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Abstract 

Let X = (z,, , z,-,) be a sequence of n numbers. For 6 > 
0, we say that 5; is an e-approximate median if the num- 
ber of elements strictly less than zi and the number of ele- 
ments strictly greater than zi are each less than (1 + 6):. 
We consider the quantum query complexity of computing 
an c-approximate median, given the sequence X as an ora- 
cle. We prove a lower bound of n(min{t,n}) queries for 
any quantum algorithm that computes an r-approximate 
median with any constant probability greater than l/2. 
We also show how an c-approximate median may be com- 
puted with 0( $ log(t) log log( $)) oracle queries, which rep 
resents an improvement over an earlier algorithm due to 
Grover [ll, 121. Thus, the lower bound we obtain is essen- 
tially optimal. The upper and the lower bound both hold in 
the comparison tree model as well. 

Our lower bound result is an application of the polynomial 
paradigm recently introduced to quantum complexity the- 
ory by Be& et ol. [l]. The main ingredient in the proof is a 
polynomial degree lower bound far real multilinear polyno- 
mials that “approximate” symmetric partial boolean func- 
tions. The degree bound extends a result of Patti [15] and 
also immediately yields lower bounds for the problems of 
approximating the kth-smallest element, approximating the 
mean of a sequence of numbers, and approximately counting 
the number of ones of a boolean function. All bounds ob- 
tained come within a polylogarithmic factor of the optimal 
(as we show by presenting algorithms where no such optimal 
or near optimal algorithms were known), thus demonstrating 
the power of the polynomial method. 
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1 Introduction 

1.1 Synopsis 

Proving non-trivial lower baunds for any universal model 
of computation is a formidable task, and quantum com- 
puters are no exception to this. It is thus natural to seek 
bounds in restricted settings. The lirst such step in the field 
of quantum computation was taken by Bennett et al. [2]. 
They prove that we cannot solve NP-complete problems in 
sub-exponential time on a quantum computer merely by 
adopting the brute-force strategy of “guessing” solutions and 
checking them for correctness. Nonetheless, Grover’s search 
algorithm [IO] shows that a quadratic speed-up over classi- 
cal algorithms is possible in this case. Thus, while the paral- 
lelism and the potential for interference inherent in quantum 
computation are not sufficient to significantly speed up cer- 
tain strategies for solving problems, they do give some ad- 
vantage over probabilistic computation. These results mati- 
vate the question as to whether similar speed up is possible 
in other scenarios a~ well. 

Strategies such as “brute-force search” may formally be 
modelled via “black-box” computation, in which information 
about the input is supplied to the algorithm by an oracle. 
For example, the black-box search problem may he defined 
as follows: given oracle access to n bits X = (a,. , x,-l), 
compute an index i such that z; = 1, if such an index exists. 
A simpler formulation would require a yes/no answer accord- 
ing to whether such an index exists or not. This amounts to 
computing the logical OR of the input hits. In the black-box 
setting, strategies are evaluated by studying the query com- 
plezity of the problem, i.e., the minimum number of oracle 
accesses needed in the worst case to solve the problem. In 
the case of the abstract search problem, the query complex- 
ity is the number of bits that need to be examined (in the 
wont case) in order to compute the logical OR of the n bits. 

Considerable success has been achieved in the study of the 
query complexity of computing boolean functions in the 
quantum black box model, both in terms of optimal lower 
bounds for specific functions [2, 4, 9, I], and in terms of 
general techniques far proving such lower bounds [Z, 7, 11. 
However, few approaches were known for the study of more 
general functions. Consider, for example, the problem of 
approximating the median of n numbers. An t-opprozrmote 
median of a sequence X = (z,, ,zn-,) of n numbers is a 
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number zi such that the number of I, less than it and the 
number of zj more than it are each less than (1 + e) f The 
problem then is to compute such an zi. given an oracle to 
the sequence X of input values, and an explicitly specified 
parameter e > 0 (which may be assumed to be at least $). 
Grover gives an algorithm for finding an c-approximate me- 
dian that makes b(+) queries to the input oracle [ll, 121. 
(Here, the b notation suppresses factors involving lag(i) 
and M, where M is the size of the domain the numben are 
picked from.) Thus, an almost quadratic speed up over the 
best classical algorithm can be achieved (assuming M to be 
constant). However, it was still open whether this algorithm 
could be improved upon. In particular, known techniques 
such as the “hybrid argument” yield a lower bound of a( j;) 

for the number of queries [18], whereas O(f) was suspected 
to be optimal. In this paper, we prove a lower bound of n(i) 
for the query complexity of the approximate median prob 
lem, thus showing that Grover’s algorithm is almost opti- 
mal. we also present a new O(~log(~,)loglog(f)) query 
algorithm for the problem, thereby elimmating the depen- 
dence of the upper bound on M. The upper and the lower 
bound both also hold in the comparison tree model, in which 
one is interested in the number of comparisons between the 
input elements required to compute an e-approximate me- 
dian. 

Our lower bound is derived via the polynomial method re- 
cently introduced to the area of quantum computing by 
Be& et al. [l]. They show that the acceptance prohabil- 
ity of a quantum algorithm making T queries to a boolean 
oracle can be expressed as a real multilinear polynomial of 
degree at most 2T in the oracle input. Thus, if an algorithm 
computes a boolean function of the oracle input with proh- 
ability at least 213, the corresponding polynomial approzi- 
mates the function to within l/3 at all points in the boolean 
hypercuhe. So, by proving a lower bound on the degree of 
polynomials approximating the boolean function, we can de- 
rive a lower bound on the number of queries T the quantum 
algorithm makes. We cannot, however, follow this route di- 
rectly for the problem of approximating the median, since 
the restriction of the problem to boolean inputs does not 
yield a well-defined function. Nonetheless, the restriction 
does yield a partial boolean function, i.e., a function that is 
not necessarily delined at all points of its domain. Our result 
is thus based on a degree lower bound for polynomials that 
“approximate” symmetric partial boolean functions. This 
degree lower bound generalizes a bound due to Patwi [15], 
and also gives lower bounds for the problems of approxi- 
mating the kth smallest element, approximating the mean 
of a sequence of numbers, and approximately counting the 
number of ones of a boolean function. All bounds obtained 
are tight or almost tight (as we show by presenting algo- 
rithms where no such optimal or near optimal algorithms 
were known), demonstrating the power of the polynomial 
method. 

