ON MINOR-CLOSED CLASSES OF MATROIDS WITH
EXPONENTIAL GROWTH RATE

JIM GEELEN AND PETER NELSON

ABSTRACT. Let M be a minor-closed class of matroids that does
not contain arbitrarily long lines. The growth rate function, A :
N — N of M is given by

h(n) = max {|M| : M € M is simple, and r(M) < n}.

The Growth Rate Theorem shows that there is an integer ¢ such
that either: h(n) < en,or ("3') < h(n) < cn?, or there is a prime-
q;_—11 < h(n) < cq™; this separates classes into
those of linear density, quadratic density, and base-¢ exponential
density. For classes of base-q exponential density that contain no

(¢*> + 1)-point line, we prove that h(n) = q;:ll for all sufficiently
large n. We also prove that, for classes of base-q exponential den-

sity that contain no (¢ + ¢+ 1)-point line, there exists k € N such
that h(n) = qn;j; L qq:::f for all sufficiently large n.

power g such that

1. INTRODUCTION

We prove a refinement of the Growth Rate Theorem for certain expo-
nentially dense classes. We call a class of matroids minor-closed if it is
closed under both minors and isomorphism. The growth rate function,
hav i N — NU{oo} for a class M of matroids is defined by

hap(n) = max{|M|: M € M is simple, and r(M) < n}.

The following striking theorem summarizes the results of several pa-
pers, [1,2,4].

Theorem 1.1 (Growth Rate Theorem). Let M be a minor-closed class
of matroids, not containing all simple rank-2 matroids. Then there is
an integer ¢ such that either:

(1) hpm(n) < en for alln >0, or
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2 GEELEN AND NELSON

(2) ("11) < ha(n) < en? for alln > 0, and M contains all graphic
matroids, or

(3) there is a prime power q such that % < hpm(n) < cq™ for all
n >0, and M contains all GF(q)-representable matroids.

In particular, the theorem implies that h,(n) is finite for all n if and
only if M does not contain all simple rank-2 matroids. If M is a minor-
closed class satisfying (3), then we say that M is base-q exponentially
dense. Our main theorems precisely determine, for many such classes,
the eventual value of the growth rate function:

Theorem 1.2. Let q be a prime power. If M 1is a base-q exponentially
dense minor-closed class of matroids such that Uy ;21 ¢ M, then

for all sufficiently large n.

Consider, for example, the class M of matroids with no Us ¢4o-minor,
where ¢ > 2 is an integer. By the Growth Rate Theorem, this class
is base-q exponentially dense, where ¢ is the largest prime-power not
exceeding (. Clearly ¢* > /, so, by Theorem 1.2, hy(n) = q;%ll for all
large n. This special case is the main result of [3], which essentially
also contains a proof of Theorem 1.2.

Theorem 1.3. Let q be a prime power. If M 1is a base-q exponentially
dense minor-closed class of matroids such that Us g g1 & M, then
there 1s an integer k > 0 such that

qn+k -1 q2k -1

h = —
m(n) q—1 QQQ_l

for all sufficiently large n.

Consider, for example, any proper minor-closed subclass M of the
GF(g?)-representable matroids that contains all GF(q)-representable
matroids. Such classes are all base-q exponentially dense and do not
contain U 4249, so Theorem 1.3 applies; this special case is the main
result of [8].

If the hypothesis of Theorem 1.3 is weakened to allow U, g2 441 € M,
then the conclusion no longer holds. Consider the class M defined to
be the set of truncations of all GF(g)-representable matroids; note that

Usg2iqr2 € My and hpy, (n) = qn;_l for all n > 2.

—1
More generally, for each k£ > 0, if M is the set of matroids obtained
from GF(q)-representable matroids by applying k truncations, then
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ham, (n) = qnqtkl_ L for all n > 2. This expression differs from that in

Theorem 1.3 by only the constant qq;;__ll. It is conjectured [8,9] that, for
each k, these are the extremes in a small spectrum of possible growth

rate functions:

Conjecture 1.4. Let g be a prime power, and M be a base-q exponen-
tially dense minor-closed class of matroids. There exist integers k and

d withk >0 and 0 <d < ‘1;—:11, such that ha(n) = qn;ffl —qd for all
sufficiently large n.

We conjecture further that, for every allowable ¢, k and d, there
exists a minor-closed class with the above as its eventual growth rate
function.

There is a stronger conjecture [9] regarding the exact structure of the
extremal matroids. For a non-negative integer k, a k-element projection
of a matroid M is a matroid of the form N/C, where N\C = M, and
C is a k-element set of N.

Conjecture 1.5. Let q be a prime power, and M be a base-q expo-
nentially dense minor-closed class of matroids. There exists an integer
k > 0 such that, if M € M 1is a simple matroid of sufficiently large
rank with |M| = ha(r(M)), then M is the simplification of a k-element
projection of a projective geometry over GF(q).

We will show, as was observed in [9], that this conjecture implies the
previous one; see Lemma 3.1.

