ON MINOR-CLOSED CLASSES OF MATROIDS WITH EXPONENTIAL GROWTH RATE

JIM GEELEN AND PETER NELSON

Abstract

Let \mathcal{M} be a minor-closed class of matroids that does not contain arbitrarily long lines. The growth rate function, h : $\mathbb{N} \rightarrow \mathbb{N}$ of \mathcal{M} is given by $$
h(n)=\max \{|M|: M \in \mathcal{M} \text { is simple, and } r(M) \leq n\} .
$$

The Growth Rate Theorem shows that there is an integer c such that either: $h(n) \leq c n$, or $\binom{n+1}{2} \leq h(n) \leq c n^{2}$, or there is a primepower q such that $\frac{q^{n}-1}{q-1} \leq h(n) \leq c q^{n}$; this separates classes into those of linear density, quadratic density, and base- q exponential density. For classes of base- q exponential density that contain no $\left(q^{2}+1\right)$-point line, we prove that $h(n)=\frac{q^{n}-1}{q-1}$ for all sufficiently large n. We also prove that, for classes of base- q exponential density that contain no $\left(q^{2}+q+1\right)$-point line, there exists $k \in \mathbb{N}$ such that $h(n)=\frac{q^{n+k}-1}{q-1}-q \frac{q^{2 k}-1}{q^{2}-1}$ for all sufficiently large n.

1. Introduction

We prove a refinement of the Growth Rate Theorem for certain exponentially dense classes. We call a class of matroids minor-closed if it is closed under both minors and isomorphism. The growth rate function, $h_{\mathcal{M}}: \mathbb{N} \rightarrow \mathbb{N} \cup\{\infty\}$ for a class \mathcal{M} of matroids is defined by

$$
h_{\mathcal{M}}(n)=\max \{|M|: M \in \mathcal{M} \text { is simple, and } r(M) \leq n\} .
$$

The following striking theorem summarizes the results of several papers, $[1,2,4]$.

Theorem 1.1 (Growth Rate Theorem). Let \mathcal{M} be a minor-closed class of matroids, not containing all simple rank-2 matroids. Then there is an integer c such that either:
(1) $h_{\mathcal{M}}(n) \leq$ cn for all $n \geq 0$, or

Date: April 5, 2012.
1991 Mathematics Subject Classification. 05B35.
Key words and phrases. matroids, growth rates.
This research was partially supported by a grant from the Office of Naval Research [N00014-10-1-0851].
(2) $\binom{n+1}{2} \leq h_{\mathcal{M}}(n) \leq c n^{2}$ for all $n \geq 0$, and \mathcal{M} contains all graphic matroids, or
(3) there is a prime power q such that $\frac{q^{n}-1}{q-1} \leq h_{\mathcal{M}}(n) \leq c q^{n}$ for all $n \geq 0$, and \mathcal{M} contains all $\mathrm{GF}(q)$-representable matroids.

In particular, the theorem implies that $h_{\mathcal{M}}(n)$ is finite for all n if and only if \mathcal{M} does not contain all simple rank- 2 matroids. If \mathcal{M} is a minorclosed class satisfying (3), then we say that \mathcal{M} is base-q exponentially dense. Our main theorems precisely determine, for many such classes, the eventual value of the growth rate function:

Theorem 1.2. Let q be a prime power. If \mathcal{M} is a base-q exponentially dense minor-closed class of matroids such that $U_{2, q^{2}+1} \notin \mathcal{M}$, then

$$
h_{\mathcal{M}}(n)=\frac{q^{n}-1}{q-1}
$$

for all sufficiently large n.
Consider, for example, the class \mathcal{M} of matroids with no $U_{2, \ell+2}$-minor, where $\ell \geq 2$ is an integer. By the Growth Rate Theorem, this class is base- q exponentially dense, where q is the largest prime-power not exceeding ℓ. Clearly $q^{2}>\ell$, so, by Theorem $1.2, h_{\mathcal{M}}(n)=\frac{q^{n}-1}{q-1}$ for all large n. This special case is the main result of [3], which essentially also contains a proof of Theorem 1.2.

Theorem 1.3. Let q be a prime power. If \mathcal{M} is a base-q exponentially dense minor-closed class of matroids such that $U_{2, q^{2}+q+1} \notin \mathcal{M}$, then there is an integer $k \geq 0$ such that

$$
h_{\mathcal{M}}(n)=\frac{q^{n+k}-1}{q-1}-q \frac{q^{2 k}-1}{q^{2}-1}
$$

for all sufficiently large n.
Consider, for example, any proper minor-closed subclass \mathcal{M} of the $\mathrm{GF}\left(q^{2}\right)$-representable matroids that contains all $\mathrm{GF}(q)$-representable matroids. Such classes are all base- q exponentially dense and do not contain $U_{2, q^{2}+2}$, so Theorem 1.3 applies; this special case is the main result of [8].

If the hypothesis of Theorem 1.3 is weakened to allow $U_{2, q^{2}+q+1} \in \mathcal{M}$, then the conclusion no longer holds. Consider the class \mathcal{M}_{1} defined to be the set of truncations of all $\mathrm{GF}(q)$-representable matroids; note that $U_{2, q^{2}+q+2} \notin \mathcal{M}_{1}$ and $h_{\mathcal{M}_{1}}(n)=\frac{q^{n+1}-1}{q-1}$ for all $n \geq 2$.

More generally, for each $k \geq 0$, if \mathcal{M}_{k} is the set of matroids obtained from $\operatorname{GF}(q)$-representable matroids by applying k truncations, then
$h_{\mathcal{M}_{k}}(n)=\frac{q^{n+k}-1}{q-1}$ for all $n \geq 2$. This expression differs from that in Theorem 1.3 by only the constant $q \frac{q^{2 k}-1}{q^{2}-1}$. It is conjectured [8,9] that, for each k, these are the extremes in a small spectrum of possible growth rate functions:

Conjecture 1.4. Let q be a prime power, and \mathcal{M} be a base-q exponentially dense minor-closed class of matroids. There exist integers k and d with $k \geq 0$ and $0 \leq d \leq \frac{q^{2 k}-1}{q^{2}-1}$, such that $h_{\mathcal{M}}(n)=\frac{q^{n+k}-1}{q-1}-q d$ for all sufficiently large n.

We conjecture further that, for every allowable q, k and d, there exists a minor-closed class with the above as its eventual growth rate function.

There is a stronger conjecture [9] regarding the exact structure of the extremal matroids. For a non-negative integer k, a k-element projection of a matroid M is a matroid of the form N / C, where $N \backslash C=M$, and C is a k-element set of N.

Conjecture 1.5. Let q be a prime power, and \mathcal{M} be a base-q exponentially dense minor-closed class of matroids. There exists an integer $k \geq 0$ such that, if $M \in \mathcal{M}$ is a simple matroid of sufficiently large rank with $|M|=h_{\mathcal{M}}(r(M))$, then M is the simplification of a k-element projection of a projective geometry over $\mathrm{GF}(q)$.

We will show, as was observed in [9], that this conjecture implies the previous one; see Lemma 3.1.

2. Preliminaries

A matroid M is called (q, k)-full if

$$
\varepsilon(M) \geq \frac{q^{r(M)+k}-1}{q-1}-q \frac{q^{2 k}-1}{q^{2}-1}
$$

moreover, if strict inequality holds, M is (q, k)-overfull.
Our proof of Theorem 1.3 follows a strategy similar to that in [8]; we show that, for any integer $n>0$, every (q, k)-overfull matroid in $\operatorname{EX}\left(U_{2, q^{2}+q+1}\right)$, with sufficiently large rank, contains a $(q, k+1)$-full rank- n minor. The Growth Rate Theorem tells us that a given base- q exponentially dense minor-closed class cannot contain (q, k)-full matroids for arbitrarily large k, so this gives the result. Theorem 1.2 is easier and will follow along the way.