1. for all X E {0, l}“, p(X) E [-c, 1 + c], and 

2. for alI points X at which f is delined, (p(X) - f(X)1 5 
c. 

Our main theorem gives a degree lower bound for polynomi- 
als approximating partial boolean functions of the following 
type. For X = (zo, _. ,znw1) E {0, l}“, let 1x1 = C;:; zi 
be the number of ones in X. Let e,!’ be integers such 
that 0 5 e # e’ < n. Deline the partial booleao function f!,!, 
on {O, 1)” as 

fw (X) = 
i 

1 if IX]=! 
0 if 1X1=.!’ 

Let m E {e,!‘} be such that 15 - ml is maximized, and 
let A, = I! - !‘I. 

Theorem 1.1 Letp be any real n-ooriotepolynomiol which 
approzimotes the partial boolean function fc.1, to within c, 
for some constant c < 112. Then, the degree of p is 

n(m+ ,/~/A,). 

This theorem generalizes a degree lower bound given by 
Paturi [15] for polynomials approximating symmetric total 
boolean functions. 

We say that an algorithm A computes a partial function f 
on {0, l}“, if Pr[d(X) # f(X)] 5 S for all inputs X for 
which f is delined, where 6 is some constant less than l/2. 
For boolean f, we say that the algorithm accepts an input X 
if d(X) = 1. When combined with a characterization due 
to Be& et ol. [I, Lemma 4.21 of the acceptance probability 
of a quantum algorithm on a boolean input oracle, in terms 
of polynomials, Theorem 1.1 gives us the following result. 

Corollary 1.2 Any quantum black-box algorithm that com- 
putes the partial boolean function fi,l,, given the input (IS an 

omcle, makes Cl( m + d-/At) queries. 

This lower bound also holds for the ezpected query com- 
plexity of computing the partial function fi,!,. Using an 
approximate counting algorithm of Brassard et al. [5, 14,6], 
we show that our query lower bound is optimal to within a 
constant factor. 

Theorem 1.3 The quantum query complezity of comput- 
ing the portial function ft.!,, given the input 0s on oracle, 

is O(m+ d-IA!). 

The result of Be& et 01. mentioned above then immediately 
implies that the degree lower bound of Theorem 1.1 is also 
optimal to within a constant factor. 

1.2 Summary of results 

Consider a partial boolean function f : {0, 1)” + {0, 1). We 
say a real n-variate polynomial p approzimotes the partial 
function f to within c, for a constant 0 < c < l/2, if 

Corollary 1.4 For any constant 0 < c < l/2, there 

ia o real, n-u&ate polynomial p of degree O(m + 

,/w/A,) that opprozimotes the function ff,t, to 
within c. 
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Corollnry 1.2 enables us to prove lower bounds for the query 
complexity of computing the statistics listed below, given an 
oracle to a list X = (z,, , ~“-1) of (rational) numbers in 
the range [0, l] and an explicitly specified real parameter e > 
0 or A > 0. We may assume t to be in the range [&, 1) 
and A to be in [&II). 

1. 

2. 

3. 

4. 

5. 

c-approximate median. A number zi such that 
I{j : zj < zi}l < (l+e); and l{j : +, > zi}l < (l+~)f. 

A-approximate kth-smallest element. (Defined 
for 1 5 k 5 n.) A number z; that is the jth-smallest 
element of X for some j in the range (k - A, k + A). 

e-approximate mean. A number ,, such that 
1~ - pxl < c, where px = i C:re’ zi is the mean of 
the n input numbers. 

A-approximate count. (Delined when zi E {O,l} for 
all i,) A number t such that It - txl < A, where tx = 
1x1 = C&’ z; is the number of ones in X. 

t-approximate relative count. (Delined when z; E 
{0, 1) for all i.) A number t such that It - t,y < ctx, 
where tx is delined as above. 

Some of the problems delined above are very closely related 
to each other. Problem 2 is a natural generalization of prob- 
lem 1; problem 4 is the restriction of problem 3 to boolean 
inputs (with A defined appropriately), and problem 5 is a 
version of problem 4 in which we are interested in bounding 
relative rather than additive error. In the case of problems 1 
and 2, we may relax the condition that the approximate 
statistic be a number from the input list (with a suitable 
modification to definition 2 above); our results continue to 
hold with the relaxed definitions. (Problem 1 was first stud- 
ied by Grover [ll, 121 with this relaxed definition.) 

We first prove a lower bound for approximating the kth- 
smallest element by showing reductions from partial func- 
tions of the sort described above. We thus get a lower bound 
for the approximate median problem as well. 

Theorem 1.5 Any quantum block-boz algorithm for com- 
puting 01 A-approsimate kth-smallest element makes at least 
Q(m+ m/A) oracle queries. 

Corollary 1.6 The quantum query complexity of computing 
on c-opprozimote median is 0(1/t). 

We also propose an algorithm for approximating the kth- 
smallest element that comes within a polylogarithmic factor 
of the optimum. This gives us a new algorithm for estimating 
the median. (We believe that it is possible to optimize the 
algorithm, but we do not attempt this here.) 

Theorem 1.7 Let N = m + m/A. There 
is a quantum block-box algorithm that computes o A- 
opprozimate kth-smallest element of n numbers, using 
O(Nlog Nlaglog N) queries. 

Corollary 1.8 O(f log(~)loglog(~)) queries ore sufficient 
for computing on e-appmximote median in the block-bos 
model. 

Our median algorithm represents an improvement over the 
algorithm of Grover [ll, 121 when the input numbers are 
allowed to be drawn from an arbitrarily large domain. The 
algorithm achieves an almost quadratic speed up over clas- 
sical algorithms in the worst case. 

