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Abstract

We present a general technique for proving NP-hardness (under randomized polynomial time
reductions) of string folding problems over a finite alphabet. All previous such intractability
results have required an unbounded alphabet size. These problems correspond to the protein
folding problem in variants of the hydrophobic-hydrophilic (or HP) model with a fixed number of
monomer types. Our proof also establishes the MAX SNP-hardness of these problems (again
under randomized polynomial time reductions). This means that obtaining even an approrimate
solution to the protein folding problem, to within some fixed constant factor, is NP-hard. Our
technique involves replacing the symbols of an unbounded alphabet by codewords over a fixed
alphabet, and has two novel aspects. The first is the essential use of the approximation hardness
of the source problem in the reduction, even for the proof of NP-hardness. The second is the
concept of spatial codes, a variant of classical error-correcting codes in which different codewords
are required to have large “distance” from one another even when they are arbitrarily embedded
in three-dimensional space.
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1 Introduction

1.1 Synopsis

This paper is concerned with string folding problems of the following type. We are given as input a string
or a set of strings over some alphabet. An embedding is a mapping of the strings into some given infinite
regular lattice (typically the 3-dimensional rectangular grid Z3) so that adjacent symbols of each string lie
on adjacent lattice sites, and no site is occupied by more than one symbol. The score of an embedding is the
number of pairs of equal symbols that lie at adjacent lattice sites (excluding pairs that are adjacent in the
strings themselves). Figure 1 shows an example embedding in Z? of a single string over the alphabet {0, 1}
with a score of four. Our task is to find an embedding of the strings that maximizes the score.

The motivation for these problems comes mainly from computational biology. One of the principal chal-
lenges in this field is to infer the 3-dimensional native structure of a protein (or a collection of proteins) from
its amino acid sequence. This problem has been investigated under a wide variety of models, each of which
attempts to emphasize different aspects of the problem. Perhaps the simplest, and combinatorially most
appealing of the widely studied models is the so-called “hydrophobic-hydrophilic” model, or HP model of
Dill [6, 7]. Here a protein is represented as a string over the two-letter alphabet {H, P}, with the symbol H
representing hydrophobic monomers and P hydrophilic (or polar) monomers. Conformations of the protein
correspond to embeddings of the string in Z3 (a discretization of 3-dimensional space). The folded state of
the protein is the embedding which maximizes the number of nearest-neighbour H-H contacts; this corre-
sponds to the minimum energy conformation under the assumption that hydrophobic interactions are the
dominant contribution to the free energy of the protein. Thus protein folding in the HP model corresponds
to our string folding problem over the alphabet {H, P}, in which the symbol P is “neutral” (i.e., does not
contribute to the score). The above string folding model is somewhat more general in that it allows a
larger set of monomer types (i.e., a larger alphabet), with only nearest-neighbour contacts between equal
types contributing to the score. This is precisely the model considered by Paterson and Przytycka [20, 21].

Protein folding is notoriously hard in any reasonable model, and it is natural to seek evidence for this
using the tools of computational complexity. Specifically, one would like to show that the problem is NP-
hard and hence, under standard assumptions, computationally intractable. Ngo, Marks and Karplus [17]
present a review of complexity results on the problem, and argue also that NP-hardness results can be
useful in exposing sources of difficulty for algorithm designers (see also [9, 12, 13, 16, 24]). A number of
NP-hardness results are known for HP-like models (see, e.g., [20, 21, 12]) but all of these have a serious
drawback: the alphabet size (i.e., the number of monomer types) is allowed to grow with the length of the
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Figure 1: An embedding of a 0-1 string in Z>.



input sequence, and hence is unbounded. This is clearly not in the intended spirit of these models. The
question of whether the problem remains NP-hard for a fixed alphabet has remained a significant open
problem for several years  see, e.g., [21, 12].

In this paper, we show that the string folding problem over a suitably large fixed finite alphabet is indeed
NP-hard (under randomized polynomial time reductions). To the best of our knowledge, this represents
the first intractability result for a truly bounded HP-like model. We actually show a much stronger
result: namely, that the string folding problem is MAX SNP-hard and hence, under the same standard
assumptions, cannot even be solved approximately to within some constant factor in reasonable time.!

Independently of this work, Crescenzi et al. [5] and Berger and Leighton [4] proved the NP-hardness
of string folding for the HP model in 22 and Z? respectively. While these results are stronger than
ours in that their alphabet size is the smallest possible, they apparently do not extend to hardness of
approximation. Their approach is also quite different from ours: rather than giving a general method for
replacing unbounded alphabets by finite ones, as we do, these authors construct intricate gadgets tailored
to the HP model in the 2-d and the 3-d rectangular lattices.

We believe that our techniques hold at least as much interest as the result itself. In order to explain the
techniques in the simplest possible setting, we begin with the problem of folding a set of strings. Our
starting point here is a reduction similar to one introduced by Paterson and Przytycka [20], in which an
unbounded alphabet is used. We reduce from the MAX SNP-hard problem MAx-Cut [19], which asks for
a cut of maximum cardinality in an undirected graph. Our first innovation is to exploit the approximation
hardness of MAX-CuT: namely, for suitable constants 0 < 8 < «a < 1, given a graph G with m edges
in which the maximum cut is guaranteed to be of size either at least am or at most gm, it is NP-hard
to determine whether G has a cut of size at least am. This strong result is a consequence of the recent
dramatic breakthroughs in approximation hardness pioneered by Feige et al. [8] and Arora et al. [3]. The
gap in the source problem MAX-CUT is apparently essential to our reduction. We believe this is the first
time that approximation hardness has been a key ingredient in establishing an NP-hardness result (as
opposed to a stronger approximation hardness result). Not surprisingly, our reduction also immediately
yields an approximation hardness result for string folding. A similar route, starting this time from the
MAX SNP-hard problem MAX-3SAT(3) [18], leads us to the hardness of approximation in the biologically
more relevant case of folding a single string. This result stands in interesting contrast to the work of Hart
and Istrail [10, 13] and Agarwala et al. [1] on polynomial time approximation algorithms for protein folding
in HP-like models.

The second interesting feature of our technique is the notion of a spatial code. In a conventional error-
correcting code, different codewords are required to have large distance from one another, where “distance”
typically means Hamming distance. In a spatial code, the notion of distance is generalized to take account of
the spatial arrangements of the codewords: informally, the “distance” between two codewords of length ¢
(viewed as strings over a finite alphabet) is b — s, where b is the Z3-bonding capacity of two strings of
length ¢, i.e., the maximum score achievable by any two strings of length ¢ when embedded in 23, and s
is the maximum score achievable by any embedding of the given pair of words in Z3. We believe that this
concept may be of independent interest.

In order to reduce from an unbounded to a finite alphabet X, we replace each symbol of the unbounded
alphabet by a codeword of suitable length over . For the reduction to work, we require that these
codewords form a good spatial code. We leave the efficient deterministic construction of spatial codes as
an intriguing open question. However, we show that randomly chosen codewords over a suitably large finite

IFor background on the complexity theoretic concepts used in this paper, see Section 1.3.



alphabet form a good spatial code with high probability. This fact completes our randomized reduction.

We should emphasize that our approach operates at a high level, and actually provides a general method-
ology for replacing an unbounded alphabet by a finite one in string folding reductions, provided that these
reductions are well-behaved. Since it has consistently proved much simpler to obtain hardness results with
an unbounded alphabet, we believe that this methodology is generally useful. The main requirement for
good behaviour is that the reduction be gap-preserving, i.e., that it should translate a constant factor gap
in the objective function of the source problem to a similar gap in the target problem. This property allows
us, in principle, to adopt the above approach of replacing symbols by letters from randomly chosen strings.
For the problem of folding a set of strings, it is very straightforward to come up with a gap-perserving
reduction over an unbounded alphabet. In the single string case, the task is a little harder; we show
how to accomplish it by modifying an existing reduction of Paterson and Przytycka [21], which is not
gap-preserving, so as to make it more robust. We believe that these two examples suffice to illustrate the
generality of our technique. Other variants of the string folding problem (e.g., based on different lattices)
can be handled in a similar fashion. We discuss possible extensions of our work in Section 4.

1.2 Statement of results

As described above, we consider the problem of embedding a set of strings in Z2 so as to maximize the
number of nearest-neighbour contacts between equal letters. For the purposes of studying its complexity,
we define two versions of the string folding problem. Let A be a fixed alphabet size. The decision version,
FoLDy4, is defined as follows: given a multiset of strings, S = {s1,...,s,,} over the alphabet {1,..., A},
and an integral threshold s, determine whether there is an embedding of the strings in the lattice Z3 such
that its score, i.e., the number of pairs of identical letters adjacent to each other in the embedding but
not adjacent to each other in the strings, is at least s. (We will refer to the adjacencies that contribute
to the score as bonds.) The problem MAX-FOLD4 is the optimization version of this problem, namely the
problem of finding the maximum score achievable by any embedding of the strings in the 3-dimensional
lattice Z3. The restrictions of these problems in which the input consists of a single string are referred to
as 1-ForLpy and MAX-1-FoLD4 respectively.

