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Application I



Privacy amplification

• A1 shared  n  uniformly random bits  X  with  A2

• Leaked information  Y  with  m  <<  n  bits to Eve

• Can they distil more secure key ?
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2-universal hashing

• A1 generates  n  uniformly random bits  Z,  sends to  A2

• Both compute scalar product (mod 2)  B = X· Z

• Eve sees  Z

• How well can she guess  B  from  Y, Z ?
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Communication complexity view     [Ben-Or]

• A1 gets string  X,  Eve gets  Z

• A1 sends  m-bit  message  Y  to  Eve 

• Eve estimates scalar product (mod 2)  B = X· Z

• What is the probability of correct estimate if  Y  is short ?

• Equivalently, for probability of correctness 1/2 + ε,  how 
long does  Y  have to be ?
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The model of computation



Two-party communication

x ycompute  f (x,y)

Alice Bob

• Would like to compute function  f   on some input

• Input distributed among two computers as  x, y  respectively

• Alice and Bob send messages to each other, depending on input and 
previous messages, may use randomization

• Local computation of the messages is (cheap)

• Need to compute f  with minimum communication,  or messages,  
etc. (expensive)

• Can tolerate a small probability of error



Example:    Equality

x yIs  x = y ?

Alice Bob

• Alice may send  x,  Bob computes the answer

• Costs  n  bits, one message

• Cannot reduce cost with deterministic protocols, even with many 
message exchanges



• Randomization helps

• Alice and Bob encode  x,  y  using the same good error-
correction code (length cn, distance  δn)  into  C(x),  C(y)

• Alice picks uniformly random  i,  sends  i,  C(x)i

• Bob outputs “equal” if   C(x)i = C(y)i  ,   “not equal”

• Correctness

• If  x = y ,  output is always “equal”

• If not,  the two bits are different with probability at least  δ/c

• By repeating for several indices, can increase probability of 
correctness

• Cost

• O(log n) ,  single message    (constant rate, constant distance 
codes exist),    is optimal



Application II



Formula size

• Boolean formula over  { ¬,  ∧, ∨ },  fan-in 2

• Computes function of variables in the leaves

• Size = number of gates ≈ number of leaves

• Given function  f ,  what is the smallest formula that 
computes it ?
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Examples

• And of  n  bits takes size  n

• Parity of  n  bits takes size  O(n2)

• How do we show optimality ?
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Bound à la Neciporuk    [Klauck]

• Partition variables into sets { Pi }

• For each  i,  consider a one-message 
communication problem:

• Alice gets values of variables not in 
Pi

• Bob gets values of variables in  Pi

• Let   D( fi )  be the communication 
complexity of computing the 
formula with one message from 
Alice

• Formula size ≥    (1/4)  ∑i  D( fi )

P1 P2 P3



Formula size ≥    (1/4)  ∑i  D( fi )

• Let  Li  be the number of leaves with 
variables in  Pi

• Formula size  =  ∑i  Li 

• Suffices to show  D( fi )  ≤  4 Li

• Green nodes: those with at least one 
descendent in  Pi

Pi

• Bob can evaluate formula if he knows the influence of Alice’s inputs on 
the paths between these nodes (or root or leaf in Pi )

• For each such path,  Alice can specify her influence by 2 bits

• # Paths  ≤   2 # green nodes  + 2   ≤    2 Li

• D( fi )  ≤   2 # Paths   ≤   4 Li



Application III



Space complexity of streaming algorithms

Streaming model

• massive input,  cannot be stored entirely in memory

• input arrives sequentially, read one symbol at a time

• device processes each symbol quickly, while maintaining small 
workspace

Important for network traffic analysis, genome decoding, web 
databases, ...
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Streaming algorithms

Streaming algorithms with constant memory and time per symbol are 
precisely finite automata

Advantage for more complex natural problems ?

• Context-free languages:  e.g., checking whether a sentence is 
grammatical

• For Dyck(2), checking if an expression in two types of 
parentheses is well-formed ?

