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Abstract. This article concerns applications of number theory to the study of difference
sets, in particular to proofs of non-existence of difference sets with given parameters (v, k, λ).
It is centered around Koichi Yamamoto’s 1963 paper Decomposition Fields of Difference Sets.
We begin with an introduction to the theory of difference sets, consisting of basic definitions
and results. We introduce some algebraic number theory, first covering elementary ring-
theoretic concepts such as ideals, which we use to prove non-existence of a (25, 9, 3)-difference
set in an abelian group of order 25. We then review the basic notions of Galois theory and
ring theory to prepare the reader for a discussion of Yamamoto’s paper. The remainder
of the article is spent proving the six theorems of Yamamoto’s paper, as well as stating
corollaries proved in that paper and a few remarks.

1. Outline

The first quarter of this review closely follows [1] to motivate the use of algebraic number
theory in the study of difference sets. The second quarter describes the Galois and field
theory necessary to discuss Yamamoto’s 1963 paper Decomposition Fields of Difference Sets.
The remainder of the review is dedicated to sketching the arguments of that paper.

As this article is intended for a general audience, we must introduce some basic concepts.
First, there is the idea of a difference set. When speaking about general groups, we will write
the group operation multiplicatively, but when speaking about specific additive groups, we
will write the group operation additively.

Definition 1.1. Let G be a group and D ⊂ G be a non-empty subset. Suppose that
|G| = v, |D| = k, and every non-identity element of G can be written in exactly λ ways as
d1d
−1
2 for d1, d2 ∈ D. We then say that D is a (v, k, λ)-difference set in G.

Example 1.2. D = {0, 1, 2, 4, 5, 8, 10} is a (15, 7, 3)-difference set in Z15.

The main results of Yamamoto’s paper are his Theorems 2, 3, 4, 5, and 6. We state these
now so that the reader has something to look forward to. However, the requisite terminology
will be defined later.

Theorem 1.3 (Yamamoto, Thm. 2). Suppose that there exists a (v, k, λ)-difference set D.
Let p | n be a prime and d | v be not equal to 1. Suppose further that (p, d) = 1 and that the
decomposition field Kp of p is real, i.e., K ⊂ R. Then the exponent of the p-component of n
is even.

Theorem 1.4 (Yamamoto, Thm. 3). (i) Retain the notation of Yamamoto’s second the-
orem. Additionally, let pe and p` be the p-components of n and v, respectively. Then
pe/2 ≤ (v/d)p−`.
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(ii) Suppose there exists a difference set with parameters (v, k, λ). Let p | n = k−λ be prime,
and let pe and p` be defined as in part (i). If e is even, then pe/2 ≤ vp−`.

Theorem 1.5 (Yamamoto, Thm. 4). Let q be a prime divisor of v such that q ≡ −1
(mod 4) and let q` be the q-component of v. Assume that any prime divisor p of n satisfies
(i) ordqp ≡ 0 (mod 2), (ii) ordq`p = 1

2
q`−1(q − 1), or (iii) p = q. If there exists a (v, k, λ)-

difference set D, then the Diophantine equation

4n = x2 + qy2, 0 ≤ x, 0 ≤ y ≤ v

q`
, x+ y ≤ 2v

q`

has a solution.

Theorem 1.6 (Yamamoto, Thm. 5). Let q and r be distinct prime divisors of v, let q`
and rm be the q-components and r-components of v, respectively, and let q ≡ −1 (mod 4),
(ϕ(q`), ϕ(rm)) = 2, where ϕ is the Euler totient function. Assume that any prime divisor of
n satisfies one of the following:
(i) ordqp ≡ 0 (mod 2) and ordrp ≡ 0 (mod 2),��≡0 (mod 4),
(ii) ordq`p = 1

2
ϕ(q`) and ordrmp = ϕ(rm),

(iii) p = q and ordrmp = ϕ(rm).

If there exists a (v, k, λ)-difference set D, then there is a solution to the Diophantine equation

4n = x2 + qy2, 0 ≤ x, 0 ≤ y ≤ 2v

q`rm
, x+ y ≤ 4v

q`rm
.

Theorem 1.7 (Yamamoto, Thm. 6). Let q and r be prime divisors of v such that q ≡ −1
(mod 4), r ≡ 1 (mod 4), (q/r) = −1, and (ϕ(q`), ϕ(rm)) = 2 for q` and rm the q- and r-
components of v, respectively. Assume any prime divisor p of n satisfies either

(i) ordqp ≡ 0 (mod 2) and ordrp ≡ 0 (mod 2),��≡0 (mod 4), or

(ii) ordq`p = ϕ(q`) and ordrmp = ϕ(rm).

Then, if there exists a (v, k, λ)-difference set D, there is a solution to the Diophantine equa-
tion

4n = x2 + qry2, 0 ≤ x, 0 ≤ y ≤ 2v

q`rm
, x+ y ≤ 4v

q`rm
− 2.

Essentially these theorems allow us to show that difference sets with certain choices of (v, k, λ)
don’t exist because they don’t satisfy the given Diophantine equations.

Next, let us review certain elementary ideas in the theory of difference sets which will allow
us to give a simple example of the usefulness of algebraic number theory in that setting.

2. Difference Sets Review

The following result allows us to narrow down the possibilities for (v, k, λ) when searching
for difference sets.

Lemma 2.1. If D is a (v, k, λ)-difference set in G, then

k(k − 1) = λ(v − 1).
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Proof. Let ∆ = {d1d−12 |d1, d2 ∈ G, d1 6= d2}. Then |∆| = k(k−1) because there are k choices
for d1 and k − 1 choices for d−12 . But we also have |∆| = λ(v − 1) because there are v − 1
non-zero elements in G and each of these appears exactly λ times in ∆. �

The study of multipliers of difference sets is a basic technique in determining whether dif-
ference sets with particular parameters exist. We recall the basic definitions.

Definition 2.2. Let D be a difference set in G. An automorphism α of G is called a
multiplier for D if α(D) = aDb for some a, b ∈ G. α is called a left multiplier if α(D) = aD
for some a ∈ G.

Notice that if G is abelian, then any multiplier is a left multiplier.

Definition 2.3. Let G be an abelian group, t ∈ Z relatively prime to |G|, and D a difference
set in G. Define the automorphism φt : G → G by φt(a) = at. We say φt is a numerical
multiplier for D if there exists h ∈ G such that φt(D) = hD. Indeed, we typically call t itself
a numerical multiplier in this case.

Example 2.4. Take G = Z13 andD = {2, 3, 5, 11}. Then φ3(D) = 3D = {6, 9, 2, 7} = 4+D,
so 3 is a numerical multiplier for D.

Numerical multipliers allow us to find difference sets because of the First and Second Multi-
plier Theorems. These are stated without proof in the next section. For now, we recall the
definition of the integral group ring associated to a particular group G.

Definition 2.5. Given a finite (multiplicative) group G, the integral group ring ZG is the
ring of formal sums

∑
g∈G agG where ag ∈ Z for all g ∈ G and where the ring operations are

the usual ones for formal sums, i.e.,∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g,

(
∑
f∈G

aff)(
∑
g∈G

bgg) =
∑
h∈G

(
∑
fg=h

afbg)h.

We can represent a difference set D ⊂ G by the sum
∑

d∈D d ∈ ZG. We then have the
following result, which we state without proof.

Theorem 2.6. Let D be a (v, k, λ)-difference set in G. Represent D as a formal sum in
ZG, define D(−1) := {d−1|d ∈ D}, and represent D(−1) also as a formal sum. In ZG we then
have

DD(−1) = n1G + λG.

