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Abstract

We revisit the problem of conveying classical messages by transmitting quantum states, and derive
new, optimal bounds on the number of quantum bits required for this task. Much of the previous work on
this problem, and on other communication tasks in the setting of bounded error entanglement-assisted
communication, is based on sophisticated information theoretic arguments. Our results are derived from
first principles, using a simple linear algebraic technique. A direct consequence is a tight lower bound
for the Inner Product function that has found applications to privacy amplification in quantum key
distribution protocols.

1 Introduction

The problem of characterising the “information capacity” of quantum states is of fundamental impor-
tance in the study of communication using quantum states. Since the classical description of a general
superposition over n quantum bits has size exponential in n, it is natural to expect that it be possible
to encode a large amount of classical information into substantially fewer quantum bits. However, the
information encoded in a quantum state can be accessed only indirectly , through the process of a mea-
surement. Measurements typically disturb the state being observed, and it is seldom possible to infer the
entire description of a quantum superposition (and thus recover an exponential amount of information)
from measurements on the quantum system. A fundamental theorem due to Holevo [17] formalises this
limitation, and quantifies the information content of a finite quantum system. Suppose X is a random
variable (say over n-bit messages), and let Q be an encoding of X into m quantum bits. If Y is any
random variable obtained by performing a measurement on the encoding Q, then, by the Holevo theorem,
the mutual information I(X : Y ) between X and Y is at most m.
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The Holevo bound is based on sophisticated information theoretic properties of quantum states, in par-
ticular, on the strong sub-additivity of von Neumann entropy [30, Section 12.1.1]). Using further such
properties, the bound was extended by Cleve, van Dam, Nielsen, and Tapp [13] to interactive communica-
tion protocols as well.

In this article, we revisit the problem of conveying classical bits over quantum channels. We explain the
limitation of quantum communication highlighted by the Holevo bound in much simpler terms. In the
process, we derive a new, optimal bound on the number of quantum bits required for this task.

Theorem 1.1 Suppose one party, Alice, wishes to convey n bits to the other, Bob, by communicating over
a quantum channel. In any protocol, possibly two-way, in which for any x ∈ {0, 1}n the probability that
Bob correctly recovers x is at least p ∈ (0, 1], the total number of qubits m exchanged by the two parties
over all the rounds of communication is at least n− log 1

p .

An application of the extended Holevo bound, along with Fano’s inequality [14, Section 2.11], would result
in the weaker bound m ≥ pn−H(p).

Remark: The error in the decoding of the classical message referred to above arises from the probabilistic
nature of the measurement process, rather than any noise introduced into the quantum states during the
communication. Indeed, in this paper, we restrict ourselves to the study of a noiseless quantum channel.

Central to the proof of Theorem 1.1 is the idea of bounding the probability of correct decoding, also known
as the fidelity , when a random variable X is transmitted over a quantum channel using m quantum bits.
We give a tight bound on this decoding probability by a direct argument which allows us to infer lower
bounds for m without appealing to Holevo’s theorem.

An additional resource that may be available to parties communicating over a quantum channel is “shared
entanglement”: the two parties may be given some number of quantum bits jointly prepared in a fixed
superposition, prior to communicating with each other. For example, they may jointly hold some number
of EPR pairs, which consist of pairs of qubits prepared in the maximally entangled state 1√

2
(|00〉+ |11〉).

The quantum communication channel is then said to be “entanglement-assisted.”

On the one hand, shared randomness does not help in the transmission of information from one party to
another (cf. Appendix A), or significantly reduce the classical complexity of computing functions vis-a-
vis “private-coin” protocols [24, Section 3.3]. On the other hand, prior entanglement leads to startling
phenomena such as “quantum teleportation” [6] and “superdense coding” [8]. In particular, superdense
coding allows us to transmit n classical bits with perfect fidelity by sending only n/2 quantum bits. The
problem of characterising the power of prior entanglement has baffled researchers (see, e.g., Refs. [11, 20])
especially in the setting of bounded-error protocols. It is open whether it leads to more than a factor of two
savings (using superdense coding) or more than an additive O(log n) savings (when used to create shared
randomness). Few lower bounds are known for communication problems in this setting [13, 27, 19, 22, 34],
and most are derived using intricate information-theoretic techniques.

We again focus on the problem of transmitting classical bits from one party to another, perhaps the most
basic problem in the setting of communication over an entanglement-assisted quantum channel. We derive
an optimal bound on the number of quantum bits required for this task, for any given probability of error.

Theorem 1.2 Suppose Alice wishes to convey n bits to Bob by communicating over an entanglement-
assisted quantum channel. For any choice of the shared entangled state, and any protocol using this prior
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entanglement, such that for any x ∈ {0, 1}n the probability that Bob correctly recovers x is at least p ∈
(0, 1], the total number of qubits mA sent by Alice to Bob, over all the rounds of communication, is at
least 1

2(n− log 1
p), independent of the number of qubits sent by Bob to Alice.

This improves over the lower bound of mA ≥ 1
2(pn−H(p)) implied by the extended Holevo bound of Cleve

et al. [13, Theorem 2] mentioned above.

Lower bounds for bounded-error communication using prior entanglement prior to this work are based on
complex information-theoretic arguments. (Razborov [34] has since devised a powerful proof technique
that continues to work in the presence of arbitrary prior entanglement.) Theorem 1.2 is derived from first
principles, using a simple linear algebraic technique that builds upon the proof of Theorem 1.1.

In order to prove Theorem 1.2, we give a new characterisation of the joint state at the end of a quantum
protocol that complements the characterisation due to Yao [36]. It clarifies the role of shared entanglement
in communication, and we expect that it will advance our understanding of quantum communication.

Theorems 1.1 and 1.2 are both implied by a general bound, which we prove in the following sections.

Theorem 1.3 Suppose Alice wishes to convey n bits to Bob, over a quantum communication channel.
Consider any protocol without prior entanglement such that the total number of qubits exchanged by the
two parties is m, and the total number of qubits sent by Alice to Bob is mA, over all the rounds of
communication. Let Y be the random variable denoting Bob’s output (his guess for X), when Alice wishes
to convey the random variable X. Let P (X, `) denote the net probability of the ` most likely strings in the
sample space of the random variable X. Then, irrespective of the number of rounds of communication, the
probability that Bob correctly recovers X is bounded as

1. Pr[Y = X] ≤ P (X, 2m), and also as

2. Pr[Y = X] ≤ P (X, 22mA), independent of the number of qubits sent by Bob to Alice.

For any given X,m,mA, there is a natural communication protocol that saturates the stronger bound
among the two, showing that the result is optimal. Note that we get Theorem 1.1 by considering the
uniform distribution on the n-bit strings. Theorem 1.2 follows by considering the uniform distribution on
the n-bit strings, and imagining that the shared entanglement was created through an initial message from
Bob to Alice.

