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1 The Ising Model

The Ising model [14] is perhaps the simplest model for studying phase transitions in statistical
mechanics (such as spontaneous magnetization in certain materials), and more generally a model
for studying how local interactions lead to globally observable phenomena.

In the Ising model, viewed as an abstraction of magnetic material, a solid is assumed to be com-
posed of individual magnetic moments (spins) located at the sites of a finite lattice structure. The
spins interact only with spins adjacent to them on the lattice. The nearest-neighbour interactions
determine the energy of the system. At any given temperature, the solid exists in a thermal equi-
librium of different spin states given by the Gibbs distribution. The associated sampling problem is
to generate a spin state with probability given by this distribution. Formally, the model is defined
as follows.

Let G = (V,E) be a graph with n vertices and m edges. Let Jij be the interaction coefficient
associated with the edge {i, j} ∈ E.

A spin configuration σ in G is an assignment of a spin σi ∈ {+1,−1} to each vertex i ∈ V . The
energy H(σ) of a configuration σ is given by:

H(σ) def= −
∑

{i,j}∈E

Jijσiσj . (1)

The Ising model also provides for an external magnetic field, which interacts with each individual
spin, and contributes to the energy of the system. This more general model may be reduced to
the one above by the introduction of an additional spin which interacts with every other spin with
suitably chosen strength. Thus there is no loss in generality in the study of the properties of the
model in the absence of a magnetic field. In particular, the computational complexity of sampling
spin configurations from the thermal mixture remains the same in the two cases.

The Gibbs distribution on spin configurations assigns a probability proportional to

w(σ) = exp(−βH(σ))

to σ, where β is related to the temperature T by the Boltzmann constant k as β = 1/kT . More
precisely, the probability πG(σ) assigned to σ is

πG(σ) def=
1
Z
w(σ), where (2)

Z
def=

∑
σ∈{+1,−1}n

w(σ), (3)

the partition function, is the normalising quantity.

Several properties of the model, such as the mean energy or the mean magnetic moment, may be
derived from the partition function. However, other properties such as the correlation length seem
to require the harder task of sampling from the Gibbs distribution, defined below.

Ising Model
Input: A graph G = (V,E), with interaction coefficients J ∈ RE , temperature T ∈ R+,
and an accuracy parameter ε ∈ (0, 2).
Output: A spin configuration σ ∈ {+1,−1}V distributed according to some probability
distribution P such that ‖P − πG‖1 ≤ ε.
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Note that for the purposes of computation, all explicit numerical values (such as the interaction
coefficients) are assumed to be rational numbers.

1.1 Overview of the algorithm

The goal of the quantum algorithm would be to construct an approximation to the state |Φ〉:

|Φ〉 =
∑

σ∈{+1,−1}n

√
πG(σ) |σ〉. (4)

which we call the “Gibbs superposition”. The task of generating a coherent superposition of states
according to a desired distribution is considered to be computationally hard in general. It is now
folklore that such a scheme would give us a quantum algorithm for Group Isomorphism. In
the present case, even the ostensibly simpler sampling problem had long defied solution. Most
computational approaches that attempt to directly solve the Ising Model sampling problem,
including the Markov Chain Monte Carlo approach, are either provably inefficient or are at best
not known to be efficient. We circumvent these barriers by appealing to the “high temperature
expansion” of the partition function. This expansion is essentially a Fourier transform over the
group Zn

2 ; we describe this connection in Section 2. We call the Fourier transform |Φ̂〉 of the Gibbs
superposition |Φ〉 the “parity superposition”.

This state |Φ̂〉 is a superposition over parity configurations ρ ∈ {0, 1}n, which may also be inter-
preted as subsets of [n]. When the spin-spin interactions are all ferromagnetic, parity superposi-
tion is a coherent state associated with a probability distribution µ over ρ-joins of the graph G.
In Section 4, we show that there is an efficient algorithm that samples (approximately) from the
distribution µ. Moreover, we observe that the distribution is self-reducible, i.e., it decomposes into
a convex combination of distributions that are similar to µ, when conditioned upon the bits of the
parity configuration ρ. We describe a scheme for constructing a coherent superposition associated
with a special kind of distribution in Section 3. This scheme helps us (approximately) construct
the parity superposition |Φ̂〉 using the algorithm for sampling from µ. Given an approximation to
the state |Φ̂〉 we can generate an approximation to |Φ〉 by the application of the Fourier transform,
as mentioned above.

2 The high temperature expansion

In order to sample from the Gibbs distribution on spins quantum mechanically, we set up the Gibbs
superposition

|Φ〉 =
1√
Z

∑
σ

√
w(σ) |σ〉.

Rather than directly constructing this superposition, we construct its Fourier transform, which
we call the parity superposition. This is motivated by the so called high temperature expansion
of the partition function [14]. It is known that this expansion relates spin configurations to the
Eulerian subgraphs of G. Implicit in this expansion is a Fourier transform of the Gibbs distribution.
Below, we adapt the high temperature expansion to relate the Gibbs superposition to the parity
superposition via this transform.
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Note that
√
w(σ) may be expanded as follows:√

w(σ) = e−
β
2
H(σ)

= e
β
2

P
{i,j}∈E Jijσiσj

=
∏

{i,j}∈E

e
β
2
Jijσiσj .

Using the identity ex = coshx (1+ tanhx), the contribution due to edge {i, j} may be rewritten as

cosh
(
β

2
Jijσiσj

)(
1 + tanh

(
β

2
Jijσiσj

))
.