2. PRELIMINARIES

A matroid M is called (q, k)-full if

r(M)+k_1 2k _ 1
(M) >4 — g2 ;
q—1 ¢ —1

moreover, if strict inequality holds, M is (g, k)-overfull.

Our proof of Theorem 1.3 follows a strategy similar to that in [8];
we show that, for any integer n > 0, every (g, k)-overfull matroid in
EX(Usz4244+1), with sufficiently large rank, contains a (¢, k + 1)-full
rank-n minor. The Growth Rate Theorem tells us that a given base-q
exponentially dense minor-closed class cannot contain (g, k)-full ma-
troids for arbitrarily large k, so this gives the result. Theorem 1.2 is
easier and will follow along the way.

We follow the notation of Oxley [10]; flats of rank 1, 2 and 3 are
respectively points, lines and planes of a matroid. If M is a matroid,
and X, Y C E(M), then My (X,Y) = ry(X) +ry(Y) —ry (X UY)
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is the local connectivity between X and Y. If My (X,Y) = 0, then X
and Y are skew in M, and if X is a collection of sets in M such that
each X € X is skew to the union of the sets in X — {X}, then X
is a mutually skew collection of sets. A pair (Fy, F») of flats in M is
modular if My (Fy, Fy) = ry(Fy N Fy), and a flat F' of M is modular
if, for each flat F” of M, the pair (F,F’) is modular. In a projective
geometry each pair of flats is modular and, hence, each flat is modular.

For a matroid M, we write |M| for |E(M)|, and (M) for |si(M)], the
number of points in M. Thus, hy(n) = max(e(M) : M € M,r(M) <
n). Two matroids are equal up to simplification if their simplifications
are isomorphic. We let EX(M) denote the set of matroids with no M-
minor; Theorems 1.2 and 1.3 apply to subclasses of EX(Us; 241) and
EX(Us4244+1) respectively. The following theorem of Kung [5] bounds
the density of a matroid in EX(Us ¢9):

Theorem 2.1. Let { > 2 be an integer. If M € EX(Ussy2), then

r(M)_
e(M) < &L

The next result is an easy application of the Growth Rate Theorem.

Lemma 2.2. There is a real-valued function ags(n,B3,f) so that,
for any integers n > 1 and ¢ > 2, and real number B > 1, if
M € EX(Us12) is a matroid such that e(M) > ago(n, 3,03 M) | then
M has a PG(n — 1, q)-minor for some q > 3.

The following lemma was proved in [8]:

Lemma 2.3. Let A\, u be real numbers with X > 0 and p > 1, let
t > 0 and £ > 2 be integers, and let A and B be disjoint sets of
elements in a matroid M € EX(Usgya) with ry(B) <t < r(M) and
e(M|A) > AW Then there is a set A’ C A that is skew to B and

satisfies e(M|A") > X (#le)t prm (A,
3. PROJECTIONS

Recall that a k-element projection of a matroid M is a matroid of
the form N/C, where C is a k-element set of a matroid N satisfying
N\C =M.

In this section we are concerned with projections of projective ge-
ometries. Consider a k-element set C' in a matroid N such that
N\C =PG(n+k—1,q) and let M = N/C. Thus M is a k-element
projection of PG(n + k — 1,q). Below are easy observations that we
use freely.

e If C' is not independent, then M is a (k — 1)-element projection
of PG(n+k —1,¢q).
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e If C'is not coindependent, then M is a (k—1)-element projection
of PG(n +k —1,q).

e If C'is not closed in N, then M is, up to simplification, a (k—1)-
element projection of PG(n + k — 2, ¢).

e M has a PG(r(M) — 1, g)-restriction.

Our next result gives the density of projections of projective geome-
tries; given such a projection M, this density is determined to within
a small range by the minimum k for which M is a k-element projec-
tion. As mentioned earlier, this lemma also tells us that Conjecture 1.5
implies Conjecture 1.4.

Lemma 3.1. Let g be a prime power, and k > 0 be an integer. If N is a
matroid, and C is a rank-k flat of N such that N\C = PG(r(N)—1,q),

Qk_l

then e(N/C) = e(N\C) — qd for some d € {0,1,..., L=}

Proof. Each point P of N/C' is a flat of the projective geometry N\C,
so |P| = LIRS S R q%. Therefore e(N\C) — e(N/C) is a

1
multiple of qq.

Let P denote the set of all points in N/C' that contain more than
one element, and let F' be the flat of N\ C spanned by the union of
these points. Choose a minimal set Py C P of points spanning F' in
N/C (so |Po| = rnjc(F)); if possible choose Py so that it contains a
set in P € P with ry(P) > 2. Note that: (1) the points in P, are
mutually skew in N/C, (2) each pair of flats of N\ C' is modular, and
(3) C is a flat of N. It follows that Py is a mutually skew collection
of flats in N\C. Now, for each P € Py, rn(P) > ryjc(P). Therefore,
since r(N) —r(N/C) = k, we have ry/c(F) = |Po| < k. Moreover, if
rn/c(F) = k, then each set in P is a line of N\C, and, hence, by our
choice of Py, each set in P is a line in N\C.