We also give an application of our results to communication complexity. Combining our results with a
reduction due to Cleve, van Dam, Nielsen, and Tapp [13], we get a lower bound of 1

2n − log 1
1−2ε for the

ε-error quantum communication complexity of the inner product function. The complexity of this function
was shown to be Ω(n− log 1

1−2ε) by Kremer [23]. A more precise bound of 1
2(n− log 1

1−4ε) may be derived
using a method due to Ambainis, Ta-Shma, Schulman, Vazirani, and Wigderson [2]. Our bound is also valid
for bounded-error entanglement-assisted protocols and improves over the lower bound of 1

2((1− 2ε)2n− 1)
in Ref. [13].

Van Dam and Hayden [35] independently proved a lower bound of 1
2n− log 1

1−2ε for Inner Product under
the assumption that the communication parties shared EPR pairs. However, their information-theoretic
approach provably breaks down in the presence of arbitrary prior entanglement.

There is a classical n− log 1
1−2ε + 1 bit one-way public-coin protocol for Inner Product, and hence a 1

2(n−
log 1

1−2ε + 1) qubit quantum protocol with shared EPR pairs. Our lower bound nearly matches this. Thus,
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our results provide more examples where shared entanglement leads to at most a factor of two savings in
communication.

The one-way communication complexity of Inner Product is of particular interest because of its use in
proofs of security of privacy amplification techniques in quantum cryptography. The analysis due to Ben-
Or [4] of the Bennett-Brassard protocol for quantum key distribution explicitly relies on the hardness of
Inner Product. We derive a bound of n − 2 log 1

1−2ε for the ε-error one-way communication complexity
of the inner product function. This gives a tight bound on the information an eavesdropper has about a
secret key that is obtained by hashing a “raw key” with a random linear function.

Finally, we would like to point out that while the results presented here rule out obvious methods of
compressing classical information into succinct quantum messages, certain other tasks can be accomplished
at a significantly smaller communication cost, when compared to classical protocols [10, 2, 32, 3]. In a
recent result, Raz [33] also demonstrates how to circumvent our results and those in Refs. [17, 1] by using
Arthur-Merlin proofs. Evidently, the information theoretic aspects of quantum physics are very subtle,
and call for deeper investigation.

Organisation of the article

We refer the reader to texts such as [31, 30] for background in quantum information and computation. In
Appendix A, we revise the role of shared randomness in transmitting classical information. The quantum
communication model and some non-standard notation are described in Section 2. We begin by analysing
quantum encoding of classical bits, first in the absence of prior entanglement (Section 3), then with entan-
glement (Section 4). In Section 4.1 we consider a very restricted kind of encoding, where the shared state
consists of EPR pairs, and no ancillary qubits are used in the encoding. This contains the basic elements
of the proof for encoding with general entanglement as well, which is the subject of Section 4.2. Building
on the insight gained from the study of quantum encodings, we extend our results to the case of interactive
communication in Section 5. We conclude with a discussion of the consequences of our results.

2 Preliminaries

2.1 Non-standard notation and a basic fact

We start by explaining the non-standard notation we use in this article. For a detailed treatment of the
model of quantum computation and the associated mathematical formalism, we refer the reader to texts
such as [31, 30].

For any random variable X over a finite sample space, and integer ` ≥ 1, we use P (X, `) to denote the net
probability of the ` most likely outcomes in the sample space.

By a mixed state over a set of qubits, we mean a probability distribution {pi, |φi〉} over superpositions (or
pure states), where the state |φi〉 occurs with probability pi. We will sometimes use the notation {|φi〉}
for a mixed state. Here the states |φi〉 are in general unnormalised, and are such that

∑
i ‖φi ‖

2 = 1.

We denote the identity operator on states over k qubits by Ik. For any linear operator U on these qubits,
U † denotes its adjoint and UT denotes its transpose.

The following theorem gives a useful characterisation of bi-partite quantum states (see Ref. [30, Sec-
tion 2.5]).
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Theorem 2.1 (Schmidt decomposition) Any unit vector |φ〉 in a bi-partite Hilbert space H ⊗K may
be represented as

|φ〉 =
∑
i

√
λi |ei〉|fi〉,

where {|ei〉} and {|fi〉} are orthonormal sets of states in H and K respectively, and the λi are non-negative
reals such that

∑
i λi = 1.

2.2 The quantum communication model

Formally, a two-party communication protocol for a function is a partition of a quantum circuit into two
sets, where the input wires and the gates may be divided arbitrarily amongst the two, but all the output
wires lie in one of the sets of the partition [36]. The complexity of the protocol is the number of wires
crossing between the two parts of the circuit.

It is however simpler to describe a quantum protocol informally as follows. Two parties, Alice and Bob,
hold an arbitrarily large supply of private qubits in some fixed basis state, say |0̄〉. The initial joint state
is thus |0̄〉A ⊗ |0̄〉B, where a subscript indicates the player holding that set of qubits. When the game
starts, they are given (classical) inputs x ∈ X and y ∈ Y respectively. The two parties then play in turns.
Suppose it is Alice’s turn to play. Alice can do an arbitrary unitary transformation (that depends only
on her input x) on her qubits and then send one or more qubits to Bob. Sending qubits does not change
the overall superposition, but rather changes the ownership of the qubits, allowing Bob to apply his next
unitary transformation on the newly received qubits. The qubits sent in any round are independent of
the inputs to the two players, and is pre-specified by the protocol. At the end of the protocol, one player
measures one or more qubits in some basis, and declares the outcome as the result of the protocol. (In
cases where a specific player is required to know the answer, that player makes the measurement.)

The complexity of a quantum protocol is the total number of qubits exchanged between the two players over
all rounds. We say a protocol computes a function f onX×Y with error ε ≥ 0 if, for any input x ∈ X, y ∈ Y ,
the probability that the result of the protocol is equal to f(x, y) is at least 1 − ε. Qε(f) denotes the
complexity of the best quantum protocol that computes f with at most ε error.

Note that there is no loss of generality in not allowing the players to measure a subset of their quantum
bits in the intermediate steps of a protocol. This is because all measurements may be postponed to the
end by the principle of safe storage (or delayed measurement) [9]. While this may result in an increase in
the (private) work qubits needed by the two parties, the over all communication between them remains
unaffected.

