21 is odd, Bob reveals his bitb first. Without loss of generality, we may assume that Alice would like to b
the coin towards 0. She therefore sendsa5b in the part of her state where her entangled qutrit is not equal tob̄11 ~which
corresponds to a commitment which she cannot change!. We will consider the residual state after Alice has sent backk2 i
signs, in reverse order. This is the unnormalized part of the state~8! that has not been rejected by Bob. We will prove
induction that Alice can locally transform the residual state to a stateuf i& after every two rounds of sign exchange. This st
is similar in form to the joint state~8! above, except that the first part is projected onto the space wherex5b, and there is a
factor of m i in the last term. The stateuf i& is displayed as
4-8
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(
j 51

i 21 F ^

l 51

j 21

A12l l u00I &G ^Al j

2
ub11,b11& ^ F 1

&
~ u0&uc~b,0!&1u1&uc~b,1!&)G i 2 j

^ ~A12eu0&) j 21
^ F ^

l 5 j

i 21

uc~b,s2l !&G
1(

j 51

i 21 F ^

l 51

j

A12l l u00I &G ^ F 1

&
~ u0&uc~b,0!&1u1&c~b,1!G i 2 j

^ ~A12eu0&) j 21
^ @~21!s2 jAeub11&] ^ F ^

l 5 j 11

i 21

uc~b,s2l !&G
1F ^

l 51

i 21

A12l l u00I &G ^ SAm i~12l i !u00I &1Al i

2
Ub11,b11& D ^ ~A12eu0&) i 21, ~9!

where the numbersm i are as follows:

mk51,
~10!

m i 215~12e!2m i1
e

2
~32e!.

We can now also specify the parametersl i :

l i5
e/2

m i~12e!1e/2
. ~11!

Clearly, the stateufk&, when none of the signs has been revealed by Alice, is of this form withmk51. Assume that this is
also the case for somei<k. We will show by induction that the state after Alice has revealedk2 i 11 sign bitss2k21 ,
s2k23 ,...,s2i 21 may be transformed to Eq.~9! and that Eq.~10! holds.

To send the signs2i 21 , Alice does the following. The sign in part of the state in the first two summations of the stateuf i&
in Eq. ~9! is ‘‘precomputed’’~in the sign qubit!. To compute the sign in the last term, Alice first setsb11 to 1 in thei th
entangled qutrit, does a Hadamard transform, and exchanges that entangled qubit with thei th sign qubit. She then measures t
i th sign qubit, and sends it across. It is easily seen that the unnormalized state that remains after Bob has checked thi th qutrit
sent by Alice is as follows.2 Here, we have written the last terms of the first two summations in Eq.~9! separately to facilitate
the rest of the proof,

(
j 51

i 22 F ^

l 51

j 21

A12l l u00I &G ^Al j

2
ub11,b11& ^ F 1

&
@ u0&uc~b,0!&1u1&uc~b,1!&G i 212 j

^ ~A12eu0&) j 21
^ F ^

l 5 j

i 21

uc~b,s2l !&G1(
j 51

i 22 F ^

l 51

j

A12l l u00I &G ^ F 1

&
@ u0&uc~b,0!&1u1&uc~b,1!&G i 212 j

^ ~A12eu0&) j 21
^ @~21!s2 jAeub11&] ^ F ^

l 5 j 11

i 21

uc~b,s2l !&G
1F ^

l 51

i 22

A12l l u00I &G ^ SAl i 21

2
ub11,b11& D ^ ~A12eu0&) i 22

^ uc~b,s2~ i 21!!&

1F ^

l 51

i 22

A12l l u00I &G ^ ~A12l i 21u00I &)

2Actually, the state is a mixture of two states which are both 1/& times the state given. The mixture arises because of the two pos
values of the sign bit Alice sends fors2i 21 . The mixture is of course equivalent to the single state shown.
012304-9
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^ ~A12eu0&) i 22
^ @~21!s2~ i 21!Aeub11&] 1F ^

l 51

i 22

A12l l u00I &G ^ ~A12l i 21u00I &)