A very natural measure of complexity of computing func- 
tions such as the kth-smallest element is the number of 
comparisons between the input elements required for the 
computation. To study this aspect of such problems, one 
considers algorithms in the comparison tree model. In this 
model, the algorithm is provided with an oracle that returns 
the result of the comparison z; < zj when given a pair of in- 
dices (i, j), rather than an oracle that returns the number zi 
on a query i. The query complexity of a problem is then 
the number of comparisons required to solve the problem. 
The lower and the upper bounds given above for estimating 
the kth-smallest element and the median continue to hold in 
the comparison tree model. In particular, if we set A = 1, 
we get an almost optimal d( JR) comparison al- 
gorithm for computing the kth-smallest element (c.f. The- 
orems 1.5 and 1.7). (An optimal O(J;;) comparison algc- 
rithm was already known for computing the minimum of n 
numbers [S].) This should be contracted with the bound 
of o(n) in the classical cake [3]. 

Corollary 1.9 Let N = dm. Any comparison 
tree quantum algorithm that computes the kth-smallest ele- 
ment of a list of n numbers makes R(N) comparisons. More- 
over, there is o quantum algorithm that solves this problem 
with O(N log N log log N) comparisons. 

Another application of Corollary 1.2 is to the problem 
of approximating the mean. Grover [12] recently gave 
an O($ log log +) query algorithm for this problem, which 
is again an almost quadratic improvement over classical al- 
gorithms. When the inputs are restricted to be O/l, the 
problem reduces to the counting problem. Using the ap 
proximate counting algorithm of Brassard et al. [5, 14, 61 
mentioned above, we show that the computation of the mean 
can be made sensitive to the number of ones in the input, 
resulting in better bounds when It-n/21 is large. 

Thearem 1.10 There is o quantum black-box algorithm 
thot, given (I boolean omcle input X, and on integer A > 
0, computes (I A-approximate count and makes on ez- 
peetedO( m+m/A) number of queries on inputs 
with t ones. 

We show that this algorithm is optimal to within a constant 
factor, and, in the process, we get an almost tight lower 
bound for the general mean estimation problem. 

Theorem 1.11 Any quantum block-boz algorithm that op- 
prozimates the number of ona of o boolean omcle to within 
on odditiue error of A makes Q(m + m/A) 
queries on inputs with t ones. 
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Corollary 1.12 The quantum query eomplezity of the c- 
approsimate mean problem is O(f). 

Brassard et al. [5, 14,6] study the version of the approximate 
counting problem in which one is interested in bounding the 
relative error of the estimate. We show that their algorithm 
is optimal to within a constant factor (when t 5 (1 - e)n). 

Theorem 1.13 Any quantum black-box algorithm that 
solves the r-approximate relative count problem makes 

queries on inputs with t ones 

In view of Corollary 1.4, the lower bounds stated above can- 
not be improved using the methods we employ in this paper. 
In fact, we believe that the lower bounds are optimal, and 
that the upper bounds can be improved to match them (up 
to constant factors). 

2 The lower bound theorem and its applications 

This section is devoted to der?ving a polynomial degree lower 
bound, and to showing how lower bounds for the query com- 
plexity of the different black-box problems delined in Sec- 
tion 1.2 follow from it. We lirst prove the degree lower bound 
for polynomials in Section 2.1, and then apply the result to 
quantum black-box computation in Section 2.2. 

2.1 A degree lower bound for polynomials 

We now prove our main result, Theorem 1.1, which gives a 
lower bound for polynomials approximating symmetric par- 
tial functions. The bound is derived using a technique em- 
ployed by Patti [15] for polynomials that approximate non- 
constant symmetric boolean functions. Our bound general- 
izes and subsumes the Paturi bound. 

We refer the reader to Appendix A for the definition of the 
concepts involved in the proof. Appendix A also summarizes 
the various facts about polynomials that we use to derive the 
bound. 

Our proof rests heavily on the inequalities of Bernstein and 
Markov (Facts A.6 and A.5). The essence of these inequal- 
ities is that if a polynomial has a “large” derivative at a 
point suitably close to the origin, the polynomial has “high” 
degree. 

Proof of Theorem 1.1: Recall from Section 1.2 
that ft,p(X) is a partial boolean function on (0, 1)” which 
is 1 when 1x1 = e and 0 when JXJ = e’, that m is the one of e 
and e’ which is furthest from n/Z, and that Ac = [e-!‘l. 
We assume that p is an n-variate polynomial of degree d 
which approximates the partial fonction f to within l/3 in 
the sense defined in Section 1.2. (The constant l/3 may be 
replaced by any constant less than l/2 and the proof contin- 
ues to hold with minor changes.) Without loss of generality, 

we assume that ! > E’. Otherwise, we work with the poly- 
nomial 1 - p, which approximates 1 - f. 

We begin by replacing p with its symmetrizotion pay” and 
then using Fact A.1 to transform it to an equivalent uni- 
variate polynomial q. (Since x2 = z for 2 E {0, l}, we may 
assume that p is multilinear.) We show a degree lower bound 
for q, thus giving a degree lower bound for p. 

In order to apply the derivative inequalities above, we tram- 
form the polynomial q to an equivalent polynomial < over 
the interval [-l,l], where B(z) = q((1 + z)n/2). For i = 
0, 1,. , n, let a; = 2i/n - 1. Clearly, + has the following 
properties: 

1. r$ has degree at most d. 

2. I+l;)l 5 4/3 for 0 < i < n. 

3. cf(o,) 2 2/3 and t(aI,) 5 l/3. Thus, by the Mean Value 
Theorem, there is a point o in the interval [(II,, w] such 
that $(a) 2 (2/3 - 1/3)/(ac - 01,) = n/(6A& 

We prove two lower bounds for d, which together imply the 
theorem. The first of the lower bounds follows by applying 
the Mxkov Inequality (Fact A.5.1) directly to 6. 

Lemma 2.1 d = n(m). 

Proof: We consider two cases: 

Case (a). )I 4 II < 2. Combining property 3 of i listed above 
and Fact A.5.1, we get 

d* 2 i’(a)/ IIBII 2 n/@W. 