Similarly, we define the polynomial ring, Z[G].

Definition 2.7. Let G be an abelian (additive) group. Define the polynomial ring Z[G] to
be the ring of formal sums

∑
g∈G agx

g where ag ∈ Z for all g ∈ G. Let x be a variable, so
that xfxg = xf+g. Define addition and multiplication as follows:∑

g∈G

agx
g +

∑
g∈G

bgx
g =

∑
g∈G

(ag + bg)x
g,

(
∑
f∈G

afx
f )(

∑
g∈G

bgx
g) =

∑
h∈G

(
∑
f+g=h

afbg)x
h.
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In this setting, the previous theorem can be restated as follows.

Corollary 2.8. Let D be a (v, k, λ)-difference set in G, and let G be an abelian (additive)
group. For any subset S ⊆ G, define S(x) ∈ Z[G] by S(x) :=

∑
s∈S x

s. We then have

D(x)D(x−1) + n+ λG(x).

3. Motivation

Before we proceed, we choose a simple example to motivate the use of algebraic number
theory in the study of difference sets. Some of the most important tools in the study of abelian
difference sets are the first and second multiplier theorems. We recall their statements.

Theorem 3.1. (First Multiplier Theorem). Let D be an abelian (v, k, λ)-difference set and
let p be a prime such that p | n but p - v. If p > λ, then p is a numerical multiplier of D.

Theorem 3.2. (Second Multiplier Theorem). Let D be an abelian (v, k, λ)-difference set
in a group G and let m > λ be a divisor of n such that (m, v) = 1. Furthermore, let t be
an integer such that (t, v) = 1 and such that for every prime p dividing m there exists a
non-negative integer f with t ≡ pf (mod exp(G)). Then t is a numerical multiplier for G.

Now suppose that n = k − λ divides v. Then the conditions of Theorem 1.1 fail to hold
because there are no primes such that p | n and p - v, and the conditions of Theorem 1.2 fail
to hold because there is no divisor m of n such that (m, v) = 1. So we cannot apply either
of the multiplier theorems. Indeed, there is a class of Hadamard difference sets satisfying
v = 4n where n = k − λ, so in their case n | v. It is therefore of practical relevance that we
find a way to circumvent the problem of not being able to apply the multiplier theorems.

Before we proceed to apply algebraic number theory, we should recall some basic definitions
and results from that field of study.

Definition 3.3. If ω is a primitive mth root of unity, we denote by Q(ω) the smallest field
extension of Q containing ω. This is an algebraic number field because ω satisfies xm+1 and
is therefore an algebraic number. This is the mth cyclotomic field. It contains the subring

Z[ω] = {
m−1∑
j=0

ajω
j|aj ∈ Z},

which is the set of cyclotomic integers.

Definition 3.4. The ring of integers of an algebraic number field is the set of all algebraic
integers lying in that number field. We recall that the ring of integers is in fact a subring of
the number field. If the number field is denoted by K, we denote its ring of integers by OK .

Theorem 3.5. Let ω be a primitive mth root of unity. Then Z[ω] is indeed the ring of
integers of Q(ω).

Proof. See, for example, Proposition 10.2 on Section 1.10, page 60 of [6]. The proof works
by producing an integral basis. For more information about integral bases, see Chapter 7 of
[2]. �

The following theorem is often useful. It is proved as Lemma 3.2 of [7].
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Theorem 3.6. Let ω be a primitive psth root of unity for a prime p. If
∑n

j=1 ajω
j = 0

for some a1, ..., an ∈ Q, then ak = a` whenever k ≡ ` (mod ps−1). In particular, if ω is a
primitive pth root of unity, then a1 = a2 = ... = an.

Next we recall some definitions about ideals.

Definition 3.7. Given a subset I ⊆ R of a ring R, we say I is an ideal if (I,+) is a subgroup
of R and for every i ∈ I and every r ∈ R, we have ri ∈ I and ir ∈ I. We say I is prime if
whenever r1, r2 ∈ R and r1r2 ∈ I, either r1 ∈ I or r2 ∈ I. Given ideals I1, I2 ⊆ R, then the
product ideal I1I2 is given by

I1I2 := {
n∑
j=1

ajbj|aj ∈ I1, bj ∈ I2, n ∈ N}.

It is easy to verify the product ideal is an ideal. Given a ∈ R, the set
aR = {ar|r ∈ R}

is called the ideal generated by a. If an ideal I is of the form aR for some a ∈ R, we say I
is principal. Clearly if a, b ∈ R, then (aR)(bR) = (ab)R, so the product of principal ideals
is principal. A short calculation shows that the concepts of ideal, product of ideals, prime
ideal, and principal ideal are all preserved under ring automorphisms, meaning, for example,
that if I ⊆ R is a prime ideal and f : R→ R is a ring homomorphism, then f(I) ⊆ R is also
a prime ideal.

The following theorem is Corollary 15.9 in [8].

Theorem 3.8. Let ω be a primitive mth root of unity. If z ∈ Z[ω] and zz = 1, then z = ±ω`
for some ` ∈ Z.

The following theorem is Theorem 2 on page 180 of [9].

Theorem 3.9. Let ω be a primitive mth root of unity. Then every ideal in Z[ω] can be
written uniquely as a product of prime ideals.

Next we have another theorem from [9]. The proof of the first part is listed as Theorem 2 on
page 196 there, and the second and third parts are Propositions 13.27 and 13.28, respectively,
on page 197.

Theorem 3.10. Let ω be a primitive mth root of unity and let R = Z[ω]. Let p ∈ N be
prime. We have the following.
(i) Suppose p - m. Let f be the least positive integer such that pf ≡ 1 (mod m). Then in
R we have pR = P1...Pn where the Pi are distinct prime ideals and n = φ(m)/f , where φ is
Euler’s totient function.
(ii) Let m = p. Then (1− ω)R is a prime ideal in R and pR = ((1− ω)R)p−1.
(iii) Suppose P is a prime ideal occurring in the prime factorization of pR, which is unique
by the previous theorem. If p is odd, then P has exponent greater than 1 in that factorization
if and only if p | m. If p = 2, then P has exponent greater than 1 if and only if 4 | m.

Immediately we will see some applications to the theory of difference sets. Before we proceed,
let’s recall a simple definition from group theory.

Definition 3.11. If G is a finite group and g ∈ G, then |g|, the order of g, is defined to be
the least n ∈ Z≥0 such that gn = 1G.
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We can apply these theorems as follows.

Example 3.12. Suppose ω = e2πi/5 and R = Z[ω]. Suppose further that z ∈ R is such that
zz = 36. We let w = z/6. Then uu = 1. To apply Theorem 3.8, we must show u ∈ R. Once
we prove this, we will be able to write u = ±ω` for some ` ∈ Z, hence z = ±6ω`.
Let us now prove that u ∈ R. Notice that |2| = |3| = 4 in (Z5,×) and that φ(5) = 4.
Therefore, by Theorem 3.10 (i), 2R and 3R are prime ideals in Z[ω]. We calculate

(zR)(zR) = zzR

= 36R

= (2R)2(3R)2.

Theorem 3.9 then implies that zR = zR = 6R. So z = 6u for some u ∈ R, which is precisely
the u we defined earlier. The proof carries through, as shown above.

Finally, let’s see how we can use this to study difference sets in a certain abelian group.