Our first result states that there exists a finite alphabet size A for which FoLD4 is NP-hard under
randomized polynomial time reductions. In other words, if there exists a (randomized) polynomial time
algorithm for FOLDy4, then there is also a randomized polynomial time algorithm for, say, the satisfiability
problem. We will in fact prove the stronger result that MaX-FoLD 4 is MAX SNP-hard under randomized
polynomial time reductions. This means that MAX-FOLD 4 is hard to even approrimate within a certain
constant factor. We can state these results more precisely as follows:

Theorem 1.1 There is a finite alphabet size A such that the following hold:
(i) if there exists a polynomial time algorithm for FOLD 4, then NP = ZPP;

(ii) for some constant v < 1, if there exists a polynomial time algorithm that approximates MAX-FOLD 4
within a factor of v, then NP = ZPP.

Part (i) of Theorem 1.1 is, of course, subsumed by part (ii), the approximation hardness result. To prove
part (ii), we present a randomized gap-preserving reduction from the MAX-CUT problem, which is known to
be MAX SNP-hard [19]. We then extend the technique employed in the proof to get our next (stronger)
result, namely, the hardness of approximating the single-string version MAX-1-FOLD 4:



Theorem 1.2 The statements of Theorem 1.1 hold also for the single string folding problems 1-FOLD 4
and MAX-1-FOLD 4, for a suitable finite alphabet size A.

The proof of this second theorem uses a reduction similar in flavor to that of Theorem 1.1, but starting
from the MAX SNP-hard problem MAX-3SAT(3), a version of MAX-3SAT in which each variable appears
in at most three clauses [18].

1.3 Complexity theory background and outline of proof techniques

For the benefit of those readers who are not familiar with the area, we present here a short explanation of
several basic concepts from complexity theory used in the paper. We do not attempt to do anything like
full justice to these ideas; for a more detailed exposition of these topics, see, e.g., [18, 2]. Readers who are
already familiar with ideas such as M AX SNP-hardness and randomized reductions may safely skip to
Section 1.4.

Following widely accepted conventional wisdom, we assert that a computational problem is intractable, or
does not permit efficient solution, if there is no polynomial time algorithm for solving it. P denotes the
class of decision problems (i.e., problems requiring only a ‘yes’ or ‘no’ answer) that have a polynomial time
algorithm. A host of problems from a wide variety of areas have defied decades of attempts at efficient
solution, and are believed not to be in P. In fact, even efficient randomized algorithms, which are allowed
to make random choices and are required to give the correct answer only with high probability, are not
known for these problems. Most of these problems belong to the abstract class NP. In order to give
evidence for the intractability of a problem, it has thus become standard to show that the problem is in
some sense “at least as hard as” any problem in NP. The theory of NP-hardness formalizes this idea.

A decision problem II is said to be NP-hard if every problem II' in the class NP can be efficiently reduced
to II (i.e., if there is a polynomial time algorithm—a reduction—that maps each input I’ for II' into an
input I for II such that I is a ‘yes’ instance of II if and only if I’ is a ‘yes’ instance of IT'). Of course, to
show NP-hardness, it is sufficient to exhibit such a reduction for just one problem II’ that is already known
to be NP-hard. A proof of NP-hardness constitutes compelling evidence that a problem is intractable,
since the existence of a polynomial time algorithm for the problem would imply that every problem in NP
can also be solved efficiently (i.e., that NP = P).

The notion of NP-hardness applies equally to optimization problems: if Il is an NP-hard optimization
problem, then any problem in NP can be reduced in polynomial time to IT, such that if an instance I’ of the
NP-problem is mapped to the instance I of 11, then the yes/no answer to I’ can be deduced efficiently from
the optimum value opt(7) of I. For optimization problems, however, we may be interested in the complexity
of obtaining only an approximate solution, within some specified factor of the optimum. An appropriate
notion of intractability, MAX SNP-hardness, was introduced by Papadimitriou and Yannakakis [19] for
the study of the complexity of approximation. We explain this concept below.

Let II be a maximization problem, and let v < 1. A y-approximation algorithm for 11 is an algorithm which,
given an instance I of II, produces a solution of I whose value is at least v times the value opt(I) of the
optimal solution of I. (There is an entirely analogous notion of approximation for minimization problems.)
MAX SNP is an abstract class of optimization problems that includes many natural problems which are
not only NP-hard to solve exactly, but also do not have efficient ~-approximation algorithms for some v < 1
(unless NP = P). The existence of such problems in MAX SNP is a consequence of recent breakthroughs
in the hardness of approximation, pioneered by Feige et al. [8] and Arora et al. [3]. We define the term



‘MAX SNP-hard’ recursively as follows. A problem II is said to be MAX SNP-hard if there is an efficient
gap-preserving reduction (as defined below) to IT from one such hard-to-approximate MAX SNP-problem,
or from another problem already known to be MAX SNP-hard.? In analogous fashion to NP-hardness,
the notion of MAX SNP-hardness captures the intractability of obtaining approximate solutions within
a constant factor.

It follows from the work of Arora et al. [3] that if IT is MAX SNP-hard, then there exist constants 0 <
B < a < 1 and an efficiently computable function f such that (unless NP = P) there is no polynomial time
algorithm that answers ‘yes’ on inputs [ of II with opt(I) > af(I) and ‘no’ on inputs I with opt(I) < Bf(1).
(The algorithm is not required to give a meaningful answer on other instances.) This is often expressed by
saying that it is NP-hard to distinguish instances with opt(/) > af(I) from those with opt(/) < Sf(I),
and we often refer to a — 3 as a ‘gap’ in the approximability of II. This stronger result clearly implies that
approximating II to within a factor greater than [/« is intractable. A canonical example is the problem
Max-Cur, which asks for a partition of the vertices of a graph into two parts so that the number of crossing
edges between the two parts is maximized. This problem is MAX SNP-hard with f(G) being the number
of edges in the input graph G, and the gap o — 3 = 1/22. As is shown in [23], given a graph with m edges,
it is NP-hard to decide whether the maximum cut has at least 17m/22 edges or at most 16m/22 edges,
and hence also to approximate the size of the largest cut to within a factor greater than 16/17.

We now define gap-preserving reductions precisely. Let II and I’ be two maximization problems, and
let f’ be a function on instances of II'. Furthermore, let o/ and 3’ be constants such that it is NP-hard
to distinguish instances of II" with opt(I’) > &/ f/(I') from those with opt(I') < ' f'(I'). A gap-preserving
reduction from II' to II is an algorithm that maps each input I’ for II’ to an input I for IT and satisfies the
following special property. There are constants 0 < 8 < « and an efficiently computable function f, such
that

1. if opt(I") > o f'(I") then opt(I) > af (I);
2. if opt(I") < B'f/(I') then opt(I) < Bf(I).

(Note that the behaviour of the reduction on other instances of II' can be arbitrary.) Thus the reduction
“translates” the gap o/ — 3 for I’ into a gap o — 3 for II.

To prove that a maximization problem Il is MAX SNP-hard, it suffices to give an efficient gap-preserving
reduction from some known MAX SNP-hard problem II' to II. This is essentially what we do in the
present paper. In order to show that MAX-FOLD4, the problem of folding a set of strings over a finite
alphabet of size A, and MAX-1-FOLDy4, the problem of folding a single string over a finite alphabet of size A,
are MAX SNP-hard, we present gap-preserving reductions from known MAX SNP-hard problems to
these problems. Let us briefly sketch how this goes for MAX-FOLD 4, using the MAX SNP-hard problem
Max-Cut mentioned above. First, it is a simple matter to give a gap-preserving reduction from Max-Cur
to MAX-FOLD,,, the problem of folding a set of strings over an unbounded alphabet; indeed, as we shall
see, the score of an optimal embedding in this reduction will be exactly equal to the size of a maximum
cut, so the constants a, 3 are exactly the same as o/, 3. To obtain a finite alphabet, we simply replace
each symbol of the unbounded alphabet with a string of symbols (or codeword) over the finite alphabet.
Suppose the codewords have length ¢ (which is not constant but depends on the input). Then, assuming
the codewords behave exactly like the symbols they replace, we would simply inflate the score of each
embedding by a factor of ¢. Thus we again have a gap-preserving reduction with the same gap a — .

>This definition of MAX SNP-hardness, which is adapted from [2], differs from that in [19, 18], but suffices for the
purposes of showing hardness of approximation.



Not surprisingly life is not quite that simple, because the codewords cannot be expected to behave exactly
like single symbols. Specifically, two unequal codewords will in general have some symbols in common, so,
unlike the symbols they replace, they may form bonds that contribute to the score. However we might
hope that, with a judicious choice of codewords, it is possible to limit such ‘unintended’ bonds to a small
constant fraction of the overall score. If this fraction is small enough, then we can still get a gap-preserving
reduction with a slightly smaller gap o« — 8. (The constant « will be unchanged, and 8 will be a little
larger than 3’ due to the effect of unintended bonds.) Note that what we require of the codewords is that
unequal codewords bond only very weakly with one another, no matter how hard they try by turning and
twisting around each other in space: this is a much stronger condition than that demanded of classical
error-correcting codes. We call a set of words with this property a spatial code. (The precise definition
of spatial codes, given in Section 2.2, is in fact slightly more complicated as it requires certain global
properties of all the codewords, and not just local properties of any pair.)