Sod=R(m). 

Case (b). llall 2 2. From property 2 of 6 listed above, 
every point at which t attains its norm is no more than 2/n 
away from a point oi at which l@(z)1 5 4/3. Hence, by the 
Mean Value Theorem, there is a point 21 E [-1, I] such that 

19^‘(“,1 2 (ll~ll-4/WW~) 2 4ldl/6. 

The Markov inequality then implies d = n(J;;) = 

fql/qz). n 

The second of the lower bounds follows from an application 
of the Bernstein Inequalities for algebraic and trigonometric 
polynomials (Facts A.5.2 and A.6, respectively). 

Lemma 2.2 d = $l(,/q/A~). 

Proof: If 4 has norm less than 2, property 3 in conjunction 
with Fact AS.2 implies that 

2d > ~~4^~~ d 2 &?@‘(a) 2 fi(n/sA,). 

But since a E [at,, a,], we have 

l-2 2 l-a:, = 1 - (2m/n - l)* = 4m(n - rn)/“2. 

Hence, d = n(,/m/Az). 
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Now suppose that II@jI 2 2. The proof in this case is not 
as straightforward as in Lemma 2.1, since Fact A.52 gives 
a bound which is sensitive to the point at which ?j has high 
derivative. However, it is possible to “damp” the valur: of 
the polynomial outside a suitable interval, and thus obtain 
the required bound. 

Let b be the point of smallest magnitude at which ]<I 2 
2, and let c be the one of b and (II of smaller magnitude. 
Assume that c 2 0. (The proof in the other cake is similar.) 
Let C be a constant such that 0 < C < 0.01. We distinguish 
between two cases. 

Case (a). c 5 1 - C. Define the polynomial r to be: 

where d, = [s/c’~ d. The degree D of r is clearly O(d), so 
it suffices to prove the claimed lower bound for D. 

Suppose 111‘ II < 2. Then, c = ~1, r(0) 2 Z/3, and r(w - 
a,) < l/3. By the Mean Value Theorem, there is a 
point ir E [ai, - nl,O] such that Ir’(8)l = n(n/A,). We 
may assume, without loss of generality, that Al 5 n/4, so 
that 21 E [-l/‘&O]. (Otherwise, the lower bound follows 
trivially.) By Fact A.5.2, we conclude that D = O(n/Az) = 

O(dw/A,). 

We now focus on the case when IIr II > 2. We show in 
Claim 2.3 below that Ir(z)I is bounded by 1 for C < 151 5 1. 
This implies that IJr JI is attained within [-C,C]. Note 
that IpI is bounded by 4/3 at points 0; - c separated 
by 2/n in [-C,C]. Hence, there is a point 6 E [-C,Cj 
at which Ir’(d)l 2 n II r /I /6. Applying Fact A.5.2 to 7 at the 

point 6, we get D = n(n) = n(dq/A,). 

It only remains to prove the following claim to complete the 
analysis of Case (a). 

Claim 2.3 -For all 2 E [-1,-C] V [C, 11, Ir(s)l 5 I 

Proof: Note that )I 4 11 = rna~o<,~, jq(z)l. By Fact A.2, 
we thus have I( $11 < (4/3) 2’. In particular, I{(z + c)l < 

(4/3). 2d 5 (4/3) esd far z E [-1, 1 -cl. We give the same 
bound on I@(z + c)I for 2: E [l - c, l] by using Fact A.3: 

since c < 1. Further, if C < IzI < 1, we have (1 - z’)~I 5 

e--radl < emad. Combining these two inequalities, we may 
bound Fin the region [-1,-C] V [C, l] as follows: 

&)I = I&z + c)I (1 - 2’)“’ 5 (4/3). eSd. e--6d 5 1 

n 

We now turn to the remaining case, when c is close to 1. 

Case (b). c > 1 - C. Without loss of generality, we as- 
sume that A< 5 f?, e 5 n - A,. (Otherwise, the bound we 

seek follows from Lemma 2.1 above, since d-/At 5 

&&). This implies, in particular, that c < 1. Let a, = 

cos-’ c. Since 0.99 < 1 - C < c < 1, we have 0 < a, < l/4. 

We prove a degree lower bound for a trigonometric polyno- 
mial s derived from +. The polynomial s is defined as: 

s(B) = +x0)[cos(d,(8 - a<))]“‘, 

where dl = L1/(2a,)j and dz = CL [d/d,], for some integer 
constant cl 2 1 to be specified later. Let D be the degree of 
the polynomial s. 

Claim 2.4 D = O(d) 

Proof: First, note that since cosO 2 1 - 02/2 for 8 E 
[0, r/2], we have 

(The last inequality follows from the assumption that e 5 

n-A,.) Hence, dl 5 1/(2a,) = O(m), which is O(d) 
by Lemma 2.1. We may now bound D as follows: 

D < d+dzd, = d+c, [d/d,] d, 5 d+c,(d+d,) = O(d). 

n 

Thus, it suffices to prove a lower bound for D of 

fl(dm/A,). which we do next. 

Let a, = cos-’ o;,fori=O )..., n. 

Again, if 11 s 11 < 2, we get the lower bound easily. In this 
case, c = at, s(c<) > 213, and s(w) < l/3. Hence, for 
some (I E [at,ap], Id( > (l/3)/@!, - a,). By the 
Mean Value Theorem, ap-a! = Icosa!~ - cosa<l /sin&, for 
some 6 E [al,a<,]. Note that sin& 2 sin al 2 sina, = 

JT=iz Thus, Is’(a)1 t (1/3)&79(2A</n). 
Fact A.6, the Bernstein Inequality for trigonometric poly- 

nomials, then gives us D = Q(dq/Al). 

We now examine the case when II s I( 2 2. Claim 2.5 below 
shows that Is(O)1 is bounded by 1 when .9 E [-r, -*+a,/~] U 
[-a,/2, a,/21 ” [r - aJ2, r]. We assume here that the 
norm is attained in [O,a]; the proof proceeds analogously 
in the other case. This point is close to some point a; E 
[a,/2, r - a,/21 where Is(w)1 5 4/3. Arguing as before, we 
get that for some points o,P E [a,/2,rr - 0~121, Is’(a)1 2 
(11 s II /3)(sinP)/(‘Un). Further, 

We now prove that s is bounded in the region mentioned 
above. 