Example 3.13. Let G be an abelian group of order 25. We claim that G cannot contain a
(25, 9, 3)-difference set. By the classification of finite abelian groups, G is either isomorphic
to Z25 or Z5 ⊕ Z5. In either case, it contains a normal subgroup N of order 5. Then G/N
has order 5 and is cyclic. Let G/N = 〈aN〉. Let ω = e2πi/5. By basic results of character
theory, there is a character χ, i.e., a group homomorphism from G to C×, such that χ has
kernel N and maps a to ω.

Suppose for the sake of contradiction that D ⊂ G is a (25, 9, 3)-difference set. Let vj :=
|D ∩ ajN |; the {vj} are called intersection numbers for D with N . We can extend χ to
χ̃ : ZG→ Z[ω] by linearity. Then, representing D as an element of ZG, we have

z := χ̃(D) =
∑
j

vjω
j ∈ Z[ω] =: R,

by basic character theory. We found in the previous example that 2R and 3R are prime
ideals of R. We also have zz = n = 6, so (zR)(zR) = (2R)(3R). But 2 = 2, 3 = 3, so
(zR)(zR) = (2R)(3R) cannot hold. It follows that no (25, 9, 3)-difference set can exist in an
abelian group.

Now that we have seen how algebraic number theory can be used to eliminate certain differ-
ence sets, we are ready to review deeper theory before beginning our review of Yamamoto’s
paper.

4. Algebraic Number Theory Review

We first review some field theory. [2], [6], and [9] are good references for the material covered
here, although it can be found in any standard reference on Galois theory and algebraic
number theory.

Definition 4.1. Suppose K is a subfield of L, i.e., K ⊆ L and K satisfies the field axioms
with the same operations as F . We then write that L/K is a field extension.

Definition 4.2. If L/K is a field extension and every element of L is the root of a non-zero
polynomial with coefficients in K, knxn + kn−1x

n−1 + ... + k1x + k0, then we say that L/K
is an algebraic field extension.
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Example 4.3. The field extension Q(
√

3)/Q is algebraic because a+ b
√

3 ∈ Q(
√

3) is a root
of the equation (1

b
(x− a))2 − 3 = 0, which has rational coefficients.

The field extension R/Q is not algebraic because π ∈ R and π is a transcendental number.

Definition 4.4. The field extension L/K is normal if every irreducible polynomial over K
either has no root in L or splits into linear factors in L. It is separable if for every k ∈ K,
the minimal polynomial of k has non-vanishing formal derivative.

Example 4.5. Consider Q( 3
√

2)/Q. Let ω := e2πi/3. Then, over C,

x3 − 2 = (x− 3
√

2)(x− ω 3
√

2)(x− ω2 3
√

2).

Clearly x3 − 2 is irreducible over Q, but it splits into a linear and a quadratic factor over
Q( 3
√

2), as ω 3
√

2, ω2 3
√

2 /∈ Q( 3
√

2). It follows that Q( 3
√

2)/Q is not normal. On the other hand,
Q( 3
√

2, ω)/Q is normal.

Example 4.6. The extension Fp(t)/Fp(tp) is not separable because the minimal polynomial
of t over Fp(tp) is f(x) = xp − tp, but f ′(x) = pxp−1 = 0, as Fp(tp) has characteristic p.

We usually need not consider separability because of the well-known result that any char-
acteristic zero algebraic extension is separable, as is every algebraic extension of a finite field.

We are now ready to define a Galois extension.

Definition 4.7. An algebraic field extension L/K is Galois if it is normal and separable.

Proposition 4.8. Given a Galois extension L/K, the set

Gal(L/K) := {σ ∈ Aut(L)|σ(k) = k ∀k ∈ K}
forms a group called the Galois group of L/K.

Example 4.9. The two field automorphisms of the Galois extension C/R are the identity
and the automorphism σ given by σ(z) = z. Therefore,

Gal(C/R) ' Z/2Z.

The following theorem is the basis for Galois theory.

Theorem 4.10 (Fundamental Theorem of Galois Theory). Suppose L/K is a Galois ex-
tension. There is then an inclusion-reversing bijection between subgroups of Gal(L/K) and
intermediate fields L ⊇ F ⊇ K given by

H 7→ LH := {x ∈ L|σ(x) = x ∀σ ∈ H} and F 7→ Aut(L/F ).

Let us also review the ring-theoretic aspects of algebraic number theory, continuing the study
we initiated in the previous section.

Definition 4.11. A finite field extension of Q is known as a number field.

Definition 4.12. Suppose K/Q is an algebraic field extension. We say an element x is
integral over K if there exists a monic polynomial p(x) with integer coefficients such that
p(k) = 0. The set of integral elements in K forms a ring, denoted OK , called the ring of
integers over K.
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In particular, if ω is a primitive nth root of unity, then one can show that Z[ω] is the ring of
integers of Q(ω).

The following result was Ernst Kummer’s original motivation to invent ideals.

Proposition 4.13. If K is a number field, any ideal of OK has a unique factorization into
non-zero prime ideals. In other words, every ring of integers of a number field is a so-called
Dedekind domain.

Indeed, Kummer’s invention of ideals was a response to the lack of unique factorization in
certain rings of cyclotomic integers. Around the same time, Kummer’s contemporary, Gabriel
Lamé, not knowing about this result, produced an erroneous proof of Fermat’s Last Theorem
that assumed unique factorization. Although the invention of ideals did not directly help us
prove Fermat’s Last Theorem, it did pave the way for modern algebraic number theory.

Definition 4.14. An integral domain is a non-trivial commutative ring such that the product
of any two non-zero elements is itself non-zero.

Example 4.15. Z is an integral domain, but Z10 isn’t since 2 · 5 ≡ 0 (mod 10).

Definition 4.16. Let D be an integral domain or a field. An absolute value is a function
| · | : D → R that satisfies the following four properties:
(i) |x| ≥ 0 for all x ∈ D (non-negativity);
(ii) |x| = 0 if and only if x = 0 (positive-definiteness);
(iii) |xy| = |x||y| for all x, y ∈ D (multiplicativity); and
(iv) |x+ y| ≤ |x|+ |y| for all x, y ∈ D (triangle inequality).

Example 4.17. The usual Euclidean absolute value, which we denote | · |∞, on R or any
subset thereof is indeed an absolute value.

Example 4.18. The trivial absolute value | · |0 on subsets of R is given by |x|0 := 0 if x = 0
and |x|0 := 1 otherwise.

Example 4.19. Let p be a prime. If x ∈ Q and x 6= 0, x can be written uniquely in the
form x = pn a

b
, where gcd(a, b) = 1, a and b are not divisible by p, and n is an integer. The

p-adic absolute value on Q is then given by |0|p := 0 and |x|p := p−n. It is an exercise left to
reader to check that it satisfies the four properties of an absolute value.

If 0 < c < 1, | · | is an absolute value on D, and x, y ∈ D, we have |x + y|c ≤ (|x| + |y|)c ≤
|x|c+ |y|c, so | · |c satisfies the triangle inequality. It is easy to verify that it satisfies the other
three absolute value properties and is therefore an absolute value just like | · | is. To avoid
redundancy of this sort when categorizing absolute values, we state the following definition.

Definition 4.20. Let D be an integral domain or a field. Two absolute values | · | and | · |∗
on D are equivalent if there exists some c > 0, c ∈ R such that |x|∗ = |x|c for all x ∈ D.

The following beautiful result was proved by Ostrowski in 1916.