• ( [ ] ( ) )     is well-formed

• ( [ )( ] )     is not well-formed

• Canonical CFL, used in practice: checking well-formedness of 
large XML file



Streaming algorithms for Dyck(2)

Magniez, Mathieu, N.’10:

• A single pass randomized algorithm that uses  O( (n log n)1/2 )   
space,   O(polylog n)   time/ symbol

• 2-pass algorithm, uses  O(log2 n)  space,  O(polylog n)   time/ 
symbol,   second pass in reverse

• Space usage of   1   pass algorithm is optimal,   via 
communication complexity

Jain, N.’10:

• Space usage of unidirectional  T-pass algorithm is   n1/2 / T



Connection to communication complexity   
[MMN’10]

Consider the following instance of length between   2n  and   4n

• n    opening parenthesis, followed by   k-1   closing, matched

• single closing parenthesis, of either kind

• followed by a mirror image of the same

• instance is well-matched iff   kth  closing parenthesis matches
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Communication problem

Distribute the instance between Alice and Bob as follows:

• first and last   n   symbols go to Alice

• middle   2k   symbols go to Bob

• need only represent type of parenthesis by one bit, as opening/
closing is evident
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Equivalent problem:   Augmented Index

Variant of Index function

• Alice has   n-bit string   x,   Bob has the 
prefix   x[1, k-1] ,   and a bit   b.

• Need to check if   b = xk .

One-pass algorithm with space   S   implies a 
protocol with communication  2S,  with two 
messages:

x = x1 x2 ... xn k,  x[1, k-1],  bIs    b = xk   ?
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Proving space lower bound

x = x1 x2 ... xn k,  x[1, k-1],  bIs    b = xk   ?

• Need only show communication complexity is large

• However, it is   log n + 1 :    Bob sends   k, b

• Need harder instance:    interleave many such basic instances



Hard instance

• n   independent basic units are nested at the second peak, and 
distributed among   n   pairs of players   { Ai ,  Bi }

• Previous strategy fails because all   ki   would have to be stored

• Intuition behind hardness:   either   Ai   has to send all of  xi  or the 
message from  Bn  would contain information about some  ki
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Information cost trade-off

Theorem   [MMN’10]

If a Alice-Bob-Alice communication protocol computes   
Augmented Indexn   with probability   1 - ε    on the uniform 
distribution, either 

Alice reveals   Ω(n)  information about   x ,  or 

Bob reveals   Ω(log n)   information about   k ,  

even when restricted to well-formed inputs.

Extension to multi-round protocols [JN’10, CCKM’10]

Implies space lower bound via a “direct sum reduction”, the reason 
for restricting to well-formed inputs



Intuition behind proof   
(2 messages  [JN’10])

Consider uniformly random   X,   K,   let   B = XK     (well-formed / 0-input)

• Consider   K   in   [n/2].   If   MA   has   o(n)   information about   X,   
then it is nearly independent of   XL ,   L > n/2.   Flipping  Alice’s  L-th bit 
does not perturb   MA   much.

• If   MB   has   o(1)   information about   K,   then   MB   is nearly the 
same for most pairs   J ≤ n/2,    L  >  n/2.   Switching  Bob’s index from   
J   to   L   does not perturb   MB   much.

Consequences of Average Encoding Theorem    [KNTZ’07, JRS’03]

x = x1 x2 ... xn k,  x[1, k-1],  bMA

MB

output



Intuition continued...
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Finally...
Alice’s input Bob’s input Protocol state
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We have   M  ≈   M’    and   M  ≈   M’’ .   Therefore,   M’  ≈   M’’.

Cut and paste lemma

In any (private coin) randomized protocol, the (Hellinger) distance 
between message transcripts on inputs   (u,v)   and   (u’,v’)   is the same as 
that between   (u’,v)   and   (u,v’)

Therefore,    M  ≈   M’’’   and the protocol errs.



Final remarks

• Communication complexity captures a number of phenomena in 
information processing

(also data structures, VLSI layout, time-space trade-offs, 
proof complexity, circuit depth, decision tree complexity, 
coding, game theory, ...)

• Recently, it has played a central role in streaming complexity of 
problems

• Much of this work uses the information cost approach

• Information theory may be the key to important questions 
regarding communication complexity