There is one further twist. Unfortunately we are not able to explicitly construct spatial codes in polynomial
time, so we cannot implement the gap-preserving reduction sketched above. However, we are able to
efficiently construct random sets of codewords which form a spatial code with high probability. (The phrase
‘with high probability’ here should be taken to mean ‘with probability tending to 1 as the size of the problem
input tends to infinity.”) This means that the algorithm we use in our MAX SNP-hardness reduction is
in fact a randomized algorithm, which works only with high probability. More precisely, condition 1 above
still holds with certainty, but condition 2 now holds only with high probability. To reflect this fact, we say
that MAX-FoLD4 is MAX SNP-hard under randomized reductions.

What consequences do randomized reductions have for our MAX SNP-hardness results? If MAX-FOLD 4
has an efficient y-approximation algorithm for a certain constant  close enough to 1, then we cannot quite
conclude (as in the case of non-randomized reductions) that NP = P. However, we can conclude that
every problem in NP has a polynomial time randomized algorithm. This algorithm will give the correct
answer with certainty on all ‘yes’ instances of the problem, and the correct answer with high probability
on all ‘no’ instances. The technical jargon for this conclusion is that NP C co-RP. (co-RP is the class
of decision problems that have a polynomial time randomized algorithm of the above form.) Using simple
complexity theoretic arguments, we can further conclude that every problem in NP has a randomized
algorithm that solves it without any error in expected polynomial time (or, in other words, NP = ZPP),
which is widely regarded as almost as unlikely as the conclusion NP = P, for essentially the same reasons.
This is precisely what we claimed about MAX-FOLD4 in Theorem 1.1.

To show that MAX-1-FoLp, is MAX SNP-hard under randomized polynomial time reductions (Theo-
rem 1.2) we take a similar route, starting this time with a gap-preserving reduction from MAX-3SAT(3)
to MAX-1-FOLD,,. We then convert it into a randomized gap-preserving reduction from MAX-3SAT(3) to
MAX-1-FoOLDy4, for a finite alphabet size A. The conversion this time uses a slightly more general notion
of spatial codes.

1.4 Organization of the paper

The rest of the paper is organized as follows. Section 2 is devoted to the analysis of the problem of folding a
set of strings. We begin in Section 2.1 by describing a very simple gap-preserving reduction from MaAXx-CuT
to MAX-FOLD., the version of the string folding problem in which the alphabet size is unbounded. We
then describe, in Section 2.2, a way of turning this into a reduction from MAX-CUT to MAX-FOLD4, for
some fixed finite alphabet size A, using a special class of codes that we call spatial codes. We know of no
efficient deterministic construction of such codes. However, in Section 2.3 we show that a random set of



sufficiently long words is, with very high probability, a good spatial code. By using such a random set of
words we thus get a randomized gap-preserving reduction from MAX-CUT to MAX-FOLD 4. For clarity of
exposition, our reductions will employ a neutral symbol; we show how we can eliminate the occurrences
of this symbol to arrive at our first result, Theorem 1.1 above, in Section 2.4. In Section 3, we turn to
the problem of folding a single string in Z3. We first extract, in Section 3.1, the essential elements of the
multiple-string reduction and then outline how a proof of hardness of MAX-1-FOLD 4 can be synthesized
from similar elements. Sections 3.2 and 3.3 fill in the details required to complete the description. We
conclude in Section 4 by discussing the limitations and possible extensions of our approach and some
directions for future work.

2 Folding a set of strings

2.1 A simple reduction

In this section we describe a very simple gap-preserving reduction from MAX-CUT to the string folding
problem using an unbounded alphabet. We call this (optimization) version of the string folding problem
MAX-FOLD«, and the decision version FOLD,. The reduction is similar to a reduction from NOT-ALL-
EQUAL-3SAT to FOLDy, given by Paterson and Przytycka [20]. (Note: this reduction does not appear in
the journal version of their paper [21].)

The input to the MAX-CUT problem is an undirected graph G = (V, E). The goal is to find a cut, i.e.,
a subset C' C V of the vertices, such that the number of edges that connect vertices in C with vertices
in V — C (the size of the cut) is maximized. It follows from the fact that MAX-Cut is MAX SNP-hard
that there exist constants 0 < 8 < a < 1, such that the problem («,)-Cutr of distinguishing graphs
with m edges that have a cut of size at least am from those that have cuts of size at most fm, is NP-
hard [3]. The best known lower bound for the ‘gap’ a — (3 is 1/22, as is implicit in [23]. We fix such a
pair a, (8 for the rest of Section 2.

Suppose we are given as input to MAX-CuT a graph G = (V| E) with n vertices, v1,...,v,, and m edges,
€1,...,em. Our reduction constructs a set of n strings Sg = {s1,...,s,} over the alphabet A/, the natural
numbers. The string s;, corresponding to the vertex wv;, is the concatenation of m blocks s;1,...,Simn,
corresponding to the m edges of G. The blocks s;; are defined as follows:

o — { ek if v; € ey,
iy .
*ok otherwise.

In this definition, each e; is a distinct letter from the alphabet, and ‘+’ is assumed to be a special (neutral)
symbol that does not contribute to the score. If such a symbol is not assumed to be part of the model, we
can simply replace each ‘*” with a distinct letter from the (unbounded) alphabet. Note that each of the
blocks s;; is of even length. We now claim:

Lemma 2.1 The graph G has a cut of size at least k if and only if there is an embedding of Sq in Z3
with a score of k.

Proof: Suppose that there is an embedding of Sg in Z3 with a score of k. The lattice Z3 is bipartite
and its points can be classified as being either even or odd. We now construct a cut (C; V — C) as follows.
Put the vertex v; in C' if the string s; starts at an even lattice point, and in V' — C' otherwise. The only



(b)

Figure 2: An idllustration of the reduction from MAX-CUT to string folding. The wavy lines stand for
padding consisting of *’s. (a) The two letters e; can bond iff their strings start at lattice points of opposite
parity. (b) Two codewords corresponding to an edge bond along the z direction.

$2

S3

Figure 3: A graph on three vertices, and an optimal embedding of the corresponding set of strings obtained by
applying the reduction described in Section 2.1. The embedding corresponds to the optimal cut ({1,3};{2}).
Note that there is no way to make the symbols e3 bond without altering the parity of the strings.

symbols in S that can bond are the symbols e; that correspond to the edges. Each such symbol appears
exactly twice and can therefore contribute at most one bond. Let e; = (vp,v,). If the two copies of e;
bond, then these two symbols are necessarily on points of the lattice with different parities. It is easy to
check that this implies that the starting points of the strings s, and s, have different parities. Thus, the
edge e; belongs to the cut. The size of the cut is therefore at least k.

Suppose now that the graph G has a cut (C;V — C) of size at least k. It is easy to place the strings
S1,...,Sp so that the two copies of e; can score if and only if the edge e; is in the cut. One way of
doing this is the following. The strings s1,...,s, are mostly made to lie in the x-y plane. The string s;
starts at point (24,0,0), if v; € C, and at (2i + 1,0,0), otherwise. The string s; is generally arranged to
be parallel to the y axis—all the blocks s;;, for which v; & e;, are placed at points whose y coordinates
are 2(j — 1) and 25 — 1. If the edge e; = (v,,v,) belongs to the cut, then the two copies of the symbol e;
are placed on lattice points with opposite parities. The padding with ‘*’s makes it easy for the strings s,
and s, to arrange a meeting between these two copies and then return to the line that they started in (see
Figure 2(a)). The score of such an embedding is clearly equal to the cut size. |

Figure 3 shows the instance of MAX-FOLD,, obtained when the above reduction is applied to a small



graph.

An immediate consequence of Lemma 2.1 is that the reduction from MAX-CUT to MAX-FOLD4, described
above is gap-preserving: graphs with cuts larger than am are mapped to sets of strings which are guaranteed
to have score at least am, and conversely, if every cut in a graph has size at most Sm the optimum score
of the corresponding set of strings is also bounded by 8m. We have thus proved that:

Theorem 2.2 (i) FOLDy, is NP-hard,
(ii) MAX-FOLDy, is MAX SNP-hard.

(Part (i) follows from the same reduction by setting the threshold score s = am for the FOLD, instance,

and from the fact that the problem (o, 3)-Cut is NP-hard.)

2.2 From the infinite to the finite

The reduction given in the previous section suffers from a serious drawback common to all previous hardness
results in HP-like models: it requires an unbounded alphabet. Our goal here is to obtain a reduction for a
fixed, finite alphabet. A natural approach is to try to replace each letter in the above reduction by a word
from an error-correcting code over a fixed finite alphabet. In order that the codewords emulate alphabet
symbols, we require that unequal codewords bond only very weakly with one another, no matter how hard
they try by turning and twisting around each other. Thus, the codewords of such a code, which we refer to
as a spatial code, must satisfy conditions that are much more stringent than those demanded of codewords
in classical error-correcting codes. We believe that this concept may be of independent interest. Before
formalizing it, we need the following definition.

Definition 2.3 (Intended and unintended score) Let S = {s1,...,s,} be a multiset of strings over
the alphabet {1,2,...,A}. A bond in an embedding of S, formed by the adjacency of the ii-th letter in sj,
and the ia-th letter in sj, is said to be intended if i1 = i3 and s;, = s;,, and unintended, otherwise. The
intended score of the embedding is the number of intended bonds formed, and the unintended score is the
number of unintended bonds formed.

Note in particular that, if all the strings in the set S are distinct, then all bonds in an embedding of S are
considered to be unintended. We are now ready for the definition of spatial codes.