Theorem 4.21 (Ostrowski). Every non-trivial absolute value (i.e., every absolute value
other than the trivial one) on Q is equivalent to either the usual Euclidean absolute value,
|x|∞|, or the p-adic absolute value, |x|p, for some prime p.
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Completing Q with respect to the Euclidean absolute value | · |∞ gives R =: Q∞. Completing
Q with respect to a p-adic absolute value | · |p gives the field Qp of p-adic numbers.

We often speak of completing Q at a finite place to obtain Qp or of completing Q at the
infinite place to obtain R. This explains the notation Q∞ = R and the notation | · |∞ for the
Euclidean absolute value.

The following notational convenience is used in the paper we will study.

Definition 4.22. The Hilbert norm-residue symbol is given by

(a, b)r :=

{
1, if z2 = ax2 + by2 has a non-zero solution (x, y, z) ∈ (Qr)

3

−1, otherwise,

where r is a prime or r =∞.

Theorem 4.23. The Hilbert symbol (·, ·)r has the following properties:
(i) If a is a square, then (a, b)r = 1 for all b.
(ii) For all non-zero a, b ∈ Qr, (a, b)r = (b, a)r.
(iii) If a ∈ Qr is non-zero and a− 1 is also non-zero and in Qr, then (a, 1a)r = 1.
(iv) If a, b, c ∈ Qr are non-zero, then (a, bc) = (a, b)(a, c).

The waters we are wading into by stating this proposition are very deep. Indeed, property
(iv) of the previous theorem requires local class field theory for its proof.

The following sequence of definitions finally leads us to combine the terminology of Galois
and ring theory with that of difference sets.

Definition 4.24. Let p ∈ Z be prime. Let ωv be a primitive vth root of unity. Let p be a
prime ideal divisor of (p) in Q(ωv). We define the decomposition group, Dp, of p as follows:

Dp := {θ ∈ Gal(Q(ωv)/Q)|θ(p) = p}.
Because the field extension Q(ωv)/Q is abelian, one can prove that Dp is the same for all p
dividing p, so we can denote it by Dp with no ambiguity.

Definition 4.25. Let v = p`v′ where (v′, p) = 1 and ` ∈ Z. It is a result in the theory
of decomposition groups that Dp is generated by maps of the form ωv′ → ωpv′ , known as
Frobenius automorphisms.

Definition 4.26. Dp is a subgroup of the Galois group of the extension Q(ωv)/Q, by the
Fundamental Theorem of Galois Theory it corresponds to a subfield of that extension, which
we denote Kp and call the decomposition field of p.

Definition 4.27. LetD be a (v, k, λ)-difference set. Let n := k−λ, which is the conventional
meaning assigned to the variable n in the theory of difference sets. Then the intersection

∆ :=
⋂
p|n

Kp

is known as the decomposition field of D.

The following definitions are simply establishing standard number-theoretic terminology.
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Definition 4.28. If a,m are non-zero coprime integers, then the order of a modulo m,
denoted ordm(a), is the least positive integer z such that az ≡ 1 (mod m).

Definition 4.29. If p ∈ Z is a prime and OK is the ring of integers of a number field K, then
we say p ramifies in K if the principal ideal (p) is divisible by the square of some non-trivial
prime ideal when factored in OK .

We can now state the following lemma, which will be useful to us in the proof of Theorem
2 in Yamamoto’s paper.

Lemma 4.30. If p ∈ Z is prime and (n, p) = 1, then p does not ramify in Q(ωn).

Moreover, Yamamoto introduces the following definitions near the beginning of his paper.

Definition 4.31. Let ωm be a primitive mth root of unity. Let α 6= 0, α ∈ Z[ωm], and let
p be a non-trivial prime ideal in Z[ωm]. The p-component of α is defined to be the largest
power of p dividing (α).

If a is any non-zero ideal of Z[ωm], the a-component of α is defined to be the product of the
p-components of α for all prime ideals p in the factorization of a.

Definition 4.32. Let C : Q → Z[ωm] be a function. We then say that C is a number-
theoretic function.

Definition 4.33. Let C be a number-theoretic function. Let ρ ∈ Q. The difference operator
∆(ρ) is defined by

∆(ρ)C(i) := C(i+ ρ)− C(i).

We impose the convention that C(ρ) := 0 if ρ is not an integer. We also say that C has
period n if ∆(n)C(i) = 0 for all i ∈ Q.

We now study Yamamoto’s paper.

5. Yamamoto’s Paper

This section of course closely follows the text of Yamamoto’s paper [10]. The proofs are
entirely his; I have just rewritten them in my own words.

The first theorem proved in Yamamoto’s paper is a useful technical tool to be used later. It
is a generalization of our Theorem 3.6 stated in the notation of difference operators that we
have just discussed.

Theorem 5.1 (Yamamoto, Thm. 1). Let n = p`11 ...p
`s
s be the prime factorization of n. Let

(m,n) = 1, C be a number-theoretic function with period n, and let f(x) :=
∑n−1

i=0 C(i)xi.
Let d | n and α ∈ Z[ωm]. Then, f(ωrn) ≡ 0 (mod α) for all r | d if and only if

pt11 ...p
ts
s ∆(np−t1−11 )...∆(np−ts−1s )C(i) ≡ 0 (mod α)

for all i and all t1, ..., ts such that pt11 ...ptss | d.

Proof. The s = 0 case follows from our Theorem 3.6. Let s > 1. Choose u and ` so that
n = p`, d = pu. We will induct on u.
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Let u = 0. We calculate

f(ωn) =

p`−1−1∑
i=0

p−1∑
j=0

C(i+ p`−1j)ωi+p
`−1j

n

=

p`−1−1∑
i=0

p−1∑
j=1

(C(i+ p`−1j)− C(i))ωi+p
`−1j

n ,

as ωp`−1

n = ωp is a primitive pth root of unity and the sum
∑p−1

j=0 ω
j
p is then zero. Now, in the

sum above we have p`−1(p − 1) expressions ωi+p`−1j
n for 0 ≤ i < p`−1 and 1 ≤ j < p. These

provide a Z[ωm]-basis for Z[ωmn] because they are Z[ωm]-linearly independent and of the
right dimension, so we have that f(ωn) ≡ 0 (mod α) if and only if C(i + p`−1j)− C(i) ≡ 0
(mod α) for all i, j. But the condition that for all i, j we have

C(i+ p`−1j)− C(i) ≡ 0 (mod α)

is equivalent to
∆(np−1)C(i) ≡ 0 (mod α)

for all i. This proves the result for u = 0.

Now assume that s = 1, u > 0, and the result holds for smaller u. We calculate

f(xp) ≡
p`−1∑
i=0

C(i)xip

≡
p`−1−1∑
i=1

(

p−1∑
j=0

C(i+ p`−1j))xip (mod 1− xn).

We showed earlier that f(ωn) ≡ 0 (mod α) if and only if C(i)− C(i+ p`−1j) ≡ 0 (mod α).
We now exploit this fact by defining

g(x) := p

p`−1−1∑
i=0

C(i)xip.

We then have f(xp) ≡ g(x) (mod α, 1 − xn), and the statement that f(ωp
t

n ) ≡ 0 (mod α)
for all 0 ≤ t ≤ u can be restated equivalently as the condition that f(ωp

t

n ) ≡ 0 (mod α) and
g(ωp

t

n ) ≡ 0 (mod α) for all 0 ≤ t ≤ u− 1. This last condition is equivalent by our induction
hypothesis to the statement that pt∆(p`−t−1)C(i) ≡ 0 (mod α) and pt+1∆(p`−t−2)C(i) ≡ 0
(mod α) for all 0 ≤ t ≤ u − 1. This is equivalent in turn to the condition that for all
0 ≤ t ≤ u,

pt∆(p`−t−1)C(i) ≡ 0 (mod α).