If ryjc(F) = k, then we have |F| = £ and [P| < L. This gives
e(N\C)—e(N/C) < qq'i—'l = qq;kjll, as required.

1

IfTN/C(F) < k’, then €<N\C)—5(N/C') < |F| < q2’;1

to verify that q2’;il_1

1_1. It is routine

— < qq;;__ll, which proves the result. O

The next two lemmas consider single-element projections, highlight-
ing the importance of Uy 211 and Uy j24 441 in Theorems 1.2 and 1.3.

Lemma 3.2. Let q be a prime power and let e be an element of a
matroid M such that M\e = PG(r(M)—1,q). Then there is a unique
minimal flat F' of M\ e that spans e. Moreover, if r(M) > 3 and
ru(F) > 2, then M/e contains a Uy p2q-minor, and if ry(F) > 3,
then M /e contains a Usg2.qq41-minor.
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Proof. If Fy and F» are two flats of M \ e that span e, then, since
TM<F1 N FQ) + T'M(Fl U FQ) = TM(Fl) + TM(FQ), it follows that Fl N F2
also spans e. Therefore there is a unique minimal flat F' of M\ e that
spans e. The uniqueness of F' implies that e is freely placed in F.

Suppose that rj(F) > 3. Thus (M/e)|F is the truncation of a
projective geometry of rank > 3. So M/e contains a truncation of
PG(2,q) as a minor; therefore M /e has a Us ,24,+1-minor.

Now suppose that (M) > 3 and that ry(F) = 2. If F’ is a rank-3
flat of M\ e containing F, then e((M/e)|F') = ¢* + 1, so M/e has a
Us 4241-minor. U

An important consequence is that, if M is a simple matroid with
a PG(r(M) — 1, q)-restriction R and no Uj 42 ,4;-minor, then every
e € E(M) — E(R) is spanned by a unique line of R. The next result
describes the structure of the projections in EX(Us 24 441)-

Lemma 3.3. Let q be a prime power, and M € EX(Usz24q4+1) be a
simple matroid, and e € E(M) be such that M\e = PG(r(M) —1,q).
If L is the unique line of M\e that spans e, then L is a point of M /e,
and each line of M/e containing L has ¢* + 1 points and is modular.

Proof. Let L' be a line of M /e containing L. Then L’ is a plane of M\e,
so, by Lemma 3.2, L’ has ¢*> + 1 points in M/e.

Note that e is freely placed on the line L U {e} in M. It follows
that M is GF(¢?)-representable. Now L' is a (¢*> + 1)-point line in the
GF(¢?)-representable matroid M/e; hence, L' is modular in M/e. O

4. DEALING WITH LONG LINES

This section contains two lemmas that construct a Us 2,4 1-minor of
a matroid M with a PG(r(M)—1, ¢)-restriction R and some additional
structure.

Lemma 4.1. Let q be a prime power, and M be a simple matroid of
rank at least 7 such that

e M has a PG(r(M) — 1, q)-restriction R, and

o M has a line L containing at least ¢*> + 2 points, and

e (M)# E(R)UL,
then M has a Us g2 441 -minor.

Proof. We may assume that E(M) = E(R) U L U {z}, where z ¢
LU E(R). Let F be a minimal flat of R that spans L U {z}. Tt
follows easily from Lemma 3.2, that either M has a Uj 42 ,1-minor or
ra(F) < 6. To simplify the proof we will prove the lemma with the
weaker hypothesis that (M) > 1+ ry(F), in place of the hypothesis
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that r(M) > 7, and we will suppose that (M, R, L) forms a minimum
rank counterexample under these weakened hypotheses.

Let L, denote the line of R that spans z in M. Since z ¢ L,
we have ry (L U L,) > 3. We may assume that (L U L,) = 3,
since otherwise we could contract a point in /' — (L U L,) to obtain a
smaller counterexample. Similarly, we may assume that r),(F') = 3 and
r(M) = 4, as otherwise we could contract an element of F'—cly(LUL,)
or E(M) — cly(F).

By Lemma 3.3, L, is a point of (M/z)|R and each line of (M/2)|R
is modular and has ¢% + 1 points. One of these lines is F, and, since F’
spans L, I’ spans a line with ¢ + 2 points in M/z. Let e € clyy.(F)
be an element that is not in parallel with any element of F. Since F
is a modular line in (M/z)|R, the point e is freely placed on the line
FuU{e}in (M/z)|(RU{e}). Therefore e(M/{e,z}) > e((M/{z})|R) —
@ =1+¢(qg+1)—¢®> = ¢+ 1, contradicting the fact that M €
EX(Us,g24q+1)- O

Lemma 4.2. Let q be a prime power, and k > 3 be an integer. If M
is a matroid of rank at least k+ 7, with a PG(r(M) — 1, q)-restriction,
and a set X C E(M) with ryy(X) < k and e(M|X) > q;;—:ll, then M
has a Uy g2y 41 1-minor.