Since cosh is a symmetric function and tanh is antisymmetric, this is equal to

cosh
(
β

2
Jij

)(
1 + σiσj tanh

(
β

2
Jij

))
.

Letting κ = 1√
Z

∏
{i,j}∈E cosh

(
β
2Jij

)
, and using the abbreviation λij for tanh

(
β
2Jij

)
, we may

simplify the expression for
√
w(σ)/Z:√
w(σ)
Z

= κ
∏

{i,j}∈E

(1 + σiσjλij)

= κ
∑
X⊆E

(∏
i

σ
degX(i)
i

) ∏
{i,j}∈X

λij .

For a subgraph X ⊆ E, define the parity configuration of X as the vector %X ∈ Zn
2 where %X

i

is the degree of vertex i, mod 2, in X. Further, let w(X) be the product
∏

{i,j}∈X λij . For a
vector ρ ∈ Zn

2 , let
αρ = κ

∑
X : %X=ρ

w(X).

For a spin configuration σ, let σ̄ be the characteristic vector of the set {i : σi = −1}, so that
σi = (−1)σ̄i and σ̄i = (1− σi)/2.

In terms of these quantities,√
w(σ)
Z

= κ
∑
X⊆E

(∏
i

(−1)σ̄i%
X
i

)
w(X)

= κ
∑
X⊆E

(−1)σ̄·%X
w(X)

= κ
∑

ρ

(−1)σ̄·ρ
∑

X : %X=ρ

w(X)

=
∑

ρ

(−1)σ̄·ραρ

where σ̄ · %X =
∑

i σ̄i%
X
i (mod 2) is the scalar product of the two vectors.
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Using the alternative representation of characteristic vectors σ̄ instead of spin configurations σ, the
Gibbs superposition can now be written as:

|Φ〉 =
∑

σ̄

∑
ρ

(−1)σ̄·ραρ |σ̄〉.

Let |Φ̂〉 = 2n/2
∑

ρ αρ|ρ〉. On applying the Hadamard transform H⊗n to this superposition (which
is the parity superposition mentioned above), we get

H⊗n|Φ̂〉 =
∑

ρ

αρ

∑
η

(−1)η·ρ |η〉

= |Φ〉.

We have proven the following theorem.

Theorem 2.1 The Gibbs superposition |Φ〉 = H⊗n|Φ̂〉, the quantum Fourier transform over Zn
2 of

the parity superposition. Consequently, given a state |Ψ̂〉 such that
∥∥∥Ψ̂− Φ̂

∥∥∥
tr
≤ ε, we can generate

a state |Ψ〉 such that ‖Ψ− Φ‖tr ≤ ε with the application of n single qubit gates.

3 Preparation of coherent superpositions

In this section, we describe a generic procedure for constructing coherent superpositions corre-
sponding to a probability distribution. We later apply this technique to prepare the parity super-
position |Φ̂〉 defined in Section 2 for the ferromagnetic Ising model.

Suppose we would like to construct a superposition |φ〉 ∈ C2n
over n qubits and with real, non-

negative amplitudes. Let |φ〉 =
∑

x∈{0,1}n ax|x〉, where the amplitudes ax ∈ [0, 1] so that ax =
√
px

for some probability distribution P = (px) over {0, 1}n. We extend the functions a, p : {0, 1}n → C
to {0, 1}≤n as follows. For any y ∈ {0, 1}j , where j ∈ [n], let py = PrX∼P [X1X2 · · ·Xj = y], and
let ay = √

py. Further, define states over j qubits |φj〉 =
∑

y∈{0,1}j ay|y〉. Thus |φn〉 = |φ〉, and the
states |φj〉 may be viewed as “prefixes” of this target state.

In addition, suppose we can compute the conditional probability qy = Pr[Xj+1 = 0|X1X2 · · ·Xj =
y] for every y ∈ {0, 1}j , where j ∈ {0, . . . , n− 1}. Then we can prepare the prefix |φj+1〉 from the
prefix |φj〉 as follows. For θ ∈ [0, π/2], let the state |θ〉 = cos θ|0〉+ sin θ|1〉.

1. Compute qy from y.

2. Prepare a qubit in the superposition |θy〉, controlled on the y-register, where θy = arccos√qy.
3. Uncompute qy.

Repeating this procedure for j = 0, 1, . . . , n − 1, we get |φ〉. This kind of procedure has been
observed in several works [8, 4] since ours was first announced. It is a quantum analogue of a
standard technique in randomized algorithms for sampling from distributions.

For the problem at hand, we are only able to implement the different steps above approximately :

• We approximate the probability qy using a quantum simulation of a randomized algorithm
that takes y as input. The randomized algorithm computes an approximation q̃y within some
additive precision δ ∈ [0, 1) with probability 1− ε, for some ε ∈ [0, 1).
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Algorithm Q(j, |φj〉).

Recall that |φj〉 =
∑

y∈{0,1}j ay|y〉. The parameters ε, δ, η are set globally. The algorithm A uses k
random bits.

1. Apply the Hadamard gate to k fresh ancillary qubits initialized to |0〉, to obtain the superpo-
sition 2−k/2

∑
s∈{0,1}k |s〉.

2. Reversibly simulate A on inputs y, s to obtain an approximation q̃y,s. The string y is empty
if j = 0.

3. Let ω̃y,s = 1/4 if q̃y,s < δ, and let ω̃y,s = 0 if q̃ > 1 − δ. Go to Step 5 if either of these
conditions is satisfied, and proceed to the next step otherwise.