This proves the s = 1 case of the theorem. We can now assume that s > 1 and the theorem
holds for smaller s. We let n =: n1n

′, n1 =: p`11 , n′ =: p`22 ...p
`s
s , d =: d1d

′, d1 =: (n1, d),
d′ =: (n′, d). Given a divisor r of d, we can write it uniquely as r =: r1r

′ where r1 | d1 and
r′ | d.
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Given i, we can choose j, k such that i ≡ n′j + n1k (mod n). Then

f(x) ≡
n1−1∑
j=0

n′−1∑
k=0

C(n′j + n1k)xn
′j+n1k (mod 1− xn).

We set

C∗(y, j) :=
n′−1∑
k=0

C(n′j + n1k)yk.

We can thus calculate

f(ωrn) =

n1−1∑
j=0

n′−1∑
k=0

C(n′j + n1k)ωn
′rj

n ωn1rk
n

=

n1−1∑
j=0

C∗(ωn1r
n , j).

Let ξ := ωn
′

n , which is a primitive n1th root of unity, and let η := ωn1
n , which is a primitive

n′th root of unity. Then if f(ωrn) ≡ 0 (mod α), we have
n1−1∑
j=0

C∗(ηr
′
, j)ξr1j ≡ 0 (mod α).

We notice that C∗(ηr′ , j) ∈ Z[ωm, η] = Z[ωmn′ ]. By the s = 1 case we have already proved
applied to

∑n1−1
j=0 C∗(ηr

′
, j)xj, we obtain that f(ωrn) ≡ 0 (mod α) for all r | d if and only if

pt11 ∆j(n1p
−t−1
1 )C(n′j + n1k)ηr

′k ≡ 0 (mod α)

for all t1 and r′ satisfying pt11 | d1 and r′ | d′. The polynomial pt11
∑n′−1

k=0 ∆j(n1p
−t1−1
1 )C(n′j +

n1k)xk has coefficients in Z[ωm], and furthermore (m,n′) = 1 and n′ has s− 1 distinct prime
divisors. So we can apply the induction hypothesis to the polynomial to obtain that the
congruence above is true if and only if
pt11 ...p

ts
s ∆j(n1p

−t1−1
1 )...∆k(n

′p−ts−1s )C(n′j + n1k) = pt11 ...p
ts
s ∆(np−t1−11 )...∆(np−ts−1s )C(i)

≡ 0 (mod α)

for all i and all t1, ..., ts such that pt11 ...ptss | d. This was what we wanted, so the theorem is
proved. �

The following corollary, which we will not prove, immediately follows from Theorem 1.

Corollary 5.2. Retain the notation of Theorem 1, and let S be a set of divisors of n such
that r ∈ S and r′ | r implies r′ ∈ S. Then f(ωrn) ≡ 0 (mod α) for all r ∈ S if and only if

pt11 ...p
ts
s ∆(np−t1−11 )...∆(np−ts−1s )C(i) ≡ 0 (mod α)

for all i and all pt11 ...ptss = r ∈ S.

The following result involves our definitions of ideal components, decomposition fields, and
generating functions in Z[G] associated to a difference set; for a difference set D, the gener-
ating function is simply the function D(x) ∈ Z[G] defined earlier. In what follows, we refer
to this function as g(x) rather than D(x), retaining the convention in Yamamoto’s paper.
Since we work modulo 1 − xv, x−1 = xv−1. Thus, in Yamamoto’s notation, an equality we
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stated earlier is rewritten as
g(x)g(xv−1) ≡ n+ λ(1 + x+ ...+ xv−1) (mod 1− xv).

This implies in particular that if ω is a vth root of unity not equal to 1, then g(ω)g(ω) = n.
We now proceed to Yamamoto’s second theorem.

Theorem 5.3 (Yamamoto, Thm. 2). Suppose that there exists a (v, k, λ)-difference set D.
Let p | n be a prime and d | v be not equal to 1. Suppose further that (p, d) = 1 and that the
decomposition field Kp of p is real, i.e., K ⊂ R. Then the exponent of the p-component of n
is even.

Proof. Denote the complex conjugation automorphism by τ . Then τ ∈ Gal(Q(ωd)/Q).
Moreover, τ ∈ Dp, asKp is real. In particular, g(ωd) and τ(g(ωd)) have the same p-component
for any prime ideal p dividing (p). Thus they must have the same p-component. Denote this
p-component by b. Since d 6= 1, we have

g(ωd)g(τ(ωd)) = n.

Write the p-component of n as pe. Then it follows from the centered equality above that
pe = bτ(b) = b2.

In particular, all prime ideal divisors p of (p) divide b with the same exponent. But by our
Lemma 4.29, p is unramified in Q(ωd). Therefore, b must be a power of (p), and we conclude
that the exponent e of pe is even. �

We state the following two corollaries without proof.

Corollary 5.4. Suppose there exists a (v, k, λ)-difference set D with real decomposition field
∆. Then n = k − λ is a square.

Corollary 5.5. Suppose there exists a (v, k, λ)-difference set. Let q be odd, and define
q∗ := (−1)(q−1)/2q. If p is a prime, pe is the p-compoennt of n = k−λ, and q | v is odd, then

(pe, q∗)r = 1

for all primes r (not including the infinite prime). That is to say, there then exists a non-zero
solution to the following equation in Qr:

pex2 + (−1)(q−1)/2qy2 = z2.

Although this theorem gives a Diophantine equation the existence of solution to which de-
pends on the existence of a (v, k, λ)-difference set, it is not so useful to apply because the
solutions possibly exist in some p-adic field. However, it paves the road for subsequent the-
orems from Yamamoto’s paper, which will use it in their proofs. We now state Yamamoto’s
third theorem, which is much easier to apply.

Theorem 5.6 (Yamamoto, Thm. 3). (i) Retain the notation of Yamamoto’s second the-
orem. Additionally, let pe and p` be the p-components of n and v, respectively. Then
pe/2 ≤ (v/d)p−`.

(ii) Suppose there exists a difference set with parameters (v, k, λ). Let p | n = k−λ be prime,
and let pe and p` be defined as in part (i). If e is even, then pe/2 ≤ vp−`.

Proof. Let D be our (v, k, λ)-difference set. Set w := dp` in (i) and w := p` in (ii). As
earlier, write g(x) for the generating function of D, which is an element of Z[G], where G
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is the ambient group containing D. By the proof of Theorem 2 of Yamamoto’s paper, the
decomposition group Dp contains the complex conjugation automorphism τ . In particular,
any prime ideal p dividing (p) is invariant under τ , and the p-component b of g(ωw) satisfies
(pe) = b2. So by Theorem 2, e is even under the assumptions of (i), and it is also assumed
to be even in (ii). Therefore, in either case we have g(ωw) ≡ 0 (mod pe/2). Indeed, g(ω) = 0
(mod pe/2) for any wth root of unity ω 6= 1.

Let us now deal with the ω = 1 case. We have g(1) = k, which may not be divisible by pe/2.
But then either k(v−k) ≡ 0 (mod pe) (because the equality k(k−1) = λ(v−1) is equivalent
to k(v−k) = n(v−1)) or at least one of the numbers g(1) = k and gD(1) = v−k is congruent
to 0 modulo pe/2; here gD is the generating function of the complement D = G \D, which is
a difference set as well as is not difficult to show. Thus, possibly replacing D by D, we may
assume that g(ω) ≡ 0 (mod pe/2) for any wth root of unity ω.