We follow the notation of Oxley [10]; flats of rank 1, 2 and 3 are respectively points, lines and planes of a matroid. If M is a matroid, and $X, Y \subseteq E(M)$, then $\sqcap_{M}(X, Y)=r_{M}(X)+r_{M}(Y)-r_{M}(X \cup Y)$
is the local connectivity between X and Y. If $\sqcap_{M}(X, Y)=0$, then X and Y are skew in M, and if \mathcal{X} is a collection of sets in M such that each $X \in \mathcal{X}$ is skew to the union of the sets in $\mathcal{X}-\{X\}$, then \mathcal{X} is a mutually skew collection of sets. A pair $\left(F_{1}, F_{2}\right)$ of flats in M is modular if $\sqcap_{M}\left(F_{1}, F_{2}\right)=r_{M}\left(F_{1} \cap F_{2}\right)$, and a flat F of M is modular if, for each flat F^{\prime} of M, the pair $\left(F, F^{\prime}\right)$ is modular. In a projective geometry each pair of flats is modular and, hence, each flat is modular.

For a matroid M, we write $|M|$ for $|E(M)|$, and $\varepsilon(M)$ for $|\operatorname{si}(M)|$, the number of points in M. Thus, $h_{\mathcal{M}}(n)=\max (\varepsilon(M): M \in \mathcal{M}, r(M) \leq$ $n)$. Two matroids are equal up to simplification if their simplifications are isomorphic. We let $\operatorname{EX}(M)$ denote the set of matroids with no M minor; Theorems 1.2 and 1.3 apply to subclasses of $\operatorname{EX}\left(U_{2, q^{2}+1}\right)$ and $\operatorname{EX}\left(U_{2, q^{2}+q+1}\right)$ respectively. The following theorem of Kung [5] bounds the density of a matroid in $\operatorname{EX}\left(U_{2, \ell+2}\right)$:

Theorem 2.1. Let $\ell \geq 2$ be an integer. If $M \in \operatorname{EX}\left(U_{2, \ell+2}\right)$, then $\varepsilon(M) \leq \frac{\ell^{r(M)}-1}{\ell-1}$.

The next result is an easy application of the Growth Rate Theorem.
Lemma 2.2. There is a real-valued function $\alpha_{2.2}(n, \beta, \ell)$ so that, for any integers $n \geq 1$ and $\ell \geq 2$, and real number $\beta>1$, if $M \in \operatorname{EX}\left(U_{2, \ell+2}\right)$ is a matroid such that $\varepsilon(M) \geq \alpha_{2.2}(n, \beta, \ell) \beta^{r(M)}$, then M has a $\operatorname{PG}(n-1, q)$-minor for some $q>\beta$.

The following lemma was proved in [8]:
Lemma 2.3. Let λ, μ be real numbers with $\lambda>0$ and $\mu>1$, let $t \geq 0$ and $\ell \geq 2$ be integers, and let A and B be disjoint sets of elements in a matroid $M \in \operatorname{EX}\left(U_{2, \ell+2}\right)$ with $r_{M}(B) \leq t<r(M)$ and $\varepsilon(M \mid A)>\lambda \mu^{r_{M}(A)}$. Then there is a set $A^{\prime} \subseteq A$ that is skew to B and satisfies $\varepsilon\left(M \mid A^{\prime}\right)>\lambda\left(\frac{\mu-1}{\ell}\right)^{t} \mu^{r_{M}\left(A^{\prime}\right)}$.

3. Projections

Recall that a k-element projection of a matroid M is a matroid of the form N / C, where C is a k-element set of a matroid N satisfying $N \backslash C=M$.

In this section we are concerned with projections of projective geometries. Consider a k-element set C in a matroid N such that $N \backslash C=\mathrm{PG}(n+k-1, q)$ and let $M=N / C$. Thus M is a k-element projection of $\mathrm{PG}(n+k-1, q)$. Below are easy observations that we use freely.

- If C is not independent, then M is a $(k-1)$-element projection of $\mathrm{PG}(n+k-1, q)$.
- If C is not coindependent, then M is a $(k-1)$-element projection of $\mathrm{PG}(n+k-1, q)$.
- If C is not closed in N, then M is, up to simplification, a $(k-1)$ element projection of $\mathrm{PG}(n+k-2, q)$.
- M has a $\operatorname{PG}(r(M)-1, q)$-restriction.

Our next result gives the density of projections of projective geometries; given such a projection M, this density is determined to within a small range by the minimum k for which M is a k-element projection. As mentioned earlier, this lemma also tells us that Conjecture 1.5 implies Conjecture 1.4.
Lemma 3.1. Let q be a prime power, and $k \geq 0$ be an integer. If N is a matroid, and C is a rank-k flat of N such that $N \backslash C \cong \mathrm{PG}(r(N)-1, q)$, then $\varepsilon(N / C)=\varepsilon(N \backslash C)-q d$ for some $d \in\left\{0,1, \ldots, \frac{q^{2 k}-1}{q^{2}-1}\right\}$.

Proof. Each point P of N / C is a flat of the projective geometry $N \backslash C$, so $|P|=\frac{q^{r} N^{(P)}-1}{q-1}=1+q \frac{q^{T_{N}(P)-1}-1}{q-1}$. Therefore $\varepsilon(N \backslash C)-\varepsilon(N / C)$ is a multiple of q.

Let \mathcal{P} denote the set of all points in N / C that contain more than one element, and let F be the flat of $N \backslash C$ spanned by the union of these points. Choose a minimal set $\mathcal{P}_{0} \subseteq \mathcal{P}$ of points spanning F in N / C (so $\left|\mathcal{P}_{0}\right|=r_{N / C}(F)$); if possible choose \mathcal{P}_{0} so that it contains a set in $P \in \mathcal{P}$ with $r_{N}(P)>2$. Note that: (1) the points in \mathcal{P}_{0} are mutually skew in N / C, (2) each pair of flats of $N \backslash C$ is modular, and (3) C is a flat of N. It follows that \mathcal{P}_{0} is a mutually skew collection of flats in $N \backslash C$. Now, for each $P \in \mathcal{P}_{0}, r_{N}(P)>r_{N / C}(P)$. Therefore, since $r(N)-r(N / C)=k$, we have $r_{N / C}(F)=\left|\mathcal{P}_{0}\right| \leq k$. Moreover, if $r_{N / C}(F)=k$, then each set in \mathcal{P}_{0} is a line of $N \backslash C$, and, hence, by our choice of \mathcal{P}_{0}, each set in \mathcal{P} is a line in $N \backslash C$.

If $r_{N / C}(F)=k$, then we have $|F|=\frac{q^{2 k}-1}{q-1}$ and $|\mathcal{P}| \leq \frac{|F|}{q+1}$. This gives $\varepsilon(N \backslash C)-\varepsilon(N / C) \leq q \frac{|F|}{q+1}=q \frac{q^{2 k}-1}{q^{2}-1}$, as required.

If $r_{N / C}(F)<k$, then $\varepsilon(N \backslash C)-\varepsilon(N / C) \leq|F| \leq \frac{q^{2 k-1}-1}{q-1}$. It is routine to verify that $\frac{q^{2 k-1}-1}{q-1}<q \frac{q^{2 k}-1}{q^{2}-1}$, which proves the result.

The next two lemmas consider single-element projections, highlighting the importance of $U_{2, q^{2}+1}$ and $U_{2, q^{2}+q+1}$ in Theorems 1.2 and 1.3.