Definition 2.4 (Spatial Codes) A set C' of m strings of length ¢ over the alphabet {1,..., A} is said to
be a (c, f)-spatial code if the unintended score of any embedding of the multiset consisting of ¢ copies of
each codeword of C in Z2 is at most f - 3cml.

Note that if we take ¢ copies of each of m strings of length ¢, we can always achieve a certain intended
score (of the form g.m¢, where g. is a constant depending on ¢) in an obvious way by aligning the copies
of the same string next to each other; e.g., for ¢ = 1,2, 3,4 we have g. = 0, 1, 2,4 respectively. But if the
strings constitute a (¢, f)-spatial code, then no matter how we embed the em strings we can only achieve
a relatively small additional (unintended) score (even if we are willing to sacrifice some of the intended
bonds): namely, at most a fraction f of the total bonding capacity of m strings of length ¢, which is clearly
bounded above by 3cmf. (The total number of letters in these words is emf, and in Z3 each letter can



bond with at most six other letters. This should be divided by two as each potential bond is counted
twice.)

To simplify the exposition we assume for the moment that the finite alphabet contains a neutral symbol “x’.
We denote the corresponding string folding problems by FoLDY and MAX-FoLD?. We show later, in
Section 2.4, how to eliminate the use of the neutral symbol; note that this is not a trivial matter as in the
case of an unbounded alphabet.

We now claim the following;:

Theorem 2.5 If a (2, f)-spatial code consisting of m codewords over the alphabet {1,2,..., A}, with f <
(v — B)/6, exists for each m and can be constructed in polynomial time (in m), then:

(i) FoLp} is NP-hard;
(ii) Max-FoLp% is MAX SNP-hard.

Note that we do not place any explicit constraint on the length of the codewords in the supposed (2, f)-
spatial code. However, since they must be constructible in polynomial time, their length must obviously
be polynomially bounded in m; and conversely their length cannot be too small as a function of m if they
are to satisfy the requirements of a spatial code.

Proof:  To prove part (ii) of the theorem, we define a gap-preserving reduction from MAX-CUT to
Max-ForLp?. The same reduction yields part (i) when applied to (o, §)-Cur (with the threshold score
set to am/).

Given a graph G = (V,F) with m edges, we construct a (2, f)-spatial code, C' = {ci,...,cp}, with
[ < (a—3)/6. We then follow the reduction described in the previous section, replacing each symbol e;
by the codeword c;. (Because of parity considerations, we actually have to assume that the c;’s have odd
length; if this is not the case, we can simply pad each c¢; with a single ‘+’ symbol.) Let {si,...,s} be the
multiset, of strings produced. The threshold score attached to this set is amf, where ¢ is the length of the
codewords.

Suppose first that the input graph G = (V, E) has a cut of size at least am. We show that the set of
strings produced has an embedding with a score of at least amf. This is easy: we can obtain such a score
by playing according to the rules laid out in the proof of Lemma 2.1. For every edge e; in the cut, we can
make the two copies of the codeword c; meet and score ¢ bonds (refer to Figure 2(b)). As there are at
least am edges in the cut, we get a total score of at least amd.

For the other implication in the reduction, suppose now that all the cuts of the input graph G = (V, F)
are of size at most fm. We have to show that the score of any embedding of the strings s1,...,sy, is less
than km/, for some constant x < «. Here we have to rely on the properties of the spatial code.

It is not difficult to see that the intended score of any embedding of the strings sq,...,s,, is at most Sm/.
This follows from the fact that the only intended bonds possible are bonds between corresponding symbols
of different copies of the same codeword. The claim then follows from the arguments given in the proof of
Lemma 2.1.

We now bound the unintended score of any embedding of si,...,s,,. All the active, i.e., non-neutral,
symbols in this set of strings are contained in the codewords. There are exactly two copies of each
codeword. By the definition of spatial codes, the unintended score of any embedding of sq,...,s,, is at

most f - 3ecmfl. As ¢ = 2, the unintended score of each embedding is at most 6 fmf.
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The total score of each embedding, which is the sum of the intended and unintended scores, is therefore
at most fml + 6fml. Since f < (o — [)/6 by assumption, the constant kK = § + 6f we get is less
than «, showing that the reduction is indeed gap-preserving. Thus MAX-FoLDY is MAX SNP-hard, and
approximating it within a factor of v > (84 6f)/« is NP-hard. [ ]

We do not know of any deterministic polynomial time algorithm for constructing the spatial codes required
in Theorem 2.5. Indeed, this seems like a challenging problem in its own right. We are, however, able to
show their existence and give a very simple randomized algorithm for their construction. As Theorem 2.6
of the next section shows, we can simply choose a random set of sufficiently long words over a sufficiently
large, but finite, alphabet. Together with Theorem 2.5 above, this immediately proves the NP-hardness
and MAX SNP-hardness of FOLDY and MAX-FoOLDY respectively, via randomized reductions. This very
nearly completes the proof of Theorem 1.1: the only remaining detail is to eliminate the use of the neutral
symbol ‘*’, which we do in Section 2.4.

2.3 Randomized construction of spatial codes

The probabilistic method is a widely used technique for proving the existence of combinatorial structures.
In fact, it was by this method that Shannon first showed the existence of good error-correcting codes [22].
In this section, we employ this technique to demonstrate that almost any set of strings over a sufficiently
large finite alphabet forms a good spatial code.

Before presenting the formal result, we first give a high level overview of the proof. Consider a set C
consisting of m strings, each of length ¢, which are chosen by assigning to each symbol a letter chosen
independently and uniformly at random from the alphabet {1,..., A}. For this to be a good (c, f)-spatial
code, we require that when c copies of each string in C' are embedded in Z3, the maximum unintended score
achieved (let us denote it by X) is at most f - 3em/l (cf. Definitions 2.3 and 2.4). Since the set of strings
is chosen randomly, the maximum unintended score X is a random variable. We claim that X < f-3cm/f
with high probability, and that most sets C' therefore form good spatial codes.

To see why this is the case, consider any fixed embedding £ of the strings, and the unintended score X¢ of
that embedding. Recall that two symbols at adjacent sites in the embedding contribute to the unintended
score only if they belong to different strings or if they belong to different positions in the same string. Any
two such symbols score when they are both assigned the same letters from the alphabet {1,..., A}. This
occurs with probability 1/A since the letters are chosen independently. Moreover, the number of favourable
pairs of symbols in any embedding is at most 3em/, the maximum number of adjacencies possible (cf. the
discussion following Definition 2.4). Thus, each X¢ is a sum of at most 3cm/ Bernoulli trials with bias 1/A.
By linearity of expectation, the ezpected unintended score F[X¢] is at most 3emf/A. Now, the maximum
unintended score X is the maximum of Xg, taken over all embeddings £ of the strings. If each X¢ is well
concentrated around its mean, which is bounded above by 3emf/A, we can expect X not to deviate far
from 3em/l/A. In fact, by the union bound we have

PrX > f-3eml < (#5)-mgax PrXg > f-3cmd,

where #& denotes the number of different embeddings of the strings. It is not difficult to see that the
number of different embeddings is at most exponential in cmf: each of the ¢ copies of the m strings
can be embedded in at most 6! different ways in 23, if its starting point is fixed, and all possible bond
combinations can be realized within a small (polynomial sized) region, so we need only consider a small
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Figure 4: Dependencies between unintended bonds arise in two ways. (a) Cycles: if bonds are formed
because the pairs of symbols (s1,$2), (S2,83) and (s3,84) are equal, then necessarily a further bond is formed
by (s4,81). (b) Repetition: due to the presence of multiple copies of the strings, all adjacencies between
different occurrences of the symbols s1 and sy either score or do not score simultaneously.

number of starting points. So we get

PrX > f-3eml < exp(O(cml)) - max PrXe > f-3cml . (%)
To get a meaningful bound from the above, we thus require an exponential (i.e., Chernoff-type) bound on

the tail probability of Xg.

Recall that for any embedding &, the random variable X¢ is a sum of at most 3cmf Bernoulli trials with
bias 1/A. These events are, however, not all independent, and so we cannot directly invoke the Chernoff
bound—consider the two situations depicted in Figure 4. Not surprisingly, however, the dependencies
between the events are of a very special nature, and so X¢ can be decomposed into a constant number of
sums of mutually independent random variables, to each of which we can apply the Chernoff bound. This
enables us to get a Chernoff-like bound of the following form for Xg:

PrXe > f-3eml < exp(—Q(In A)mf).
Substituting for this in (x), we get
PrX > f-3eml < exp(O(cml)) - exp(—Q(In A)yml).
Thus, if the alphabet size A is large enough, X < f - 3em/ with high probability.

We summarize this in Theorem 2.6, and in its proof we formalize the informal argument presented above.

Theorem 2.6 Let C be a set of m random strings of length ¢ over the alphabet {1,2,...,A}. Then, for
every fired ¢ > 1 and f > 0, there exist constants aq > 0 and ag > 0 (determined by ¢ and f) such that if
{>1nm,

Pr[C is a (c, f)-spatial code] > 1— e (mlnd-az)ml,

In particular, for every fired ¢ > 1 and f > 0, if A is large enough and £ > Inm, then most sets of m
strings of length € over the alphabet {1,2,..., A} are (¢, f)-spatial codes.

12



Proof: Let C be a set of m random strings of length ¢ over the alphabet {1,2,...,A}. Let C¢ be the
multiset composed of ¢ copies of each “codeword” in C. We have to show that, with very high probability,
the unintended score of any embedding of C° is at most f - 3cm/.