Let gw(x) :=
∑w−1

i=0 C(i)xi, where C(i) := |{d ∈ D|d ≡ i (mod w)}|. Then gw(ω) = g(ω) ≡ 0
(mod pe/2) for any wth root of unity ω, so we can apply Yamamoto’s first theorem. We then
obtain that, in the case of (i), if d = qt11 ...q

tr
r for primes q1, ..., qr, then

qt11 ...q
tr
r ∆(wq−t1−11 ...∆(wq−tr−1r )∆(wp−1)C(i) ≡ 0 (mod pe/2).

Since (d, p) = 1 and ∆(wq
−tj−1
j ) for j = 1, ..., r all act as the identity, ∆(wp−1)C(i) ≡ 0

(mod pe/2) for all i. In the case of (ii), on the other hand, this congruence is an immediate
result of Yamamoto’s first theorem.

Now, suppose ∆(wp−1)C(i) = 0 for all i. Then

∆(wq−11 )...∆(wq−1r )∆(wp−1)C(i) = 0

for all i, so taking α = 0 in Yamamoto’s first theorem gives gw(ωw) = g(ωw) = 0. Because
g(ω)g(τ(ω)) = n, this gives n = 0, which is a contradiction. A similar argument holds in
the case of (ii). It follows that there is an i for which ∆(wp−1)C(i) 6= 0. We thus know
that C(i + wp−1) − C(i) ≡ 0 (mod pe/2) but that C(i + wp−1) − C(i) 6= 0 for some i. As
C(i) = |{d ∈ D|d ≡ i (mod w)}, 0 ≤ C(i) ≤ v

w
for all i, as D is a difference set. For the

choice of i that makes C(i+ wp−1)− C(i) non-zero, we thus have

pe/2 ≤ |C(i+ wp−1)− C(i)| ≤ v

w
=
v

d
p−`.

This proves case (i), and taking d = 1 gives case (ii) as well. �

We have the following corollary.

Corollary 5.7. The decomposition field of a non-trivial difference set is not real, i.e., it is
not a subset of R.

Yamamoto notes at this point that there were 12 choices of (v, k, λ) with 3 ≤ k ≤ 50 and
k < v/2 for which the non-existence of corresponding difference sets had not been proved at
the time of writing (1963). All of these can be proved not to exist with Yamamoto’s third
theorem alone.

The corollary to Yamamoto’s third theorem suggests that it is worthwhile to consider dif-
ference sets other than those with real decomposition fields. Yamamoto’s fourth theorem is
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therefore a more general statement with no explicit restriction on the type of decomposi-
tion field. Indeed, it can be applied to the case of difference sets with imaginary quadratic
difference fields.

Theorem 5.8 (Yamamoto, Thm. 4). Let q be a prime divisor of v such that q ≡ −1
(mod 4) and let q` be the q-component of v. Assume that any prime divisor p of n = k − λ
satisfies (i) ordqp ≡ 0 (mod 2), (ii) ordq`p = 1

2
q`−1(q − 1), or (iii) p = q. If there exists a

(v, k, λ)-difference set D, then the Diophantine equation

4n = x2 + qy2, 0 ≤ x, 0 ≤ y ≤ v

q`
, x+ y ≤ 2v

q`

has a solution.

Proof. Let Gal(Q(ωq`)/Q) = 〈σ〉, let g(x) be the generating function corresponding to D,
and let bp be the p-component of g(ωq`). Suppose (i) holds, i.e., ordq(p) is even. It follows
by Theorem 2 that bp = (p)e for some e ∈ N.

Now suppose (ii) holds, i.e., ordq`(p) = 1
2
q`−1(q − 1). Then,

(p) = pp

for a prime ideal p, and moreover Dp = 〈σ2〉. Therefore, σ2(p) = p and σ2(p) = p. The last
statement holds also in case (iii).

In any case, we have σ2(bp) = bp for all prime divisors p of n. In particular, setting γ := g(ωq`)

gives σ2(γ) = (γ). Setting η := γ1−σ
2
(:= (1 − σ2)(γ)), we have that η is a unit of Q(ωq`).

Also, letting τ denote complex conjugation,

η1+τ = γ(1−σ
2)(1+τ)

= γ(1+τ)(1−σ
2)

= n1−σ2

= 1,

so |η| = 1. Since η ∈ Q(ωq`), η is a root of unity. Thus we can write η = εωj
q`

for ε = ±1

and some j.

We claim that ε = 1. Indeed, setting N := q`−1(q − 1), we have

1 = η1+σ
2+...+σN−2

= εN/2σ
j(1+σ2+...+σN−2)

q`
,

from which it follows that ε = 1 since N/2 is odd. Also, if ωσ
q`

= ωs
q`

for some integer s,
then the above shows that j(1− sN)/(1− s2) ≡ 0 (mod q`). Therefore, there exists u such
that −j ≡ (1− s2)u (mod q`). Since 1− s2��≡0 (mod q) if q 6= 3 and since if q = 3, then the
3-components of 1 − s2 and 1 − sN are 3 and 3`, respectively, we have that j ≡ 0 (mod 3)
and that there exists u such that −j ≡ (1− s2)u (mod 3`).

If necessary, we replace D with D + u. Then η becomes

(ωuq`g(ωq`)
1−σ2

= ω
u(1−σ2)

q`
η
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= ω
(1−s2)u+j
q`

= 1.

So by replacing D with D + u, we may assume that g(ωq`)
σ2

= g(ωq`). We then have
that γ := g(ωq`) is an element of the ring of integers of Q(

√
−q); notice that n = γ1+τ is

the norm of γ. In particular, we can write γ = a + bζ where ζ := (−1 +
√
−q)/2. Then

4n = (2a−b)2+qb2. Letting g−D denote the generating function of −D and gD the generating
function of the complement of D, we have

gD(ωq`) = −a− bζ,
g−D(ωq`) = a+ bζτ = a− b− bζ,

g−D(ωq`) = −a+ b+ bζ,

so we can assume a ≥ 0 and b ≥ 0 by replacing D with −D,D, or −D if necessary. From
classical analytic number theory, we know we can rewrite ζ as a Gauss sum

ζ =

q−1∑
i=1

ψ(i)ωiq = ±
q−1∑
i=1

ψ(i)ωq
`−1i
q`

,

where ψ(i) = 0 or 1 depending on whether i is a quadratic non-residue or residue modulo q,
respectively. Also, ωq is a suitable primitive qth root of unity, and the sign ± is the sign of
(j/q) for j such that ωq

`−1

q`
= ωjq . Letting

gq`(x) =

q`−1∑
i=0

C(i)xi,

where the C(i) are defined as earlier in this article, we have that

gq`(x)− (a± b
q−1∑
i=1

ψ(i)xq
`−1i

has a zero at x = ωq` , so by applying Yamamoto’s first theorem with α = 0, we get

C(0)− a = C(q`−1i)∓ bψ(i)

for i = 1, 2, ..., q − 1. In particular, C(0)− a = C(q`−1)∓ b = C(−q`−1). As 0 ≤ C(i) ≤ v/q
for all i, we obtain a ≤ vq−` and b ≤ vq−`. Similarly, using g−D(ωq`) = −a + b + bζ instead
gives |a− b| ≤ vq−`. Taking x := |2a− b|, y := b now yields the result. �

We have the following corollary to Yamamoto’s fourth theorem.

