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Abstract search problem
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• Input:
 Set    X  =  {a, b, c, …}
 Marked elements   M  subset of   X    (say, {a, g})
 Procedure to answer   “x  in  M ?”

• Output:
 Some element   x  in  M.

• Additional structure:   Markov chain    P   on   X



Random walk for search

• (s,t)-Connectivity
 Input: Graph G on n vertices, two specified vertices s,t
 Question: is there is a path from s to t ?
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• Algorithm: start at u = s, and repeat O(n3) times
 Pick a random vertex v adjacent to u
 If v = t, stop. Else, set u = v.



Second example

• Element Distinctness (ED)
 Input: list of   n  numbers   {x1, x2, x3, …, xn}

 Question:     are all the numbers distinct
     (or is there a collision:   xi  =  xj,    i ≠ j )

• Deterministic Algorithm:
 Sort elements;  check if consecutive numbers are equal
 Time complexity:    O(n log n )

• Not graph search, but can be recast as one.



Element distinctness as graph search

• Johnson Graph (n, r )
 Vertices:      size   r   subsets of    {1, 2, …, n}
 Edges:     {S, T }    is an edge iff    they differ by 2 elements

• Example:  n = 15,   r = 4

• Search for subset with collision

x2

x8 x13

x5

x2

x8 x13

x3

x2

x10 x13

x3



Randomized algorithm for ED

• Start at a random vertex of the Johnson graph
Pick   r   indices uniformly at random to form a set   S;
sort the elements  xi   for   i   in   S;
check for collisions.

• Repeat for   T1   steps
 Perform a random walk on the graph for   T2   steps

In each step,  swap random element   i   in  S    and
j   not in  S;
remove   xi,  insert   xj    into sorted list

 check for a collision in   S

• If no collision is found, output “no collision”.
(Less natural algorithm, but adapts well to quantum)



Randomized algorithm for ED
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• Intuition:
 In   T2  =  O(r )   steps of walk,   S  is nearly uniformly 

distributed
 Pr[ collision in random S ]   ≈   (r/n)2

 So in  T1  =   O( (n/r )2 )   repetitions, a collision will be found

• Runtime: r log r   +   T1 ( T2  log r  +  1 )
Set up cost update cost checking cost



Speed-up via quantum walk

• Quantum analogue of randomized algorithm
• Speeds up both   T1   and   T2   quadratically

[Ambainis ‘04]

• Run time of quantum algorithm for ED
r log r   +   (n/r) ( r1/2  log r  +  1 )

n2/3  log n (setting   r  =  n2/3 )

• A second  algorithm, for symmetric Markov chains
• Quadratic speed-up in detecting marked elements 

[Szegedy ’04]



This talk: New search algorithm

• Quantum walk from any irreducible Markov chain

• Algorithm finds a marked element, if any, from any  M

• Run time:    set-up  +  T1
1/2  ( T2

1/2 update + check )

Pr(M)-1/2   singular value gap-1/2

• Simple --- conceptually, and to analyze

• Unifies and improves several applications



Talk outline

• Classical algorithm

• Quantum walk

• Quantum subroutines
 Amplitude amplification
 Phase estimation

• Search algorithm



Classical search algorithm

• Start in some start distribution s

• Repeat for   T1   steps
 Simulate   T2   steps of the Markov chain P
 Check if current state is marked

• If no marked element is found, output “none marked”.
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Complexity of classical strategy

• P    symmetric (for simplicity), ergodic
• Uniform stationary distribution (1-eigenvector)

• Say we start in   s  = uniform distribution
• Run-time characterized by 

 Spectral gap      δ(P)    =   1 –  second largest |eigenvalue|
 Probability of marked elements      ε  =  Pr(M)   =   |M |  /  |X |

• Proposition
Run-time of the classical strategy is
 set-up  + (1/ε)   ( (1/δ) update + check )

              T1         T2



Talk outline

• Classical algorithm
Run time  =  1/εδ 

• Quantum walk

• Quantum subroutines
 Amplitude amplification
 Phase estimation

• Search algorithm



The quantum walk [Watrous ’01, Szegedy ‘04]

• The quantum walk  W(P)
 State space:   pairs of neighbouring vertices    |xi |yi
 Step of walk:  diffuse  y  over neighbours of  x,  new nbr. y’

       then, diffuse  x  over neighbours of  y’

 Diffusion:        analogous to Grover search operator
(reflection about state |xi ∑y √p x,y |yi,  for each x)
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Spectrum of W(P) [Szegedy ’04]

• W(P)  =  product of two reflection operators

• Assume   P   is symmetric, ergodic
Has uniform stationary distribution

• Spectrum of   W(P)   related to that of  P

• For every singular value of  P,   σ  =  cos θ    in   (0,1)
W(P) has eigenvalues      exp(± 2i θ )