4. Reversibly approximate 1
2π arccos(q̃y,s)1/2 to within additive error δ/2π, to get ω̃y,s.

5. Prepare a fresh qubit in state |θ̃y,s〉, where θ̃y,s = 2πω̃y,s.

6. Uncompute ω̃y,s, and q̃y,s.

7. Apply the Hadamard gate to the k qubits carrying the strings s, and measure them in the
computational basis.

8. If any of the k outcomes is 1, output |0〉|0j+1〉, where the value 0 of the first qubit indicates
failure. Otherwise, output |1〉 along with the system containing the input and the fresh qubit
prepared in Step 5. The value 1 of the first qubit indicates success.

Figure 1: Details of the algorithm that extends the state |φj〉 by a single qubit.

• Given some q ∈ [0, 1], we approximate the state |θ〉 to within η in the trace norm, where θ =
arccos

√
q.

In our application, the parameters δ, ε and η are typically taken to be inverse polynomial in n, the
number of qubits in the state |φ〉.
The randomized algorithm that approximates qy given y ∈ {0, 1}j may be viewed as a deterministic
algorithm A that takes y and string s as input, where s is chosen uniformly at random from {0, 1}k

for some k. We assume, w.l.o.g., that the number of random bits k is independent of y. The details
of the quantum algorithm that prepares |φj+1〉 from |φj〉 are laid out in Figure 1.

The numerical computations in Step 4 are well-studied operations. We may, for example, use the
algorithms presented in [3] to implement them. For completeness, we summarize the properties of
these algorithms.

We say that an operation is performed with precision l if the operands are represented as floating
point numers with a binary fraction of l bits, and an exponent whose length may grow as o(l). The
time complexity (number of bit operations) of the numerical algorithms formally hold for multi-
tape Turing machines with a fixed number of tapes. In particular, they hold for Boolean circuits
as well. Let M(l) be the time required to perform precision l multiplication. The asymptotically
fastest method for multiplication is one due to Schönhage and Strassen [11], which gives

M(l) ∈ O(l log(l) log log(l)).
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Theorem 3.1 [Brent [3]] The following hold:

1. Division, and finding reciprocals and square roots with precision l all take time O(M(l)).

2. The first l bits of the universal constant π may be computed in time O(M(l) log l).

3. The trigonometric function arccos may be computed with precision l in time O(M(l) log l).

As a corollary, we get an upper bound on the time required for Step 4.

Corollary 3.2 Given an l-bit number q ∈ [0, 1], the number 1
2π arccos

√
q may be approximated

with precision l in time O(l(log l)2 log log l).

The rotation in Step 5 may be implemented in one of several ways, depending upon which uni-
versal gate set is available to us. It may be implemented using a fixed single qubit rotation as
described in [2, Lemma 6.3.1]. This takes time O( 1

η ), where the desired accuracy is η in trace norm.
Similar time complexity and approximation is implied by a result due to [5], who show “efficient
universality” of certain finite sets of single qubit gates.

Here we describe the approach taken in [8], although using any of the other methods above does
not affect the overall complexity of our final algorithm. The approach in [8] uses a family of
controlled single qubit phase gates, the single qubit Hadamard gate and the phase gate diag(1, i).
(The advantage of the other two methods is that they use a finite set of single qubit gates.) The
controlled phase gates used are precisely the ones used in an exact implementation of the quantum
Fourier transform with respect to ZN , where N is a power of 2. The controlled phase gates may be
simulated with CNOT, single qubit phase gates, and appropriate Pauli Z rotations [10, Chapter 4].

Lemma 3.3 (Kaye and Mosca [8]) Given an l-bit fraction ω in binary, the state |θ〉 with θ =
2πω may be prepared exactly with a circuit of size O(l). The circuit uses only the Hadamard gate,
the phase gate diag(1, i), and controlled phase gates diag(1, exp(2πi

2m )), where m ∈ [l].

Corollary 3.2 and Lemma 3.3 together imply that:

Lemma 3.4 Let l ≥ 1. Given an l-bit approximation q̃ ∈ [0, 1] to q ∈ [0, 1] such that |q − q̃| ≤ δ =
2−l, there is a quantum circuit of size

log
(

1
δ

)(
log log

1
δ

)2

log log log
1
δ

which prepares a state |θ̃〉 such that
∥∥∥|θ〉 − |θ̃〉∥∥∥

2
≤ 2

√
2δ, where θ = arccos

√
q, and θ̃ = arccos(q̃)1/2.

Proof: If q̃ < δ or 1 − q̃ < δ, we prepare the state |1〉 or |0〉, respectively as our approximation
to |θ〉. A straightforward calculation shows that this guarantees an approximation of the desired
state to within

√
2δ in `2 norm. The time complexity is O(l).

If δ < q̃ < 1−δ, we follow a different procedure. Let ω̃ be the approximation to ω′ = 1
2π arccos(q̃)1/2

to within δ/2π given by Corollary 3.2, and let ω = 1
2π arccos

√
q. The size of the circuit follows

from the Corollary.

