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Abstract
We give an overview of arithmetic invariant theory (AIT), covering numerous exam-

ples from the papers [1] and [2] of Bhargava, Gross, and Wang. We include background
material that is not in the original papers but that is useful to have in one place. We
discuss some new research directions, including an approach due to Auel, Geraschenko,
and Zureick–Brown ([3]) for AIT over schemes.

1 Introduction
“The theory of invariants came into existence about the middle of the nineteenth century
somewhat like Minerva: a grown-up virgin, mailed in the shining armor of algebra, she
sprang forth from Cayley’s Jovian head.” —Hermann Weyl ([34])

1.1 History of invariant theory

Much of the history described in this section may be found in [10].

Although the first inklings of invariant theory were already apparent in the late eighteenth
century study of binary quadratic forms by Gauss and other number theorists, invariant
theory emerged as an independent discipline only in the nineteenth century as algebraic
geometers began to recognize the advantages of working in affine projective space. Given a
curve defined by homogeneous polynomial equations in affine projective space, the “affine”
condition means that there is no fixed origin, and the “projective” condition means that
equations are defined up to rescaling the variables by a non-zero scalar. It is therefore
profitable to study how homogeneous polynomials change when their variables are rescaled
by the composition of a translation and a dilation, i.e., by an affine transformation.
In the two-variable case, this reduces to the following problem. Let

f(x, y) = f0x
n + f1x

n−1y + ...+ fny
n

be a binary n-ic form with coefficients in some field k, usually taken to be algebraically
closed. In the rest of this subsection, we will take k = C. The group SL2(C) of 2 × 2
matrices with complex entries and determinant 1 acts on such forms on the left by(

a b
c d

)
· f(x, y) = f(ax+ by, cx+ dy).

Now, suppose g(f0, ..., fn) is a polynomial in the coefficients of f(x, y). Then SL2(C) also
acts on g as follows.

(i) Given (
a b
c d

)
∈ SL2(C),

calculate f(ax+by, cx+dy). Note that f(ax+by, cx+dy) will have no terms of higher degree
than n since we have only made linear substitutions. Let f ′i be the coefficient of xn−iyi in
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f(ax+ by, cx+ dy).

(ii) Then the SL2(C)-action on f(x, y) induces an action on the coefficient fi by sending it
to f ′i , defined as above. This action extends to any polynomial in the fi by sending the
polynomial g(f0, ..., fn) to g(f ′0, ..., f

′
n).

Definition 1.1. An invariant of the binary n-ic form

f(x, y) = f0x
n + f1x

n−1y + ...+ fny
n

over C is a polynomial g(f0, ..., fn) in its coefficients that is invariant under the SLn(C)-action
just described.

Mathematicians set out to compute invariants. A general technique for doing so, known
as the symbolic method, was developed by Arthur Cayley and others in the middle of the
nineteenth century. However, the technique was not entirely rigorous and quite unwieldy.

The next observation made by nineteenth century mathematicians was that the invariant
polynomials form an algebra. They then investigated whether one could find finitely many
generators for the algebra of invariants. This search was put to an end in 1890 when Hilbert
([15]) proved, using what was essentially an argument in commutative algebra, that all such
algebras are finitely-generated.

Invariant theory lay dormant between the 1890s and the 1930s. It was revived by the work
of Hermann Weyl, Issai Schur, Elie Cartan, and others. These mathematicians discovered
that invariant theory had a natural interpretation within the representation theory of matrix
groups. In this language, invariant theory is the study of a group G acting on a representa-
tion V over an algebraically closed field k. The ring of polynomials on V is denoted k[V ].
The G-action on V induces a G-action on k[V ] as above.

The algebra of polynomials invariant under this G-action is then a k-subalgebra k[V ]G of
k[V ].

In the late 1950s, Alexander Grothendieck and his associates reformulated algebraic geome-
try using the definition of a “scheme”, a generalization of a system of polynomial equations.
The theory of matrix groups was then subsumed into the theory of reductive group schemes.
David Mumford, inspired by moduli problems, developed the field of geometric invariant
theory (GIT) in his landmark book [24]. Building on work of Chevalley, Tate, and others,
Mumford reformulated invariant theory in the scheme-theoretic language.

However, work in GIT generally assumed the base field to be separably closed. Arithmetic
invariant theory, introduced by Bhargava, Gross, and Wang in [1] and [2], is the area that
studies what occurs over a base field that is not necessarily separably closed. In particular,
the foundational question of AIT is as follows. Let G be a reductive group scheme with a
representation V over a field k. How can we characterize the G(k)-orbits lying within a given
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G(ks)-orbit? This is the question that we will discuss in the sections to come.