Corollary 5.9. Consider a hypothetical (v, k, λ)-difference set. Let v = q`, where q is a
prime ≡ 3 (mod 4). Suppose some prime divisor p of n = k− λ has even order or the order
of 1

2
(q − 1) (mod q), pq−1��≡1 (mod q2). Then our hypothetical difference set exists only if

` = 1 and q > 3. In this case, we obtain exactly two difference sets, with parameters v = q
and n = 1

4
(q + 1).

Yamamoto’s fifth and sixth theorems are quite similar to the fourth theorem in that they
concern difference sets with no explicit restriction on the type of decomposition field they
have.

Theorem 5.10 (Yamamoto, Thm. 5). Let q and r be distinct prime divisors of v, let q`
and rm be the q-components and r-components of v, respectively, and let q ≡ −1 (mod 4),



ALGEBRAIC NUMBER THEORY IN THE STUDY OF DIFFERENCE SETS 17

(ϕ(q`), ϕ(rm)) = 2, where ϕ is the Euler totient function. Assume that any prime divisor of
n satisfies one of the following:
(i) ordqp ≡ 0 (mod 2) and ordrp ≡ 0 (mod 2),��≡0 (mod 4),
(ii) ordq`p = 1

2
ϕ(q`) and ordrmp = ϕ(rm),

(iii) p = q and ordrmp = ϕ(rm).

If there exists a (v, k, λ)-difference set D, then there is a solution to the Diophantine equation

4n = x2 + qy2, 0 ≤ x, 0 ≤ y ≤ 2v

q`rm
, x+ y ≤ 4v

q`rm
.

Proof. Let g(x) be the generating function of D and set w := q`rm. We then observe
that Q(ωm) is the compositum of Q(ωq`) and Q(ωrm), i.e., the smallest field extension of Q
containing both. Also, if Gal(Q(ωq`)/Q) = 〈σ〉 where σ acts as the identity on Q(rm), and
if Gal(Q(ωrm)/Q) = 〈ρ〉 where ρ acts as the identity on Q(ωq`), then Gal(Q(ωw)/Q) = 〈σ, ρ〉.

Suppose p satisfies condition (i). Then there exists z such that pz ≡ −1 (mod w) and, let-
ting bp denote the p-component of g(ωw), bp is rational by Yamamoto’s second theorem.

If p satisfies (ii), then ordw(p) is the least common multiple of ordq`(p) and ordrm(p), which
is 1

2
ϕ(w) by the assumptions of the theorem. We observe that the decomposition field of p

is Q(
√
−q), so any prime ideal divisor p of (p) originates in Q(

√
−q).

If p satisfies (iii), then p = q = qϕ(q
`), where q is the prime ideal divisor of (q). Since the

q-component bq of g(ωw) is a power of q, it is rational, and Yamamoto’s second theorem gives
us that the q-component of n must be a square. Setting γ := g(ωw), η := γ1−σ

2 , θ := ω1−ρ,
we see that η and θ are units in Q(ωw). Thus η1+τ = θ1+τ = 1, and we can show, as in the
proof of Yamamoto’s fourth theorem, that η and τ are roots of unity in Q(ωw). In particular,
η1−ρ is a q`th root of unity and θ1−σ2 is an rmth root of unity. However, both of these are
equal to γ(1−σ2)(1−ρ), so we see that η1−ρ = θ1−σ

2
= 1, and thus that η is a root of unity of

Q(ωq`) and θ is a root of unity in the subfield K fixed by σ2.

One can show that K is the compositum of Q(ωrm) and Q(
√
−q) of degree 2ϕ(rm) over

Q., and unless q = 3, θ is a root of unity in Q(ωrm). On the other hand, if q = 3, θ may
be a 6rmth root of unity. We obtain as in the proof of Yamamoto’s fourth theorem that
η = εωi

q`
, θ = ε′ωqrm (for q 6= 3) or θ = ε′ωjrmω

a
3 (for q = 3), where i, j, a are integers and

ε, ε′ = ±1. As in the proof of Yamamoto’s fourth theorem, we then find that ε = 1 and that
by replacing D by D + urm for some u if needed, we can assume η = 1. Similarly, replacing
D by D + u′q` for some u′ if needed, we can assume that θ = ε′ (if q 6= 3) or that θ = ε′ωa3
(if q = 3).

First, let us consider the q 6= 3 case. We claim that ε′ = 1. Since γ1−σ
2

= 1 and
γ1−ρ = ε′ = ±1, we have that γ2 ∈ Q(

√
−q). Setting D := Z[ωw] and v := Z[ζ] where

ζ = (−1 +
√
−q)/2, we have γD = cD for some ideal c of v, as γD originates in Q(

√
−q).

However, we also have γ2 ∈ v, so c2 = γ2v is a principal ideal of v, and therefore c itself
must be principal, from the theory of imaginary quadratic fields (in particular, the fact that
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Q(
√
−q) has odd class number, as it has prime discriminant).

If c = γ0v for some γ0 ∈ v, then γ2 = γ20η0 for some unit η0 of Q(
√
−q). But then we

have η0 = ±1. If η0 = −1, then γγ−10 =
√
−1 ∈ Q(ωw), a contradiction. So η0 = 1 and

γ = ±γ0 ∈ Q(
√
−q).

Now let us deal with the case where q = 3. Then γ2(1−σ2) = 1 and γ2(1−ρ) = ω2a
3 for suitable a.

We claim that a ≡ 0 (mod 3). Suppose otherwise. Then γ2 determines a degree 3 subfield K
over Q(

√
−q), which is only possible if r ≡ 1 (mod 3). It is also the case that K is uniquely

determined as the subfield of Q(ωw)/Q(ω3) of degree 3 relative to Q(ω3). Setting

ξ :=

(1/3)(r−1)−1∑
i=0

ωρ
3i

r ,

we observe that ξ, ξρ, and ξρ2 determine a basis for K with respect to Z[ω3]. Then (γ2)1−ρ =
γ−a3 tells us that

γ2 = α0(ξ + ωa3ξ
σ + ω2a

3 ξ
σ2

)

= α)A

for some α0 ∈ Z[ω3]. Letting Λ := ξ + ωa3ξ
σ + ω2a

3 ξ
σ2 , we have Λ1+τ = r. Therefore, we

obtain n2 = γ2(1+τ) = α1+τ
0 r. But (n, r) = 1 by assumption, so we reach a contradiction.

We know that γ2 ∈ Q(
√
−3) and wish to prove that γ ∈ Q(

√
−3). Setting v := Z[ω3],D :=

Z[ωw], we know that γD = cD for some ideal c of v, as in the earlier case. Once again, as
Q(
√
−3) has class number 1, we know that c must be a principal ideal, so that γD = γ0D

for some γ0 ∈ v. However, γ2 ∈ v and γ2 = γ20η0 for some unit η0 of v. We observe that η0
is a 6th root of unity, and η1/20 = γγ−10 must be a root of unity in Q(ωw). Therefore, η0 is a
third root of unity. In particular, γ = η

1/2
0 γ0 ∈ Q(

√
−3).