Lemma 3.2. Let q be a prime power and let e be an element of a matroid M such that $M \backslash e \cong \operatorname{PG}(r(M)-1, q)$. Then there is a unique minimal flat F of $M \backslash e$ that spans e. Moreover, if $r(M) \geq 3$ and $r_{M}(F) \geq 2$, then M / e contains a $U_{2, q^{2}+1}$-minor, and if $r_{M}(F) \geq 3$, then M / e contains a $U_{2, q^{2}+q+1}$-minor.

Proof. If F_{1} and F_{2} are two flats of $M \backslash e$ that span e, then, since $r_{M}\left(F_{1} \cap F_{2}\right)+r_{M}\left(F_{1} \cup F_{2}\right)=r_{M}\left(F_{1}\right)+r_{M}\left(F_{2}\right)$, it follows that $F_{1} \cap F_{2}$ also spans e. Therefore there is a unique minimal flat F of $M \backslash e$ that spans e. The uniqueness of F implies that e is freely placed in F.

Suppose that $r_{M}(F) \geq 3$. Thus $(M / e) \mid F$ is the truncation of a projective geometry of rank ≥ 3. So M / e contains a truncation of $\mathrm{PG}(2, q)$ as a minor; therefore M / e has a $U_{2, q^{2}+q+1}$-minor.

Now suppose that $r(M) \geq 3$ and that $r_{M}(F)=2$. If F^{\prime} is a rank-3 flat of $M \backslash e$ containing F, then $\varepsilon\left((M / e) \mid F^{\prime}\right)=q^{2}+1$, so M / e has a $U_{2, q^{2}+1}$-minor.

An important consequence is that, if M is a simple matroid with a $\mathrm{PG}(r(M)-1, q)$-restriction R and no $U_{2, q^{2}+q+1}$-minor, then every $e \in E(M)-E(R)$ is spanned by a unique line of R. The next result describes the structure of the projections in $\operatorname{EX}\left(U_{2, q^{2}+q+1}\right)$.

Lemma 3.3. Let q be a prime power, and $M \in \operatorname{EX}\left(U_{2, q^{2}+q+1}\right)$ be a simple matroid, and $e \in E(M)$ be such that $M \backslash e \cong \operatorname{PG}(r(M)-1, q)$. If L is the unique line of $M \backslash e$ that spans e, then L is a point of M / e, and each line of $M /$ e containing L has $q^{2}+1$ points and is modular.

Proof. Let L^{\prime} be a line of M / e containing L. Then L^{\prime} is a plane of $M \backslash e$, so, by Lemma 3.2, L^{\prime} has $q^{2}+1$ points in M / e.

Note that e is freely placed on the line $L \cup\{e\}$ in M. It follows that M is $\operatorname{GF}\left(q^{2}\right)$-representable. Now L^{\prime} is a $\left(q^{2}+1\right)$-point line in the $\operatorname{GF}\left(q^{2}\right)$-representable matroid M / e; hence, L^{\prime} is modular in M / e.

4. Dealing with long lines

This section contains two lemmas that construct a $U_{2, q^{2}+q+1}$-minor of a matroid M with a $\operatorname{PG}(r(M)-1, q)$-restriction R and some additional structure.

Lemma 4.1. Let q be a prime power, and M be a simple matroid of rank at least 7 such that

- M has a $\operatorname{PG}(r(M)-1, q)$-restriction R, and
- M has a line L containing at least $q^{2}+2$ points, and
- $E(M) \neq E(R) \cup L$,
then M has a $U_{2, q^{2}+q+1}$-minor.
Proof. We may assume that $E(M)=E(R) \cup L \cup\{z\}$, where $z \notin$ $L \cup E(R)$. Let F be a minimal flat of R that spans $L \cup\{z\}$. It follows easily from Lemma 3.2, that either M has a $U_{2, q^{2}+q+1}$-minor or $r_{M}(F) \leq 6$. To simplify the proof we will prove the lemma with the weaker hypothesis that $r(M) \geq 1+r_{M}(F)$, in place of the hypothesis
that $r(M) \geq 7$, and we will suppose that (M, R, L) forms a minimum rank counterexample under these weakened hypotheses.

Let L_{z} denote the line of R that spans z in M. Since $z \notin L$, we have $r_{M}\left(L \cup L_{z}\right) \geq 3$. We may assume that $r_{M}\left(L \cup L_{z}\right)=3$, since otherwise we could contract a point in $F-\left(L \cup L_{z}\right)$ to obtain a smaller counterexample. Similarly, we may assume that $r_{M}(F)=3$ and $r(M)=4$, as otherwise we could contract an element of $F-\operatorname{cl}_{M}\left(L \cup L_{z}\right)$ or $E(M)-\operatorname{cl}_{M}(F)$.

By Lemma 3.3, L_{z} is a point of $(M / z) \mid R$ and each line of $(M / z) \mid R$ is modular and has $q^{2}+1$ points. One of these lines is F, and, since F spans L, F spans a line with $q^{2}+2$ points in M / z. Let $e \in c l_{M / z}(F)$ be an element that is not in parallel with any element of F. Since F is a modular line in $(M / z) \mid R$, the point e is freely placed on the line $F \cup\{e\}$ in $(M / z) \mid(R \cup\{e\})$. Therefore $\varepsilon(M /\{e, z\}) \geq \varepsilon((M /\{z\}) \mid R)-$ $q^{2}=1+q^{2}(q+1)-q^{2}=q^{3}+1$, contradicting the fact that $M \in$ $\operatorname{EX}\left(U_{2, q^{2}+q+1}\right)$.
Lemma 4.2. Let q be a prime power, and $k \geq 3$ be an integer. If M is a matroid of rank at least $k+7$, with a $P G(r(M)-1, q)$-restriction, and a set $X \subseteq E(M)$ with $r_{M}(X) \leq k$ and $\varepsilon(M \mid X)>\frac{q^{2 k}-1}{q^{2}-1}$, then M has a $U_{2, q^{2}+q+1}$-minor.
Proof. Let M_{0} be a matroid satisfying the hypotheses, with a $\mathrm{PG}\left(r\left(M_{0}\right)-1, q\right)$-restriction R_{0}. We may assume that $M_{0} \in$ $\operatorname{EX}\left(U_{2, q^{2}+q+1}\right)$, and by choosing a rank- k set containing X, we may also assume that $r_{M_{0}}(X)=k$. By Lemma $3.2, R_{0}$ has a flat F_{0} of rank at most $2 k$ such that $X \subseteq \mathrm{cl}_{M_{0}}\left(F_{0}\right)$. By contracting at most k points in $F_{0}-\operatorname{cl}_{M_{0}}(X)$, we obtain a minor M of M_{0}, of rank at least 7 , such that $r_{M}(X)=k$, and M has a $\operatorname{PG}(r(M)-1, q)$-restriction R, and there is a rank- k flat F of R such that $X \subseteq \operatorname{cl}_{M}(F)$.

We may assume that M is simple and that X is a flat of M, so $F \subseteq X$. Let $n=|F|=\frac{q^{k}-1}{q-1}$. By Lemma 3.2, each point of X is spanned in M by a line of $R \mid F$. There are $\binom{n}{2} /\binom{q+1}{2}$ such lines, each containing $q+1$ points of F. If each of these lines spans at most $\left(q^{2}-q\right)$ points of $X-F$, then

$$
|X|=|F|+|X-F| \leq \frac{q^{k}-1}{q-1}+\frac{\left(q^{2}-q\right)\binom{n}{2}}{\binom{q+1}{2}}=\frac{q^{2 k}-1}{q^{2}-1}
$$

contradicting the definition of X. Therefore, some line L of $M \mid X$ contains at least $q^{2}+2$ points. We also have $|L| \leq q^{2}+q$, so a calculation gives $|X-L|>\frac{q^{2 k}-1}{q^{2}-1}-\left(q^{2}+q\right) \geq \frac{q^{k}-1}{q-1}=|F|$, so $X \neq F \cup L$. Applying Lemma 4.1 to $M \mid(E(R) \cup X)$ gives the result.