• The remaining eigenvalues are   ±1



Spectral gap

• Largest singular value of   P = 1, and is unique
W(P) has unique eigenvalue 1 (in walk subspace)

• Eigenvector of W(P) with eigenvalue 1 is
|πi    =    (1/n1/2)  Σx  |xi|pxi        where

|pxi   =    Σy pxy
1/2 |yi 

• If   σ  =  cos θ   <  1   is second largest singular value,
eigenvalue gap of  W(P) is

| 1 – exp( 2i θ )|    ≥    2 (1 – σ )1/2    =    2 δ(P)1/2

square-root of spectral gap of P



Talk outline

• Classical algorithm
Run time  =  1/εδ 

• Quantum walk
Spectral gap  =  δ1/2

• Quantum subroutines
 Amplitude amplification
 Phase estimation

• Search algorithm



Amplitude amplification [Grover ’96, BBHT ’98, …]

• Search for  one  out of  n  states

• Start state: |πi    =    (1/n1/2)  Σx  |xi

• Desired final state: |ai

• Alternately reflect through    |a┴i   and    |πi
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Complexity of amplitude amplification

• Angle of rotation   =   2 φ (sin φ   =   1/n1/2)

• Number of iterations   ≈    (π/2) / (2φ)    ≈   n1/2

• Required reflection operators have small circuits

• Multiple marked states
 Fraction of marked states    ε  =   m /n
 target state    =      (1/m)1/2  Σx in M    |xi    

 Angle of rotation   =    2 φ (sin φ = (m/n)1/2 = ε1/2)
 Number of iterations    ≈     1/ ε1/2

 Quadratic speed-up over classical



Talk outline

• Classical algorithm
Run time  =  1/εδ 

• Quantum walk
Spectral gap  =  δ1/2

• Quantum subroutines
 Amplitude amplification

Cost  = 1/ε1/2

 Phase estimation

• Search algorithm



Phase estimation

• Input: circuit for unitary  U
superposition    |vi,    eigenvector
with unknown eigenvalue   exp(2πiθ)

• Output: approximation to   θ

• Proposition      [Kitaev ’95, Cleve, Ekert, Macchiavello, Mosca ’98]

Can compute an approximation to   θ   within   η
with   1/η   repetitions of   U,   one copy of   |vi

with probability   3/4



Reflection using phase estimation

Reflection through |vi
 Run phase estimation algorithm on the current state, with  U
 If approximate phase is “far” from   θ,   flip sign
 Undo phase estimation

Precision required   ≈   φ/2
Repetitions of   U    ≈   1/φ   =  1/ spectral gap

θ

φ φ U      unitary operator
v     isolated eigenvector
φ      spectral gap



Reflection via quantum walk W(P)

• |πi 1-eigenvector of W(P) 
• δ1/2 spectral gap of W(P)

• Reflection through |πi
Use phase estimation, as described
Repetitions of   W(P)    ≈   1/ spectral gap    ≈    1/δ1/2



Talk outline

• Classical algorithm
Run time  =  1/εδ 

• Quantum walk
Spectral gap  =  δ1/2

• Quantum subroutines
 Amplitude amplification

Cost  = 1/ε1/2

 Phase estimation
Cost  = 1/δ1/2

• Search algorithm



The search algorithm

• Start state:
|πi    =   (1/n1/2)  Σx  |xi|pxi

• Desired final state:
|µi    =    (1/m1/2)  Σx in M  |xi|pxi

• Alternately reflect through    |µ┴i and  |πi   à la Grover
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Implementing the reflections

• Reflection through   |µ┴i
If vertex   x   in first register is marked, 
and second register is in state   |pxi,
then flip sign

• Reflection through   |πi
Use phase estimation algorithm, as described



Complexity of the algorithm

• Angle between   |µ┴i and  |πi:
sin φ  =  (m/n)1/2   =   ε1/2,

ε  =  Pr(M)   =   probability of M under stationary 
       distribution

• Number of rotations à la Grover:    1/ε1/2

• Cost of reflection through |µ┴i

check + update cost
• Cost of reflection through |πi:

update cost    times    1/δ1/2

 δ1/2  =   spectral gap of W(P)
• Complexity

set-up  + (1/ε1/2)   ( (1/δ1/2) update + check )



Final remarks

• Error due to imperfect phase estimation algorithm 
handled with a recursive search algorithm à la  [Hoyer, 
Mosca, de Wolf ’04]

• Algorithm extends to any irreducible Markov chain

• Unified and improved algorithms for Element 
Distinctness, Triangle Finding, Matrix Product 
verification, Group Commutativity

• Better algorithms for applications in which checking 
cost is higher than update cost