In the quantum analogue of public-coin classical communication, Alice and Bob may initially share an
arbitrary number of quantum bits which are in some pure state that is independent of the inputs. In this
case, the initial joint state takes the form |0̄〉A

∑
i,j αij |i〉A|j〉B|0̄〉B. This is known as communication with

prior entanglement (see, e.g., Refs. [12, 13, 11]), or in information-theoretic terms, as communication over
an entanglement-assisted quantum channel (see, e.g., Ref. [7]). We will denote the entanglement-assisted
quantum communication complexity of a function f as above by Q∗ε (f).

On occasion, we will concentrate on communication in one round (i.e., with only one message), since this
often sheds light on fundamental properties of protocols for certain problems. The message in a one-round
protocol in which only one player gets an input is called an encoding of the input. The operations done by
the other player, and her measurement are together referred to as the decoding .
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3 Communication without prior entanglement

In this section, we prove part (1) of Theorem 1.3. The essence of the result is contained in the following
theorem about quantum encoding of classical bits.

Theorem 3.1 Let X be a random variable over bit strings in {0, 1}n that are encoded as mixed states
over m qubits. If Y is any random variable over {0, 1}n obtained by making some measurement of the
encoding of X, then

Pr[Y = X] ≤ P (X, 2m).

In particular, if X is uniformly distributed, the probability Pr[Y = X] ≤ 2m

2n .

Proof: Consider any encoding of strings x 7→ {qx,i, |φx,i〉} into mixed states over m qubits. Assume that
the random variable Y is the outcome of a measurement given by orthogonal projections {Px} in the Hilbert
space of the encoding, augmented with some ancillary qubits initialised to |0̄〉. The probability Pr[Y = X]
may then be bounded as

Pr[Y = X] =
∑
x

Pr[Y = x|X = x] · Pr[X = x]

=
∑
x

px
∑
i

qx,i ‖Px|φx,i〉|0̄〉 ‖2

≤
∑
x

px ‖Px|φx〉 ‖2 , (1)

where px = Pr[X = x], and |φx〉 is the pure state |φx,i〉|0̄〉 that maximizes (over all i) the probabil-
ity ‖Px|φx,i〉|0̄〉 ‖2 of obtaining the correct outcome x. Thus, in an optimal encoding, we may assume that
every string x is encoded as a pure state.

We can now bound the decoding probability by using the following lemma.

Lemma 3.2
∑

x ‖Px|φx〉 ‖
2 ≤ 2m.

Proof: Let H be the subspace spanned by the codewords |φx〉, and let Q be the projection onto H. Since
the code states {|φx,i〉} are over m qubits, H has dimension at most 2m.

Let {|ex,j〉}j be an orthonormal basis for the range of Px. Since the projection operators {Px} are orthog-
onal, the union of all these bases {|ex,j〉}x,j is an orthonormal basis for the entire decoding Hilbert space.
Now,

‖Px|φx〉 ‖2 =
∑
j

|〈ex,j |φx〉|2

≤
∑
j

‖Q|ex,j〉 ‖2 .

The last inequality follows because the length of the projection of the vector |ex,j〉 onto the space H is at
least the length of its projection onto the one-dimensional subspace of H that is spanned by |φx〉.
Continuing the analysis, we have ∑

x

‖Px|φx〉 ‖2 ≤
∑
x,j

〈ex,j |Q|ex,j〉

= Tr Q ≤ 2m, (2)
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since Q is an orthogonal projection onto the Hilbert space H of dimension at most 2m.

By equation (1), the probability of correct decoding is at most
∑

x px ‖Px|φx〉 ‖
2. From Lemma 3.2 above,

this expression may be bounded by the maximum of
∑

x pxλx, where 0 ≤ λx ≤ 1 and
∑

x λx ≤ 2m. The
theorem now follows from the next intuitive lemma.

Lemma 3.3 If 0 ≤ λx ≤ 1, and
∑

x λx ≤ `, then maxλ
∑

x pxλx ≤ P (X, `).

Note that the upper bound in the lemma is achieved when λx = 1 for strings x with the ` highest probability
masses px, and zero for the rest.

We leave the proof of this lemma to the reader.

We now clarify how Theorem 3.1 may be applied in a communication complexity context (as opposed to
a coding context) where more than one message may be exchanged by the communicating parties. The
missing link is the following characterisation due to Yao [36], of the joint state of the communicating parties
at the end of a quantum protocol.

Lemma 3.4 (Yao [36]) In any m-qubit quantum communication protocol between two parties Alice and
Bob, with inputs x and y respectively, and initial joint state |0̄〉A ⊗ |0̄〉B, the final state may be written as∑

c∈{0,1}m
Uxc |0̄〉A ⊗ V y

c |0̄〉B,

where Uxc , V
y
c are linear operators that depend only on the inputs of Alice and Bob respectively, and the

classical possibilities c for the state of the qubits they send in the different rounds.

We are interested in protocols in which only Alice receives an input. In such protocols, Bob’s final state is
always a combination of the states Vc|0̄〉. This allows us to convert every such multi-round protocol into a
protocol with one message from Alice to Bob. In other words, we can derive an equivalent encoding from
it.

Corollary 3.5 Suppose P is any m-qubit, possibly multi-round, quantum communication protocol (without
prior entanglement) in which only one party, say Alice, receives an input. Then, there is a protocol P ′ with
only one message of length m from Alice to Bob that is equivalent to P.

Proof: The idea is to recreate the joint state at the end of the protocol P by sending one length m
message. This is possible because Bob’s share of the final state lies in a d ≤ 2m dimensional subspace. The
protocol P ′ compresses states in this d-dimensional space to at most log d qubits. The details follow.

The protocol P ′ is designed as follows. By Lemma 3.4, the final state at the end of P on input x is

|ψx〉 =
∑

c∈{0,1}m
Uxc |0̄〉A ⊗ Vc|0̄〉B ∈ H ⊗K,

where the qubits corresponding to H are with Alice and those corresponding to K with Bob. Alice
constructs this state on her own; she has complete knowledge of the transformations used by Bob.

The states {Vc|0̄〉}c all lie in a subspace G of K of dimension at most 2m. Thus, there is a unitary
transformation W on K that maps G to the subspace |0̄〉 ⊗ Cm. I.e., the K part of the state may be
compressed into m qubits.