5. Matchings and unstable sets

For an integer $k \geq 0$, a k-matching of a matroid M is a mutually skew k-set of lines of M. Our first theorem was proved in [8], and also follows routinely from the much more general linear matroid matching theorem of Lovász [7]:

Theorem 5.1. There is an integer-valued function $f_{5.1}(q, k)$ so that, for any prime power q and integers $n \geq 1$ and $k \geq 0$, if \mathcal{L} is a set of lines in a matroid $M \cong \mathrm{PG}(n-1, q)$, then either
(i) \mathcal{L} contains a $(k+1)$-matching of M, or
(ii) there is a flat F of M with $r_{M}(F) \leq k$, and a set $\mathcal{L}_{0} \subseteq \mathcal{L}$ with $\left|\mathcal{L}_{0}\right| \leq f_{5.1}(q, k)$, such that every line $L \in \mathcal{L}$ either intersects F, or is in \mathcal{L}_{0}. Moreover, if $r_{M}(F)=k$, then $\mathcal{L}_{0}=\varnothing$.

We now define a property in terms of a matching in a spanning projective geometry. Let q be a prime power, $M \in \operatorname{EX}\left(U_{2, q^{2}+q+1}\right)$ be a simple matroid with a $\mathrm{PG}(r(M)-1, q)$-restriction R, and $X \subseteq E(M \backslash R)$ be a set such that $M \mid(E(R) \cup X)$ is simple. Recall that, by Lemma 3.2, each $x \in X$ lies in the closure of exactly one line L_{x} of R. We say that X is R-unstable in M if the lines $\left\{L_{x}: x \in X\right\}$ are a matching of size $|X|$ in R.

Lemma 5.2. There is an integer-valued function $f_{5.2}(q, k)$ so that, for any prime power q and integer $k \geq 0$, if $M \in \operatorname{EX}\left(U_{2, q^{2}+q+1}\right)$ is a matroid of rank at least 3 with a $\operatorname{PG}(r(M)-1, q)$-restriction R, then either
(i) there is an R-unstable set of size $k+1$ in M, or
(ii) R has a flat F with rank at most k such that $\varepsilon(M / F) \leq \varepsilon(R / F)+$ $f_{5.2}(q, k)$.

Proof. Let q be a prime power, and $k \geq 0$ be an integer. Set $f_{5.2}(q, k)=$ $\left(q^{2}+q\right) f_{5.1}(q, k)$. Let M be a matroid with a $\operatorname{PG}(r(M)-1, q)$-restriction R. We may assume that M is simple, and that the first outcome does not hold. Let \mathcal{L} be the set of lines L of R such that $\left|\mathrm{cl}_{M}(L)\right|>\left|\mathrm{cl}_{R}(L)\right|$. If \mathcal{L} contains a $(k+1)$-matching of R, then choosing a point from $\operatorname{cl}_{M}(L)-\operatorname{cl}_{R}(L)$ for each line L in the matching gives an R-unstable set of size $k+1$. We may therefore assume that \mathcal{L} contains no such matching. Thus, let F and \mathcal{L}_{0} be the sets defined in the second outcome of Theorem 5.1. Let $D=\cup_{L \in \mathcal{L}_{0}} \operatorname{cl}_{M}(L)$. We have $|D| \leq\left(q^{2}+q\right)\left|\mathcal{L}_{0}\right| \leq$ $f_{5.2}(q, k)$. By Lemma 3.2, each element of $M \backslash D$ either lies the closure of a line in \mathcal{L} or in a point of R, so is parallel in M / F to an element of R. Therefore, $\varepsilon(M / F) \leq \varepsilon(R / F)+|D|$; the result now follows.

We use an unstable set to construct a dense minor. Recall that (q, k)-full and (q, k)-overfull were defined at the start of Section 2.

Lemma 5.3. Let q be a prime power, and $k \geq 1$ and $n>k$ be integers. If $M \in \operatorname{EX}\left(U_{2, q^{2}+q+1}\right)$ is a matroid of rank at least $n+k$ with a $\mathrm{PG}(r(M)-1, q)$-restriction R, and X is an R-unstable set of size k in M, then M has a rank-n (q, k)-full minor N with a $U_{2, q^{2}+1}$-restriction.

Proof. We may assume by taking a restriction if necessary that $r(M)=$ $n+k$, and $E(M)=E(R) \cup X$; we show that $N=M / X$ has the required properties. For each $x \in X$, let L_{x} denote the line of R that spans X; thus $\left\{L_{x}: x \in X\right\}$ is a matching. By the definition of instability, it is clear that X is independent, so $r(N)=n$. Let $x \in X$, and P be a plane of R that contains L_{x} and is skew to $X-\{x\}$. By Lemma 3.3, $(M / x) \mid P$ has a $U_{2, q^{2}+1}$-restriction. Since $X-\{x\}$ is skew to $P, M / X$ also has a $U_{2, q^{2}+1^{-}}$restriction.

To complete the proof it is enough, by Lemma 3.1, to show that $\operatorname{cl}_{M}(X)$ is disjoint from R. This is trivial if X is empty, so consider $x \in X$ and let $R^{\prime}=\operatorname{si}\left(R / L_{x}\right)$. Note that $R^{\prime} \cong \mathrm{PG}(n+k-3, q)$ is a spanning restriction of M / L_{x} and $X-\{x\}$ is R^{\prime}-unstable. Inductively, we may assume that $\mathrm{cl}_{M / L_{x}}(X-\{x\})$ is disjoint from R / L_{x}, but this implies that $\operatorname{cl}_{M}(X)$ is disjoint from R, as required.

6. The spanning case

In this section we consider matroids that are spanned by a projective geometry.

Lemma 6.1. There is an integer-valued function $f_{6.1}(n, q, k)$ such that, for any prime power q and integers $k \geq 0$ and $n>k+1$, if $M \in$ $\operatorname{EX}\left(U_{2, q^{2}+q+1}\right)$ is a matroid of rank at least $f_{6.1}(n, q, k)$ such that

- M has a $\operatorname{PG}(r(M)-1, q)$-restriction R, and
- M is (q, k)-overfull,
then M has a rank-n $(q, k+1)$-full minor N with a $U_{2, q^{2}+1}$-restriction.
Proof. Let $k \geq 0$ and $n>k+1$ be integers, and q be a prime power. Let $m>\max (k+7, n+k+1)$ be an integer such that

$$
\frac{q^{r+k}-1}{q-1}-q \frac{q^{2 k}-1}{q^{2}-1}>\frac{q^{r+j}-1}{q-1}+\max \left(q^{2}+q,\left(q^{2}-q\right) f_{5.1}(q, k)\right)
$$

for all $r \geq m$ and $0 \leq j<k$. We set $f_{6.1}(n, q, k)=m$.
Let $M \in \operatorname{EX}\left(U_{2, q^{2}+q+1}\right)$ be a (q, k)-overfull matroid of rank at least m, and let R be a $\mathrm{PG}(r(M)-1, q)$-restriction of M. We will show that M has the required minor N; we may assume that M is simple.
6.1.1. If $k \geq 1$, then no line of M contains more than $q^{2}+1$ points.