Proof. Let M, be a matroid satisfying the hypotheses, with a
PG(r(My) — 1,q)-restriction R,. We may assume that M, €
EX(Usz4244+1), and by choosing a rank-k set containing X, we may
also assume that ry;, (X) = k. By Lemma 3.2, Ry has a flat F{y of rank
at most 2k such that X C clyy (Fo). By contracting at most k points in
Fy —clp, (X)), we obtain a minor M of My, of rank at least 7, such that
ra(X) =k, and M has a PG(r(M) — 1, g)-restriction R, and there is
a rank-k flat F' of R such that X C cly (F).

We may assume that M is simple and that X is a flat of M, so

F CX. Let n = |F| = qqk__ll. By Lemma 3.2, each point of X is
spanned in M by a line of R|F. There are (3)/(}") such lines, each

containing ¢+ 1 points of F. If each of these lines spans at most (¢*—q)
points of X — F, then

XI— (P4 X - <&l @-00) -1
q — 1 (‘12 ) q2 1
contradicting the definition of X. Therefore, some line L of M|X

contains at least ¢42 points. We also have |L| < ¢*+¢, so a calculation

gives | X — L| > q::__ll —(¢*+q) > % = |F|,s0o X # FUL. Applying

Lemma 4.1 to M|(E(R) U X) gives the result. O
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5. MATCHINGS AND UNSTABLE SETS

For an integer k& > 0, a k-matching of a matroid M is a mutually
skew k-set of lines of M. Our first theorem was proved in [8], and also
follows routinely from the much more general linear matroid matching
theorem of Lovasz [7]:

Theorem 5.1. There is an integer-valued function f51(q, k) so that,
for any prime power q and integers n > 1 and k > 0, if L is a set of
lines in a matroid M = PG(n — 1,q), then either

(i) L contains a (k + 1)-matching of M, or

(11) there is a flat F' of M with ry(F) < k, and a set Ly C L with
|Lo| < fs51(q, k), such that every line L € L either intersects F,
oris in Lo. Moreover, if ry(F) =k, then Ly = .

We now define a property in terms of a matching in a spanning
projective geometry. Let ¢ be a prime power, M € EX(Us 424441) be a
simple matroid with a PG(r(M)—1, ¢)-restriction R, and X C E(M\R)
be a set such that M|(E(R)UX) is simple. Recall that, by Lemma 3.2,
each x € X lies in the closure of exactly one line L, of R. We say that
X is R-unstable in M if the lines {L, : € X} are a matching of size
| X| in R.

Lemma 5.2. There is an integer-valued function fs2(q, k) so that, for
any prime power q and integer k > 0, if M € EX(Usg21411) 5 @
matroid of rank at least 3 with a PG(r(M) — 1,q)-restriction R, then
either

(i) there is an R-unstable set of size k+ 1 in M, or
(i1) R has a flat F' with rank at most k such that e(M/F) < e(R/F)+

f5.2(Q7 k)

Proof. Let q be a prime power, and k > 0 be an integer. Set f52(q, k) =
(¢*+q) f5.1(q, k). Let M be a matroid with a PG(r(M)—1, q)-restriction
R. We may assume that M is simple, and that the first outcome does
not hold. Let £ be the set of lines L of R such that | cly (L)] > | clg(L)].
If £ contains a (k 4+ 1)-matching of R, then choosing a point from
cly (L) — clg(L) for each line L in the matching gives an R-unstable
set of size k + 1. We may therefore assume that £ contains no such
matching. Thus, let F and Ly be the sets defined in the second outcome
of Theorem 5.1. Let D = Upeg, cly(L). We have | D] < (¢% + q)|Lo| <
f52(q, k). By Lemma 3.2, each element of M\ D either lies the closure
of a line in £ or in a point of R, so is parallel in M/F to an element of
R. Therefore, e(M/F) < e(R/F) + |D|; the result now follows. O
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We use an unstable set to construct a dense minor. Recall that
(q, k)-full and (g, k)-overfull were defined at the start of Section 2.

Lemma 5.3. Let q be a prime power, and k > 1 and n > k be inte-
gers. If M € EX(Uzg244+1) %5 a matroid of rank at least n + k with a
PG(r(M) —1, q)-restriction R, and X is an R-unstable set of size k in
M, then M has a rank-n (g, k)-full minor N with a Us 42 1-restriction.

Proof. We may assume by taking a restriction if necessary that r(M) =
n+k, and E(M) = E(R)UX; we show that N = M /X has the required
properties. For each z € X, let L, denote the line of R that spans X;
thus {L, : * € X} is a matching. By the definition of instability, it
is clear that X is independent, so r(N) = n. Let x € X, and P be a
plane of R that contains L, and is skew to X — {z}. By Lemma 3.3,
(M/z)|P has a U, 4244-restriction. Since X — {x} is skew to P, M/X
also has a Uj 2 ;-restriction.