We know that γ = g(ωw) is in the ring of integers of Q(
√
−q). Let γ = a + bζ with

ζ = (−1 +
√
−q)/2. Setting gw(x) :=

∑w−1
i=0 C(i)xi, the polynomial

gw(x)− (a± b
q−1∑
i=1

ψ(i)xq
`−1rmi),

where ψ(i) = 1
2
((i/q) + 1) ((i/q) is the Legendre symbol), has a root at x = ωw. Therefore,

Yamamoto’s first theorem tells us that
C(0)− a− C(q`−1rmi)∓ bψ(i) = C(q`rm−1)− C(q`rm−1j + q`−1rmi)

for i = 1, 2, ..., q − 1 and j = 1, 2, ..., r − 1. As 0 ≤ C(i) ≤ v/w, we have |a| ≤ 2v/w,
|b| ≤ 2v/w, and |a − b| ≤ 2v/w, as in the proof of Yamamoto’s fourth theorem. Therefore,
4n = 4γ1+τ = x2 + qy2, where, choosing x := |2a − b|, y := |b|, 0 ≤ x, 0 ≤ y ≤ 2v/w, and
x+ y ≤ 4v/w. �

We have the following corollary.

Corollary 5.11. Retain the notation of Yamamoto’s fifth theorem and take v = q`rm. Then
the only possibility is v = 21, n = 4.
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Finally, we prove the sixth and final paper of Yamamoto’s paper. It is quite similar and
structure to his fourth and fifth theorems.

Theorem 5.12 (Yamamoto, Thm. 6). Let q and r be prime divisors of v such that q ≡ −1
(mod 4), r ≡ 1 (mod 4), (q/r) = −1, and (ϕ(q`), ϕ(rm)) = 2 for q` and rm the q- and r-
components of v, respectively. Assume any prime divisor p of n satisfies either

(i) ordqp ≡ 0 (mod 2) and ordrp ≡ 0 (mod 2),��≡0 (mod 4), or

(ii) ordq`p = ϕ(q`) and ordrmp = ϕ(rm).

Then, if there exists a (v, k, λ)-difference set D, there is a solution to the Diophantine equa-
tion

4n = x2 + qry2, 0 ≤ x, 0 ≤ y ≤ 2v

q`rm
, x+ y ≤ 4v

q`rm
− 2.

Proof. As earlier, we let g(x) be the generating function of D. We also set w := q`rm. Let
the p-component of g(ωw) be bp. Then bp is rational for p satisfying condition (i), by an
application of Yamamoto’s second theorem. Also, if p satisfies condition (ii), then by as-
sumption the decomposition field Kp = Q(

√
−qr).

Now, let Gal(Q(ωq`)/Q) = 〈σ〉 and Gal(Q(ωrm)/Q) = 〈ρ〉, where σ and ρ act as the identity
on Q(ωrm) and Q(ωq`), respectively. Then Gal(Q(ωw)/Q) = 〈σ, ρ〉. Setting γ := g(ωw), we
have that η := γ1−σρ has η1+τ = 1, so is a root of unity.Replacing D by D + uq` + u′rm

if needed, we can assume η = ±1. Just as in the proofs of Yamamoto’s fourth and fifth
theorems, γ1−σ2

= γ1−ρ
2

= 1 Therefore, γ2 is an element of the subfield of Q(ωw) that is
fixed by σ2, ρ2, and σρ. This subfield is Q(

√
−qr).

We claim, as in the proof of Yamamoto’s fifth theorem, that γ ∈ Q(
√
−qr). Suppose it

does not. Then γ1−σρ = −1 and γ = 1
2
(c
√
−q + d

√
r) for some c, d ∈ Z such that c ≡ d

(mod 2). Then we have 4n = 4γ1+τ = qc2 + rd2. But this cannot hold, as n is a square and
we assumed that (q/r) = −1. Therefore, γ ∈ Q(

√
−qr), so γ = a + bζ for some a, b, where

ζ = (−1+
√
−qr)/2. Note that by the theory of Gauss sums, if ψ(i) := 1

2
((i/(qr)+1), where

(i/qr) is the Jacobi symbol, then

ζ =

qr−1∑
i=1

ψ(i)ωiqr,

where ωqr is a suitable primitive qrth root of unity. Letting gw(x) :=
∑w−1

i=0 C(i)xi, we
observe that the polynomial

gw(x)− (a± b
qr−1∑
i=1

ψ(i)xq
`−1rm−1i)

has a root at x = ωw. Applying Yamamoto’s first theorem with α = 0 gives

C(0)− a− (C(q`−1rmi)− 1

2
)

= C(q`rm−1j)− 1

2
− (C(q`−1rmi+ q`rmj)∓ bψ(ri+ qj)).



20 ANDREJ VUKOVIĆ

We can rephrase this as
C(0)− a+ 1− C(q`−1rmi) = C(q`rm−1j)− C(q`−1rmi+ q`rm−1j)∓ bψ(ri+ qj)

for i = 1, 2, ..., q− 1 and j = 1, 2, ..., r− 1. Since 0 ≤ C(i) ≤ v/w or all i, we obtain |a− 1| ≤
2v/w, |b| ≤ 2v/w. Considering D instead of D if necessary, we also have | − a− 1| ≤ 2v/w,
i.e., |a| ≤ 2v/w − 1. Likewise considering −D instead of D, we obtain |a − b| ≤ 2v/w − 1.
Taking x := |2a− b|, y := |b|, we obtain

4n = 4γ1+τ = x2 + qy2,

0 ≤ x, 0 ≤ y ≤ 2v/w, x+ y ≤ 4v/w − 2.

This proves the result. �

6. Applications

Now that we have completed our journey through Yamamoto’s paper, the reader may be
curious what the payoff is. Indeed, it is customary, when one has written a paper about
difference sets, to numerically check how many difference sets in a given range of parameters
can be proved to not exist using the methods in one’s paper. Yamamoto carried out this
calculation. He found 373 choices of v and n with 2 ≤ n ≤ 50 and satisfying the elementary
condition k(v − k) = n(v − 1). In 273 of these cases, he was able to use his second, third,
fourth, fifth, and sixth theorems to establish non-existence. Of the remaining 100 cases, 58
parameters were already known to correspond to existent difference sets, so they would have
been impossible to rule out by any method. The remaining 42 cases involved difference sets
with decomposition fields of degree higher than 2, and the theorems in Yamamoto’s paper
were not able to rule out their existence.

References

[1] E.H. Moore and H.S. Pollatsek. Difference Sets: Connecting Algebra, Combinatorics, and Geometry.
American Mathematical Society. (2013).

[2] S. Alaca and K.S. Williams. Introductory Algebraic Number Theory. Cambridge University Press. (2004).
[3] K.W. Smith. Non-abelian Hadamard Difference Sets. J. Combin. Theory A 70, 144–145. (1995).
[4] J.M. Masley. Solution of the class number two problem for cyclotomic fields. Inventiones 28, 234–244.

(1975).
[5] H.M. Edwards. Fermat’s Last Theorem: A Genetic Introduction to Algebraic Number Theory. Springer.

(2000).
[6] J. Neukirch (transl. Norbert Schappacher). Algebraic Number Theory. Springer–Verlag. (1999).
[7] J.E. Iiams. On difference sets in groups of order 4p2. J. Combin. Theory A 72, 256–276. (1995).
[8] T. Beth, D. Jungnickel, and H. Lenz. Design Theory (2nd Ed.). Cambridge University Press, 2 vol.

(1999).
[9] K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory (2nd Ed.). Springer–

Verlag. (1982).
[10] K. Yamamoto. Decomposition Fields of Difference Sets. Pacific Journal of Mathematics, Vol. 13, No. 1.

(1963).