Proof of claim: Let L be a line of M containing at least $q^{2}+2$ points. We have $|L| \leq q^{2}+q$, so $|E(R) \cup L| \leq \frac{q^{r(M)}-1}{q-1}+q^{2}+q<|M|$ by the definition of m. Therefore, there is a point of M in neither R nor L. By Lemma 4.1, M has a $U_{2, q^{2}+q+1}$-minor, a contradiction.

Let \mathcal{L} be the set of lines of R, and \mathcal{L}^{+}be the set of lines of R that are not lines of M; note that each $L \in \mathcal{L}^{+}$contains exactly $q+1$ points of R, and spans an extra point in M. By Lemma 3.2, every point of $M \backslash E(R)$ is spanned by a line in \mathcal{L}^{+}.

6.1.2. \mathcal{L}^{+}contains a $(k+1)$-matching of R.

Proof of claim: If $k=0$, then since $|M|>|R|$, we must have $\mathcal{L}^{+} \neq \varnothing$, so the claim is trivial. Thus, assume that $k \geq 1$ and that there is no such matching. Let $F \subseteq E(R)$ and $\mathcal{L}_{0} \subseteq \mathcal{L}$ be the sets defined in Theorem 5.1. Let $j=r_{M}(F)$; we know that $0 \leq j \leq k$, and that \mathcal{L}_{0} is empty if $j=k$. Let $\mathcal{L}_{F}=\{L \in \mathcal{L}:|L \cap F|=1\}$. By definition, every point of $M \backslash R$ is in the closure of F, or the closure of a line in $\mathcal{L}_{F} \cup \mathcal{L}_{0}$.

Every point of $R \backslash F$ lies on exactly $|F|$ lines in \mathcal{L}_{F}, and each such line contains exactly q points of $R \backslash F$, so

$$
\left|\mathcal{L}_{F}\right|=\frac{|F||R \backslash F|}{q}=\frac{\left(q^{j}-1\right)\left(q^{r(M)}-q^{j}\right)}{q(q-1)^{2}} .
$$

Furthermore, each line in \mathcal{L} contains $q+1$ points of R, and its closure in M contains at most $q^{2}-q$ points of $M \backslash R$ by the first claim. We argue that $\left|\mathrm{cl}_{M}(F)\right| \leq \frac{q^{2 j}-1}{q^{2}-1}$; if $j \leq 2$, then this follows from the first claim, and otherwise, we have $r(M) \geq m \geq k+7$, so the bound follows by applying Lemma 4.2 to M and $\operatorname{cl}_{M}(F)$. We now estimate $|M|$.

$$
\begin{aligned}
|M| & =|R|+|M \backslash E(R)| \\
& \leq|R|+\sum_{L \in \mathcal{L}_{F} \cup \mathcal{L}_{0}}\left|\mathrm{cl}_{M}(L)-E(R)\right|+\left|\mathrm{cl}_{M}(F)-F\right| \\
& \leq \frac{q^{r(M)}-1}{q-1}+\left(q^{2}-q\right)\left(\left|\mathcal{L}_{F}\right|+\left|\mathcal{L}_{0}\right|\right)+\left(\frac{q^{2 j}-1}{q^{2}-1}-\frac{q^{j}-1}{q-1}\right) .
\end{aligned}
$$

Now, a calculation and our value for \mathcal{L}_{F} obtained earlier together give $|M| \leq \frac{q^{r(M)+j}-1}{q-1}-q^{q^{2 j}-1} q^{2}-1+\left(q^{2}-q\right)\left|\mathcal{L}_{0}\right|$. If $j<k$, then, since $r(M) \geq m$ and $\left|\mathcal{L}_{0}\right| \leq f_{5.1}(q, k)$, we have $|M| \leq \frac{q^{r(M)+k}-1}{q-1}-q \frac{q^{2 k}-1}{q^{2}-1}$ by definition of m. If $j=k$, then $\left|\mathcal{L}_{0}\right|=0$, so the same inequality holds. In either case, we contradict the fact that M is (q, k)-overfull.

Now, \mathcal{L}^{+}has a matching of size $k+1$, so by construction of \mathcal{L}^{+}, there is an R-unstable set X of size $k+1$ in M. Since $r(M) \geq m>n+k+1$, the required minor N is given by Lemma 5.3.

7. Connectivity

A matroid M is weakly round if there is no pair of sets A, B with union $E(M)$, such that $r_{M}(A) \leq r(M)-2$ and $r_{M}(B) \leq r(M)-1$. Any matroid of rank at most 2 is clearly weakly round. This is a variation on roundness, a notion equivalent to infinite vertical connectivity introduced by Kung [6] under the name of 'non-splitting'. Weak roundness is preserved by contraction; the following lemma is easily proved, and we use it freely.

Lemma 7.1. If M is a weakly round matroid, and $e \in E(M)$, then M / e is weakly round.

The first step in our proof of the main theorems will be to reduce to the weakly round case; the next two lemmas give this reduction.

Lemma 7.2. If M is a matroid, then M has a weakly round restriction N such that $\varepsilon(N) \geq \varphi^{r(N)-r(M)} \varepsilon(M)$, where $\varphi=\frac{1}{2}(1+\sqrt{5})$.

Proof. We may assume that M is not weakly round, so $r(M)>2$, and there are sets A, B of M such that $r_{M}(A)=r(M)-2, r_{M}(B)=r(M)-$ 1 , and $E(M)=A \cup B$. Now, since $\varphi^{-1}+\varphi^{-2}=1$, either $\varepsilon(M \mid A) \geq$ $\varphi^{-2} \varepsilon(M)$ or $\varepsilon(M \mid B) \geq \varphi^{-1} \varepsilon(M)$; in the first case, by induction $M \mid A$ has a weakly round restriction N with $\varepsilon(N) \geq \varphi^{r(N)-r(M \mid A)} \varepsilon(M \mid A) \geq$ $\varphi^{r(N)-r(M)+2} \varphi^{-2} \varepsilon(M)=\varphi^{r(N)-r(M)} \varepsilon(M)$, giving the result. The second case is similar.

Lemma 7.3. Let q be a prime-power, and $k \geq 0$ be an integer. If \mathcal{M} is a base-q exponentially dense minor-closed class of matroids that contains (q, k)-overfull matroids of arbitrarily large rank, then \mathcal{M} contains weakly round, (q, k)-overfull matroids of arbitrarily large rank.

Proof. Note that $\varphi<2 \leq q$; by the Growth Rate Theorem, there is an integer $t>0$ such that

$$
\varepsilon(M) \leq\left(\frac{q}{\varphi}\right)^{t} \frac{q^{r(M)+k}-1}{q-1}-q \frac{q^{2 k}-1}{q^{2}-1},
$$

for all $M \in \mathcal{M}$.
For any integer $n>0$, consider a (q, k)-overfull matroid $M \in \mathcal{M}$ with rank at least $n+t$. By Lemma $7.2, M$ has a weakly round restriction
N such that $\varepsilon(N) \geq \varphi^{-s} \varepsilon(M)$, where $s=r(M)-r(N)$. We have

$$
\begin{aligned}
\varepsilon(N) & \geq \varphi^{-s} \varepsilon(M) \\
& >\varphi^{-s}\left(\frac{q^{r(M)+k}-1}{q-1}-q \frac{q^{2 k}-1}{q-1}\right) \\
& >\left(\frac{q}{\varphi}\right)^{s} \frac{q^{r(N)+k}-1}{q-1}-q \frac{q^{2 k}-1}{q^{2}-1} .
\end{aligned}
$$

Thus N is (q, k)-overfull. Moreover, by the definition of t, we have $s<t$ and, hence, $r(N)>n$.