To complete the proof it is enough, by Lemma 3.1, to show that
clpr(X) is disjoint from R. This is trivial if X is empty, so consider
r € X and let R’ = si(R/L,). Note that ' = PG(n+ k — 3,q) is a
spanning restriction of M /L, and X — {x} is R'-unstable. Inductively,
we may assume that cly;r, (X — {x}) is disjoint from R/L,, but this
implies that cly/(X) is disjoint from R, as required. O

6. THE SPANNING CASE

In this section we consider matroids that are spanned by a projective
geometry.

Lemma 6.1. There is an integer-valued function fg1(n,q, k) such that,
for any prime power q and integers k > 0 and n > k+ 1, if M €
EX(Usz4244+1) s @ matroid of rank at least fo1(n,q, k) such that

e M has a PG(r(M) — 1, q)-restriction R, and

o M is (q,k)-overfull,
then M has a rank-n (q,k + 1)-full minor N with a Uy 2 -restriction.

Proof. Let k> 0 and n > k + 1 be integers, and ¢ be a prime power.
Let m > max(k + 7,n + k + 1) be an integer such that
qr+k -1 q2k -1 qT+j -1 9 )
- > — k
PR T b i +max(q” + ¢, (¢" — ¢) f51(q, k))

for all r > m and 0 < j < k. We set fs1(n,q, k) = m.

Let M € EX(Uyp244+1) be a (g, k)-overfull matroid of rank at least
m, and let R be a PG(r(M) — 1, ¢)-restriction of M. We will show that
M has the required minor N; we may assume that M is simple.
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6.1.1. If k > 1, then no line of M contains more than ¢*> + 1 points.

Proof of claim: Let L be a line of M containing at least ¢? + 2 points.
We have |L| < ¢* +¢q, so |[E(R)UL| < qr( ) L+ ¢ + ¢ < |M| by the
definition of m. Therefore, there is a pomt of M in neither R nor L.
By Lemma 4.1, M has a Us g2 441-minor, a contradiction. U

Let £ be the set of lines of R, and £* be the set of lines of R that
are not lines of M; note that each L € LT contains exactly ¢+ 1 points
of R, and spans an extra point in M. By Lemma 3.2, every point of
M\ E(R) is spanned by a line in £7.

6.1.2. LT contains a (k + 1)-matching of R.

Proof of claim: If k = 0, then since |M| > |R|, we must have LT # &,
so the claim is trivial. Thus, assume that £ > 1 and that there is no
such matching. Let FF C FE(R) and Ly C L be the sets defined in
Theorem 5.1. Let j = ry(F'); we know that 0 < j < k, and that Ly is
empty if j = k. Let Lp = {L € L :|LN F| = 1}. By definition, every
point of M\ R is in the closure of F, or the closure of a line in Ly U Ly.

Every point of R\ F' lies on exactly |F| lines in Lp, and each such
line contains exactly ¢ points of R\ F, so

[FIIR\F| _ (¢ = )(¢"™ — ¢’)
q(q —1)?

Furthermore, each line in L contains ¢ + 1 points of R, and its closure
in M contains at most ¢*> — ¢ points of M\ R by the first claim. We

argue that |cly (F)| < q; T if j < 2, then this follows from the first

claim, and otherwise, we have r(M)>m > k+7, so the bound follows
by applying Lemma 4.2 to M and cly/(F). We now estimate |M|.

[M] = |R| + |[M\E(R)|

|Lp| =

<IB+ YD Jelu() ~ B(R) + el (F) ~ F
LeLrpULy
r(M) _ 1 21 J_—1
q q q
< Tt - e + b+ (5 )

qg—1 —1 q-1

Now, a calculation and our value for L obtained earlier together give

M| < COZEL gl (2 — q)| ol 1 j < , then, since r(M) > m
and |Lo| < f51(q, k), we have |M| < qr(]\q[)jlk_l — ;k_l by definition

of m. If j = k, then |Ly| = 0, so the same inequality holds. In either
case, we contradict the fact that M is (g, k)-overfull. O
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Now, £ has a matching of size k+1, so by construction of LT, there
is an R-unstable set X of size k+1in M. Since r(M) > m > n+k+1,
the required minor N is given by Lemma 5.3. U

7. CONNECTIVITY

A matroid M is weakly round if there is no pair of sets A, B with
union E(M), such that 7y (A) < r(M)—2and ry(B) < r(M)—1. Any
matroid of rank at most 2 is clearly weakly round. This is a variation
on roundness, a notion equivalent to infinite vertical connectivity intro-
duced by Kung [6] under the name of ‘non-splitting’. Weak roundness
is preserved by contraction; the following lemma is easily proved, and
we use it freely.

Lemma 7.1. If M is a weakly round matroid, and e € E(M), then
M /e is weakly round.

The first step in our proof of the main theorems will be to reduce to
the weakly round case; the next two lemmas give this reduction.

Lemma 7.2. If M is a matroid, then M has a weakly round restriction
N such that e(N) > "M)=" MDg(DM), where ¢ = 1(1+/5).

