Search via quantum walk

Ashwin Nayak University of Waterloo, and Perimeter Institute for Theoretical Physics

Joint work with

Frédéric Magniez¹, Jérémie Roland², Miklos Santha¹ ¹LRI-CNRS, France, ²UC Berkeley

Abstract search problem

- Input:
 - Set X = {a, b, c, ...}
 - Marked elements M subset of X (say, {a, g})
 - Procedure to answer "x in M?"
- Output:
 - Some element x in M.
- Additional structure: Markov chain *P* on *X*

Random walk for search

- (*s*,*t*)-Connectivity
 - Input: Graph G on n vertices, two specified vertices s,t
 - Question: is there is a path from *s* to *t*?

- Algorithm: start at u = s, and repeat $O(n^3)$ times
 - Pick a random vertex *v* adjacent to *u*
 - If v = t, stop. Else, set u = v.

Second example

- Element Distinctness (ED)
 - Input: list of *n* numbers $\{x_1, x_2, x_3, ..., x_n\}$
 - Question: are all the numbers distinct (or is there a collision: $x_i = x_{j}, i \neq j$)
- Deterministic Algorithm:
 - Sort elements; check if consecutive numbers are equal
 - Time complexity: $O(n \log n)$
- Not graph search, but can be recast as one.

Element distinctness as graph search

- Johnson Graph (*n*, *r*)
 - Vertices: size *r* subsets of {1, 2, ..., *n*}
 - Edges: $\{S, T\}$ is an edge iff they differ by 2 elements
- Example: n = 15, r = 4

• Search for subset with collision

Randomized algorithm for ED

• Start at a random vertex of the Johnson graph

Pick *r* indices uniformly at random to form a set *S*; sort the elements x_i for *i* in *S*; check for collisions.

- Repeat for T_1 steps
 - Perform a random walk on the graph for T₂ steps
 In each step, swap random element *i* in *S* and *j* not in *S*;
 remove x_i, insert x_i into sorted list
 - check for a collision in *S*
- If no collision is found, output "no collision".
 (Less natural algorithm, but adapts well to quantum)

Randomized algorithm for ED **X**₂ **X**5 **X**₂ **X**₃ **X**₁₃ **X**8 **X**₅ **X**₁₃ **X**3 $X_2 \quad X_3$ **X**₂ X₈ **X**₁₃ **X**5 **X**₇

- Intuition:
 - In $T_2 = O(r)$ steps of walk, S is nearly uniformly distributed
 - Pr[collision in random S] \approx $(r/n)^2$
 - So in $T_1 = O((n/r)^2)$ repetitions, a collision will be found
- Runtime: $r \log r + T_1 (T_2 \log r + 1)$ Set up cost checking cost checking cost

Speed-up via quantum walk

- Quantum analogue of randomized algorithm
- Speeds up both T_1 and T_2 quadratically

[Ambainis '04]

• Run time of quantum algorithm for ED $r \log r + (n/r) (r^{1/2} \log r + 1)$

 $n^{2/3} \log n$ (setting $r = n^{2/3}$)

- A second algorithm, for symmetric Markov chains
- Quadratic speed-up in detecting marked elements

[Szegedy '04]

This talk: New search algorithm

- Quantum walk from any irreducible Markov chain
- Algorithm finds a marked element, if any, from any M
- Run time: set-up + $T_1^{1/2}$ ($T_2^{1/2}$ update + check) Pr(*M*)^{-1/2} singular value gap^{-1/2}
- Simple --- conceptually, and to analyze
- Unifies and improves several applications

Talk outline

- Classical algorithm
- Quantum walk
- Quantum subroutines
 - Amplitude amplification
 - Phase estimation
- Search algorithm

Classical search algorithm

- Start in some start distribution s
- Repeat for T_1 steps
 - Simulate T_2 steps of the Markov chain P
 - Check if current state is marked
- If no marked element is found, output "none marked".

Complexity of classical strategy

- *P* symmetric (for simplicity), ergodic
- Uniform stationary distribution (1-eigenvector)
- Say we start in s = uniform distribution
- Run-time characterized by
 - Spectral gap $\delta(P) = 1 \text{second largest |eigenvalue|}$
 - Probability of marked elements $\varepsilon = \Pr(M) = |M| / |X|$
- Proposition

Run-time of the classical strategy is set-up + (1/ ϵ) ((1/ δ) update + check) $T_1 \rightarrow T_2$

Talk outline

- Classical algorithm Run time = $1/\epsilon\delta$
- Quantum walk
- Quantum subroutines
 - Amplitude amplification
 - Phase estimation
- Search algorithm

[Watrous '01, Szegedy '04]

- The quantum walk W(P)
 - State space: pairs of neighbouring vertices $|x\rangle |y\rangle$
 - Step of walk: diffuse y over neighbours of x, new nbr. y' then, diffuse x over neighbours of y'
 - Diffusion: analogous to Grover search operator (reflection about state $|x\rangle \sum_{y} \sqrt{p_{x,y}} |y\rangle$, for each x)

Spectrum of W(P)

[Szegedy '04]

- W(P) = product of two reflection operators
- Assume *P* is symmetric, ergodic Has uniform stationary distribution
- Spectrum of W(P) related to that of P
- For every singular value of P, $\sigma = \cos \theta$ in (0,1) W(P) has eigenvalues $\exp(\pm 2i \theta)$
- The remaining eigenvalues are ±1

