
Short proofs of the Quantum 
Substate Theorem

Rahul Jain
CQT and NUS, Singapore

Ashwin Nayak
University of  Waterloo



Classic problem

• Given a biased coin    c

• Pr(c = H)  =  1 - e

• Pr(c = T)   =  e

• Can we generate a fair coin toss ?



Lemonade from lemons

Von Neumann:    rejection sampling

• Toss   c   twice

• Repeat if    HH   or   TT,   else output result

Pr(success in 1 trial)  =  p  =  2e(1-e)

E(# trials for success)  =  1/p



Quantum substate theorem

• Say we are given a quantum state    Q,    but we wish to 
prepare state    P

• The theorem gives a bound on the number of trials a 
quantum analogue of rejection sampling takes (formal 
statement later)

• Original proof by Jain, Radhakrishnan, and Sen (2002)

• Applications in cryptography, communication and 
information theory

• This talk:   short, conceptually simple proof of the theorem

• Stronger statement, optimal up to a constant factor



Classical version

Rejection sampling

• Scale   P   so its graph is contained within    Q:    aP   ≤   Q

• We get a sample    i    from    Q

• Throw a dart uniformly at random on the vertical line up to Q

• Repeat with new sample if dart above   aP,   else output   i

Pr(success in 1 trial)  =  a  =    mini    qi / pi

E(# trials for success)  =  1/a   =     maxi    pi / qi



Relative min-entropy

• We say    aP    is a subdistribution of    Q

• E(# trials for success)  =  1/a   =     maxi    pi / qi 

• Important measure of distance between distributions    P , Q

• S∞(P|Q)    =    log2 (1/a)    =    maxi    log2 (pi / qi)

• Relative entropy:    S(P|Q)    =    ∑i   pi log2 (pi / qi)    ≤    S∞(P|Q)



Approximate sampling

• Given    Q   often suffices to 
generate   P’   close to   P

• Say,    |P’ - P|    ≤    e    

(1/2  L1 distance)

• S∞(P|Q)    =    log2 (1/d)

• Let    P’    be uniform on the first   (1 - d2 ) n    points

• Then    |P’ - P|    ≤    d

• S∞(P’|Q)    =    log2 (1 / (1 - d2))    ≈    const  d2



Smooth relative min-entropy

• Interested in    P’    e-close to    P,    such that    aP’    is a 
subdistribution of    Q    and    a    is maximized

• E(# trials for success)  =  1/a 

• Se∞(P|Q)    =    log2   min {  1/a  :    aP’ ≤ Q,    |P’ - P| ≤ e } 

  =    log2   min {  k  :    P’ ≤ kQ,    |P’ - P| ≤ e } 

• How do we estimate this quantity ?



Substate theorem    [JRS’02]

Theorem

Suppose   P , Q    are probability distributions

with   supp(P)  ⊆  supp(Q) .

For every   e  ∈  (0,1)   there is a distribution    P’    such that

|P’ - P|  ≤   e ,    and

P’  ≤   [ 2(s+1)/e / (1-e) ]   Q ,

where   s  =  S(P|Q) .

I.e.,       Se∞(P|Q)    ≤    (S(P|Q) + 1) / e    +    log2 1/(1 - e)

Recall:   relative entropy   S(P|Q)    =    ∑i   pi log2 (pi / qi) .



Proof of Substate Theorem

The sum of negative terms    pi log2 (pi / qi)    is at least    -1 .

⇒    Pr( log2 (pi/qi)  ≥  (s+1)/e )    ≤    e

Let    P’ = P    conditioned on the complementary event.

We have    |P’ - P|  ≤  e,    and    (1-e) P’  ≤  2(s+1)/e    Q    ❚

Let    s  =  S(P|Q)  =  Ei   log2 (pi / qi)

If    pi/qi    were at least 1, we could 
use the Markov inequality:

Pr( log2 (pi/qi)  ≥  s/e )    ≤    e



Quantum substate theorem    [JRS’02]

Theorem

Suppose   P , Q    are probability distributions

with    supp(P)  ⊆  supp(Q) .