7



Alice applies the transformation W to the K-part of the state |ψx〉, and sends the trailing m qubits to
Bob. Bob applies the inverse transformation W † to the qubits he receives along with the requisite ancilla,
and thus reconstructs the state |ψx〉. From here, both parties follow the original protocol. The protocol P ′
has all the features we desire.

Theorem 1.3(1) now follows by combining Corollary 3.5 with Theorem 3.1.

4 Bounds for encoding with prior entanglement

In this section we concentrate on one-way protocols, or encodings, in the presence of shared entanglement
in which one party, Alice, wishes to send some number of classical bits to Bob. The main difficulty in
extending Theorem 1.3(1) to this case is that because of the unlimited number of entangled qubits the two
parties may share, the space in which the encodings reside has unbounded dimension. The bound on this
dimension, in terms of the number of qubits sent, was crucial in deriving Theorem 1.3(1). We overcome
this barrier by analysing the encodings in more detail. We demonstrate that the encodings all are of a
special form that allows us to apply the technique used in the proof of Theorem 1.3(1).

4.1 Encoding over EPR pairs, without ancilla

We first prove our results in the case where Alice does not use any ancillary qubits in the encoding process,
and Alice and Bob share some number of EPR pairs. This motivates the proof in the more general case,
and illustrates its essential elements.

We start with a simple property of maximally entangled states, such as EPR pairs. This property has
appeared in a different guise in earlier work such as that on the impossibility of quantum protocols for
ideal bit commitment [26, 25]. The lemma allows us to analyse the encoding process easily.

Lemma 4.1 For any unitary transformation U on E qubits, and any orthonormal set
{
|φa〉 : a ∈ {0, 1}E

}
over E′ ≥ E qubits, ∑

a∈{0,1}E
U |a〉 ⊗ |φa〉 =

∑
a∈{0,1}E

|a〉 ⊗ Ũ |φa〉,

where Ũ is any transformation on E′ qubits such that for all a, a′ ∈ {0, 1}E, 〈φa|Ũ |φa′〉 = 〈a′|U |a〉.
In particular, if E′ = E, and |φa〉 = |a〉 (i.e., we have an unnormalised EPR state) then∑

a∈{0,1}E
U |a〉 ⊗ |a〉 =

∑
a∈{0,1}E

|a〉 ⊗ UT|a〉.

Proof: Observe that for b, c ∈ {0, 1}E ,

〈b|〈φc|
∑

a∈{0,1}E
U |a〉|φa〉 = 〈b|U |c〉

= 〈φc|Ũ |φb〉
= 〈b|〈φc|

∑
a∈{0,1}E

|a〉Ũ |φa〉.
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The lemma follows.

We can now characterise the encoding process (without ancilla) as follows.

Lemma 4.2 Suppose that Alice performs a unitary transformation on her share of E EPR pairs, and then
sends m of the E qubits to Bob. Then, Bob has E + m qubits in a mixed state that can be represented
as {pl, |φl〉} (l ∈ {0, 1}E−m) with {|φl〉}l orthonormal, and pl = 1

2E−m
.

Proof: Suppose that Alice applies a transformation V to her part of the state. By Lemma 4.1, the
resulting state is

1
2E/2

∑
a∈{0,1}E

V |a〉A|a〉B =
1

2E/2
∑

a∈{0,1}E
|a〉AV T|a〉B.

After the communication, Alice and Bob’s joint state may be written as (w.l.o.g., Alice sends the right-
most m qubits to Bob):

1
2(E−m)/2

∑
l∈{0,1}E−m

|l〉A
1

2m/2
∑

r∈{0,1}m
|r〉BV T|lr〉B.

Consider the mixed state obtained on Bob’s side if Alice measures her qubits in the standard basis. The
probability pl of Alice observing any given l is 1

2E−m
. The state of Bob’s E + m qubits when Alice gets

outcome l is
|φl〉 =

1
2m/2

∑
r∈{0,1}m

|r〉V T|lr〉.

We may easily verify that these are orthonormal for different l:

〈φl|φl′〉 =
1

2m
∑
r

〈lr|(V T)† V T|l′r〉

=
1

2m
∑
r

〈lr|l′r〉

= δl,l′ .

Note that the above measurement by Alice is one of several ways of arriving at a description of the state of
Bob’s qubits. It does not affect the decoding process; Bob’s density matrix remains unchanged by it (see
Ref. [30, Section 2.4], especially Section 2.4.3). Nonetheless, it allows us to express Bob’s mixed state in a
convenient form.

By a simple dimensional argument, we can now get an alternative proof of the fact that the superdense cod-
ing scheme in Ref. [8] is optimal (in the case of encoding without ancilla): Suppose we have an entanglement-
assisted scheme for encoding n bits into m qubits that uses E EPR pairs, does not use ancillary qubits in
the encoding transformation, and makes no error in decoding. The lemma above says that Bob’s state lies
in a subspace of dimension 2E−m for each n-bit string. Moreover, since the probability of correct decoding
is 1, the subspaces corresponding to different strings are orthogonal. Thus, Bob’s state space has dimension
at least 2n · 2E−m. On the other hand, these states are E +m qubits long, which implies that m ≥ n/2.

If in a quantum (or a classical randomized) protocol a small amount of probabilistic error is allowed, the
communication may be reduced drastically (see, for example, Refs. [10, 2, 24]). The following theorem
places limits on the savings achieved when we wish to convey classical messages by quantum means.
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Theorem 4.3 If Alice encodes messages x ∈ {0, 1}n over EPR pairs without ancilla, and sends m
qubits to Bob, the probability of correct decoding of a message chosen uniformly at random is bounded
as Pr[correct decoding] ≤ 22m

2n .

Proof: Suppose that the number of EPR pairs Alice and Bob share initially is E. Let {px,l, |φx,l〉}l be
Bob’s mixed state when Alice has input x ∈ {0, 1}n, as given by Lemma 4.2.

Recall that the decoding procedure used by Bob consists of measuring the encoded state with some ancillary
qubits (assumed to be initialised to state |0̄〉) with some orthogonal projection operators {Py}. Here, the
outcome y ∈ {0, 1}n corresponds to Bob’s guess for the encoded message. We will omit the ancilla from
the expressions below, for clarity of exposition.