Proof. We may assume that M is not weakly round, so r(M) > 2, and
there are sets A, B of M such that ry/(A) =r(M)—2, ry(B) =r(M)—
1, and E(M) = AU B. Now, since ¢~ + p=2 = 1, either e(M|A) >
0 2e(M) or e(M|B) > ¢~ 'e(M); in the first case, by induction M|A
has a weakly round restriction N with e(N) > "WV (MA)g(Af|A) >
@M =r(M)+2 =20 (V) = " (N)=r(M) (M), giving the result. The second
case is similar. O

Lemma 7.3. Let q be a prime-power, and k > 0 be an integer. If M
1s a base-q exponentially dense minor-closed class of matroids that con-
tains (g, k)-overfull matroids of arbitrarily large rank, then M contains
weakly round, (g, k)-overfull matroids of arbitrarily large rank.

Proof. Note that ¢ < 2 < ¢; by the Growth Rate Theorem, there is an
integer ¢ > 0 such that

t r(M)+k _ 1 2k _q
sy (1) 4 — ol
@ qg—1 ¢>—1
for all M € M.
For any integer n > 0, consider a (g, k)-overfull matroid M € M with

rank at least n 4+ ¢. By Lemma 7.2, M has a weakly round restriction
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N such that e(N) > ¢~ *c(M), where s = r(M) — r(NN). We have
e(N) = ¢%e(M)

- i qr(M)+k -1 q2k -1
¥ q—1 q g—1
- g qu(N)—i-k_l—quk_l
@ qg—1 ¢ -1
Thus N is (g, k)-overfull. Moreover, by the definition of ¢, we have
s < t and, hence, r(N) > n. O

8. EXPLOITING CONNECTIVITY

We now exploit weak roundness by showing that any interesting
low-rank restriction can be contracted into the span of a projective
geometry.

Lemma 8.1. There is an integer-valued function fs1(n,q,t,¢) so that,
for any prime power q, and integers n > 1,0 > 2 andt > 0, of M €
EX(Us42) is a weakly round matroid with a PG(fs1(n,q,t,0) —1,q)-
minor, and T is a restriction of M of rank at most t, then there is a
minor N of M of rank at least n, such that T is a restriction of N,
and N has a PG(r(N) — 1, q)-restriction.

Proof. Let n > 1, > 2 and t > 0 be integers. Let n’ = max(n,t+ 1),
and set fs1(n,q,t,¢) to be an integer m such that m > 2¢, and

t
¢" —1 g - 3) .
—1 > aga(n',q —5,0) (Tg (a—3)"
Let M € EX(Us12) be a weakly round matroid with a PG(m—1, ¢)-

minor S = M/C\D, where r(S) = r(M)—rp(C). Let T be arestriction
of M of rank at most ¢; we show that the required minor exists.

8.1.1. There is a weakly round minor My of M, such that T is a re-
striction of My, and My has a PG(n' — 1, q)-restriction Ry.

Proof of claim: Let C' C C be maximal such that 7" is a restriction
of M/C', and let M’ = M/C’. Maximality implies that C' — C" C
cly (E(T)), so ry (C — C") < t. Now, ry(E(S)) = r(S) + ru (C —
C") < m +t. Therefore,

q" -1
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By Lemma 2.3 applied to E(S) and E(T), with = ¢ — 1, there is
aset A C E(S), skew to E(T') in M’, such that

€<M/‘A) Z O42.2<n/7 q— %76)(q - %)T(M,|A)‘

Therefore, Lemma 2.2 implies that M'|A has a PG(n’ — 1, ¢')-minor
Ry = (M'|A)/Ci\ Dy, for some ¢’ > q — 5. Let My = M'/Cy. The
set A is skew to E(T) in M’, and therefore also skew to C' — C’; so
M'NA=(M)(C—-C")|A=S|A, so M'|Ais GF(q)-representable, and
so is its minor R;. Thus, ¢ = ¢, and R; is a PG(n' — 1, ¢)-restriction
of My. Moreover, C; C A, so C} is skew to E(T) in M’, and therefore
M, has T as a restriction. The matroid M; is a contraction-minor of

M, so is weakly round, and thus satisfies the claim. O

Let M5 be a minor-minimal matroid such that:

e M is a weakly round minor of M;, and
e T and R; are both restrictions of M.

If r(Ry) = r(Ms), then N = M, is the required minor of M. We
may therefore assume that r(My) > r(Ry) = n’. We have r(T) <t <
n' — 1 < r(Ms) — 2, so by weak roundness of M, there is some e €
E(M5) spanned by neither E(T) nor E(R;), contradicting minimality
of MQ. U

9. CRITICAL ELEMENTS

An element e in a (g, k)-overfull matroid M is called (g, k)-critical if
M /e is not (q, k)-overfull.