Spectral gap

- Largest singular value of *P* = 1, and is unique
 W(*P*) has unique eigenvalue 1 (in walk subspace)
- Eigenvector of W(P) with eigenvalue 1 is $|\pi\rangle = (1/n^{1/2}) \sum |x\rangle |n\rangle$ where

$$|\Pi| = (\Pi \Pi) \sum_{x} |x| |P_x|$$

$$|p_x\rangle = \sum_{y} p_{xy}^{1/2} |y\rangle$$

• If $\sigma = \cos \theta < 1$ is second largest singular value, eigenvalue gap of W(P) is $|1 - \exp(2i\theta)| \ge 2(1 - \sigma)^{1/2} = 2\delta(P)^{1/2}$ square-root of spectral gap of P

Talk outline

- Classical algorithm Run time = $1/\epsilon \delta$
- Quantum walk Spectral gap = $\delta^{1/2}$
- Quantum subroutines
 - Amplitude amplification
 - Phase estimation
- Search algorithm

Amplitude amplification [Grover '96, BBHT '98, ...]

- Search for one out of n states
- Start state: $|\pi\rangle = (1/n^{1/2}) \Sigma_x |x\rangle$
- Desired final state: $|a\rangle$
- Alternately reflect through $|a^{\perp}\rangle$ and $|\pi\rangle$

Complexity of amplitude amplification

- Angle of rotation = 2φ (sin φ = $1/n^{1/2}$)
- Number of iterations $\approx (\pi/2) / (2\varphi) \approx n^{1/2}$
- Required reflection operators have small circuits
- Multiple marked states
 - Fraction of marked states $\varepsilon = m/n$
 - target state = $(1/m)^{1/2} \Sigma_{x \text{ in } M} |x\rangle$
 - Angle of rotation = 2φ (sin $\varphi = (m/n)^{1/2} = \varepsilon^{1/2}$)
 - Number of iterations \approx 1/ $\varepsilon^{1/2}$
 - Quadratic speed-up over classical

Talk outline

- Classical algorithm Run time = $1/\epsilon \delta$
- Quantum walk Spectral gap = $\delta^{1/2}$
- Quantum subroutines
 - Amplitude amplification
 Cost = 1/ε^{1/2}
 - Phase estimation
- Search algorithm

Phase estimation

- Input: circuit for unitary Usuperposition $|v\rangle$, eigenvector with unknown eigenvalue $\exp(2\pi i\theta)$
- **Output:** approximation to θ
- Proposition [Kitaev '95, Cleve, Ekert, Macchiavello, Mosca '98] Can compute an approximation to θ within η with $1/\eta$ repetitions of U, one copy of $|v\rangle$ with probability 3/4

Reflection using phase estimation

- *U* unitary operator
- v isolated eigenvector
- φ spectral gap

Reflection through $|v\rangle$

- Run phase estimation algorithm on the current state, with U
- If approximate phase is "far" from θ , flip sign
- Undo phase estimation

Precision required $\approx \varphi/2$ Repetitions of $U \approx 1/\varphi = 1$ / spectral gap

Reflection via quantum walk W(P)

- $|\pi\rangle$ 1-eigenvector of W(*P*)
- $\delta^{1/2}$ spectral gap of W(*P*)
- Reflection through $|\pi\rangle$ Use phase estimation, as described Repetitions of W(P) \approx 1/ spectral gap \approx 1/ $\delta^{1/2}$

Talk outline

- Classical algorithm Run time = $1/\epsilon \delta$
- Quantum walk Spectral gap = $\delta^{1/2}$
- Quantum subroutines
 - Amplitude amplification
 Cost = 1/ε^{1/2}
 - Phase estimation
 - $Cost = 1/\delta^{1/2}$
- Search algorithm

The search algorithm

• Start state:

$$|\pi\rangle$$
 = (1/n^{1/2}) Σ_x $|x\rangle|p_x\rangle$

• Desired final state:

$$|\mu\rangle = (1/m^{1/2}) \Sigma_{x \text{ in } M} |x\rangle |p_x\rangle$$

• Alternately reflect through $|\mu^{\perp}\rangle$ and $|\pi\rangle$ à la Grover

Implementing the reflections

• Reflection through $|\mu^{\perp}\rangle$

If vertex *x* in first register is marked, and second register is in state $|p_x\rangle$, then flip sign

• Reflection through $|\pi
angle$

Use phase estimation algorithm, as described

Complexity of the algorithm

• Angle between $|\mu^{\perp}\rangle$ and $|\pi\rangle$:

 $\sin \varphi = (m/n)^{1/2} = \varepsilon^{1/2},$

- $\varepsilon = \Pr(M) = \text{probability of } M \text{ under stationary}$ distribution
- Number of rotations à *la* Grover: $1/\varepsilon^{1/2}$
- Cost of reflection through $|\mu^{\perp}\rangle$

check + update cost

• Cost of reflection through $|\pi\rangle$:

update cost times $1/\delta^{1/2}$

 $\delta^{1/2}$ = spectral gap of W(*P*)

Complexity

set-up + $(1/\epsilon^{1/2})$ ($(1/\delta^{1/2})$ update + check)

Final remarks

- Error due to imperfect phase estimation algorithm handled with a recursive search algorithm à la [Hoyer, Mosca, de Wolf '04]
- Algorithm extends to any irreducible Markov chain
- Unified and improved algorithms for Element Distinctness, Triangle Finding, Matrix Product verification, Group Commutativity
- Better algorithms for applications in which checking cost is higher than update cost