Let C be the event that Bob decodes a message correctly and Cx (Cx,l) that he does so on receiving the
encoding of x (|φx,l〉, respectively). Let x be the event that Alice encodes message x, and xl that |φx,l〉 is
prepared given that x is encoded. Then

Pr[C] =
∑
x

Pr[Cx] · Pr[x]

=
∑
x

Pr[Cx]
2n

=
∑
x,l

Pr[Cx,l] · Pr[xl]
2n

=
∑
x,l

Pr[Cx,l]
2E−m2n

. (3)

It thus suffices to bound
∑

x,l Pr[Cx,l]. Observe that

Pr[Cx,l] = ‖Px|φx,l〉 ‖2 . (4)

We introduce some notation. For each x, let Hx be the space spanned by {|φx,l〉}l. Note that {|φx,l〉}l
is an orthonormal basis for Hx. Let Rx be the projection onto Hx. Since we allow a small error in the
decoding process, the different spaces Hx may not be orthogonal.

Let H be the space spanned by all the vectors {|φx,l〉}x,l, and Q the projection operator onto H. For
each x, let the set {|ex,j〉}j be an orthonormal basis for the range of Px. Then {|ex,j〉}x,j is an orthonormal
basis for the entire decoding space.

Now, following the proof of Lemma 3.2,∑
l

‖Px|φx,l〉 ‖2 =
∑
l,j

|〈ex,j |φx,l〉|2

=
∑
j

‖Rx|ex,j〉 ‖2

≤
∑
j

‖Q|ex,j〉 ‖2 , (5)

since the length of the projection of |ex,j〉 onto Hx is at most the length of its projection on the space H
(of which Hx is a subspace).
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From equation (5), ∑
x,l

‖Px|φx,l〉 ‖2 ≤
∑
x,j

‖Q|ex,j〉 ‖2

=
∑
x,j

〈ex,j |Q|ex,j〉

= Tr Q = dimH

≤ 2E+m, (6)

since the space H is generated by states over E +m qubits.

Combining equations (3), (4), and (6), we get

Pr[C] ≤ 2E+m

2E−m2n
=

22m

2n
,

as claimed.

Encoding with EPR pairs along with some ancilla leads to states very similar to those in Lemma 4.2, and
Theorem 4.3 holds in that case as well. We will however skip ahead to encoding where Alice uses extra
space, and an arbitrary entangled state.

4.2 Encoding with general prior entanglement

In general, in trying to transmit information, Alice and Bob may share an arbitrary entangled state
(independent of their inputs) before they interact. In this section we show that the result in the previous
section applies irrespective of which initial entangled state Alice and Bob share.

The main difficulty here is that the property of messages encoded over EPR pairs captured by Lemma 4.2
may fail to hold. However, we show a simple connection between encoding with EPR pairs and encoding
with an arbitrary entangled state that allows us to conclude an identical result.

We start by observing that we need only consider protocols which make use of a special kind of shared
state.

Observation 4.4 In any quantum communication protocol with prior entanglement, we may assume,
without loss of generality, that the initial shared state is of the form∑

a∈{0,1}E

√
λa |a〉A|a〉B,

where λa are non-negative reals, and
∑

a λa = 1.

Proof: This follows directly from the Schmidt decomposition theorem (Theorem 2.1). Consider a
protocol P in which the quantum state shared by Alice and Bob has EA qubits on Alice’s side and EB
qubits on Bob’s side. For concreteness, assume that EA ≤ EB. By Theorem 2.1, the shared state may be
expressed as ∑

b∈{0,1}EA

√
µb |φb〉A|ψb〉B,
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where the µb are non-negative reals summing up to 1, and the sets {|φb〉} and {|ψb〉} are orthonormal.
We may modify the protocol to a new protocol P ′, which has the same behaviour as P on each input,
but where the shared state is of the form described in the observation above. Consider any unitary
transformations U, V on E = EB qubits such that for every b ∈ {0, 1}EA ,

U : |0̄, b〉 7→ |0̄〉|φb〉
V : |0̄, b〉 7→ |ψb〉.

Let λ0̄b = µb, for b as above, and let the rest of the λa be 0. The protocol P ′ begins with the shared state∑
a∈{0,1}E

√
λa |a〉A|a〉B,

and then Alice and Bob apply U and V to their qubits respectively. Thereafter, the protocol proceeds
exactly as in P. By construction, the protocols behave the same way for each input.

We make another simplifying observation about the protocols that we need consider.

Observation 4.5 In any quantum communication protocol with prior entanglement, we may assume, with-
out loss of generality, that neither Alice nor Bob uses any ancillary qubits in their local unitary operations
or measurements.

This is because all the ancillary qubits used may be considered as part of the initial shared state.

The above observations allow us to relate the encoding with a general entangled state to the encoding
obtained when EPR pairs are used instead.

Lemma 4.6 Suppose that Alice performs a unitary transformation on her share of the joint state∑
a∈{0,1}E

√
λa |a〉A|a〉B,

and then sends m of the E qubits to Bob. Then, Bob has E + m qubits in a mixed state that can be
represented as {

2m/2(Im ⊗ Λ)|φl〉
}
l∈{0,1}E−m

with {|φl〉}l orthonormal, and Λ =
∑

a

√
λa |a〉〈a|.

Proof: The main technical insight here is that the entangled state
∑

a∈{0,1}E
√
λa |a〉A|a〉B may be viewed

as a scaled version of some number of EPR pairs:

(IE ⊗ Λ)
∑
a

|a〉|a〉,

where Λ =
∑

a

√
λa |a〉〈a| is a diagonal matrix with Frobenius norm Tr(ΛΛ†) = 1. The matrix Λ scales

vectors along orthogonal dimensions according to the Schmidt coefficients {λa}.
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Suppose Alice applies the transformation V to her E qubits. The resulting joint state is

(V ⊗ IE)(IE ⊗ Λ)
∑
a

|a〉|a〉

= (IE ⊗ Λ)
∑
a

V |a〉|a〉

= (IE ⊗ Λ)
∑
a

|a〉V T|a〉 (7)

=
∑

l∈{0,1}E−m
|l〉 (Im ⊗ Λ)

∑
r∈{0,1}m

|r〉V T|lr〉,

where equation (7) follows from Lemma 4.1. Let, as in Lemma 4.2,

|φl〉 = 2−m/2
∑

r∈{0,1}m
|r〉V T|lr〉.

Suppose Alice sends m of her qubits to Bob, and measures the remaining qubits in the standard basis.
The residual, unnormalised, state with Bob is then 2m/2(Im ⊗ Λ)|φl〉, when she observes l ∈ {0, 1}E−m.
That the states |φl〉 are orthonormal is shown in the proof of Lemma 4.2.

We can now prove the equivalent of Theorem 4.3 when Alice and Bob share an arbitrary entangled state.