Lemma 9.1. Let q be a prime power and k > 0 be an integer. If e is
a (q, k)-critical element in a (q,k)-overfull matroid M, then either

(1) e is contained in a line with at least ¢* + 2 points, or
q2k_1
a*-1

(i1) e is contained in + 1 lines, each with at least g + 2 points.

Proof. Suppose otherwise. Let £ be the set of all lines of M containing
e, and let £; be the set of the min(|L], q%_l) longest lines in L. Every

-1
line in £ — £ has at most ¢+ 1 points and every line in £; has at most
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q* + 1 points, so
e(M) < 1+qlL] + (¢ = g)|L4]

2 q% —1
<1l+4+q¢e(M/e)+ (¢ —q) 21
r(M)+k—1 __ 1 2k _ 1 2k _ 1
q q 2 q
<1 — —
< +q< i1 qQQ_l)Jr(q Q)q2_1
r(M)+k __ 1 2k _ 1
=1 +¢5—,
q—1 ¢ —1
contradicting the fact that M is (g, k)-overfull. 0

The following result shows that a large number of (g, k)-critical ele-
ments gives a denser minor.

Lemma 9.2. There is an integer-valued function foo(n,q, k) so that,
for any prime power q, and integers k > 0, n > k+1, if m > foa(n,q, k)
is an integer, and M € EX(Us g24411) is a (g, k)-overfull, weakly round
matroid such that

e M has a PG(m — 1,q)-minor, and

e M has a rank-m set of (q, k)-critical elements,

then M has a rank-n, (q,k + 1)-full minor with a Us 4241 -restriction.

Proof. Let ¢ be a prime power, and k£ > 0 and n > 2 be integers. Let
n' =max(k+8,n+k+1),let d= f52(q, k), let t =d(d+ 1) + k + 6,
let s = q::—__ll + 1, and set foo(n,q, k) = fsa(n',q,t(s +1),¢* +q—1).

Let m > fo2(n, ¢, k) be an integer, and let M € EX(Us g244+1) be a
(q, k)-overfull, weakly round matroid with a PG(m—1, ¢)-minor and a ¢-
element independent set I of (g, k)-critical elements (note that ¢ < m).
We will show that M has the required minor.

By Lemma 9.1, for each element e € I, there is a set L. of lines
containing e such that either |£.| = 1 and the single line in £, has

q> + 2 points, or |L.| = q;:—:ll + 1 and each line in £, has at least g + 2
points. There is a restriction K of M with rank at most ¢(s + 1) that
contains all the lines (L. : e € I). By Lemma 8.1, M has a minor M,
of rank at least n’ that has a PG(r(M;) — 1, g)-restriction R;, and has
K as a restriction. By Lemma 4.1, M; has at most one line containing

¢ + 2 points.

9.2.1. There is a (t — 5)-element subset Iy of I such that, for each
e € I, we have rg(UL,) > k + 2.

Proof of claim: Note that [I| =t > 5. If k = 0, then every e € [
satisfies the required condition, so an arbitrary (¢ — 5)-subset of I will
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do; we may thus assume that £ > 1. Since K contains at most one line
with at least ¢> + 2 points, there are at most two elements e € I with
|L.| = 1. If the claim fails, there is therefore an 4-element subset Iy of

I such that |L.| = q:;:ll +1and rg(UL.) <k+1forallee€ I

For each e € Iy, let F, = clx(UL,). Then (K|F.)/e has rank at most

k and has more than q;::ll points. Since k£ > 1, this matroid has rank
at least 2. Moreover, M /e has rank at least n’ — 1 > k + 7 and has
a PG(r(Mi/e) — 1, q)-restriction, so, by Lemma 4.2, r((K|F.)/e) = 2.
Hence, k > 2, F, is a rank-3 set containing at least ¢* + 2 lines through
e, each with at least ¢+2 points, and (K |F.)/e is a rank-2 set containing
at least ¢ + 2 points.

Let a € Iy; since ryp, (I2) = 4 > rap (Fy), there is some b € I, — F,.
Now, M;/b has a line L = cly, o(F, — {b}) containing at least ¢* + 2
points, and (M, /b)|F, is a rank-3 matroid with at least 1+ (q+1)(¢*+2)
points, and therefore at least 1+ (¢ +1)(¢* +2) — (¢*+q) > ¢* +q+1
points outside L. However, M;/b has rank at least k£ + 7, and has a
PG(r(M;/b) — 1, q)-restriction containing at most ¢* + ¢ + 1 points in
F, — L, so we obtain a contradiction to Lemma 4.1. O

9.2.2. M; has an Ry-unstable set of size k + 1.

Proof of claim. Suppose otherwise. By Lemma 5.2, there is a flat F' of
Ry with rank at most k such that e(M,/F) < e(R1/F) + f52(q, k) =
e(Ry/F)+d. Let My = M;/F; the matroid M, has a PG(r(M,)—1, q)-
restriction Rs, and satisfies E(My) = E(R2) U D, where |D| < d.