We can consider each letter in each codeword of C' to be a random variable, independently and uniformly
distributed over the set {1,2,...,A}. For an embedding &£ of the multiset C¢ in Z3, we let X¢ denote the
random variable giving the unintended score of this embedding.

Consider an embedding £ of the multiset C° in Z3. The adjacency graph of this embedding is the graph
whose vertex set is the set of cm? symbol positions in the strings in C'°. Two such positions are connected
by an edge in the graph iff they are adjacent in the embedding but not in the strings. For the purposes of
analysing the score in any embedding, it is clearly enough to examine the corresponding adjacency graph,
rather than the embedding itself: two embeddings with the same adjacency graph have both the same
intended score and the same unintended score, and hence the same score.

With this observation, the theorem follows almost immediately from the following two lemmas.

Lemma 2.7 Let € be an embedding of the multiset C¢ in Z3. Then, for some a1, a3 > 0 that depend only
on ¢ and f, we have

Pr[XS 2 f . ?)Cmg] S e_<a1 lnA—ag)mf )

Lemma 2.8 If ¢ > Inm, then the number of different adjacency graphs of embeddings of the multiset C°
in 2% is at most €™ | for some ay > 0 that depends only on c.

To complete the proof of Theorem 2.6, we note that the probability that C' is not a (¢, f)-spatial code is
bounded by the number of possible adjacency graphs times the probability that the spatial code condition
is violated for a particular adjacency graph. The above two lemmas provide bounds on these two quantities.
Combining them gives

Pr[ C is not a (c, f)-spatial code ] < eM™m. gm(arlnd=ag)mt  _ - o=(orlnA—az)mt

for £ > Inm, where as = a3 + a4. This completes the proof of Theorem 2.6. [ |

Proof of Lemma 2.7: Consider an embedding € of C¢ in Z3. Let G be the adjacency graph of the
embedding. The number of possible unintended bonds in the embedding £ is clearly at most the number
of edges in G, which is at most 3ecmf. Consider a possible unintended bond. The two symbols that may
form this unintended bond are assigned letters independently from the alphabet; otherwise the bond is
intended. Therefore, the probability that each possible unintended bond materializes is exactly 1/A. The
expected number of unintended bonds is, therefore, at most 3cmf/A. If all possible unintended bonds
were independent, then we could easily finish the proof using the Chernoff bound. However, some of these
bonds are dependent. Two factors (also illustrated in Figure 4) lead to these dependencies. The first is
that each codeword is duplicated ¢ times. The second is that the lattice Z3 contains cycles, so that the
possible unintended bonds would be dependent even if the codewords were not duplicated.

We can, however, sidestep the dependency problem in the following way. Let G’ be the collapsed adjacency
graph of C¢. This graph is formed from the adjacency graph G by identifying the ¢ vertices that correspond
to the same symbol in the ¢ copies of a codeword. The collapsed adjacency graph is in fact a multigraph,
since we do not remove parallel edges that may be formed by this identification process (though we do
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ignore the self-loops; these correspond to intended bonds). As each position in a codeword can bond with
at most six other positions (actually at most four, unless it is a first or last symbol of a codeword, in which
case the number is five), the degree of G’ is at most d = 6c.

As the degree of G’ is at most d, its arboricity is at most d. This means that the edges of G’ can be
decomposed into at most d forests. An easy way to see this is the following. Choose any spanning forest
of G’ and remove its edges from the graph. This reduces the degree of each non-isolated vertex by at least
one. Repeat the process until no edges are left in the graph. Now let Fp, Fs, ..., Fy be the forests obtained
in this way. (The last few F;’s may be empty.) The following claim is now easily verified.

Claim 2.9 The set of possible unintended bonds that correspond to the edges of a forest F; in the collapsed
adjacency graph G' are mutually independent.

Thus, the total number of unintended bonds is the sum of d binomially distributed random variables. We
can therefore finish the argument using the following variant of the Chernoff bound.

Lemma 2.10 Let X = Zi-“:l X;, where each X; is a binomially distributed random variable. (The random
variables X; are not necessarily independent.) Let p = E[X]. Then, for every B > 0 we have

PrX > B] < k.o(i) %

Proof: If X > B, then there exists an ¢, such that X; > B/k. So,

Pr(X > B] < k-max Pr(X; > £]. ()

The conventional Chernoff bound easily implies that if Y is a binomially distributed random variable with
mean E[Y] then

PrlY > B] < o7 E)B

Thus, if p; = F[X;] < p, then

B B
Pr(X; > 2] < I EDE < O %

The bound of the lemma is obtained by combining this bound with (xx) above. |

We apply Lemma 2.10 to the family of random variables { X; }, where Xj is the unintended score contributed
by the edges in the forest F;. We can thus take £k = d, B = 3cfmf and p < 30—2”5. With these values,
Lemma, 2.10 gives

Pr[ Xe > f-3eml] < d-e(lnig)2
< e_(al In A—asz)mé
for suitable choices of a; > 0 and a3 > 0. This completes the proof of Lemma 2.7. m

Proof of Lemma 2.8: It is not difficult to see that any possible adjacency graph can be realized when
the em strings of C¢ are placed in a emf x emf x emf box in Z3. (Note that em/ is the total length of all
the strings.) For each string, we therefore have only (emf)? different starting points. Ignoring the effect
of the other strings, each string can then be embedded in at most 6/~ ways (in fact, at most 6-52 ways,
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or O(v*~1) ways, where v ~ 4.68 is the connective constant of self-avoiding walks in Z2 [14]). The total
number of adjacency graphs is therefore at most ((cmf)36¢)°™. Since we assume that £ > Inm, this is less
than e®™¢ for some large enough ay that depends only on c¢. This completes the proof of the lemma.
|

Remark: To get an idea of how large Theorem 2.6 requires A to be for the existence of a (¢, f)-spatial code,
we can explicitly calculate the constants posited by Lemmas 2.7 and 2.8, and plug in the best known value
of 1/22 for the gap a — 3, implicit in [23]. Doing this gives us a lower bound on A of something like 103,
an extremely large (though constant!) value. We could improve this bound very substantially with a more
careful analysis, but this would not be sufficient to reduce it to realistic biological proportions (of, say, 20,
which is the number of different amino acid types). [ |

Our randomized construction of spatial codes does not give us an unconditional version of Theorem 2.5,
but it does yield the slightly weaker result that FoLp% is NP-hard under randomized polynomial time
reductions, and similarly for the MAX SNP-hardness of MAX-FoLD%. As pointed out before, these
results follow essentially from the reduction described in the proof of Theorem 2.5, except that we use a
randomly chosen set of words to replace the letters e;. The rest follows immediately from Theorem 2.6.
Note that the randomization introduces a one-sided error in the reduction. If the FOLD? instance is
obtained from a positive instance of (o, 3)-CuT, it achieves the threshold of am¢ with certainty. If, on the
other hand, it is obtained from a negative («, 3)-CUT instance, it scores at most (8 + 6f)m¢ with high
probability, but not with certainty. This implies that if FOLDY can be solved in polynomial time, then
NP C co-RP. As mentioned in Section 1.3, this further implies that NP = ZPP.

This leaves us but a small technical step away from the proof of our first main result, Theorem 1.1: that
of eliminating the ‘*’s in the reduction to MAX-FoLD%. We deal with this in the next short subsection.

2.4 Eliminating the neutral symbols

Our strategy for eliminating the neutral symbols from the reduction is to replace them with pieces of string
over the alphabet {1,..., A} that bond very weakly with each other and with the rest of the substrings
occurring in the MAX-FoLDY instance. In view of Theorem 2.6, it would be natural to assign random
symbols from the alphabet to each occurrence of a ‘x’, and to expect that this weak bonding property is
achieved. This is indeed the case, provided the neutral symbols account for at most a constant fraction of
the total length of the strings.

The total length of the strings obtained in the reduction from a graph with n vertices and m edges is
(2n —14¥4) - 2m + 2 - mn, of which 2m¢ symbols are active and (2n — 1) - 2m + 2mn symbols are neutral.
If neutral symbols are allowed, then as we have seen it is sufficient to take ¢ > Inm (as required for the
existence of a good spatial code in Theorem 2.6). However, with this value of ¢ only a negligible fraction
of the symbols in the strings are active. In order to make a constant fraction of the symbols active, we
now choose the larger value ¢ = n (we assume here, for simplicity, that n is odd). With this choice, the
total length of the strings becomes at most 8mn while the number of active symbols becomes 2mn, so
at most 75% of the symbols are neutral. Note also that the bonding capacity of the strings is at most
8mn - 3 = 24mn = 24m/l.

We can now prove variants of Lemmas 2.7 and 2.8 that state that, with high probability, the number of
unintended bonds in any fixed embedding of the resulting multiset of strings is a small fraction of the total
bonding capacity of the strings, and that the number of different adjacency graphs of the strings is still
relatively small.
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Very briefly, the proofs go as follows. By arguing as in the proof of Lemma 2.7, we can show that the
probability of the unintended score in any fixed embedding exceeding a fraction f of the total bonding
capacity 24ml is at most e~(@smA—ae)ml o1 some positive constants as and ag. If we follow the line of
reasoning in the proof of Lemma 2.8, we can show that the number of adjacency graphs for this new set
of strings is < (8mf)3"6%™, which is at most e*™™ for az a large enough constant. Combining these two
bounds as before we conclude that, for a sufficiently large value of A, the maximum unintended score of the
set of strings is at most f - 24m/¢ with high probability. Theorem 1.1 now follows immediately by choosing
f < (a—B)/24 and setting v = (8+ 24f)/c.