In Section 2, we discuss assorted background material necessary to understand the content of
subsequent sections. In Section 3, we discuss AIT over fields and give a number of illustrative
examples from [1]. In Section 4, we discuss obstructions, in AIT over fields, to lifting rational
points of the categorical quotient to rational orbits with many examples from [2]. In Section
5, we discuss new developments in AIT over schemes, with a particular focus on Z. In the
Appendix, we discuss non-abelian Galois cohomology in the context of AIT.

2 Background
We assume quite a lot of background in modern algebraic geometry. The reader should know
what “sheaves” and “schemes” are and should be familiar with some basic scheme-theoretic
constructions (e.g., fibred products). A good reference for that material is [11]. We will not
develop the theory of group schemes here, opting instead merely to review the definitions.
Good references for the theories of algebraic groups, affine group schemes, and reductive
groups are [18], [19], and [20], respectively. The definitions and examples in this section can
be found (possibly with some minor modifications) in any standard source on those subjects.
Although we will review topics from étale and flat cohomology, familiarity with the basic
notions (e.g., knowing when a morphism is étale or flat) is assumed. Good references for
this material are [22] and [23]. We also assume some familiarity with categorical quotients,
which are discussed in [24].

2.1 Group schemes

Definition 2.1. [24] Let S be a scheme. A group scheme over S is a group object in the
category of S-schemes. More precisely, it consists of the following data:

(i) A scheme G over S with structure morphism π : G→ S.

(ii) Morphisms of S-schemes µ : G×S G→ G (corresponding to multiplication), ι : G→ G
(corresponding to taking inverses), and e : S → G (corresponding to the group identity)
satisfying the following three conditions:

(a) (Associativity.) The following diagram commutes:

G×S G×S G G×S G

G×S G G

1G×µ

µ×1G µ

µ

(b) (Property of inverse.) Let ∆ : G → G ×S G be the diagonal morphism. Then both of
the following compositions are equal to e ◦ π:

G G×S G G×S G G∆ 1G×ι µ
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G G×S G G×S G G∆ ι×1G µ

(c) (Property of identity.) Let i1 : G → S ×S G and i2 : G → G ×S S be the canonical
isomorphisms. Then both compositions in the following diagram are equal to 1G:

S ×S G

G G×S G G

G×S S

e×1Gi1

i2

µ

1G×e

A morphism of group schemes is a morphism of schemes that is compatible with the multi-
plication operation.

Remark 2.2. When considering a group scheme G over Spec(k) for a field k, we say for
convenience that G lies over k.

Definition 2.3. Let G be a group scheme over S with multiplication map µ. A subgroup
scheme H of G over S is a subscheme H of G such that m|H×SH factors through H and
induces a group scheme structure on H over S.

We generally care only about the following special type of group scheme.

Definition 2.4. An algebraic group is a group scheme of finite type over a field. When the
underlying scheme of the algebraic group is a variety, we call it a group variety. When it is
an affine scheme, we call it an affine algebraic group. Morphisms for all these objects are
the corresponding morphisms in the category of group schemes.

The following useful theorem is due to Cartier.

Theorem 2.5. Every affine algebraic group over a field k of characteristic zero is smooth.

Proof. See Ch. III, §h. of [18].

Example 2.6. Let R be a unital commutative ring. The following are all examples of alge-
braic groups. (For proofs that they are, see [19, §3].)

(i) The additive group scheme Ga is the functor R 7→ (R,+).

(ii) The multiplicative group scheme Gm is the functor R 7→ (R×, ·).

(iii) The nth roots of unity group scheme µn is given by R 7→ {r ∈ R|rn = 1}.

(iv) The general linear group scheme GLn is the functor R 7→ GLn(R). More generally, given
a k–vector space V , we define GLV to be the functor R 7→ AutR(V ⊗k R) (i.e., the group of
R-linear automorphisms of V ).
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(v) All the usual matrix groups can be viewed as algebraic groups. In particular, there is a
special linear group scheme SLn, an orthogonal group scheme On, a special orthogonal group
scheme SOn, a projective general linear group scheme PGLn, a symplectic group scheme Sp2n,
and so on.

Definition 2.7. Let G be a group scheme over a scheme S. A representation of G on a
finite-dimensional vector space V is a natural transformation of functors G → GLV that is
a homomorphism on the underlying groups. In particular, if G is defined over a field k, then
a representation ρ includes the data of a homomorphism ρ(R) : G(R) → GLV (R) for every
k-algebra R. A representation ρ over a field k is said to be faithful if ρ(R) is injective for
every k-algebra R.

Definition 2.8. An algebraic group G over a field k is said to be linear if it has a faithful
finite-dimensional representation G → GLV . Fix such a representation j : G → GLV . An
element g ∈ G(k) is said to be semisimple if j(g) is diagonalizable (i.e., semisimple as a
linear map) and unipotent if j(g) is unipotent as a linear map.