Theorem 4.7 If Alice encodes 2n messages over her part of an arbitrary shared entangled state (that is
independent of her messages) and some ancillary qubits, and sends m qubits to Bob, the probability of
correct decoding of a message chosen uniformly at random is bounded as Pr[correct decoding] ≤ 22m

2n .

Proof: We use the same notation as in the proof of Theorem 4.3, adapted to the encoding we get here
due to the more general entangled state.

By Observation 4.5, we may assume that Alice and Bob operate only on their shared entangled state. We
may further assume that this state is of the special form described in Observation 4.4.

Let
{

2m/2(Im ⊗ Λ)|φx,l〉
}
l

be Bob’s mixed state when Alice encodes x ∈ {0, 1}n, as given by Lemma 4.6.
Since no ancilla is used in the decoding procedure (i.e., in Bob’s measurement to extract x, cf. Observa-
tion 4.5), the projection operators Py are over E +m qubits. Now,

Pr[C] =
∑
x

Pr[Cx]
2n

, and (8)

Pr[Cx] = 2m
∑
l

‖Px(Im ⊗ Λ)|φx,l〉 ‖2 . (9)
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Furthermore, ∑
x,l

‖Px(Im ⊗ Λ)|φx,l〉 ‖2 =
∑
x,l,j

|〈ex,j |(Im ⊗ Λ)|φx,l〉|2

=
∑
x,j

∥∥∥Rx(Im ⊗ Λ†)|ex,j〉
∥∥∥2

≤
∑
x,j

‖ (Im ⊗ Λ)|ex,j〉 ‖2

=
∑
x,j

〈ex,j |(Im ⊗ Λ†Λ)|ex,j〉

= Tr (Im ⊗ Λ2)

= 2m
∑
a

λa = 2m. (10)

Combining equations (8), (9) and (10), we get Pr[C] ≤ 22m/2n.

5 The extension to interactive communication

In this section, we analyse the most general quantum protocols for exchanging information. In these
protocols, Alice and Bob share an arbitrary entangled state to begin with, and exchange messages both
ways in order to communicate.

The essential idea behind the results below is contained in Lemma 4.6, and leads to a new characterisation of
the joint state in quantum protocols (Lemma 5.1 below). In order to prove this lemma from first principles,
we focus on protocols in which there is no prior entanglement . That it holds also for communication
with prior entanglement may be inferred from the lemma itself by applying it to a modification of an
entanglement-assisted protocol. In the modified protocol, the entangled state to be shared is generated
by Bob, who sends the appropriate part of it to Alice. The parameter of interest in the characterisation
in Lemma 5.1 is the Frobenius norm Tr(ΛΛ†) of the matrix Λ which generalises the scaling matrix of
Lemma 4.6. This norm depends only on the number mA of qubits of communication from Alice to Bob,
and hence remains unchanged despite the modification.

Lemma 5.1 Let P be any quantum communication protocol (without prior entanglement) in which the
number of qubits sent by Alice to Bob (Bob to Alice) is mA (respectively, mB), and the final number of
qubits with Alice (Bob) is qA (respectively, qB). Then, the joint state of Alice and Bob at the end of the
protocol may be expressed as ∑

a∈{0,1}qA
|a〉A Λ|φa〉B,

where

1. Λ is a linear transformation that maps qB + 2mB qubits to qB qubits, depends only on the unitary
transformations of Bob, and satisfies Tr(ΛΛ†) = 22mA, and

2. {|φa〉} is an orthonormal set of states over qB + 2mB qubits, and depends only on the unitary trans-
formations of Alice.

14



Proof: The proof goes by induction on the number of rounds t.

In the beginning (for t = 0), the joint state (w.l.o.g.) is |0̄〉A ⊗ |0̄〉B, which represents all the qubits the
two players use during the protocol. This is of the form described in the lemma, with Λ = Λ0 = |0̄〉〈0̄|.
Let qA,t, qB,t,mA,t,mB,t be the quantities corresponding to qA, qB,mA,mB after t ≥ 0 rounds of commu-
nication. Assume that at this stage, the joint state of Alice and Bob is∑

a∈{0,1}qA,t
|a〉A Λt|φa,t〉B,

where Λt and {|φa,t〉} satisfy the conditions stated in the lemma (in terms of qB,t,mA,t,mB,t). We look at
two cases for the (t+ 1)’th round of communication.

Case (a). Alice applies a unitary transformation U to her qubits and sends p qubits to Bob.

The state after the unitary transformation is

(U ⊗ IqB,t)(IqA,t ⊗ Λt)
∑

a∈{0,1}qA,t
|a〉|φa,t〉

= (I ⊗ Λt)
∑

a∈{0,1}qA,t
U |a〉|φa,t〉

= (I ⊗ Λt)
∑

a∈{0,1}qA,t
|a〉 Ũ |φa,t〉,

where Ũ is a unitary transformation on Bob’s qubits as given by Lemma 4.1. Thus, after Alice sends p of
her qubits to Bob (w.l.o.g., these are the p rightmost qubits), the joint state looks like∑

l∈{0,1}qA,t+1

|l〉A (Ip ⊗ Λt)
∑

r∈{0,1}p
|r〉B Ũ |φlr,t〉B. (11)

Here, qA,t+1 = qA,t − p, qB,t+1 = qB,t + p, mA,t+1 = mA,t + p, and mB,t+1 = mB,t.

Let

Λt+1 = 2p/2(Ip ⊗ Λt), and

|φl,t+1〉 = 2−p/2
∑
r

|r〉 Ũ |φlr,t〉.

Now,

Tr Λt+1Λ†t+1 = 2p Tr (Ip ⊗ ΛtΛ
†
t)

= 2p · 2p · 22mA,t

= 22mA,t+1 .

Moreover, for the same reasons as in the proof of Lemma 4.2, the set {|φl,t+1〉} is orthonormal. Thus, the
state in equation (11) is of the form stated in the lemma.

Case (b). Bob applies a unitary transformation V to his qubits and sends p qubits to Alice. W.l.o.g.,
these are the p leftmost qubits.
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After the communication, the joint state looks like∑
a∈{0,1}qA,t

∑
l∈{0,1}p

|a〉A|l〉A (〈l| ⊗ IqB,t−p)V Λt|φa,t〉B,

which may be recast as ∑
a,l

|al〉 Λt+1|φal,t+1〉, (12)

where

Λt+1 =
∑

b∈{0,1}p
(〈b| ⊗ IqB,t−p) V Λt (〈b| ⊗ IqB,t),

|φal,t+1〉 = |l〉|φa,t〉.