For the error analysis, note that ∥∥∥|θ〉 − |θ̃〉∥∥∥
2

≤ 4π |ω − ω̃| ,
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and

|ω̃ − ω| ≤
∣∣ω̃ − ω′

∣∣+ ∣∣ω′ − ω
∣∣

≤ 1
2π

· δ +
∣∣ω′ − ω

∣∣ .
Finally, by elementary calculus, for some q′ between q̃ and q,∣∣ω′ − ω

∣∣ =
1
2π

∣∣∣arccos(q̃)1/2 − arccos(q)1/2
∣∣∣

=
|q̃ − q|

4π
√
q′(1− q′)

≤ 1
2
√

2π
·
√
δ.

Altogether we have
∥∥∥|θ〉 − |θ̃〉∥∥∥

2
≤ 2

√
2δ.

The above lemma tells us that the error η mentioned earlier in preparing the qubit is bounded
as η ≤ 4

√
2δ, given a δ approximation to the probability q.

Next, we bound the error in the construction of |φj+1〉 from |φj〉 with the algorithm Q presented
in Figure 1.

Lemma 3.5 Consider the output of the algorithm Q on input state |φj〉. The probability that the
algorithm fails is at most 4ε + 8δ. If |φ̃j+1〉 is the output state when the algorithm does not fail,

then
∥∥∥φ̃j+1 − φj+1

∥∥∥
tr
≤ 4

√
2ε+ 4δ.

Proof: Consider the state of the algorithm Q on input |φj〉 after Step 6. It may be written as:∑
y

ay|y〉 ⊗
1

2s/2

∑
s

|s〉|θ̃y,s〉,

where θ̃y,s is defined as in Figure 1.

For every string y the algorithm A produces an approximation to qy that is within δ. So for a 1− ε
fraction of the strings s, we have

∥∥∥|θ̃y,s〉 − |θy〉
∥∥∥

2
≤ 2

√
2δ by Lemma 3.4. In other words, for these

string pairs y, s,
∣∣∣〈θy|θ̃y,s〉

∣∣∣ ≥ 1 − 4δ. Therefore, the inner product of the state with the ideal

state
∑

y ay|y〉 ⊗ 1
2k/2

∑
s |s〉|θy〉 is at least

(1− ε)(1− 4δ)− ε ≥ 1− 2ε− 4δ

in magnitude. Therefore the probability that all k bits are 0 when measured is at least the square,
i.e., at least 1− 4ε− 8δ.

Note that the inner product above is a lower bound on
∣∣∣〈φj+1|φ̃j+1〉

∣∣∣. Therefore,∥∥∥|φ̃j+1〉 − |φj+1〉
∥∥∥

tr
≤ 2

∥∥∥|φ̃j+1〉 − |φj+1〉
∥∥∥

2

≤ 4
√

2ε+ 4δ .

This completes the error analysis.

7



Algorithm P.

This algorithm receives no input, and maintains a j + 1 qubit state of the form γj |0〉〈0| ⊗
|0j〉〈0j |+(1−γj)|1〉〈1|⊗ |ψj〉〈ψj | in the jth iteration. A value of 0 in the first qubit indicates failure,
and a value of 1 indicates success. Here |ψ0〉 denotes the “empty” quantum state, as does |00〉〈00|.
The initial state of the algorithm is |1〉|ψ0〉.
For j = 0 to n− 1

1. If the first qubit of the current state is 0, prepare the (j + 1)th qubit in state |0〉.
2. Otherwise, run algorithm Q(j, |ψj〉), where |ψj〉 is the state of the remaining j qubits, and set

the current state to the output of this run of Q.

Output the (n+ 1)-qubit current state of the algorithm.

Figure 2: Details of the algorithm that prepares the superposition |φ〉.

An approximation to the state |φn〉 = |φ〉may now be prepared by n applications of the algorithmQ,
as described in Figure 2. The performance of the algorithm may be inferred from a “hybrid
argument” [1, 13].

Theorem 3.6 Let ε+ 2δ ≤ 1. Then,

1. The probability γ that the algorithm P fails is bounded as γ ≤ 10n
√

2ε+ 4δ.

2. When the algorithm succeeds, the output state |ψn〉 is such that

‖ψn − φn‖tr ≤ 10n
√

2ε+ 4δ /(1− γ).

3. The algorithm runs in time of order

n ·

[
T + log

(
1
δ

)(
log log

1
δ

)2

log log log
1
δ

]
,

where T is a bound on the run-time of the algorithm A with parameters δ, ε used in Figure 1.

Proof: The run time of the algorithm P follows directly from its description and Lemma 3.4.

For the purposes of error analysis, we assume the existence of an ideal algorithmQ∗ such thatQ∗(j, |φj〉) =
|1〉|φj+1〉, for all j = 0, 1, . . . , n − 1. We imagine n + 1 runs of the algorithm P, where in
the lth run, we use Q∗ in the first l iterations, and then Q in the remaining n − l iterations
(where l = 0, 1, 2, . . . , n). Let τl be the density matrix of the output of the lth run. We have τ0 =
γ|0〉〈0| ⊗ |0n〉〈0n| + (1 − γ)|1〉〈1| ⊗ |ψn〉〈ψn|, where γ is the probability that the algorithm P fails.
We have τn = |1〉〈1| ⊗ |φn〉〈φn|, the ideal output state. By the triangle inequality,

‖τ0 − τn‖tr ≤
n−1∑
l=0

‖τl − τl+1‖tr .
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We bound each of the terms in the sum on the right hand side. Note that the lth and the (l+ 1)th
imaginary runs differ only in the (l+ 1)th iteration. In this iteration, the former uses algorithm Q
and the latter uses the ideal algorithm Q∗. As any quantum operation only decreases the trace
distance between two quantum states,