Let Iy C I; be a set of size of size |I;| — k that is independent in Ma;
note that |Io| > d(d + 1) + 1. For each e € Iy, we have ry,(UL.) >
(k+2) —k = 2, so e is contained in a line L, with at least ¢+ 2 points
in MQ.

Let £ = {L. : e € I}. Each L. contains e, and at most one other
point in Iy, so |£| > %\]2| > (dgl). Each line in £ contains ¢+ 2 points,
so must contain a point of My\ E(Rs). However, |My\ E(Rs)| < d, so
there are at most (‘21) lines of M, containing two points of My\ E(Ry),
and by Lemma 3.2, we may assume that there are at most d lines of
M, containing g+ 2 points, but just one point of My\E(Rz). This gives

L] <d+ (g) = (d'QH), a contradiction. O

Since (M) > n' > n+k+1, we get the required minor N from the
above claim and Lemma 5.3. U

10. THE MAIN THEOREMS

The following result implies Theorems 1.2 and 1.3:
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Theorem 10.1. Let q be a prime power, and let M C EX(Us 424 ¢41)
be a base-q exponentially dense minor-closed class of matroids. There
1s an integer k > 0 such that

qn-‘rk -1 q2k: -1

ha(n) = —1 Yo
for all sufficiently large n. Moreover, if M C EX(Us 241), then k = 0.

Proof. By the Growth Rate Theorem, M contains all projective geome-
tries over GF(¢) and, hence, M contains (g, 0)-full matroids of every
rank. We may assume that there are (g, 0)-overfull matroids of arbi-
trarily large rank, since otherwise the theorem holds. By the Growth
Rate Theorem, there is a maximum integer k& > 0 such that M con-
tains (g, k)-overfull matroids of arbitrarily large rank, and there is an
integer s > 0 such that PG(s — 1,¢') ¢ M for all ¢ > q.

To prove the result, it suffices to show that, for all n > k£ + 1, there
is a rank-n matroid M € M that is (¢, k + 1)-full and has a U, 21-
restriction. Suppose for a contradiction that n > k+1 is an integer for
which this M does not exist.

Let m = foa(n,q, k), and my = max(m + 1, s, fe1(n,q, k)). Let mg
be an integer such that

L 1>a22(m4q—lq2+q 1)(
. ) 2 3
qg—1 q—3

Let my = max(s, mgm), and choose an integer m; > s such that
qr+k -1 q2k: -1

g—1 T
for all » > m;. By Lemma 7.3, M contains weakly round, (g, k)-
overfull matroids of arbitrarily large rank; let M; € M be a weakly
round, (g, k)-overfull matroid with rank at least m;. By Lemma 2.2,
M; has a PG(mgy — 1,¢') minor N; for some ¢’ > ¢ — %; since mqy > s,
we have ¢’ = ¢q. Let I; be an independent set of M; such that N is a
spanning restriction of M;/I;, and choose J; C I} maximal such that
M,/ Jy is (g, k)-overfull.

Let My = M;/Jy and let I, = I} — J;. By our choice of J;, each
element in Iy is (g, k)-critical in M,. Since ms > m, Lemma 9.2 gives
|I5] < m. Choose a collection (Fi,...,F,) of mutually skew rank-
mg flats in the projective geometry Ni; each F; satisfies r(Msy|F;) <
ms +m — 1 and e(Ms|F;) = q:'f%. By our choice of mg, and by
Lemma 2.3 with u = q—% foreachi € {1,...,m}, thereis aflat F C F;
of M, that is skew to I in Ms, and satisfies e(Ms|F]) > ago(my, q —
%, P +q—1)(q— %)T%(Fi/). Note that, since the sets (FY,..., F} ) are

q2 + q— 1)m (q . %)ms-l-m—l.

a.2(ma, q — %aQQ +q—1)(¢— %)T <
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mutually skew in M5 /I5 and each of these sets is skew to I3 in My, the
flats (F7, ..., F),) are mutually skew in M.

By Lemma 2.2, Ms|F] has a PG(m4 — 1,¢’) minor P; for some ¢’ >
q— %; since my > s, we have ¢ = ¢q. Let X; be an independent set
of My|Fy such that P; is a spanning restriction of Ms/X;. Now choose
Z C Xy U---U X, maximal such that M,/Z is (¢, k)-overfull. Let
Ms = My/Z. Each element of X; U---U X — Z is (g, k)-critical in
Ms, and P; is a minor of Mj for each 7. The X; are mutually skew
in M3 and hence pairwise disjoint; thus, by Lemma 9.2, there exists
ip € {1,...,m} such that X;) — Z =@ and hence, P, is a restriction
of Ms; let R = PF,,.

Choose a minor M, of M3 that is minimal such that:

e M, is weakly round, and (g, k)-overfull,

e M, has R as a restriction.
By Lemma 6.1, r(My) > r(R). Every element of E(M,) — cly, (E(R))
is (g, k)-critical and, since M, is weakly round, r(My\cly, (E(R))) >
r(My)—2 > my—1 > m. We now get a contradlctlon from Lemma 9.2.

mj
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