Now mA,t+1 = mA,t, mB,t+1 = mB,t + p, qA,t+1 = qA,t + p, and qB,t+1 = qB,t − p.
The states |φal,t+1〉 are orthonormal. Moreover,

Tr Λt+1Λ†t+1

= Tr
∑
b,b′

(〈b| ⊗ I)V Λt(〈b| ⊗ I)(|b′〉 ⊗ I)Λ†tV
†(|b′〉 ⊗ I)

=
∑
b

Tr
[
(〈b| ⊗ I) V ΛtΛ

†
tV
† (|b〉 ⊗ I)

]
=

∑
b

Tr
[
(|b〉〈b| ⊗ I) V ΛtΛ

†
tV
†
]

= Tr
[
(I ⊗ I) V ΛtΛ

†
tV
†
]

= Tr ΛtΛ
†
t = 22mA,t+1 .

Thus, the state in equation (12) is of the form described in the lemma.

This completes the induction step, and the proof.

We now sketch how our characterisation of quantum protocols enables us to prove Theorem 1.3(2).

Proof of Theorem 1.3(2): The proof is essentially the same as for Theorem 4.7, and we use the same
notation here.

Lemma 5.1 shows that Bob’s state remains of form similar to that in Lemma 4.6 as he interacts with
Alice during the protocol. Let {Λ|φx,l〉}l be Bob’s mixed state at the end of the protocol when Alice has
input x ∈ {0, 1}n, as given by Lemma 5.1. Note that Λ is independent of x.

Since we may assume that all the ancillary qubits used by Bob are included in his state above (cf. the
proof of Lemma 5.1), the projection operators Py are over qB qubits. Now, as before,

Pr[C] =
∑
x

px Pr[Cx] =
∑
x,l

px ‖PxΛ|φx,l〉 ‖2 ,
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where px = Pr[X = x]. Furthermore,∑
x,l

‖PxΛ|φx,l〉 ‖2 =
∑
x,l,j

|〈ex,j |Λ|φx,l〉|2

≤
∑
x,j

∥∥∥Λ†|ex,j〉
∥∥∥2

= Tr ΛΛ† = 22mA .

Combining these with Lemma 3.3, we get Pr[C] ≤ P (X, 22mA).

6 Discussion

Since the two results involve different measures for the amount of classical information transmitted over a
quantum channel, the strength of Theorem 1.3 is in general incomparable to that of the Holevo bound [17]
(or its extensions). For example, the Holevo bound is more appropriate for deriving an optimal bound for
random access codes [1]. This bound has implications in both classical and quantum complexity theory.
For instance, Kerenidis and de Wolf use it to prove an exponential lower bound on the length of locally
decodable codes [18], and Klauck uses it in deriving a bound for one-way communication and formula size in
terms of VC-dimension [21]. On the other hand, Theorem 1.3 allows us to derive tight lower bounds for the
communication complexity of Inner Product (as explained below). Recently, Ronald de Wolf applied our
results to re-derive the best known lower bounds for matrix rigidity [15]. Thus, the two bounds—Holevo
and ours—provide complementary views of the limitations of quantum communication that have proved
to be of use in a variety of contexts.

In typical applications in complexity theory, the Holevo bound is used in a weaker form, which may be
derived from our results. Here the messages are distributed uniformly, and the mutual information I(X : Y )
is bounded by m, the number of qubits used in the quantum encoding of X. Note that

Lemma 6.1 For any random variables X,Y over {0, 1}n, there is a decoding procedure D such that

Pr[D(Y ) = X] ≥ 2−H(X|Y ),

where H(X|Y ) is the conditional Shannon entropy of X with respect to Y .

Proof: We describe a natural decoding procedure D and then show that it satisfies the requirement of
the theorem. On input y, the decoding algorithm outputs x such that px|y = maxx′ px′|y, where px|y =
Pr[X = x|Y = y]. Let pmax

y denote this probability and let xy denote the corresponding x.

We claim that the procedure D described above decodes correctly with probability at least 2−H(X|Y ). The
probability of correct decoding is equal to

Pr[D(Y ) = X]

=
∑
y

Pr[X = xy|Y = y] · Pr[Y = y]

= E[pmax
Y ].
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Now, H(X|Y = y) = −
∑

x px|y log px|y ≥ − log pmax
y . So pmax

y ≥ 2−H(X|Y=y). Taking expectation over Y ,
and noting that f(α) = 2−α is a convex function, we have

E[pmax
Y ] ≥ E[2−H(X|Y=y)]

≥ 2−E[H(X|Y=y)]

= 2−H(X|Y ),

which gives us the claimed lower bound on the decoding probability.

Together with Theorem 1.1, Lemma 6.1 implies that when X is distributed uniformly, and Y is obtained
by measuring an m-qubit encoding of it, the mutual information I(X : Y ) is at most m. Our bound thus
obviates the need for a translation of in-probability statements into statements about mutual information
in cases where the above weak form of the Holevo theorem is applied. In fact, our bound on decoding
probability can give us sharper bounds on the number of qubits used in an encoding than an application of
Holevo’s theorem. We illustrate this with a toy example, and then with a more interesting example from
quantum communication complexity.

Consider an encoding of n-bits into n+ 1 orthogonal states |i〉, i = 0, 1, . . . , n. Half the strings are encoded
as |0〉, a fourth as |1〉, an eighth as |2〉, and so on. A random codeword from this code can be decoded with
probability exactly (n+ 1)2−n. Theorem 1.1 tells us that log(n+ 1) qubits are necessary for any encoding
achieving this probability of success. On the other hand, the mutual information between the original n
bits and its encoding is

1
2

+
2
22

+
3
23

+ · · ·+ n

2n
+

n

2n
,

which sums up to 2 − 2−(n−1). Thus, the mutual information with any decoding is also at most 2. (The
mutual information inferred from the probability of correct decoding is even smaller.) This gives us a lower
bound of at most 2 for the number of qubits in the encoding, when combined with Holevo’s theorem.

Finally, we may apply Theorem 1.2 to obtain an improved lower bound for the entanglement-assisted
quantum communication complexity of the inner product function IPn. (The inner product function IPn :
{0, 1}n×{0, 1}n → {0, 1} is defined as IPn(x, y) = ⊕i(xi∧yi).) The connection between the two is provided
by the following reduction due to Cleve et al .

