
A quantum information trade-off 
for Augmented Index

Rahul Jain   (Singapore)
and 

Ashwin Nayak   (Waterloo)



Privacy in communication

x yIs    x > y   ?



Privacy in communication

Two millionaires problem    [Yao ’82]

Determine if   x > y   without revealing any other 
information about their wealth

x yIs    x > y   ?



Privacy in communication

Two millionaires problem    [Yao ’82]

Determine if   x > y   without revealing any other 
information about their wealth

Impossible without restriction on their computational power

x yIs    x > y   ?



How much information is revealed?



How much information is revealed?

• Similar to honest but curious model

Follow the protocol, but use messages to gain 
information



How much information is revealed?

• Similar to honest but curious model

Follow the protocol, but use messages to gain 
information

• Extremes

Alice reveals all of   x,   Bob reveals only   f(x,y),   and 
vice-versa



How much information is revealed?

• Similar to honest but curious model

Follow the protocol, but use messages to gain 
information

• Extremes

Alice reveals all of   x,   Bob reveals only   f(x,y),   and 
vice-versa

• Better protocols are possible

Equality:    O(log n)   one-way protocol,   1/poly(n) 
error, reveals only O(1) bits about one input    [GV’10, 
FHS’10]



Augmented Index

Variant of Index function

Bob has the prefix   x[1, k-1] ,   and a guess   b   for the value 
of   xk .

x = x1 x2 ... xn k,  x[1, k-1],  bIs    xk = b   ?



Index function
Fundamental problem with a rich history

• communication complexity    [KN’97]

• data structures    [MNSW’98]

• private information retrieval    [CKGS’98]

• learnability of states    [KNR’95,  A’07]

• finite automata    [ANTV’99]

• formula size    [K’07]

• locally decodable codes    [KdW’03]

• sketching    e.g., [BJKK’04]

• information causality    [PPKSWZ’09]

• non-locality and uncertainty principle    [OW’10]

• quantum ignorance    [VW’11]



Results



Results

Theorem   [JN’11]

If a quantum protocol computes   AIn   with probability   1 - ε    
on the uniform distribution, either 
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Results

Theorem   [JN’11]

If a quantum protocol computes   AIn   with probability   1 - ε    
on the uniform distribution, either 

Alice reveals   Ω(n/t)   information about   x ,  or 

Bob reveals   Ω(1/t)   information about   k ,  

even when restricted to 0-inputs, where   t   is the number of 
messages.

Stronger theorem for classical protocols   [JN’10]

Alice reveals   Ω(n) ,   or Bob reveals   Ω(1)   information.
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Related work

Privacy in communication   (quantum)

• Klauck’04:   w.r.t. hard distribution

• Index function:   various flavours   [JRS’02, ’09;  KdW’04;  
LeG’11]

• Jain, Radhakrishnan, Sen’03:   AND(a, b), w.r.t. superposition 
over 0-inputs

Augmented Index   (classical)

• Magniez, Mathieu, N.’10:   In Alice-Bob-Alice classical protocols,   
Alice reveals   Ω(n) ,   or   Bob reveals   Ω(log n)   bits of 
information, even when restricted to 0-inputs.

• Chakrabarti, Cormode, Kondapalli, McGregor’10:   independent 
and concurrent work, similar classical results as ours.

• Neither technique applies to quantum communication.
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Why Augmented Index ?
Why privacy w.r.t. 0-inputs ?

Streaming model

• massive input,  cannot be stored entirely in memory

• input arrives sequentially, read one symbol at a time

• device processes each symbol quickly, while maintaining small 
workspace

Attractive model for quantum computation

··· 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0···

device with small memory
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Streaming quantum algorithms

Advantage over classical

• Quantum finite automata:   streaming algorithms with constant 
memory and time per symbol. E.g., may be exponentially 
smaller than classical FA.

• Use exponentially smaller amount of memory for certain 
problems   [LeG’06,  GKKRdW’06]

Advantage for natural problems ?

• For context-free languages:  e.g., checking whether a sentence 
is grammatical.