8. Exploiting connectivity

We now exploit weak roundness by showing that any interesting low-rank restriction can be contracted into the span of a projective geometry.
Lemma 8.1. There is an integer-valued function $f_{8.1}(n, q, t, \ell)$ so that, for any prime power q, and integers $n \geq 1, \ell \geq 2$ and $t \geq 0$, if $M \in$ $\operatorname{EX}\left(U_{2, \ell+2}\right)$ is a weakly round matroid with a $\operatorname{PG}\left(f_{8.1}(n, q, t, \ell)-1, q\right)-$ minor, and T is a restriction of M of rank at most t, then there is a minor N of M of rank at least n, such that T is a restriction of N, and N has a $\operatorname{PG}(r(N)-1, q)$-restriction.

Proof. Let $n \geq 1, \ell \geq 2$ and $t \geq 0$ be integers. Let $n^{\prime}=\max (n, t+1)$, and set $f_{8.1}(n, q, t, \ell)$ to be an integer m such that $m \geq 2 t$, and

$$
\frac{q^{m}-1}{q-1} \geq \alpha_{2.2}\left(n^{\prime}, q-\frac{1}{2}, \ell\right)\left(\frac{\ell\left(q-\frac{1}{2}\right)}{q-\frac{3}{2}}\right)^{t}\left(q-\frac{1}{2}\right)^{m}
$$

Let $M \in \operatorname{EX}\left(U_{2, \ell+2}\right)$ be a weakly round matroid with a $\mathrm{PG}(m-1, q)$ minor $S=M / C \backslash D$, where $r(S)=r(M)-r_{M}(C)$. Let T be a restriction of M of rank at most t; we show that the required minor exists.
8.1.1. There is a weakly round minor M_{1} of M, such that T is a restriction of M_{1}, and M_{1} has a $\mathrm{PG}\left(n^{\prime}-1, q\right)$-restriction R_{1}.
Proof of claim: Let $C^{\prime} \subseteq C$ be maximal such that T is a restriction of M / C^{\prime}, and let $M^{\prime}=M / C^{\prime}$. Maximality implies that $C-C^{\prime} \subseteq$ $\mathrm{cl}_{M^{\prime}}(E(T))$, so $r_{M^{\prime}}\left(C-C^{\prime}\right) \leq t$. Now, $r_{M^{\prime}}(E(S))=r(S)+r_{M^{\prime}}(C-$ $\left.C^{\prime}\right) \leq m+t$. Therefore,

$$
\begin{aligned}
\varepsilon_{M^{\prime}}(E(S)) & =\frac{q^{m}-1}{q-1} \\
& \geq \alpha_{2.2}\left(n^{\prime}, q-\frac{1}{2}, \ell\right) \ell^{t}\left(q-\frac{3}{2}\right)^{-t}\left(q-\frac{1}{2}\right)^{m+t} \\
& \geq \alpha_{2.2}\left(n^{\prime}, q-\frac{1}{2}, \ell\right)\left(\ell\left(q-\frac{3}{2}\right)^{-1}\right)^{t}\left(q-\frac{1}{2}\right)^{r_{M^{\prime}}(E(S))} .
\end{aligned}
$$

By Lemma 2.3 applied to $E(S)$ and $E(T)$, with $\mu=q-\frac{1}{2}$, there is a set $A \subseteq E(S)$, skew to $E(T)$ in M^{\prime}, such that

$$
\varepsilon\left(M^{\prime} \mid A\right) \geq \alpha_{2.2}\left(n^{\prime}, q-\frac{1}{2}, \ell\right)\left(q-\frac{1}{2}\right)^{r\left(M^{\prime} \mid A\right)} .
$$

Therefore, Lemma 2.2 implies that $M^{\prime} \mid A$ has a $\operatorname{PG}\left(n^{\prime}-1, q^{\prime}\right)$-minor $R_{1}=\left(M^{\prime} \mid A\right) / C_{1} \backslash D_{1}$, for some $q^{\prime}>q-\frac{1}{2}$. Let $M_{1}=M^{\prime} / C_{1}$. The set A is skew to $E(T)$ in M^{\prime}, and therefore also skew to $C-C^{\prime}$, so $M^{\prime}\left|A=\left(M^{\prime} /\left(C-C^{\prime}\right)\right)\right| A=S \mid A$, so $M^{\prime} \mid A$ is GF (q)-representable, and so is its minor R_{1}. Thus, $q^{\prime}=q$, and R_{1} is a $\operatorname{PG}\left(n^{\prime}-1, q\right)$-restriction of M_{1}. Moreover, $C_{1} \subseteq A$, so C_{1} is skew to $E(T)$ in M^{\prime}, and therefore M_{1} has T as a restriction. The matroid M_{1} is a contraction-minor of M, so is weakly round, and thus satisfies the claim.

Let M_{2} be a minor-minimal matroid such that:

- M_{2} is a weakly round minor of M_{1}, and
- T and R_{1} are both restrictions of M_{2}.

If $r\left(R_{1}\right)=r\left(M_{2}\right)$, then $N=M_{2}$ is the required minor of M. We may therefore assume that $r\left(M_{2}\right)>r\left(R_{1}\right)=n^{\prime}$. We have $r(T) \leq t \leq$ $n^{\prime}-1 \leq r\left(M_{2}\right)-2$, so by weak roundness of M_{2}, there is some $e \in$ $E\left(M_{2}\right)$ spanned by neither $E(T)$ nor $E\left(R_{1}\right)$, contradicting minimality of M_{2}.

9. Critical elements

An element e in a (q, k)-overfull matroid M is called (q, k)-critical if M / e is not (q, k)-overfull.

Lemma 9.1. Let q be a prime power and $k \geq 0$ be an integer. If e is $a(q, k)$-critical element in a (q, k)-overfull matroid M, then either
(i) e is contained in a line with at least $q^{2}+2$ points, or
(ii) e is contained in $\frac{q^{2 k}-1}{q^{2}-1}+1$ lines, each with at least $q+2$ points.

Proof. Suppose otherwise. Let \mathcal{L} be the set of all lines of M containing e, and let \mathcal{L}_{1} be the set of the $\min \left(|\mathcal{L}|, \frac{q^{2 k}-1}{q^{2}-1}\right)$ longest lines in \mathcal{L}. Every line in $\mathcal{L}-\mathcal{L}_{1}$ has at most $q+1$ points and every line in \mathcal{L}_{1} has at most

$$
\begin{aligned}
& q^{2}+1 \text { points, so } \\
& \varepsilon(M) \leq 1+q|\mathcal{L}|+\left(q^{2}-q\right)\left|\mathcal{L}_{1}\right| \\
& \leq 1+q \varepsilon(M / e)+\left(q^{2}-q\right) \frac{q^{2 k}-1}{q^{2}-1} \\
& \leq 1+q\left(\frac{q^{r(M)+k-1}-1}{q-1}-q \frac{q^{2 k}-1}{q^{2}-1}\right)+\left(q^{2}-q\right) \frac{q^{2 k}-1}{q^{2}-1} \\
&=\frac{q^{r(M)+k}-1}{q-1}+q \frac{q^{2 k}-1}{q^{2}-1},
\end{aligned}
$$

contradicting the fact that M is (q, k)-overfull.
The following result shows that a large number of (q, k)-critical elements gives a denser minor.
Lemma 9.2. There is an integer-valued function $f_{9.2}(n, q, k)$ so that, for any prime power q, and integers $k \geq 0, n>k+1$, if $m \geq f_{9.2}(n, q, k)$ is an integer, and $M \in \operatorname{EX}\left(U_{2, q^{2}+q+1}\right)$ is a (q, k)-overfull, weakly round matroid such that

- M has a $\operatorname{PG}(m-1, q)$-minor, and
- M has a rank-m set of (q, k)-critical elements,
then M has a rank-n, $(q, k+1)$-full minor with a $U_{2, q^{2}+1^{-}}$-restriction.
Proof. Let q be a prime power, and $k \geq 0$ and $n \geq 2$ be integers. Let $n^{\prime}=\max (k+8, n+k+1)$, let $d=f_{5.2}(q, k)$, let $t=d(d+1)+k+6$, let $s=\frac{q^{2 k}-1}{q^{2}-1}+1$, and set $f_{9.2}(n, q, k)=f_{8.1}\left(n^{\prime}, q, t(s+1), q^{2}+q-1\right)$.