‖τl − τl+1‖tr ≤ ‖τ̃l,l+1 − τ̃l+1,l+1‖tr .

where τ̃l,m denotes the state maintained by the algorithm P after the mth iteration of the lth
imaginary run. We have

τ̃l,l+1 = Q(l, |φl〉) = γ̃l+1|0〉〈0| ⊗ |0l+1〉〈0l+1|+ (1− γ̃l+1)|1〉〈1| ⊗ |φ̃l〉〈φ̃l|, and
τ̃l+1,l+1 = Q∗(l, |φl〉) = |1〉〈1| ⊗ |φl+1〉〈φl+1|,

where γ̃l+1 is the probability that Q fails on input l, |φl〉, and |φ̃l+1〉 is its output state on success.
Therefore

‖τ̃l,l+1 − τ̃l+1,l+1‖tr ≤ γ̃l+1 +
∥∥∥φ̃l+1 − φl+1

∥∥∥
tr

≤ 4(ε+ 2δ) + 4
√

2ε+ 4δ By Lemma 3.5
≤ 10

√
2ε+ 4δ,

which implies that ‖τ0 − τn‖tr ≤ 10n
√

2ε+ 4δ. The claims in the theorem follow.
This completes the description and analysis of our state preparation procedure.

We remark, as in [8], that an n-qubit state with relative phases between computational basis states
may also be prepared efficiently under suitable conditions. One sufficient condition is that there be
an efficient algorithm to approximate the phase corresponding to basis state |x〉 for each x ∈ {0, 1}n.
This condition may be relaxed further, for example in ways similar to those encountered in the
preparation of the state |φ〉 above.

4 A Markov chain on subgraphs

In this section, we review a Markov chain simulation algorithm introduced and analyzed by Jerrum
and Sinclair [6]. The Markov chain is used in estimating conditional probabilities (cf. Section 3)
associated with the parity configuration |Φ̂〉 introduced in Section 1.1.

LetG = (V,E) be a labelled multigraph with a non-negative weight λe associated with each edge e ∈
E. Let n = |V |, and m = |E|. For a subgraph X ⊆ E, let w(X) denote the product

∏
e∈X λe, and

let %X ∈ Zn
2 denote its parity configuration (c.f. section 2). Let ν be a number between 0 and 1.

For a vector υ ∈ Zn
2 , let h(υ) denote the Hamming weight of υ.

Consider the problem of sampling from a distribution on the subgraphs of G, where a subgraph X ⊆
E is assigned probability πS(X) defined by

πS(X) =
w(X) νh(%X)

W
,

where W =
∑

X⊆E w(X) νh(%X) is the normalizing factor.

To show that we can efficiently sample from the distribution πS, we exhibit a rapidly mixing Markov
chain M, on the subgraphs X ⊆ E of the graph G which has this as its stationary distribution [7].

9



The transition probability p(X,Y ) from a subgraph X to another, Y , in the chain M is given by
the rules below:

p(X,Y ) =



1
2m min

{
1, πS(Y )

πS(X)

}
if X ⊕ Y = e for some e ∈ E

1−
∑

e∈E p(X,X ⊕ e) if Y = X

0 otherwise

Thus, a transition from a subgraphX is made by staying atX with probability a half, and otherwise
choosing a random edge e, and moving to the subgraph X ⊕ e according to the Metropolis rule [7].
This chain is clearly connected and aperiodic. The Metropolis rule ensures that the chain is also
reversible with stationary distribution πS. Thus, it only remains to show that the Markov chain is
rapidly mixing. By this we mean that the mixing time of the chain is polynomial in the diameter
of the underlying graph. Let us define the relevant quantities and the notation used in the analysis
of the chain M. Let P t(X, ·) = (pt(X,Y )) denote the probability distribution on subgraphs Y
obtained by simulating t steps of M, starting from subgraph X. The mixing time τX(ε) is the first
time t such that the distribution P t(X, ·) is within ε of the stationary distribution πS in `1 norm:∥∥P t(X, ·)− πS

∥∥
1
≤ ε. The distance from stationary distribution decreases monotonically in the

number of steps.

We show that M is rapidly mixing using a canonical paths argument [7, Section 12.3.1]. Given a
pair of subgraphs X,Y , we define a path γX,Y between them in the following manner. Consider the
graph Z = X⊕Y . Let the number of odd degree vertices in Z be 2k. We can thus partition Z into
exactly k walks and some number of cycles in a canonical manner. The subgraph X can then be
transformed into Y by successively XORing the edges in Z along the k walks and along the cycles,
again in some canonical order. This defines the unique path γX,Y between X and Y in the Markov
chain.

Each canonical path γX,Y is assigned a “flow” of πS(X)πS(Y ) |γX,Y |, where |γX,Y | is the length of
the canonical path. An upper bound on the mixing time of the Markov chain may be obtained by
considering the maximum “congestion” B on any transition (T, T ′) in M. For any set of canonical
paths Π, define

B = B(Π) = max
transitions (T,T ′)

1
πS(T, T ′)

∑
γX,Y ∈Π : (T,T ′)∈γX,Y

πS(X)πS(Y ) |γX,Y | ,

where πS(T, T ′) = πS(T ) p(T, T ′) is the stationary probability of the transition.