For every   e  ∈  (0,1)   there is a distribution    P’    such that

|P’ - P|  ≤   e ,          and

P’  ≤   [ 2(s+1)/e / (1-e) ]   Q ,

where   s  =  S(P|Q) .

I.e.,       Sd∞(P|Q)    ≤    (S(P|Q) + 1) / e    +    log2 1/(1 - e)

where    d  =  √e

quantum states

quantum state

√e



Decoding this theorem

• What is a quantum state ?

• What is rejection sampling for quantum states ?

• What is the relative entropy of quantum states ?

• When are two quantum states close to each other ?



Quantum state

• A quantum state   P  is a positive semidefinite operator on   
Cn  with unit trace

• Simplest case:    rank 1 operator

• P  =  v v* ,    v    is called a superposition

• Rank > 1:    P  =  ∑i  pi vi vi
*    (spectral decomposition)

• may be viewed as a probability distribution   (pi)  
over the eigenvectors    vi

• Probability distribution over   {1, ..., n}   is a diagonal such 
operator:    vi  =  ei ,    standard basis vectors



Rejection sampling

• Given quantum state   Q,    would instead like to prepare 
state   P

• We say    aP    is a substate of    Q   if   aP  ≤  Q,   i.e.,

Q  =  aP  +  (1-a)Q’ ,    where    Q’  ≥  0

• Several quantum variants of rejection sampling, all have success 
probability    a

• Again,    E (# trials for success)  =  1/a



Relative min-entropy

• Important measure of distance between quantum states    P , Q:

• what is the maximum    a   such that   aP  ≤  Q ?

• least   E (# trials for success)  =  1/a

• S∞(P|Q)    =    log2   min { 1/a  :    aP  ≤  Q }

  =    log2   min { k  :    P  ≤  kQ }

No simple expression for this in terms of   P , Q

• Relative entropy:    S(P|Q)    =    Tr   P (log2 P -  log2 Q)

• log2 is an operator monotone function

• log2 P  ≤  (log2 k) I   +   log2 Q

• So    S(P|Q)  ≤  S∞(P|Q)



Smooth relative min-entropy

• Suppose we can tolerate some error   e   in generating the 
quantum state   P   from   Q:

• would like    P’    e-close to    P,    such that    aP’    is a 
substate of    Q    and    a    is maximized

• Distance measure:    induced by trace norm (Schatten 1-norm)

• |M|  =  (1/2)  Tr (M*M)1/2  =  (1/2) sum of singular values

• tells us how well two quantum states may be distinguished

• Se∞(P|Q)    =    log2   min {  1/a  :    aP’ ≤ Q,    |P’ - P| ≤ e } 

  =    log2   min {  k  :    P’ ≤ kQ,    |P’ - P| ≤ e } 

• How do we estimate this quantity ?



Quantum substate theorem    [JRS’02]

Theorem

Suppose   P , Q   are quantum states,    supp(P)  ⊆  supp(Q) .

For every   e  ∈  (0,1)   there is a quantum state   P’    such that

|P’ - P|  ≤   √e ,          and

P’  ≤   [ 2(s+1)/e / (1-e) ]   Q ,

where   s  =  S(P|Q) .

I.e.,       Sd∞(P|Q)    ≤    (S(P|Q) + 1) / e    +    log2 1/(1 - e)

where    d  =  √e



New proof    [Jain, N.’11]

• Key observation:    smooth relative min-entropy is the logarithm of 
the following convex program (SDP) over variables   P’, k

min    k

such that

P’  ≤  kQ

|P’ - P|  ≤  e

Tr(P’)  =  1

P’  ≥  0 

• Using strong duality, it suffices to bound the dual optimum

• Bound on dual is analogous to the substate theorem for 
distributions



First use of duality

A  ≤  B         ⇔        v*Av  ≤  v*Bv        for all    v  ∈  Cn

  ⇔        Tr(vv*A)  ≤  Tr(vv*B)        for all    v  ∈  Cn

  ⇔        Tr(MA)  ≤  Tr(MB)        for all  M  ≥  0



First use of duality

Lemma:    

Suppose  P’, Q   are quantum states with  supp(P’) ⊆  supp(Q).  
Then

min { k :  P’  ≤  kQ }    

=    max  {  Tr(MP’)  :  Tr(MQ) = 1,    M  ≥  0 }.