Theorem 6.2 (Cleve, van Dam, Nielsen, Tapp [13]) If Q∗ε (IPn) = m, then there is an entanglement-
assisted protocol for transmitting n bits with probability of success at least (1 − 2ε)2, such that the total
communication from each party to the other, over all the rounds of communication, is m qubits.

Theorem 1.2 now implies

Corollary 6.3 Q∗ε (IPn) ≥ 1
2n− log 1

1−2ε .

The previous best lower bound was 1
2((1− 2ε)2n− 1) due to Cleve et al. [13].

For any ε < 1/2, there is a straightforward public-coin randomised protocol for IPn with communication
cost at most

⌈
n− log 1

1−2ε

⌉
+ 1. Along with the superdense coding scheme in Ref. [8], this means that

Theorem 6.4 Q∗ε (IPn) ≤
⌈

1
2(n− log 1

1−2ε + 1)
⌉

.
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Thus, our lower bound for Inner Product is close to optimal, and for constant error, is within an ad-
ditive O(1) term of the upper bound. Since Q1/3(IPn) ≤ n, this provides more evidence that prior
entanglement does not give us a saving of more than a factor 2 plus perhaps an additive term of O(log n)
in communication cost. Proving this statement for an arbitrary boolean function however remains open.

Finally, observe that the reduction in Ref. [13] cited above can be adapted immediately so that a one-way
protocol for Inner Product for n-bit inputs, with communication complexity m is transformed into a one-
way protocol for transmitting n bits. As before, an error probability of ε in the original protocol results
in an error of (1 − 2ε)2 in the new protocol. Moreover, the reduction extends, with the same features,
if the original protocol is guaranteed to work with probability of error ε under the uniform distribution
over inputs. Theorem 1.1 now gives us a factor of two improvement over the two-way communication
complexity without prior entanglement.

Corollary 6.5 The ε-error quantum one-way communication complexity of Inner Product is at least n−
2 log 1

1−2ε . The same lower bound continues to hold for ε-error quantum one-way protocols under the
uniform distribution over n-bit inputs.

The one-way complexity of Inner Product is the basis of a proof of security due to Ben-Or [4] of the
Bennett-Brassard quantum key distribution protocol [5]. It shows that “privacy amplification” via two-
wise independent hashing is effective even in the presence of a quantum adversary. We briefly describe this
application below to round up our discussion.

Two parties, Alice and Bob, share a common, uniformly random n-bit string X. Suppose that an adversary,
Eve, has acquired some information about the random variable X during the course of its transmission.
This information is modeled as a quantum state ρX over m qubits that depends arbitrarily on the entire
string X. In the Bennett-Brassard scheme, this is ensured by the testing/error-estimation stage of the
protocol. The goal of privacy amplification is to extract a common random k-bit string U from X about
which Eve has very little information (in a sense to be made precise shortly). Alice and Bob have, at their
disposal, a public classical channel to assist in the extraction process. Thus, all their communication is
visible to Eve.

Bennett and Brassard proposed a random hashing scheme for privacy amplification. In their scheme, the
string U is taken to be A · X, where A is a uniformly random k × n matrix over Z2 sent by Alice to
Bob. This is equivalent to taking the Inner Product of X with k uniformly random n-bit strings. Eve,
the adversary, may perform a measurement on her state ρX , possibly depending on the matrix A, to gain
information about U . We would like that on average, the distribution of U conditioned upon the random
matrix A, and Eve’s measurement outcome, be close to uniform on k bits.

Using a lower bound for the one-way quantum communication complexity of Inner Product, Ben-Or proved
this hashing scheme to be secure. Suppose that the conditional distribution of the extracted string U
is ε away from uniform in `1 distance, on average over the measurement outcomes of Eve, and over the
distribution of A. The Vazirani XOR lemma (see, e.g., Ref. [16]) implies that the Inner Product of U with
a random non-zero k-bit string is 2k/2ε away from uniform. Our lower bound for Inner Product now shows
that that ε is at most 2(n−m−k)/2.
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A Shared randomness in classical communication

In this section, we briefly review the role of shared randomness in sending classical information from one
party to another. Consider a scenario where two parties, Alice and Bob, are given a common random
variable R. Alice wishes to relay a classical message, given by a random variable X independent of R, to
Bob. They engage in a classical communication protocol (see, e.g., Ref. [24] for a formal definition of a
protocol) in which Alice sends mA bits to Bob, and Bob has a transcript T at the end of the protocol. We
make several observations about the protocol.

First, note that we may convert any multiple round communication protocol to an equivalent protocol in
which there is only one message, that from Alice to Bob, of lengthmA. This is because Bob’s communication
in any round is a deterministic function of the shared random variable R, and the history of messages sent
till that point. Alice can compute all of Bob’s communication bits herself and thus her portion TA (which is
of length mA) of the transcript T . In the one message protocol, she sends Bob TA. Bob now reproduces T
from TA, R.

Second, we may bound the mutual information between Bob’s bits R, T and Alice’s input X by mA, the
number of bits sent by Alice to Bob. Making essential use of the fact that the input X is independent of
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the previously shared random variable R, we have:1

I(X : RT ) ≤ I(X : RTA)
= I(RX : TA) + I(X : R)− I(R : TA)
= I(RX : TA)− I(R : TA)
≤ I(RX : TA)
≤ H(TA)
≤ mA.

Thus, we see that at most mA “bits of information” may be transmitted using that number of classical
bits. Twice as many bits of information may be transmitted with quantum communication using prior
shared EPR pairs, via superdense coding [8].

Finally, we may also bound the probability that Bob is able to recover the input X correctly from his view
of the protocol. Suppose Y is Bob’s guess for X. Then,

Pr[Y = X] =
∑
r

Pr[Y = X|R = r] · Pr[R = r]

≤ max
r

Pr[Y = X|R = r]

= max
r

∑
x

Pr[X = x] · Pr[Y = x|X = x,R = r]

= max
r

∑
x

Pr[X = x] · 1(Y=x|X=x,R=r).

Since Y is a deterministic function of TA and R, it assumes at most 2mA different values for a fixed r, i.e.,∑
x 1(Y=x|X=x,R=r) ≤ 2mA . So Pr[Y = X] ≤ P (X, 2mA), the sum of the 2m largest probability masses in

the distribution of X. In particular, if X is uniformly distributed, we have Pr[Y = X] ≤ 2mA/2n. This is
exactly the probability of decoding we achieve if we transmit the first mA bits out of the n in the input.
(The recipient guesses the remaining bits uniformly at random.)

1We refer the reader to the text [14] for the definition and properties of mutual information used here.
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