3 Folding a single string

In this section, we extend our techniques to show that the problem FOLD4 of the previous section remains
NP-hard under randomized polynomial time reductions even for a single string (rather than a set of
strings), for a suitably large finite alphabet size A, as claimed in Theorem 1.2. This single-string version
of the problem, which we refer to as 1-FOLD, is the one most commonly studied in computational biology
(see, e.g., [21]).

3.1 Generalizing the technique

We begin by outlining our overall strategy, which the reader should recognize as a generalization of the
approach of Section 2. Indeed, this material is motivated not only by the inherent importance of single
string folding, but also by our wish to illustrate the generality of our techniques. We shall comment more
on this at the end of this subsection.

Our strategy proceeds as follows:

1. We start with a gap-preserving reduction from a MAX SNP-hard problem to
Max-1-FoLbp}_, the single string folding problem over an unbounded alphabet with a neutral sym-
bol. We assume that in this reduction each active symbol appears no more than c times, for some
constant c¢. The gap-preserving nature of the reduction implies the following: there are constants
0 < p < o such that it is NP-hard to distinguish instances of MAX-1-FoLD}  that have a score of
at least oM from those that have a score of at most pM, where M is the total number of active
symbols in the instance of MAX-1-FoLD_. (In the case of MAX-FoLD_, in Section 2.1 we gave such
a reduction from MAX-CuT with ¢ = 2 and p = /2, 0 = «/2, where «, 5 are the gap factors for
Max-Cur.)

2. Next we show that there are constants 0 < p’ < ¢’ such that it is NP-hard to distinguish instances
of Max-1-FoLp}, that have a score of at least o/L from those that have a score of at most p'L,
where L is now the total length of the instance, counting both active and neutral symbols. The
rationale for this is the following. In the randomized construction of Section 2.3 we traded off the
number of embeddings (or adjacency graphs) against the probability that the unintended score of
some embedding overwhelms the gap (see Lemmas 2.8 and 2.7). Since the number of embeddings
here is clearly exponential in the string length L, we need the large deviation probability for the
unintended score to be exponentially small in L. For this, we require that the gap be a constant
times L. (We shall see how this works in more detail under point 3 below.)
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To get such a gap, we replicate the active parts of the strings produced by the reduction above.
We assume that the active parts of these strings are organized in short (constant-length) contiguous
chunks which correspond to gadgets used in the reduction. A string s produced by the above reduction
is of the form

Cp ~C~C3 Y- ~VC

where cq1,co,...,c; are the active chunks and ‘~’

such a string into a string s’ of the form

represents a long padding string. We transform

c%ic%i"'icgNcéicgi"'icgNc%icgi"'icgN"'Nc]]éicii"'ic"e; s
where c}, ... ,cf are replicas of ¢;, and ‘—’ represents a short (constant-length) padding string. If X
is the set of active symbols used in the original chunks cj,cg,...,c, we choose £ disjoint copies
¥1,...,5¢ of ¥. For every 1 < j < /¢, the chunks ¢],c},....cj are obtained from the original
chunks cy,ca,...,c; by replacing each active symbol of 3 by its equivalent in ¥;. (In the case of

MAX-FoLDY, the chunks were simply individual symbols e;, and the replication involved replacing
each one by a contiguous codeword of length ¢, with padding strings of zero length inbetween.)

As a result of this /-fold replication, the optimal score of the string is multiplied by ¢. (This property
is mot guaranteed to hold in general, as the short padding between copies of the same chunk may
not be sufficient to allow the bonds in all £ copies to be formed, and at the same time, an individual
copy may be able to score more; but it will hold in our case.) In the process of this replication,
the lengths of the long padding strings, represented by ‘~’ above, are not increased. Therefore, by
making ¢ sufficiently large (taking ¢ to be the length of the original string is more than enough), we
ensure that at least a constant fraction of the symbols in the resulting string are active, and that
the optimal score is at least a constant times the total length. This gives us a gap whose size is a
constant times the total length, as desired.

. Finally, we show that MAX-1-FoLD remains MAX SNP-hard when the unbounded alphabet is
replaced by a sufficiently large finite alphabet. In other words, we show that MAX-1-FoLD% is
MAX SNP-hard, under randomized reductions, for some finite alphabet size A. A small additional
step shows that the same holds for MAX-1-FOLD 4, where no neutral symbols are available (and the
constant A is now a little larger).

Let X/ = ngl ¥; be the set of all active symbols in the string s’ obtained as above. We construct
a string s” by replacing each symbol of ¥/ by a random letter from the finite alphabet {1,2,..., A},
where A is a sufficiently large constant. Clearly, the optimal score of s” is at least as large as the
optimal score of s’. Thus, if the optimal score of s’ is at least o’L, where L is the length of s’, then
the optimal score of s” is also at least o’ L. We show, on the other hand, that if the optimal score of
s’ is at most p/L, then with very high probability the optimal score of s” is less than o’L.

To show that the optimal score of s” is not much larger than the optimal score of s’, we use an
analysis similar to the one carried out in Section 2.3. More specifically, let X¢ be the unintended
score of the embedding £ of s” in Z3. (A bond in s” is now said to be unintended if it involves
two positions whose symbols in s’ are unequal.) Recall that each symbol of ¥’ appears in s” only a
constant number of times. For every f > 0, there exist some constants a1, a3 > 0 such that

Pr[Xg > f-3L] < e (amA-as)l

This follows exactly as in the proof of Lemma 2.7, which relies only on the fact that the degree of
the collapsed adjacency graph is bounded by a constant. As the number of different embeddings of
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s” is at most 5%, we get, as in the proof of Theorem 2.6, that
Pr[Xe < f-3L forall ] > 1— e (o1lnd-a)l

for some constants a1, as > 0. This probability approaches 1 if we take A to be a sufficiently large
constant. By choosing the constant f to be less than (¢/ — p)/3, we can make the unintended score
of every embedding small compared to the gap (¢’ — p’)L, with high probability. This completes the
randomized reduction, and shows that MAx-1-FoLp} is MAX SNP-hard. We can dispense with
the neutral symbol ‘x’ exactly as in Section 2.4.

Remark: As mentioned earlier, the approach used here to deal with single string folding is a generalization
of that used in the previous section to deal with multiple string folding. The new complication arises in
the replication process (point 2 above). In the case of multiple string folding, the simplicity of the original
gap-preserving reduction allowed us to formulate the replication process in terms of the natural concept of
spatial codes. This concept allowed us to isolate the role of randomness in the reduction. It is possible
to broaden the definition of spatial codes to fit the generalized scenario described above, thereby again
isolating the role of randomness in the reduction. However, as this broader definition does not appear to
be as natural as the original one, we will not present it here. [ |

Having outlined our strategy, we fill in the details in the following two subsections. Our main task will
be that in point 1 above, namely establishing a gap-preserving reduction for the problem MAX-1-FoLD
over an unbounded alphabet. Existing reductions for single string folding problems do not have the gap-
preserving property, and a simple construction such as the one we used for multiple strings in Section 2.1 is
apparently not sufficient. Therefore, we will have to do a little work here, which we describe in Section 3.2.
Once this is done, the rest of the above procedure will go through more or less automatically; we provide
the details in Section 3.3.

Before proceeding with this, however, we take the opportunity to emphasize the generality of the above
approach. Essentially, it provides a way of translating hardness results in an unbounded alphabet model
to results in the same model with a fixed finite alphabet. This appears to be a useful technique because it
is much simpler to “program” a reduction over an infinite alphabet, where certain gadgets can be assumed
not to interact because they have no symbols in common. Almost all that is required for our technique
to work is that the reduction to the unbounded alphabet model be gap-preserving, and consist of gadgets
that allow for replication. Most significantly, the technique is independent of the details of the model.
Thus for example it is robust not only with respect to the number of strings (as we have seen), but also
with respect to variations in the lattice and (to some extent) the scoring function.

3.2 A gap-preserving reduction over an unbounded alphabet

MAX-3SAT is the problem of computing the maximum number of clauses that can be satisfied simulta-
neously, given a SCNF Boolean formula. A SCNF formula consists of a conjunction of clauses which
are disjunctions of at most three variables or their negations. We start from MAX-3SAT(3), a version
of MAX-3SAT in which each variable occurs at most three times in the whole formula. This problem is
known to be MAX SNP-hard (see, for instance, Theorem 13.10 of [18]). It then follows from the work of
Arora et al. [3] that MAX-3SAT(3) is NP-hard to approximate within some constant factor v < 1.

We now present a gap-preserving reduction from MAX-3SA1(3) to MAX-1-FoLD},. Given a MAX-3SAT(3)
instance ¢ with m clauses C1,Ca,...,Cy, over the variables x1,...,z,, we construct a string s, over the
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unbounded alphabet A/ (with a neutral symbol ‘+”). The string s, consists of a rod-flap combination (see
Figures 6 and 7) of constant size for each variable, and a ligand, also of constant size, for each clause (see
Figure 5). The rod-flap combinations are connected in sequence with constant length padding (strings
of ‘+’s) inbetween, and the m ligands are attached to the resulting string in sequence with ©(m) padding
for each ligand. The symbols appearing in different ligands and in different rod-flap combinations are
all distinct, with the exception of clause symbols c;j, one for each clause C;, which occur both in the
corresponding ligand and in the (at most three) rods corresponding to the variables that occur in that
clause. Thus, apart from bonds internal to the ligands and to the rod-flap combinations, the only other
bonds that can be formed are between related ligands and rods.