Proof:    

P’  ≤  kQ     ⇔      Tr(MP’)  ≤  k Tr(MQ)        for all   M  ≥  0 

⇔      Tr(MP’)  ≤  k Tr(MQ)        for all    M  ≥  0,   Tr(MQ) ≠ 0

⇔      Tr(MP’)  ≤  k        for all   M  ≥  0,   Tr(MQ) =  1

(scale    M    by   Tr(MQ) )    ❚



A min-max formulation
The convex program over variables   P’, k

may be rewritten as

min
P’ :  |P’ - P|  ≤  e

Tr(P’)  =  1
P’  ≥  0 

min             k
k  :  P’ ≤  kQ 

P’, k  :  P’  ≤  kQ    
|P’ - P|  ≤  e
Tr(P’)  =  1
P’  ≥  0

min                  k

By the previous lemma this is equal to

min
P’ :  |P’ - P|  ≤  e

Tr(P’)  =  1
P’  ≥  0 

max               Tr(MP’)
M  :  Tr(MQ) = 1

M  ≥ 0 



Min-max duality

min
P’ :  |P’ - P|  ≤  e

Tr(P’)  =  1
P’  ≥  0 

max               Tr(MP’)
M  :  Tr(MQ) = 1

M  ≥ 0 

A powerful min-max theorem from game theory implies

is equal to

P’ :  |P’ - P|  ≤  e
Tr(P’)  =  1

P’  ≥  0 

max 
M  :  Tr(MQ) = 1

M  ≥ 0 

min              Tr(MP’)

To bound the optimum, it suffices to produce a suitable   P’   for each 
given    M    with bounded    Tr(MP’)

The bound we seek:    Tr(MP’)  ≤  2(s+1)/e / (1-e) ,   where    s  =  S(P|Q)



Lemma:    For any    M ≥ 0   such that   Tr(MQ) = 1,   there is a 
quantum state   P’   e-close to   P   such that

Tr(MP’)  ≤  2(s+1)/e / (1-e) ,

where   s  =  S(P|Q) .

Proof:   Let   M  =  ∑i  mi vi vi
*        (spectral decomposition)

Tr(MQ)  =  ∑i  mi  vi
*Qvi                         Q1  = (qi)

Tr(MP)  =  ∑i  mi  vi
*Pvi                            P1  = (pi)

Monotonicity of relative entropy implies   

s1  =  S(P1|Q1)  ≤  S(P|Q)        

qi

pi



We apply the result for distributions to   P1, Q1 :

Let   B  =  { i  :  log2 (pi/qi)  ≥  (s1+1)/e }

so that   ∑i ∈ B    pi   ≤  e

Let   Π   be the orthogonal projection onto   Span { vi :  i ∉ B }

So   Π  =  ∑i ∉ B  vi vi
*

and   Tr(ΠP)  =  ∑i ∉ B  vi
*Pvi  =  ∑i ∉ B  pi  ≥  1 - e

Define    P’  =  ΠPΠ /  Tr(ΠP)

(we restrict   P  to the subspace with bounded   pi )

Lemma:    |P’ - P|  ≤  √e        

(similar to the “gentle measurement lemma due to Winter)



Recall   B  =  { i  :  log2 (pi/qi)  ≥  (s1+1)/e }

We have

Tr(MP’)  =  ∑i ∉ B   mi  vi
*Pvi  /  Tr(ΠP)

≤  (1/(1-e))   ∑i ∉ B  mi pi 

≤  (1/(1-e))   ∑i ∉ B  mi  2(s+1)/e  qi

≤  [ 2(s+1)/e /(1-e) ]   ∑i ∉ B  mi  qi 

≤  2(s+1)/e /(1-e)        ❚

≤  Tr(MQ)



Remarks

• We get a stronger statement

• use fidelity as a measure of distance

• tighter bound in terms of observational divergence

• Optimal relationship between observational divergence and relative 
min-entropy (up to a constant factor)

• An alternative proof, albeit more abstract, using semidefinite 
programming duality

• Generalizes to smooth conditional entropy, which plays an 
important role in quantum cryptography and Shannon theory