Claim 2.5 For all 0 E [-7r, --II + aJ2] U [-aJ2, a&] U 

rr - 44 4, IsP)l 5 1. 

Proof: We prove the claim far 0 E [0, a,/2]. The analysis 
for 8 in the other intervals is similar. (One exploits the fact 
that +(casB) is an even function of 0, and that CoroIlary A.4 
limits its behaviour outside [a,, K - CZJ.) 
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Let h(0) = [cos(d,(8 - CZ~)]“‘. Then, for 6’ E [O,a,], 

Ih(o, - S)l = lcos(dlO)lda < (1 - (d~3)‘/4)~ 

< e-dzvN/’ 

s e--sld*2/(1*~s) 

The tit inequality follows from the fact that cosd 5 1 - 
@/4 for 4 E [O, r/Z] and that 0 _< dlo?, _< l/Z. In the last 
step, we use the fact that a, 5 l/4. 

Further, Corollary A.4 gives us the following bound on the 
value of @ outside the interval [-c,c]: 

lgc+z)I < Zl?-d(l +x/c)1 5 2’e+=, 

for EC E [O, 1 - c]. Since for 8 E [O,a,], cos(cr, - 0) = 
cos ae cos 0 + sin ac sin 0 5 c + a&l, we have 

I@(cos(a, - S))l < 2, .=- < 2. w=. 

Hence, for B E [o, a&], 

Is(@)1 = IB(cos(oc - (ac - @))I Ih(cu, - (w - O))l 5 1, 

provided c, is chosen large enough. H 

This completes the proof of Lemma 2.2. n 

Lemmas 2.1 and 2.2 together imply that 

d=n(max{~,~~/Al}),whichisequiva- 

lent to the bound stated in Theorem 1.1. w 

2.2 Applications to quantum black-box computa- 
tion 

In this section, we use our degree lower bound in conjunc- 
tion with a result of Be& et al. [I] to derive lower bounds 
lor the quantum black-box complexity of approximating the 
statistics defined in Section 1.2. The key lemma of [l] which 
we require is the following: 

Lemma 2.6 (Beals, Buhrman, Cleve, Mosca, de Wolf) 
Let A be a quantum algorithm that makes T calls to a 
boolean oracle X. Then, them is a red multilinear polyno- 

mial p(zo,. _. , xn--l) of degree at most 2T such that the (IC- 
ceptance probability ojd on oracle input X = (x0,. , xnml) 
is ezocttyp(z0,. .z”-l). 

We deduce Corollary 1.2 from Theorem 1.1 using this lemma. 

Proof of Corollary 1.2: Consider an oracle quantum 
algorithm A that computes the partial function fl,l, with 
constant error probability c < l/2 by making at most T 
oracle queries. From the lemma above, there is a mul- 
t&near polynomial p(zo,.. .,x+,) of degree at most 2T 
that gives the acceptance probability of A on the oracle 
input X = (~0,. ,2”--1). Clearly, p approximates fi,l, 
to within c: p(X) 2 1 - c when 1.~1 = 1, p(X) < c 
when 1x1 = e’, and p(X) E [0, I] for all X E {0, I}“. Theo- 
rem 1.1 now immediately implies the result. w 

In the remainder of this section, we show how to reduce from 
partial function computations of the type given in Corol- 
lary 1.2 to approximating the kth-smallest element and to 

approximate counting, and we show how bounds for approx- 
imating the median and the mean follow. In this way, we 
are able to show new quantum query lower bounds for the 
computation of these approximate statistics. 

The following two lemmas specialize Corollary 1.2 to cases of 
interest to us. The lirst deals with functions f<,t, such that 
neither !’ nor L is “close” to 0 or n, and the second covers 
the remaining case. 

Lemma 2.7 Let k,A > 0 be integers such that 2A < k < 
n - 2A. Then, the quantum query complezity of jx-a,k+a 

is Sl(m+ m/A). 

Proof: We assume that k < n/2; the other case is symmet- 
ric. In applying Corollary 1.2, Al = 2A. Since k < n/2, n = 
k-A. Moreover, (k - A)(” - k+A) > (k/2)(n - k). Corol- 
lary 1.2 now gives us the claimed bound. n 

Lemma 2.8 Let k,A be integers such that 0 < A < n/4 
and 0 5 k < 2A. Then, the quantum query complexity 
of fo,*+n is Q[@ + m/A). The awne bound 
holds for fk-n,n when k 2 n -2A. 

Proof: We prove the first part of the lemma; the other part 
is symmetric. In applying Corollary 1.2, Al = k + A 5 3A 
and m = 0. Hence, we get a bound of n(m) for jo,r+n. 
For the lemma to hold, we need only show that the second 
term in the claimed lower bound is of the order of the first 
term: m/A < m/A = O(m), n 

We now prove the rest of the lower bound theorems of Sec- 
tion 1.2 by exhibiting reductions from suitable problems. 
We first consider the problem of estimating the kth-smallest 
element. 

Proof of Theorem 1.5: We need only prove the bound 
when A < n/4, since it holds trivially otherwise. We as- 
sume that A is integral. The same proof works with [Al 
substituted for A. 

Note that the query complexity of computing ft.<, is the 
same as that of computing fn-t,+!, , since we can negate 
the oracle responses in an algorithm for the former to get an 
algorithm for the latter, and vice-versa. We now consider 
two cases: 

Case (a). 2A < k < n -2A. Any algorithm for ccnn- 
puting a A-approximate kth-smallest element also com- 
putes fn-*+a,+-a, and hence, by Lemma 2.7 and the ob- 
servation above, it makes at least fl( @+ m/A) 
queries. 