Let $m \geq f_{9.2}(n, q, k)$ be an integer, and let $M \in \operatorname{EX}\left(U_{2, q^{2}+q+1}\right)$ be a (q, k)-overfull, weakly round matroid with a $\mathrm{PG}(m-1, q)$-minor and a t element independent set I of (q, k)-critical elements (note that $t \leq m$). We will show that M has the required minor.

By Lemma 9.1, for each element $e \in I$, there is a set \mathcal{L}_{e} of lines containing e such that either $\left|\mathcal{L}_{e}\right|=1$ and the single line in \mathcal{L}_{e} has $q^{2}+2$ points, or $\left|\mathcal{L}_{e}\right|=\frac{q^{2 k}-1}{q^{2}-1}+1$ and each line in \mathcal{L}_{e} has at least $q+2$ points. There is a restriction K of M with rank at most $t(s+1)$ that contains all the lines $\left(\mathcal{L}_{e}: e \in I\right)$. By Lemma $8.1, M$ has a minor M_{1} of rank at least n^{\prime} that has a $\operatorname{PG}\left(r\left(M_{1}\right)-1, q\right)$-restriction R_{1}, and has K as a restriction. By Lemma 4.1, M_{1} has at most one line containing $q^{2}+2$ points.
9.2.1. There is a $(t-5)$-element subset I_{1} of I such that, for each $e \in I_{1}$, we have $r_{K}\left(\cup \mathcal{L}_{e}\right) \geq k+2$.
Proof of claim: Note that $|I|=t \geq 5$. If $k=0$, then every $e \in I$ satisfies the required condition, so an arbitrary $(t-5)$-subset of I will
do; we may thus assume that $k \geq 1$. Since K contains at most one line with at least $q^{2}+2$ points, there are at most two elements $e \in I$ with $\left|\mathcal{L}_{e}\right|=1$. If the claim fails, there is therefore an 4 -element subset I_{2} of I such that $\left|\mathcal{L}_{e}\right|=\frac{q^{2 k}-1}{q^{2}-1}+1$ and $r_{K}\left(\cup \mathcal{L}_{e}\right) \leq k+1$ for all $e \in I_{2}$.

For each $e \in I_{2}$, let $F_{e}=\operatorname{cl}_{K}\left(\cup \mathcal{L}_{e}\right)$. Then $\left(K \mid F_{e}\right) / e$ has rank at most k and has more than $\frac{q^{2 k}-1}{q^{2}-1}$ points. Since $k \geq 1$, this matroid has rank at least 2. Moreover, M_{1} / e has rank at least $n^{\prime}-1 \geq k+7$ and has a $\mathrm{PG}\left(r\left(M_{1} / e\right)-1, q\right)$-restriction, so, by Lemma $4.2, r\left(\left(K \mid F_{e}\right) / e\right)=2$. Hence, $k \geq 2, F_{e}$ is a rank- 3 set containing at least $q^{2}+2$ lines through e, each with at least $q+2$ points, and $\left(K \mid F_{e}\right) / e$ is a rank- 2 set containing at least $q^{2}+2$ points.

Let $a \in I_{2}$; since $r_{M_{1}}\left(I_{2}\right)=4>r_{M_{1}}\left(F_{a}\right)$, there is some $b \in I_{2}-F_{a}$. Now, M_{1} / b has a line $L=\mathrm{cl}_{M_{1} / b}\left(F_{b}-\{b\}\right)$ containing at least $q^{2}+2$ points, and $\left(M_{1} / b\right) \mid F_{a}$ is a rank- 3 matroid with at least $1+(q+1)\left(q^{2}+2\right)$ points, and therefore at least $1+(q+1)\left(q^{2}+2\right)-\left(q^{2}+q\right)>q^{2}+q+1$ points outside L. However, M_{1} / b has rank at least $k+7$, and has a $\mathrm{PG}\left(r\left(M_{1} / b\right)-1, q\right)$-restriction containing at most $q^{2}+q+1$ points in $F_{a}-L$, so we obtain a contradiction to Lemma 4.1.

9.2.2. M_{1} has an R_{1}-unstable set of size $k+1$.

Proof of claim. Suppose otherwise. By Lemma 5.2, there is a flat F of R_{1} with rank at most k such that $\varepsilon\left(M_{1} / F\right) \leq \varepsilon\left(R_{1} / F\right)+f_{5.2}(q, k)=$ $\varepsilon\left(R_{1} / F\right)+d$. Let $M_{2}=M_{1} / F$; the matroid M_{2} has a $\operatorname{PG}\left(r\left(M_{2}\right)-1, q\right)$ restriction R_{2}, and satisfies $E\left(M_{2}\right)=E\left(R_{2}\right) \cup D$, where $|D| \leq d$.

Let $I_{2} \subseteq I_{1}$ be a set of size of size $\left|I_{1}\right|-k$ that is independent in M_{2}; note that $\left|I_{2}\right| \geq d(d+1)+1$. For each $e \in I_{2}$, we have $r_{M_{2}}\left(\cup \mathcal{L}_{e}\right) \geq$ $(k+2)-k=2$, so e is contained in a line L_{e} with at least $q+2$ points in M_{2}.

Let $\mathcal{L}=\left\{L_{e}: e \in I_{2}\right\}$. Each L_{e} contains e, and at most one other point in I_{2}, so $|\mathcal{L}| \geq \frac{1}{2}\left|I_{2}\right|>\binom{d+1}{2}$. Each line in \mathcal{L} contains $q+2$ points, so must contain a point of $M_{2} \backslash E\left(R_{2}\right)$. However, $\left|M_{2} \backslash E\left(R_{2}\right)\right| \leq d$, so there are at most $\binom{d}{2}$ lines of M_{2} containing two points of $M_{2} \backslash E\left(R_{2}\right)$, and by Lemma 3.2, we may assume that there are at most d lines of M_{2} containing $q+2$ points, but just one point of $M_{2} \backslash E\left(R_{2}\right)$. This gives $|\mathcal{L}| \leq d+\binom{d}{2}=\binom{d+1}{2}$, a contradiction.

Since $r\left(M_{1}\right) \geq n^{\prime} \geq n+k+1$, we get the required minor N from the above claim and Lemma 5.3.

10. The main theorems

The following result implies Theorems 1.2 and 1.3:

Theorem 10.1. Let q be a prime power, and let $\mathcal{M} \subseteq \operatorname{EX}\left(U_{2, q^{2}+q+1}\right)$ be a base-q exponentially dense minor-closed class of matroids. There is an integer $k \geq 0$ such that

$$
h_{\mathcal{M}}(n)=\frac{q^{n+k}-1}{q-1}-q \frac{q^{2 k}-1}{q^{2}-1}
$$

for all sufficiently large n. Moreover, if $\mathcal{M} \subseteq \operatorname{EX}\left(U_{2, q^{2}+1}\right)$, then $k=0$.
Proof. By the Growth Rate Theorem, \mathcal{M} contains all projective geometries over $\operatorname{GF}(q)$ and, hence, \mathcal{M} contains $(q, 0)$-full matroids of every rank. We may assume that there are ($q, 0$)-overfull matroids of arbitrarily large rank, since otherwise the theorem holds. By the Growth Rate Theorem, there is a maximum integer $k \geq 0$ such that \mathcal{M} contains (q, k)-overfull matroids of arbitrarily large rank, and there is an integer $s \geq 0$ such that $\mathrm{PG}\left(s-1, q^{\prime}\right) \notin \mathcal{M}$ for all $q^{\prime}>q$.