Theorem 4.1 (Sinclair [12]) Consider any finite, reversible, ergodic Markov chain with loop
probabilities p(x, x) ≥ 1/2 for every state x. Let Π be any set of canonical paths with conges-
tion B = B(Π). Then for any choice of initial state x, the mixing time τx(ε) satisfies

τx(ε) ≤ B ln
1

ε π(x)
,

where π(·) is the stationary distribution of the chain.

We therefore bound the congestion of the set of canonical paths Γ.

Lemma 4.2 The set of canonical paths Γ defined above has congestion B at most 2m2/ν4.
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Proof: Let b = 2m/ν4. It suffices to show that for each transition (T, T ′) in M,∑
X,Y : (T,T ′)∈γX,Y

πS(X)πS(Y ) ≤ b πS(T, T ′), (5)

Since |γX,Y | ≤ m for any canonical path, it follows that B ≤ m·b. To establish the bound in Eq. (5),
it suffices to associate with every pair X,Y such that (T, T ′) ∈ γX,Y , a distinct complementary
point UX,Y in the Markov chain M such that

πS(X)πS(Y ) ≤ b πS(T, T ′)πS(UX,Y ). (6)

We can obtain the bound in Eq. (5) by summing Eq. (6) over appropriate pairs X,Y and observing
that the sum of πS(UX,Y ) is at most 1.

In order to define UX,Y , we consider a subgraph from T, T ′ which occurs with smaller probability in
the stationary distribution πS. For concreteness, say πS(T ) ≤ πS(T ′); otherwise we work with T ′.
Let UX,Y = Z ⊕ T , where Z = X ⊕ Y . Each pair X,Y is mapped to a distinct point—given UX,Y ,
we can reconstruct Z = UX,Y ⊕ T ; further, the transition (T, T ′) tells us what edge was used to
make the transition, and the canonical processing order on the edges in Z helps us retrieve X and Y
from this information.

Notice that going from X to Y along the canonical path involves only the deletion of some edges
in X−Y , and the addition of some edges in Y −X. So any intermediate subgraph W on the path is
such that X ∩Y ⊆W ⊆ X ∪Y . Moreover, the complementary point U is given by U = X ]Y −W ,
where ‘]’ stands for multiset union. This in turn implies that

w(X)w(Y ) = w(W )w(U). (7)

Notice also that the odd degree vertices in Z = X ⊕ Y are exactly the vertices where X and Y
differ in parity. Thus XORing a walk from Z into X (or more generally, into an intermediate
subgraph W on the canonical path from X to Y ) corresponds to “correcting” the parity of the
two end vertices, while XORing a cycle preserves parities of all the vertices. On the other hand,
the parities in the corresponding complementary points U start out being the same as in Y , and
are successively “corrected” to those in X as we follow the canonical path. Thus, after XORing a
whole number of walks and/or cycles, we have

%W
i = %Y

i and %U
i = %X

i

or (8)
%W

i = %X
i and %U

i = %Y
i

for every vertex i. This immediately implies that

h(%W ) + h(%U ) = h(%X) + h(%Y ). (9)

However, if a walk has been traced out only partially, Eq. (8) may fail to hold for the vertex where
the processing was discontinued, introducing a discrepancy of at most 2 in Eq. (9). Similarly, the
property in Eq. (8) may fail to hold for the two end vertices of a partially processed cycle, leading
to a discrepancy of at most 4. Thus, we can assert that

h(%W ) + h(%U ) ≤ h(%X) + h(%Y ) + 4 (10)
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for every intermediate subgraph W (and the corresponding complementary point U) on the canon-
ical path from X to Y .

Combining Eq. (7) and (10) for the particular case of W = T and U = UX,Y , and noting that ν ≤ 1,
we get

w(X)w(Y ) νh(%X)+h(%Y )+4 ≤ w(T )w(U) νh(%T )+h(%U ). (11)

We divide both sides by W 2ν4. We have πS(T, T ′) = πS(T ) min{1, πS(T ′)/πS(T )}/2m = πS(T )/2m,
since we assumed that πS(T ) ≤ πS(T ′). This gives us Eq. (6) with b = 2m/ν4.
This lemma immediately gives us a bound on the mixing time of the subgraphs Markov chain M.

5 Constructing the parity superposition

Let G = (V,E) be a (simple) graph with n vertices and m edges underlying the Ising model with
interaction coefficients J ∈ RE . In this article, we are concerned with the ferromagnetic case, where
the interactions are all “co-operative”, i.e., Jij ≥ 0 for all edges {i, j} ∈ E. Recall from Section 2
that the parity superposition is defined as

|Φ̂〉 = 2n/2
∑

ρ∈{0,1}n

αρ|ρ〉, where

αρ = κ
∑

X⊂E : %X=ρ

w(X),

w(X) =
∏

{i,j}∈X

λij ,

λij = tanh
(
β

2
Jij

)
,

and κ is determined by the inputs, and is independent of the parity configuration ρ. Note that λij ≥
0, because the interactions are all co-operative. Thus, |Φ̂〉 has non-negative real amplitudes, which
correspond to a probability distribution µ on parity configurations ρ. We may therefore use the
generic technique developed in Section 3 to prepare this state. The technique asks for an algorithm
to approximate certain conditional probabilities associated with the distribution µ. We describe
such an algorithm below, based on the self-reducibility of µ.

The distribution µ assigns a probability to each parity configuration ρ ∈ {0, 1}n that is proportional
to weights w(ρ) given by

w(ρ) =
∑

X,Y⊂E : %X=ρ

w(X)w(Y ). (12)

This weight is essentially the square of the amplitude corresponding to ρ; we have only dropped
the factor 2nκ2, which is independent of the configuration ρ. Subgraphs X ⊆ E whose parity
configuration %X is ρ are called ρ-joins in the literature on graph theory.