The clause symbols in a rod are placed on one of two opposite edges of the rod depending on whether
the variable occurs positively or negatively in the clause. The rod-flap combination is so designed that, in
its optimal embedding, the flap completely covers one of these two edges of the rod and leaves the other
exposed (see Figure 8). The choice of which edge to expose corresponds to making a truth assignment
to the associated variable: in the optimal embedding of the string, the clause symbols along the exposed
edge of each rod are available for bonding with the corresponding ligands (thus “satisfying” the clause).
The ©(m) padding with which the ligands are connected to the rest of the string is sufficient to allow them
to reach any rod for bonding. We ensure that all the rods have the same parity, which is opposite to that of
the ligands. This prevents the same clause symbol in different rods from bonding while permitting bonds
between rods and ligands. Furthermore, the construction of the gadgets ensures that there is no profit in the
ligands bonding with more than one rod, or in the rod-flap pairs deviating from their intended embedding.
This means that the score of the optimal embedding of the string precisely reflects the maximum number
of clauses simultaneously satisfiable in the MAX-3SAT(3) instance, leading to a gap-preserving reduction.
Figure 9 sketches an optimal embedding of the entire string.

Remark: This reduction owes its origins to an earlier reduction of Paterson and Przytycka [20, 21],
from 3SAT to 1-FOLD.,. Our main innovation here is to make the reduction gap-preserving, the essential
ingredient being the constant-size rod-flap combinations which replace the long “teeth” of Paterson and
Przytycka. We note in passing that, in addition to the “helices” (used in the rods) and the “ligands”,
variants of which were already present in the earlier reduction, our reduction includes a third biological
motif, namely the “sheets” used in the flaps. It is unclear whether the presence of these motifs has any
biological significance. [ |

We now proceed to give the details of the construction described informally above.

The ligand

Each ligand consists of a string segment of length 18, with the symbols occurring in the pattern shown in
Figure 5. Ligands corresponding to different clauses are built out of disjoint sets of symbols. The symbol ‘c’
indicates the position where the associated clause symbol c¢; should occur. The ligand is designed so that,
in order to achieve the maximum possible score, it has to fold in a unique fashion (up to reflection and
rotation). Moreover, this fold is highly robust in the sense that at least two bonds are broken in any
non-optimal embedding.

Proposition 3.1 A ligand string has a unique optimal embedding with a score of 11. Moreover, any
non-optimal embedding of the ligand has a score of at most 9.

We defer the proof of this fact to the Appendix.
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Figure 6: The symbol pattern in a rod. The rod is shown in one of its two optimal embeddings.

Note that the optimal embedding of the ligand leaves only one vacant site adjacent to the clause symbol.
Thus the above robustness property ensures that, if the ligand bonds with more than one rod, then it loses
at least two bonds in the process. But since the ligand can bond with at most three rods (namely, those
corresponding to the variables occurring in its clause), this ensures that any advantage gained from its
bonding with more than one rod is canceled by the bonds broken within the ligand. Thus we may assume,
w.l.o.g., that each ligand bonds with at most one rod, and that the maximum score achievable by all bonds
involving the ligand is 12.

The rod-flap combination

The string sy has a rod-flap combination for each variable x;. A rod gadget consists of a string with the
symbol pattern shown in Figure 6. This is a slight modification of the helical “tooth” construction of
Paterson and Przytycka [20, 21]. The ‘c’s indicate the positions of the three symbols corresponding to the
clauses in which the variable x; occurs. Note that we can assume, w.l.o.g., that no variable occurs only
positively or only negatively in the formula, so that there is always one occurrence of one type (positive or
negative) and two of the other. The clause symbol corresponding to the lone occurrence is placed between
the other two on the string.

A flap gadget has the symbol pattern shown in Figure 7. The symbols along the top and bottom lines in
this figure bond with the symbols on the corresponding rod. The remaining symbols cause the flap to fold
like a “sheet” (in the language of protein motifs).
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Figure 8: One of the two possible optimal embeddings of a rod-flap combination. Only symbols involved in
bonds between the rod and the flap are shown. The ‘c’s indicate the positions of clause symbols.

The combination of a rod and its associated flap has only two distinct optimal embeddings (up to rotation
and reflection), one of which is shown in Figure 8. In the other optimal embedding, the flap is wrapped
around the other two faces of the rod. In the embedding shown, the edge with two clause symbols
(corresponding to two negative or two positive occurrences of the variable) is covered and the opposite
edge is exposed. This situation is reversed in the other optimal embedding.

Proposition 3.2 Fach rod-flap combination has exactly two optimal embeddings, with a score of 34.

Proposition 3.2, whose proof is again deferred to the Appendix, actually implies that in any optimal
embedding of the entire string s, we may assume w.l.o.g. that every rod-flap combination is itself optimally
embedded, and hence corresponds to a valid assignment of a truth value to the corresponding variable. In
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particular, it is not advantageous for the combination to “cheat” by exposing clause symbols on both of
the two opposite edges of the rod.

To see this, note first that by the discussion following Proposition 3.1 we may partition the ligands into
classes according to the (unique) rods they bond with. Call the string portions corresponding to a rod-flap
combination and its bonding ligands a “unit.” There can be no bonds between different units. In particular,
rods carrying the same clause symbol do not bond because of parity considerations mentioned above. Since
the ligands are equipped with ample padding, we can rearrange the embedding without changing its score
so that different units occupy disjoint regions in Z3.

Now focus on a single unit, and suppose that its rod-flap combination is not optimally embedded, i.e.,
does not correspond to a valid truth value assignment to its variable. We claim that we can rearrange this
embedding to be optimal without decreasing the score. Suppose the number of clause symbols in this rod
that bond with ligands is k£ (so 0 < k < 3). Now a moment’s thought should convince the reader that at
least one of the two optimal embeddings of the rod-flap combination has the property that it leaves exposed
at least [k/2] of these clause symbols. So if we rearrange the combination according to this embedding,
the number of bonds between clause symbols that we lose is at most £ — [k/2] = |k/2] < 1. On the
other hand, since the embedding of the combination is now optimal, by Proposition 3.2 we gain at least
one bond. Hence we may assume that each rod-flap combination is itself optimally embedded in every
optimal embedding of s,.

Putting the gadgets together

It remains only to specify how the above gadgets are assembled together into a single string. The string s
is constructed by concatenating n rod-flap combinations (one for each variable in ¢) and m ligands (one for
each clause in ¢) built using disjoint sets of symbols (save for the clause symbols, which occur as described
above), with enough padding (strings consisting of the neutral symbol ‘x’) inbetween. The padding must
be sufficient for each rod-flap combination and each ligand to bond optimally, and for the ligands to bond
with any of the rods that contain the same clause symbol as they do. Thus each rod is connected to its
associated flap with constant-length padding, and the n rod-flap combinations are connected in sequence
with constant-length padding between each adjacent pair. Finally, the m ligands are attached to the
resulting string in sequence, with ©(m)-length padding for each ligand. This is sufficient to allow each
ligand to reach any rod with which it wishes to bond. (Recall that n and m are within a constant factor
of one another.) We also ensure that all the rods have the same parity, which is opposite to that of the
ligands. This prevents the same clause symbol in different rods from bonding while permitting bonds
between rods and ligands. Figure 9 contains a sketch of an optimal embedding of the entire string.

In light of the discussions following Propositions 3.1 and 3.2, we have proved:

Proposition 3.3 Let ¢ be a MAX-3SAT(3) instance with m clauses and n variables, and let s4 be the
string constructed as described above. If the mazimum number of simultaneously satisfiable clauses in ¢
is k, then the optimal score of sy is 34n + 11m + k.

Since in any instance of MAX-3SAT(3) we have n < 3m, Proposition 3.3 tells us that the mapping ¢ — s

is a gap-preserving reduction from MAX-3SAT(3) to MAX-1-FoLD},. As before, each ‘*’ can be replaced
by a distinct unused symbol. We may therefore conclude that:

Corollary 3.4 MAX-1-FOLD, is MAX SNP-hard.
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Figure 9: An optimal embedding of the entire string sg.

This concludes the first (and major) part of our strategy as outlined at the beginning of the section. It
remains only to explain how to carry out the replication process, which we now do.

3.3 Reduction to a finite alphabet

Recall from point 2 of our general strategy that we need to replicate active portions of the string so that
the optimal score becomes a constant times the string length. Note that in s, the active parts (the ligands,
rods and flaps) have net length ©(m), while the padding has total length ©(m?), so we will need to replicate
each chunk ¢ = Q(m) times. The “chunks” that we replicate are the gadgets, namely the ligands and the
rod-flap combinations. We take ¢ copies of each of these, over disjoint sets of symbols. The ¢ copies of
a given rod-flap combination are connected together in sequence, separated by constant length padding
strings so that all copies have enough room to fold as intended. Similarly, the ¢ copies of a given ligand
are glued together with constant length padding strings so that, if the first copy bonds with the first copy
of some rod, then every copy of the ligand in the sequence can bond with the corresponding copy of the
rod. The padding between successive sets of rods remains of constant length, and that between successive
sets of ligands remains of length ©(m). This is sufficient to allow the sets of ligands complete freedom in
bonding with sets of rods. A sketch of this ¢-fold replication of the string s, (which we denote by sé) is
shown in Figure 10, in an optimal embedding.