Case (b). k 5 2A or k 2 n-2A. If k 2 2A, we re- 
duce from the function f”,“-k-h. Lemma 2.8, along with 
the observation above, gives the required bound. Similarly, 
fork 2 n-2A, we reduce from fn-b+a,o to get the required 
bound. n 

Since the problem of approximating the median is really a 
special case of the more general problem of approximating 
the kth-smallest element, we get a lower bound for the ap- 
proximate median problem as well. 
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Proof of Corollary 1.6: For n odd, an c-approximate 
median is a A-approximate kth smallest element far k = 
(n+ 1)/2 and A = ((en + 1)/21. The lower bound of G(l/z) 
now follows from Theorem 1.5. I 

The lower bounds for estimating the median and the kth- 
smallest element continue to hold in the comparison tree 
model, since any comparison between two input numbers 
can be simulated by making at most 4 queries to an oracle 
of the sort we consider above. 

The remaining proofs for approximate counting and approx- 
imating the mean are similar to the ones above; we only 
sketch them here. 

Proof of Theorem 1.11: We may assume that A < n 18, 
since the lower bound is trivial otherwise. Consider any 
algorithm that approximately counts to within an additive 
error of A. Fix any 0 < t 5 n. Suppose for any input X 
with 1x1 = t! the algorithm outputs a A-approximate count 
after T quenes with probability at least 213. We then con- 
sider the truncated version of the algorithm which stops af- 
ter making T queries and outputs 1 if the approximate count 
obtained (if any) lies in the range (t-A, t + A) and 0 other- 
wise. Since the original algorithm approximates to within A 
for all inputs, the truncated algorithm computes fr,l+,znl 
and/or ft,+,ml whenever these partial functions are well- 
defined (i.e.. when t + 2A < n and/or t - 2A > 0). Now. bv 
consideing the four &es t-5 4A, n-t 5 4A, TA’< t 2 n/i, 
and n/2 < t < n -4A, and by reducing from a suitable par- 
tial function (either ft,t+,zal or ft,I-lza,) in each case, we 
get the claimed lower bound. n 

3.1 An optimal distinguisher 

Recall the problem of computing the partial function ft (, 
defined in Section 1.2. In this section, we show how t&s 
partial function may be computed optimally, i.e., within a 
constant factor of the lower bound of Corollary 1.2, thus 
proving Theorem 1.3. Along with Lemma 2.6, this implies 
that the polynomial degree lower bound we show in Theo- 
rem 1.1 is within a constant factor of the optimal, and hence 
it is not possible to obtain better lower bounds for the prab- 
lems we consider using our technique. 

Our algorithm actually computes the partial function jl,<, : 
(0, 1)” + (0, l}, where 0 < t?’ < e 2 n, defined &: 

fi,P = 1 1 if 1X1>! 
0 if IXl<e’ 

Clearly, any algorithm for this partial function also com- 
putes fi,tl, and thus the lower bound for the latter also holds 
for this function. 

The algorithm D(X,!‘,l) for il,r, which we call a distin- 
guisher, is in fact an immediate derivative of an approxi- 
mate counting algorithm of Brassard et ol. 15, 14, 61, which 
enables us to estimate the number of ones ty of a boolean 
function Y in a useful manner. 

Theorem 3.1 (Brassard, Hoyer, Mosca, Tapp) There 
is a quantum black-boz algorithm C(Y, P) which, given om- 
de mcess to D boolean function Y = (yo,. , y,-I), and an 

Since the problem of approximate counting is a restriction of 
the more general problem of estimating the mean of n num- 
hers, the lower bound for the latter problem follows directly 
from Theorem 1.11. 

explicit integer parameter P, makes P co//s to the oracle Y 
and computes (I number t E [0, n] such that 

Proof of Corollary 1.12: lfthe irmut numbers are all O/l. 
multiplying an &proximate me& by n gives us an ;n: 
approximate count. From Theorem 1.11, in the worst csx 
(&en the number of DIES in the input is in/zJ), the number 
of queries required to salve the approximate mean problem 
is n(l/r). n 

Finally, we sketch the proof of the lower bound for approti- 
mate counting to within some relative error. 

Proof of Theorem 1.13: To derive a lower bound on 
the number of queries T made by an algorithm to approx- 
imate tx. when tx = t. we consider a truncated version of 

with probability at least 213 

Let X he the input to the distinguisher D, and let n 
and Al be defmed as in Section 1.2. Further, let P = 

[c(&&+ JG&E%j/al)l, where c is a constant to 

be determined later, and let t = C(X,P). The algo- 
rithm D(X,!‘,!) returns 0 if t < !‘+ At/2 nnd 1 otherwise. 
The correctness of the algorithm follows from the claim be- 
low; its optimality is clear from the choice of P. 

the algorithm obtained by running the algorithm until it re- 
turns a value between (1 - r)t and (1 + r)t with probability Claim 3.2 With probability ot least 213, if tx 5 f.‘, then t < 

at least 213, for such inputs. Since the algorithm correctly e’ + AJ2, and if tx 2 L’, then t > e’+ Ac/2. 
approximates the count to within a relative error of c for 
all inputs, we can use it to compute the function ft,,+l We omit the proof of this claim. We will see in the next 
when et 5 l/4, or ft,,t, where t’ = [(I -+/(l+r)J, section that this distinguishing capability of D also allows 
when l/4 < rt. Corollary 1.2 now gives us the claimed us to search for an element of a desired rank nearly optimally. 
bound. n 

3.2 Approximating the kth-smallest element 
3 Some optimal or nearly optimal algorithms 

Consider the problem of approximating the kth-smallest el- 

We now show that the quantum black-box bounds obtained 
in the previous section are either tight or almost tight by 
giving algorithms where no such algorithm was known. 

ement in the black-box model. Recac that when provided 
with a list of numbers X = (Q, , ~“-1) as an oracle, and 
an explicit parameter A > l/Z, the task is to find an input 
number z; (or the corresponding index i) such that zi is 
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a jth-smallest element for a j E (k - A, k + A). Notice that 
we may round A to [Al without changing the function to 
be computed. We therefore assume that A is an integer in 
the sequel. 