Given a string y ∈ {0, 1}j , for some j = 0, 1, . . . , n − 1, we devise an algorithm A, an estimator,
that takes as input the pair j, y, and produces an approximation to the probability qy:

qy = Pr
ρ∼µ

[ρj+1 = 0 | ρ1 · · · ρj = y]. (13)
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The estimator is based on a Markov chain simulation algorithm S that samples from the distribu-
tion µy, which is µ conditioned upon the event ρ1 · · · ρj = y. (A linear time procedure to determine
whether the event ρ1 · · · ρj = y has non-zero probability is described below.) The distribution µy

assigns a probability to each parity configuration ρ ∈ {0, 1}n with prefix y that is proportional to
the weight given by Eq. (12). Parity configurations whose prefixes are not equal to y are given 0
weight. This reduction from estimation to sampling is standard and is a consequence of the Ho-
effding inequality in probability theory; we state this reduction as it applies in our case.

Lemma 5.1 Let δ, ε ∈ (0, 1/2]. Let S(y, ζ) be an algorithm that samples from a distribution P on
parity configurations such that ‖P − µy‖ ≤ ζ. There is an experiment A which uses a total number
of (independent) samples of the order of δ−2 log ε−1 from the distribution P generated by S(y, ζ)
with ζ = δ/16 and produces an output q̃y satisfying

Pr[|q̃y − qy| ≤ δ] ≥ 1− ε,

where qy is the conditional probability defined in Eq. (13).

The algorithm A produces as output q̃y the fraction of samples in which ρj+1 = 0. By the Hoeffding
inequality, this sample average is close to its expectation under the distribution P generated by S,
and therefore close to its expectation qy under the distribution µy.

We turn to the sampling algorithm S. The sampler works by reduction to the Markov chain
presented in Section 4. We construct a labelled multigraph G′ = (V ′, E′) from the given simple
graph G = (V,E), where we identify V with the set [n]. The multigraph G′ is essentially a disjoint
union of two copies of G in which we identify two copies of a vertex i ∈ [n] if i > j. It contains
some additional edges, as explained below. Formally, the new vertex set V ′ is defined as:

V ′ = {(i, 0), (i, 1) : i ∈ [j]}
∪ {i : j < i ≤ n} .

The new edge set is defined as:

E′ =
{{
i, i′
}

0
,
{
i, i′
}

1
: i, i′ > j and

{
i, i′
}
∈ E

}
∪
{{

(i, 0), i′
}
,
{
(i, 1), i′

}
: i ≤ j, i′ > j, and

{
i, i′
}
∈ E

}
∪
{{

(i, 0), (i′, 0)
}
,
{
(i, 1), (i′, 1)

}
: i, i′ ≤ j and

{
i, i′
}
∈ E

}
∪ Ẽ, where

Ẽ = {{(i, 0), (i, 1)} : i ≤ j and yi = 1} .

The subscripts 0, 1 on the first subset of edges indicate to which distinguished copy of G they
correspond. The other edges are implicity labelled by the labels on the incident vertices. The last
set of edges Ẽ above are additional edges not in the disjoint union of two copies of G. They are
introduced in G′ so that the following property is achieved.

Lemma 5.2 There is a one-to-one correspondence between pairs of subgraphs X,Y ⊆ E of G
with %X

i = %Y
i = yi for i ∈ [j] and Eulerian subgraphs of G′ which contain all the additional

edges Ẽ.

The proof of this lemma is straightforward and is omitted.
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The edges in E′ corresponding to an edge {i, i′} ∈ E are assigned the same weight λii′ . Let λ =
min{i,i′}∈E λii′ . The additional edges, those in Ẽ, are assigned weight Λ = 22m+nλ−2n2

. We claim
that among the Eulerian subgraphs in G′, those that contain Ẽ carry at least as much weight as
those that do not.

Lemma 5.3 Let

W0 =
∑

X⊆E′ : Ẽ⊆X, %X=0n

w(X), and

W1 =
∑

X⊆E′ : Ẽ 6⊆X, %X=0n

w(X).

Then,

1. There is a classical deterministic algorithm that decides if W0 > 0 in time O((n +m) log n),
i.e., in linear time.

2. If W0 > 0, then W0 ≥W1.

Proof: The condition W0 > 0 is equivalent to the existence of a set of h(y) many paths using only
edges in E′−Ẽ with start and end-points only among the vertices {(i, u) : i ∈ [j], yi = 1, u ∈ {0, 1}}.
(Recall that h(·) is the Hamming weight function.) This may be accomplished in linear time
through, say, a variant of depth first search.

Suppose W0 > 0. The number of vertices in the graph G′ is at most 2n, and the number of edges
is 2m + h(y). The weight on all the edges in E′ − Ẽ is at most 1, since the hyperbolic tangent
function is bounded by 1. Consider any Eulerian subgraph X0 ⊆ E′ such that Ẽ ⊆ X0 found by the
depth first search procedure above. The subgraph contains at most (2n− 1)h(y) edges other than
those in Ẽ—those in the h(y) many paths of length at most 2n−1 with end-points as above. There-
fore the weight W0 ≥ w(X0) = Λh(y)w(X0 − Ẽ) ≥ Λh(y)λ(2n−1)h(y). There are at most 22m+h(y)

subgraphs of G′. Those counted in the sum W1 do not contain at least one edge in Ẽ. There-
fore W1 ≤ 22m+h(y)Λh(y)−1. The ratio W0/W1 = Λλ(2n−1)h(y)2−2m−h(y) ≥ Λλ(2n−1)n2−2m−n ≥ 1.