Now Proposition 3.3 yields the following property of sé:

Corollary 3.5 Let ¢ be a MAX-3SAT(3) instance with m clauses and n variables, and let sf; be the string
described above. If the mazrimum number of simultaneously satisfiable clauses in ¢ is k, then the optimal
score of s¢ is (34n + 11m + k).

Now we are essentially done. Note that the length of the string sg) is ©(mf+ m?). Hence, by taking ¢ > m
we can make the optimal score as large as a constant factor times the string length, as required in point 2 of
our strategy. As explained in point 3, this ensures that if we replace the symbols of sf;5 with random letters
from the alphabet {1,2,,..., A} for a sufficiently large constant A, we get a (randomized) gap-preserving
reduction to MAX-1-FoLp%. Finally, we may remove the neutral symbol ‘«’ exactly as in Section 2.4,
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Figure 10: An optimal embedding of the replicated string Sg.
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although at the cost of increasing the value of A. We have therefore proved the MAX SNP-hardness of
MAX-1-FoLDy4, as claimed in Theorem 1.2.

4 Concluding remarks

We have presented NP-hardness and approximation hardness results for string folding in an HP-like
model with a finite alphabet. This model has various obvious limitations that compromise its biological
plausibility. In this final section, we discuss these and comment on the potential for overcoming them.

As we have already observed, our technique is robust with respect to many details of the model, and can
in principle be used to convert any well-behaved reduction to string folding in an HP-like model over an
unbounded alphabet to a reduction to string folding in the same model over a fixed finite alphabet. The
primary criterion for well-behavedness here is that the original reduction be gap-preserving. We believe
that this is not a severe restriction, and that most existing reductions over unbounded alphabets can be
modified so as to satisfy it. Obvious candidates include string folding in lattices other than Z3, such as
the 2-dimensional lattice Z2 or non-bipartite lattices like the triangular or tetrahedral lattice. Reductions
with an unbounded alphabet already exist for a wide variety of lattices (see, e.g., [12]); we believe that our
techniques can be applied to make the alphabet finite in these cases also.

Our model assumes that the only contributions to the energy arise from adjacencies between identical amino
acid monomers. Although this property is often assumed in theoretical models, it is clearly unrealistic;
one would want to allow a more general matrix of interactions between different types. We have not
investigated in detail how robust our technique is with respect to changes in the interactions. However, we
believe that it should still be applicable if the interactions are suitably regular.

An obvious drawback of our technique is that, while the alphabet size required for hardness is finite, it is
required to be extremely large (see the remark at the end of section 2.3). We have made no attempt here to
minimize it. Some tuning of our arguments would, with some effort, dramatically reduce the size; however,
it appears that a conceptual advance would be required to bring it down to a size of biological proportions
(such as 20, the number of different amino acids, or two, the alphabet size of the true HP model). Although
proofs of NP-hardness for the HP-model in Z2and in Z3 do now exist [5, 4], the question of hardness of
approximation for the string folding problem over a reasonably small alphabet remains open.

Finally, we mention two intriguing questions related to the concept of a spatial code defined in Section 2.2.
Firstly, do there exist spatial codes over alphabets that are substantially smaller than those that we get
using our current techniques? Secondly, are there any explicit constructions, i.e., efficient deterministic
algorithms for constructing spatial codes? We believe that these questions are interesting in their own
right. In addition, positive answers to these questions would presumably yield stronger approximation
hardness results for the string folding problem over smaller alphabets.
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Appendix: Proofs of robustness of the gadgets in section 3.2

Proof of Proposition 3.1:  Note first that, in the embedding shown in Figure 5, a bond is formed
between every possible pair of equal symbols. This immediately implies that the embedding is optimal
(and its score is plainly 11). To show uniqueness, we introduce the concept of a “bond graph,” following [21].
The bond graph of an embedding of a string s is the graph whose vertices are the occurrences of the symbols
of s and which has an edge between two symbol occurrences s;, s; iff either (i) s;, s; are adjacent in s (i.e.,
|i —j| = 1), or (ii) there is a bond between s; and s; in the embedding. The bond graph of the embedding
of Figure 5 is shown in Figure 11. Since any optimal embedding achieves all these bonds, it has the same
bond graph. Therefore, we need only show that the graph of Figure 11 has (up to rotation and reflection)
a unique embedding in Z3.

To see this, note that the bond graph consists of a sequence of eight “squares” (cycles of length four, such
as ABba), arranged end-to-end in a closed cycle. Clearly each of these squares is necessarily embedded as a
unit square in Z3. Suppose we fix the embedding of the square ABba. Then the square BC'ch is necessarily
embedded adjacent to it, “hinged” along the common edge Bb. The same holds for each successive square
proceeding around the cycle. Thus we see that the eight squares form a cylinder of unit height in 22, whose
ends are planar closed curves of length eight. Finally, note that the bond graph contains four additional
edges, which form a chord of length two across each of these curves (between points A-E and points a-e
respectively). This additional constraint implies that the planar curve ends are in fact 2 X 2 squares with
corners at B, D, F, H and b,d, f, h. Thus the optimal embedding is unique up to rotation and reflection.

The proof of robustness of the embedding proceeds along the same lines. One simply considers the bond
graph of Figure 11 with each one of the eleven bonds omitted in turn. (Note that we do not consider
omitting the edges corresponding to adjacencies in the string.) By symmetry there are only four distinct
cases. In each case, it is easy to check by an argument similar to that above that the only possible
embedding of the bond graph corresponds to the one in Figure 5. Hence at least two bonds are broken in
any non-optimal embedding. [ |

Proof of Proposition 3.2: We make essential use of the bond graph, as in the previous proof. First we
consider the rod (see Figure 6). Note that the embedding shown in Figure 6 has a score of 17, and since
all possible bonds are formed, this is optimal. The bond graph of this embedding is shown in Figure 12(a);
note that any other optimal embedding has the same bond graph. The proof that this bond graph has
an essentially unique embedding in Z3 is, in effect, the same as Paterson and Przytycka’s [20, 21] proof of
uniqueness (up to rotation and reflection) of the optimal embedding of their “tooth” construction, and is
presented here for completeness.

Figure 11: The bond graph of an optimal ligand embedding.
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(b)

Figure 12: (a) The bond graph of an optimal rod embedding. (b) The bond graph of a “unit cube.”

Note that the bond graph can be viewed as a sequence of “unit cubes” (with some edges omitted). We
claim first that each of these portions is necessarily embedded as a unit cube in Z3. To see this, observe
that the bond graph of each cube (except the last one) consists of two squares hinged at a common edge,
plus a disjoint path of length three connecting opposite corners of these squares (see Figure 12(b)). The
last cube has a disjoint path of length fwo connecting the two squares. That this is indeed the bond
graph is immediate for the leftmost cube. For the rest of the cubes, one of the squares is enforced by the
embedding of the previous cube.

It is easy to see that either of the two unit cube bond graphs described above has a unique embedding
in Z% (up to rotation and reflection), namely as a unit cube. Now consider the bond graph of the entire
rod (Figure 12(a)). Note that the leftmost face ABC'D is necessarily embedded as a square. Once this is
fixed, the second square BEF'C has the freedom to bend in two ways about the edge BC. The embedding
of BEFC determines which of the two possible reflections of the cube is obtained. Note that the rest of
the cubes do not enjoy this freedom. We can proceed in this way along the whole rod, one cube at a time.
The embedding we obtain is unique up to the choice of embedding of the initial cube. This freedom means
that the rod may be embedded either as an anti-clockwise helix, as in Figure 6, or as a similar clockwise
helix. For our purposes, these two embeddings are equivalent because the sequences of symbols on pairs
of opposite edges of the rod are the same in both cases.

We now turn our attention to the flap (see Figure 7). The embedding of the rod-flap combination shown in
Figure 8 has a score of 34 (17 of which are bonds within the rod), and again all possible bonds are formed.
Hence any optimal embedding has the same bond graph, shown schematically in Figure 13. In this figure
we have drawn the rod as a solid block, since we know from the previous argument that it is necessarily
embedded in this way. We wish to argue that there are exactly two embeddings of the flap portion of the
bond graph, given the embedding of the rod. The second embedding differs from that of Figure 8 only in
that the flap wraps around the rod in the opposite direction.
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Figure 13: The bond graph of an optimal rod-flap embedding. The bond graph of the rod itself is shoun
only schematically.

To see this, note first that the pair of points (A, a) on opposite edges of the rod are joined by a path of
length six in the bond graph. But once the rod is fixed, there are exactly two paths of length six between
these two points: namely the one shown in the embedding of Figure 8 and one in which the path wraps
around the rod in the opposite direction. Similarly, there are exactly two paths of length six connecting
each of the pairs (B,b), (C,c) and (D, d). Now it is easy to see that in fact only two combinations of these
four paths are possible: namely, the combinations in which all paths wrap around the rod in the same
direction. This follows from the fact that certain intermediate points along the paths are constrained to
lie at small distances from one another. Now that these four paths are fixed, it is easy to see that the
embedding of the remainder of the flap is forced. [ |
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