• For Dyck(2), checking if an expression in two types of 
parentheses is well-formed ?  Canonical CFL, used in practice.
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Magniez, Mathieu, N.’10:

• A single pass randomized algorithm that uses  O( (n log n)1/2 )   
space,   O(polylog n)   time/ symbol

• 2-pass algorithm, uses  O(log2 n)  space,  O(polylog n)   time/ 
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Streaming algorithms for Dyck(2)

Magniez, Mathieu, N.’10:

• A single pass randomized algorithm that uses  O( (n log n)1/2 )   
space,   O(polylog n)   time/ symbol

• 2-pass algorithm, uses  O(log2 n)  space,  O(polylog n)   time/ 
symbol,   second pass in reverse

• Space usage of   1   pass algorithm is optimal,    via study of 
information revealed in classical protocols for Augmented 
Index.

Better quantum algorithms ?

• Classical version shows limitations of multiple (unidirectional)
passes over input.

• The information cost trade-off would give a similar negative 
answer, provided a conjectured information inequality holds.



The information cost trade-off

Theorem

If a quantum protocol computes   AIn   with probability   1 - ε    on 
the uniform distribution, either 

Alice reveals   Ω(n/t)   information about   x ,  or 

Bob reveals   Ω(1/t)   information about   k ,  

even when restricted to 0-inputs, where   t   is the number of 
messages.

x = x1 x2 ... xn k,  x[1, k-1],  bIs    xk = b   ?
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Intuition behind proof   
(2 messages, no private workspace)

Consider uniformly random   X,   K,   let   B = XK .

• Consider   K   in   [n/2].   If   MA   has   o(n)   information about   X,   
then it is nearly independent of   XL ,   L > n/2.   Flipping  Alice’s  L-th bit 
does not perturb   MA   much.

• If   MB   has   o(1)   information about   K,   then   MB   is nearly the 
same for most pairs   J ≤ n/2,    L  >  n/2.   Switching  Bob’s index from   J   
to   L   does not perturb   MB   much.

Consequences of Average Encoding Theorem    [KNTZ’07, JRS’03]

x = x1 x2 ... xn k,  x[1, k-1],  bMA

MB

output
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      0

      0

same L-th bit

X[1, K]

X[1, L]

｜ψ 〉

｜ψ’’ 〉≈ ｜ψ 〉  

switch index
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Alice’s input Bob’s input Protocol state

flip L-th bit

X[1, K]

X[1, K]

｜ψ 〉

｜ψ’ 〉≈ ｜ψ 〉  

same index

0-input

      0

      1

flip L-th bit

X[1, K]

X[1, L]

｜ψ 〉

｜φ 〉 

switch index

1-input
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Finally...
Alice’s input Bob’s input Protocol state

      0

      1

flip L-th bit

X[1, K]

X[1, L]

｜ψ 〉

｜φ 〉≈ ｜ψ 〉 ? 

switch index

｜ψ 〉=   VK UX｜0 〉,    ｜ψ’ 〉=   VK UX’｜0 〉,   ｜ψ’’〉=   VL UX｜0 〉

｜φ 〉=   VL UX’｜0 〉

｜φ - ψ｜  ≤   ｜ ψ - ψ’’｜+ ｜φ - ψ’’｜

                  ≤    δ   +   ｜ VL UX’｜0 〉-  VL UX｜0 〉｜

                  =    δ   +   ｜ VK UX’｜0 〉-  VK UX｜0 〉｜

                  =    δ   +   ｜ ψ - ψ’ ｜   ≤    2 δ



Complications swept under the rug

• How we quantify information that is revealed

• Alice and Bob may maintain private workspace

• Information about inputs may increase with each message, penalty 
for switch increases

• Most of these issues handled à la [JRS’03]

• Leads to a dependence of trade-off on the number of messages

• Connection with streaming algorithms à la [MMN’10] breaks 
down



Final remarks

• Established a trade-off in quantum information revealed by parties 
computing Augmented Index

• Stronger results in classical case, with implications for streaming 
algorithms

• Similar implications likely in the quantum case as well

• Dependence of trade-off on the number of messages unavoidable, 
without a different notion of information revealed

• Techniques developed for quantum gives conceptually simpler and 
tighter analysis of classical protocols

• Study of small space (streaming) algorithms is subtle, calls for 
further exploration