To prove the result, it suffices to show that, for all $n>k+1$, there is a rank- n matroid $M \in \mathcal{M}$ that is $(q, k+1)$-full and has a $U_{2, q^{2}+1^{-}}$ restriction. Suppose for a contradiction that $n>k+1$ is an integer for which this M does not exist.

Let $m=f_{9.2}(n, q, k)$, and $m_{4}=\max \left(m+1, s, f_{6.1}(n, q, k)\right)$. Let m_{3} be an integer such that

$$
\frac{q^{m_{3}}-1}{q-1}>\alpha_{2.2}\left(m_{4}, q-\frac{1}{2}, q^{2}+q-1\right)\left(\frac{q^{2}+q-1}{q-\frac{3}{2}}\right)^{m}\left(q-\frac{1}{2}\right)^{m_{3}+m-1} .
$$

Let $m_{2}=\max \left(s, m_{3} m\right)$, and choose an integer $m_{1}>s$ such that

$$
\alpha_{2.2}\left(m_{2}, q-\frac{1}{2}, q^{2}+q-1\right)\left(q-\frac{1}{2}\right)^{r} \leq \frac{q^{r+k}-1}{q-1}-q \frac{q^{2 k}-1}{q^{2}-1}
$$

for all $r \geq m_{1}$. By Lemma 7.3, \mathcal{M} contains weakly round, (q, k) overfull matroids of arbitrarily large rank; let $M_{1} \in \mathcal{M}$ be a weakly round, (q, k)-overfull matroid with rank at least m_{1}. By Lemma 2.2, M_{1} has a $\operatorname{PG}\left(m_{2}-1, q^{\prime}\right)$ minor N_{1} for some $q^{\prime}>q-\frac{1}{2}$; since $m_{2} \geq s$, we have $q^{\prime}=q$. Let I_{1} be an independent set of M_{1} such that N_{1} is a spanning restriction of M_{1} / I_{1}, and choose $J_{1} \subseteq I_{1}$ maximal such that M_{1} / J_{1} is (q, k)-overfull.

Let $M_{2}=M_{1} / J_{1}$ and let $I_{2}=I_{1}-J_{1}$. By our choice of J_{1}, each element in I_{2} is (q, k)-critical in M_{2}. Since $m_{2} \geq m$, Lemma 9.2 gives $\left|I_{2}\right|<m$. Choose a collection $\left(F_{1}, \ldots, F_{m}\right)$ of mutually skew rankm_{3} flats in the projective geometry N_{1}; each F_{i} satisfies $r\left(M_{2} \mid F_{i}\right) \leq$ $m_{3}+m-1$ and $\varepsilon\left(M_{2} \mid F_{i}\right)=\frac{q^{m_{3}}-1}{q-1}$. By our choice of m_{3}, and by Lemma 2.3 with $\mu=q-\frac{1}{2}$ for each $i \in\{1, \ldots, m\}$, there is a flat $F_{i}^{\prime} \subseteq F_{i}$ of M_{2} that is skew to I_{2} in M_{2}, and satisfies $\varepsilon\left(M_{2} \mid F_{i}^{\prime}\right) \geq \alpha_{2.2}\left(m_{4}, q-\right.$ $\left.\frac{1}{2}, q^{2}+q-1\right)\left(q-\frac{1}{2}\right)^{r_{M_{2}}\left(F_{i}^{\prime}\right)}$. Note that, since the sets $\left(F_{1}^{\prime}, \ldots, F_{m}^{\prime}\right)$ are
mutually skew in M_{2} / I_{2} and each of these sets is skew to I_{2} in M_{2}, the flats $\left(F_{1}^{\prime}, \ldots, F_{m}^{\prime}\right)$ are mutually skew in M_{2}.

By Lemma 2.2, $M_{2} \mid F_{i}^{\prime}$ has a $\operatorname{PG}\left(m_{4}-1, q^{\prime}\right)$ minor P_{i} for some $q^{\prime}>$ $q-\frac{1}{2}$; since $m_{4} \geq s$, we have $q^{\prime}=q$. Let X_{i} be an independent set of $M_{2} \mid F_{2}^{\prime}$ such that P_{i} is a spanning restriction of M_{2} / X_{i}. Now choose $Z \subseteq X_{1} \cup \cdots \cup X_{m}$ maximal such that M_{2} / Z is (q, k)-overfull. Let $M_{3}=M_{2} / Z$. Each element of $X_{1} \cup \cdots \cup X_{s}-Z$ is (q, k)-critical in M_{3}, and P_{i} is a minor of M_{3} for each i. The X_{i} are mutually skew in M_{3} and hence pairwise disjoint; thus, by Lemma 9.2, there exists $i_{0} \in\{1, \ldots, m\}$ such that $X_{i_{0}}-Z=\varnothing$ and, hence, $P_{i_{0}}$ is a restriction of M_{3}; let $R=P_{i_{0}}$.

Choose a minor M_{4} of M_{3} that is minimal such that:

- M_{4} is weakly round, and (q, k)-overfull,
- M_{4} has R as a restriction.

By Lemma 6.1, $r\left(M_{4}\right)>r(R)$. Every element of $E\left(M_{4}\right)-\mathrm{cl}_{M_{4}}(E(R))$ is (q, k)-critical and, since M_{4} is weakly round, $r\left(M_{4} \backslash \operatorname{cl}_{M_{4}}(E(R))\right) \geq$ $r\left(M_{4}\right)-2 \geq m_{4}-1 \geq m$. We now get a contradiction from Lemma 9.2.

Acknowledgements

We thank the referees for their very detailed reading of the manuscript, and for their useful corrections and comments.

References

[1] J. Geelen, K. Kabell, Projective geometries in dense matroids, J. Combin. Theory Ser. B 99 (2009), 1-8.
[2] J. Geelen, J.P.S. Kung, G. Whittle, Growth rates of minor-closed classes of matroids, J. Combin. Theory. Ser. B 99 (2009), 420427.
[3] J. Geelen, P. Nelson, The number of points in a matroid with no n-point line as a minor, J. Combin. Theory. Ser. B 100 (2010), 625-630.
[4] J. Geelen, G. Whittle, Cliques in dense GF(q)-representable matroids, J. Combin. Theory. Ser. B 87 (2003), 264-269.
[5] J.P.S. Kung, Extremal matroid theory, in: Graph Structure Theory (Seattle WA, 1991), Contemporary Mathematics, 147, American Mathematical Society, Providence RI, 1993, pp. 21-61.
[6] J.P.S. Kung, Numerically regular hereditary classes of combinatorial geometries, Geom. Dedicata 21 (1986), no. 1, 85-10.
[7] L. Lovász, Selecting independent lines from a family of lines in a space, Acta Sci. Math. 42 (1980), 121-131.
[8] P. Nelson, Growth rate functions of dense classes of representable matroids, submitted (2011).
[9] P. Nelson, Exponentially Dense Matroids, Ph.D thesis, University of Waterloo (2011).
[10] J. G. Oxley, Matroid Theory, Oxford University Press, New York (2011).

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