The description of the problem in terms of ranks of num- 
bers needs to be given carefully, since there may be repeated 
numbers in the list. To accommodate repetitions, we let 
ran!x(zi) denote the set of positions j E {0, , n - 1) at 
which zi could occur, when the list X is arranged in nan- 
decreasing order. A A-approximate kth-smallest element is 
thus a number z; such that rank(z,) n (k - A,k + A) is 
non-empty. 

In this section we give a near optimal quantum black-box 
algorithm for computing a A-approximate kth-smallest ele- 
ment. No non-trivial algorithm was known for this problem 
for general k. Our algorithm is inspired by the minimum 
finding algorithm of DGrr and H#yer [S], and builds upon 
the general search algorithm of Bayer et al. [4] and the dis- 
tinguisher of the last section obtained from the approximate 
counting algorithm of Brassard et al. [5, 14, 61. To com- 
pute an c-approximate median within the bound stated in 
Corollary 1.8, one need only run the algorithm with the pa- 
rametem k and A chosen appropriately. 

3.2.1 An abstract algorithm 

We first present the skeleton of OUT algorithm using two hy- 
pothetical procedures S(. , .) and I<(.). For convenience, we 
define z-1 = -co, and zn = m. The procedure S(i,j) re- 
turns an index chosen uniformly at random from the set of 
indices I such that zi < 51 < zj, if such an index exists. The 
procedure K(i) returns ‘yes’ when z; is a A-approximate 
kth-smallest element of X, ‘<’ if zi has rank at most k - A 
(i.e., rank(z) 0 (k -A,“] = 0) and ‘>’ if zi has rank at 
least k + A (i.e., rank(z) n [l,k + A) = 0). Our algo- 
rithm, which we refer to as d(S, I<), performs a search on 
the list of input numbers, with a random pivot. It thus has 
the following form: 

1. it -1, j c n. 

2. I t S(i, j). 

3. If K(i) returns ‘yes’, output ZI (and/or I) and stop. 

Else, if K(1) returns ‘<‘, i t I, go to step 2. 

Else, if K(I) ret-s ‘>‘, j c I, go to step 2. 

An execution of steps 2 and 3 is called a stage. This al- 
gorithm always terminates and produces a correct solution 
within n-2A+2 stages. However, the following lemma tells 
us that the expected number of stages before termination is 
small. Let N = m+ m/A. 

Lemma 3.3 The algorithm d(S, K) terminates with we- 
cess after on ezpected O(log N) number of stages. 

The proof of this lemma, which we omit, proceeds by exam- 
ining, for each input number, the probability that it is ever 
selected in step 2 of the algorithm. The expected number 
of stages is the sum of these probabilities. Note that the 

lemma guarantees that, with probability at least 3/4, the 
algorithm d(S, I<) terminates within O(log N) stages. 

We now consider the behaviour of the algorithm A when the 
(deterministic) procedure I<(.) is replaced by a randomized 
subroutine !<I(,) with the following specification. On input i 
(for some 0 5 i < n): 

l if zi is a $-approximate kth-smallest element, output 
‘yes’; 

. else, if rank(~) is at most k - A, output ‘<‘; 

. else, if rank(z;) is at least k + A, output ‘>‘; 

s else, if ra&(si) is at least k - A + 1 and at most k - $, 
probabilistically output either ‘yes’ or I<‘; 

6 else, if ra&(si) is at least k + $ and at most k + A - 1, 
probabilistically output either ‘yes’ or I>‘. 

The algorithm d(S, K’) obtained by replacing the subrou- 
tine K(.) by K’(.) clearly also always computes a correct 
solution. Although it may require more stages to arrive at a 
solution, we show that the increase is by at most a constant 
factor. 

Lemma 3.4 Let X be any input oracle. The expected 
number of stages of the algorithm d(S, K’) with oracle X 
and parameter A is at most the expected number of stages 
of d(S, K) on inputs X and A/2. 

We omit the proof of this lemma. In light of Lemma 3.3, 
this lemma implies that d(S, K’) also terminates after an 
expected O(log N) number of stages. 

Finally, we would like to allow the procedures S and K’ 
to either report failure or output an incorrect answer with 
some small probability. As mentioned above, we can re- 
strict the number of stages of the algorithm to O(log N) 
and yet achieve success with probability at least 314. Now, 
if any invocation of S or K’ fails (or errs) with probabil- 
ity o(l/log N), the net probability of success will still be at 
least, say, 213. 

3.2.2 A realization of the algorithm 

We are now ready to give implementations of the two prw 
cedures S and I<’ out of which the algorithm is built. 

The subroutine S is derived from the generalized search al- 
gorithm of Bayer et al. [4], which enables us to sample uni- 
formly from the set of ones of a boolean function. 

Theorem 3.5 (Bayer, Brassard, H~yer, Tapp) There 
is (I quantum black-bozalgorithm which, given a boolean om- 
cleY = (yo,...,y,-1) with II’ 2 t, makeaO(fi) queries 
and returns an index i chosen uniformly at mndom from the 
set {j : y, = I}, with probability ot least 2/3. 

Note that the success probability of the procedure above 
may be amplified to 1 - 2 R(T) by repeating it at most O(T) 
times and returning a sample as soon as a ‘one’ of Y is ob- 
tained. It can easily be verified that a sample so generated is 
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uniform over the ones of Y. The procedure S(i, j) is imple- 
mated by defming a boolean function Y = (!a,. , y,-I), 
with yr = 1 if and only if zi < ZI < z,, and using the sam- 
pling procedure above. Every time S is invoked in A, there 
are at least A ones in Y. Hence, we choose the parameter t 
in Theorem 3.5 to be A and the number of repetitions T to 
be O(loglogN). Each “query” to the function Y requires 
tvo queries to the input oracle X. Thus, OUT sampling pro- 
cedure makes 0( @ log log N) queries and succeeds with 
probability 1 - o(l/log N). 