^ ~A12eu0&) i 22
^A12eu0&@m i~12e!1e/2#1/2.
o
n

e
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Now, when Bob sends the signs2(i 21) to Alice, she rotates
the (i 21)th qutrit that Bob sent her in all but the last tw
terms in the sum above, tou0&. She also rotates that qutrit i
the last two terms from

@m i~12e!1e/2#1/2A12eu0&1~21!s2~ i 21!Aeub11&

to Am i 21u0&, whereby m i 215m i(12e)21e(12e)/21e.
This proves the induction step.

At the final round of the protocolPn , the state that they
are left with is

Am1~12l1!u00I &1Al1

2
ub11,b11&.

Following Alice’s strategy for computing the sign as abov
we see that the probability with which Alice succeeds
passing Bob’s checks is@using Eq.~11!#

@Am1~12l1!~12e!1Al1e/2#25m1~12e!1e/2.
~12!

Solving the recurrence form i given in Eq.~10!, we get

m i5~12e!2~k2 i !1
~32e!

2~22e!
@12~12e!2~k2 i !#,

and so that from Eq.~12!, for n odd,

An~e!>
e

2
1~12e!n1

~32e!~12e!

2~22e!
@12~12e!n21#

5
1

2~22e!
@322e1~12e!n11#. ~13!

The analysis in the case thatn52k is even is similar,
except for the rule Alice uses to compute the bit she send
Bob ~since she is supposed to reveal her bit before Bob
veals his bit!. In this case, she sends the bitx if any of her
entangled qutrits is in stateux11& or, if any of Bob’s qutrits
are in stateb11, she sendsb. In the remaining case, sh
sends 0,1 with equal amplitude 1/&. This leads to a state
similar to ufk& above after Bob reveals his bit, and the la
sign he used, except that heremk5(11e)/2. So, we get for
n even,
01230
,
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t

An~e!>
e

2
1~12e!n21~11e!/2

1
~32e!~12e!

2~22e!
@12~12e!n22#

5
1

2~22e!
@322e2~12e!n11#. ~14!

From Eqs. ~13!, ~14!, and ~7!, we can deduce lowe
bounds forBn(e) as well, forn>2. This expression matche
the one forB1(e). Thus, for alln,

Bn~e!>
1

2~22e!
@32e1~21!n~12e!n11#. ~15!

To determine the bias achieved, we examine the ma
mum of the cheating probabilities attained by Alice and Bo
Note thatAn(e)1Bn(e)>3/2 for all n, e. Thus, the bias of
the protocolPn is at least 3/4 for anyn and e. Since we
would like this bias to be as small as possible, we optim
the maximum cheating probability with respect toe.

For oddn, An(0)5Bn(1)51, andAn(1)5B(0)51/2, An
is monotonically decreasing, andBn is monotonically in-
creasing with respect toeP@0,1#. Thus, the maximum bias
achievable is minimized whenAn(e)5Bn(e). This condition
is satisfied whene5e0 such that

~12e0!n115
e0

2
, ~16!

that is,

e05
1

n11
@ ln n2 ln ln n1Q~1!#.

Using Eq.~16! we can verify that the lower bound onAn(e0)
is 3/4.

For evenn, An(0)5An(1)51/2, andB(0)5Bn(1)51,
An is concave,Bn is convex, andBn(e)>An(e) for e
P@0,1#. Thus, the bias achievable is minimized whenBn is,
i.e., for e5e0 such that

~12e0!n5
1

~22e0!n11
, ~17!

that is,
4-10
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e05
1

n
ln@2n2 ln n1Q~1!#.

The expression for the cheating probabilityBn(e0) then
evaluates to at least3

4, as may be seen by using Eq.~17!.
This completes the analysis of the cheating strategies

vised above.
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