The sampling algorithm S simulates the Markov chain M defined in Section 4 with the instance G′

constructed above to generate samples from the distribution µy. Its details are presented in Figure 3.

Step 2 is equivalent to finding a minimum cost S-join in the graph G̃ = (V ′, E′ − Ẽ), where S =
{(i, 0), (i, 1) : i ∈ [j], yi = 1}. An S-join is a subgraph of G̃ whose parity configuration is 1 exactly
for the vertices in S. The cost assigned to an edge e for this computation is log(1/λe), where λe is the
weight assigned to the edge e as above. Note that the edge costs are non-negative, as λe ∈ (0, 1).
The cost of a subgraph is the sum of the cost of the edges in it. So the minimum cost S-join
corresponds exactly to a maximum weight subgraph X0 as required in Step 2. We can compute
such an S-join efficiently.

Theorem 5.4 The minimum cost S-join problem on a graph with N vertices, M edges, and with
non-negative edge costs can be solved deterministically in O(NM +N2 logN) arithmetic operations
(on the edge costs).

A proof of this fact may be found in [9, Chapter 12], in Theorem 12.9 and the remark following
Corollary 12.11. We point out that the sampling algorithm S never fails in this step in the way
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Algorithm S(y, ζ).

1. Construct the labelled multigraph G′ with weights as described in this section.

2. Compute an Eulerian subgraph X0 ⊆ E′ such that Ẽ ⊆ X0 with maximum weight w(X0). If
no such subgraph exists, stop, and output “fail”.

3. Repeat T = 40 log 4
ζ times, independently: simulate the Markov chain M with parame-

ter ν = 1/ |V ′| for τX0(ζ/4) many steps, starting from initial state X0, and generate the
subgraphs Y1, Y2, . . . , YT .

4. Let Y be the first subgraph among {Yk}, if any, that is both Eulerian, and contains Ẽ. If no
such subgraph is generated, let Y = X0. Reconstruct the pair X̃, Ỹ of subgraphs of G that
correspond to the subgraph Y of G′, as per Lemma 5.2.

5. Output ρ = %X̃ = %Ỹ .

Figure 3: Details of the algorithm that samples parity configurations ρ from the distribution µy.

we use it, as we only invoke it when the distribution µy is well-defined, in particular when it has
non-empty support.

In Step 3 of the algorithm, we show that a sample of interest is generated except with small
probability, and when it is generated, it is close to the desired distribution.

Lemma 5.5 Let ζ ≤ 1/10. Except with probability ζ/4, at least one of the subgraphs {Yk} generated
in Step 3 in Algorithm S(y, ζ) is Eulerian and contains Ẽ. When such a subgraph is generated, its
distribution is at most 3ζ/4 away from µy in `1 norm. Therefore the distribution of the subgraph Y
from Step 4 is at most ζ away from µy.

Proof: The distribution generated by the Markov chain simulation differs from the stationary
distribution πS by at most ζ/4.

An argument as in the proof of Lemma 4 of [6] shows that under the distribution πS of the Markov
chain M, the probability that a subgraph is Eulerian is at least 1/10. Lemma 5.3 shows that with
at least half this probability, the Eulerian subgraphs contain the edges Ẽ. Therefore the proba-
bility of such a subgraph under the distribution generated by the Markov chain simulation is at
least 1/20− ζ/4 ≥ 1/40, as long as ζ ≤ 1/10. Thus, the probability that none of the T independent
samples is a subgraph of interest is at most (1− 1/40)T ≤ ζ/4. Given that a sample of interest is
generated, its distribution differs from µy by at most (ζ/4)/(1− ζ/4) ≤ 3ζ/4. The rest of the claim
follows.

We turn to the time complexity of the sampling alorithm S.

Theorem 5.6 The algorithm S with inputs y, ζ runs in time of the order of

n4(m+ n)2
(

log
1
ζ

+m

)
log

1
ζ
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arithmetic operations on O(n2 log 1
λ)-bit numbers.

Proof: We compute the time taken by the algorithm step by step. The first step takes linear time
in the size of the input G. The second involves O(nm+n2 log n) arithmetic operations on numbers
of size log(1/λ) in bits. By Theorems 4.1 and 4.2, the third step involves of the order of

40 log
4
ζ
× 2(2m+ n)2(2n)4 × ln

1
ζ πS(X0)

arithmetic operations on numbers represented with at most log Λ = O(2m+ n+ n2 log(1/λ)) bits.
Note that there are at most 22m Eulerian subgraphs in G′ that contain Ẽ. The one we chose as our
initial state, viz., X0, has the largest weight among these, and therefore probability at least 2−2m

of the net probability of such subgraphs (under the stationary distribution πS). As argued in
Lemma 5.5, this probability is at least 1/20. Therefore log(1/πS(X0)) ≤ 10m.

The fourth step takes time of the order of log(1/ζ)(n+m) log n.

The third step dominates and gives us the run-time.

It follows that the algorithm we present for approximating the Gibbs superposition is polynomial
in its run-time. A precise statement of its time complexity can be inferred from the intermediate
results in this manuscript and will be included shortly.
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