The subroutine K'(i) is implemented by using the distin- 
guisher D of Section 3.1 to look at both the number of el- 
ements smaller and the number of elements larger than z;. 
The probability of correctness of D may be boosted to 1 - 
2n(T) by repeating the algorithm O(T) times and returning 
the majority answer. We require that the probability of er- 
ror be o(l/ log N), so we take T to be O(loglog N). In more 
detail: 

If k + A - 1 > n, go to step 2. Let to = [k + A/21 - 2, 
and t, = k + A - 1. Note that 0 5 to < t, 5 n, 
since k,A > 1. Define a boolean function Y over a 
domain of&e n, with y, = 1 if and only if 2, < z,. If 
the distinguisher D(Y, to, tl) returns ‘O’, go to step 2. 
Otherwise, output ‘>‘. 

If k - A < 0, return ‘yes’. Let to = n - [k - A/2J - 1, 
and t, = n -k + A. Note that we again have 0 < to < 
t, 5 n. Deline a boolean function Y over a domain of 
size n, with y, = 1 if and only if zj > z;. If the distin- 
g&her D(Y, to, tl) returns ‘O’, output ‘yes’. Otherwise, 
output ‘<‘. 

It is easy to verify that this meets the specification for 
K’ with probability 1 - o(l/logN), and that it makes 
O(NloglogN) queries to the oracle X. 

By Lemma 3.4, we conclude that the total number of queries 
made by the algorithm is O(NlogNloglog N), as claimed in 
Theorem 1.7. Observe that our implementations of S and K’ 
use only comparisons between the input numbers, and thus 
may be adapted to work in the comparison tree model, with 
the same bound on the number of oracle queries. 

3.3 Optimal approximate counting 

Recall from Section 1.2 that the problem of computing a A- 
approximate count consists of computing a number in [0, n] 
wbicb is within an additive error of A from the number of 
ones tx of a given boolean oracle input X = (a,. , ~“~-1). 

The algorithm we propose here is entirely analogous to the 
ezoct counting algorithm of Brassard et al. [5, 14, 61, and 
we give only a sketch of it. The algorithm fist invokes the 
procedure C(X,P) of Theorem 3.1 a few times (say, live 

times), with P = [cm1 (for some suitable constant c), 

to get an estimate t, taken to be the median of the approx- 
imate counts returned by C. With high (constant) prob- 
ability, this estimate is within O(min {tx, n - tx} + A) of 
the actual count tx. The algorithm then invokes C again, 

with P = [cl (&Z + M/A)] (for a suitable con- 

stant cl) ad outputs the value returned by C. It is easy to 
verify that with high (constant) probability, the approximate 
count obtained is within the required range. An analysis 
similar to that of the exact counting algorithm mentioned 
above yields the bound of Theorem 1.10 on the expected 
number of queries made by the algorithm. 
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A Some properties of polynomials 

In this section, we present some properties of polynomials 
and deline some concepts that we wiII use for our results. 

The symmetrizotion p”‘“’ of a multivariate polynomial 
~(“0,. , I,,-1) is defined to be 

$Y”(zo,. ,Zn-,) = 
c sES” P(%(,), ~~~r(n-1)) 

VI! 

where S, is the set of permutations on n symbols. 

If p is a multilinear polynomial of degree d, then P’~“’ is 
also a multilinear polynomial of degree d. Clearly, psy”’ is a 
symmetric function. The following fact attributed to Minsky 
and Papert [13] says that there is a succint representation 
for dY” a.3 a uniuariote polynomial. 

Fact A.1 Ifp : R” + R is o multilinear polynomial of de- 
greed, then there ezists a polynomialq : R -+ R, of degree at 
most d, such that q(a+z,+. .+&-I) = P’~~(s~, ,&-I) 
for zi E {O, 1). 

In the remainder of this section, we wiII deal only with uni- 
variate polynomials over the reals. 

The properties of polynomials that we use involve the 
concept of the uniform or Chebysheu norm of a polyno- 
mial (denoted by //pII), which is defmed as: I[pII = 
max-,<,<, Ip(z We wiII refer to the uniform norm of a 
palyno&& as simply the norm of the polynomial. 

The lint property we require is a bound on the value of a 
polynomial in an interval, given a bound on its values at 
integer points in the interval. 

Fact A.2 Let p be LI polynomial of degree d < n such 
that Ip( < c for integers i = 0,. , n. Then Ip( 5 2d. c 
for all z in the inter& [0, n]. 

This fact follows easily from an examination of the Lagmnge 
interpolation for the polynomial p; the details are omitted. 

The next fact bounds the value of a polynomial outside the 
interval [-1, 11, in terms of its norm (i.e., its maximum value 
inside the interval [-l,l]). Let Td(z) = $[(z + m)d + 
(z--)~]. This polynomial is known as the Chebysheo 
polynomial of degree d. Note that ITdl is an even function 

of z, and that ITa(l + .z)I 5 e’=, for z > 0. 

Fact A.3 Let p be 01 polynomial of degree at most d. Then, 
for I4 > 1, 

Ip(4l 5 II P II IT&)I 

A proof of this fact may be found in Section 2.7 of [17]. We 
require an easy corollary of this fact. 

Corollary A.4 Let p be (I polynomial of degree ot most d, 
with Ip( < c for 1~1 5 a, for some o > 0. Then, for 
all 121 2 (1, 

IP( 5 cIw+)I 

At the heart of our lower bound proof is the following set 
of inequalities, due to Bernstein and Markov, which relate 
the size of the derivative p’ of a polynomial p to the degree 
of p. Proofs of these may be found in Section 3.4 of [16] and 
Section 2.7 of [17]. 

Fact A.5 Let p be (I polynomial of degree d. Then, for z E 
[-Lll, 

1. (Markov) Ip’(z)l 5 d2 IIPII; 

2. (Bernstein) m Ip’(z)I 5 dllpll 

The next fact, which is a more general version of the Bem- 
stein Inequality above, deals with trigonometricpolynomials. 
A trigonometric polynomial t(t) of degree d is a real linear 
combination of the functions casiz and sin ix, where i is an 
integer in the range [O,d& For a trigonometric polynomial t, 
we define its norm to be II t II = rna~-,+~~ It(z 

Fact A.6 Let t be o trigonometric polynomial of degree d. 
Then, for z E [--li, n], 

If(z)I 5 dlltll 

393 