Remark 2.9. [5] Since we require the representation j to be faithful, the properties of
semisimplicity and unipotence are independent of the particular choice of j. By the theory
of Jordan decomposition, if G is an algebraic group over a field k, then for any g ∈ G(k), there
exist unique commuting elements gss, gu ∈ G(k) such that g = gssgu. These are known as
the semisimple part and the unipotent part of g, respectively, and their product is the Jordan
decomposition of g. Semisimplicity, unipotence, and Jordan decompositions are preserved
under homomorphisms of linear algebraic groups.

Definition 2.10. A linear algebraic group G over a field k is unipotent if for every g ∈ G(k),
g is equal to the unipotent part gu of its Jordan decomposition.

Example 2.11. [5] Over a field k, the group scheme Ga is unipotent via the faithful repre-

sentation Ga → GL2 given by x 7→
(

1 x
0 1

)
since each such matrix is unipotent.

Definition 2.12. Let G be a linear algebraic group over a field k. We say G is reductive if
it contains no non-trivial unipotent normal connected linear algebraic k-subgroup.

Definition 2.13. Let G be a smooth group scheme G → S where S is a base scheme and
G is affine over S. Let p be a geometric point of S so that the residue field k(p) is separably
closed. Let Gk(p) = G×SSpec(k(p)) be the geometric fibre. Suppose that for every geometric
point p of S, the fibre Gk(p) is a connected reductive group. Then we say that G is reductive
over S.

Example 2.14. The group schemes GLn, SLn, SOn, and Sp2n are reductive for all n ∈ N
over any field k. In particular, Gm = GL1 is reductive. However, Ga is not reductive. We
defer the proofs of these claims to [5] and [20], particularly §17 of the latter.
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2.2 Cohomology

Let k be a field and G a group scheme. Let V be a representation of G with v ∈ V (k). Let Gv

be the stabilizer of v, which is a group subscheme of G. Let ks be a separable closure of k. We
adopt the usual notation of H1(k,G) for the first Galois cohomology H1(Gal(ks/k), G(ks))
and H1(k,Gv) for H1(Gal(ks/k), Gv(k

s)).

Definition 2.15. [26] Let Γ be a profinite group. A topological space X is said to be a Γ-set
if it is discrete and is acted on continuously by Γ. (We will use the notation g(x) for the
image of x ∈ X under the action of g ∈ G.) For σ ∈ Γ and x ∈ X, we denote the image of
x under σ by xσ. Given two Γ-sets X and X ′, a Γ-morphism from X to X ′ is a continuous
map f : X → X ′ that commutes with the action of Γ. A Γ-group X is a Γ-set with a group
structure such that for all x, y ∈ X and all σ ∈ Γ,

(xy)σ = xσyσ.

Definition 2.16. [25] If X is a Γ-set and it is additionally equipped with the structure of a
module, and if this structure is compatible with the Γ-action, we call X a Γ-module. When
Γ is a Galois group and X is a Γ-module, we say it is a Galois module.

Lemma 2.17. [26] Let Γ be a profinite group, and let X be a Γ-set. For every x ∈ X, the
stabilizer of x under the Γ-action is open.

Proof. Let x ∈ X. Since X is discrete and the action is continuous, preimages along the
map G × X given by (g, x) 7→ x are open, so the set of (g, x) for which g(x) = x is open.
Since the projection onto the first coordinate is an open map, the set of g ∈ G for which
g(x) = x is also open. In other words, the stabilizer of x is open for every x ∈ X.

Definition 2.18. [26] Let Γ be a profinite group and X a Γ-group. A 1-cocycle with values
in X is a continuous map Γ→ X given by σ 7→ aσ such that for all σ, τ ∈ Γ,

aστ = aσa
σ
τ .

Note that since X is equipped with the discrete topology, the continuity of a 1-cocycle is
equivalent to openness of preimages along the map σ 7→ aσ. We denote the set of 1-cocycles
by Z1(Γ, X). Two 1-cocycles a and b are said to be cohomologous if there exists c ∈ X such
that for all σ ∈ Γ,

bσ = c−1aσc
σ.

Being cohomologous defines an equivalence relation ∼coho,1 on Z1(Γ, X).

Definition 2.19. The cohomology theory defined so far is known as (continuous) profinite
group cohomology. Standard group cohomology is defined similarly without the requirement
that the group Γ be profinite. There is also a version of group cohomology in which the
cocycles are not required to be continuous, which can change some calculations. In the
particular case where Γ = Gal(ks/k) for some field k with separable closure ks, we refer to
the resulting cohomology theory as Galois cohomology.

With these notions at hand, we are ready to define the first two non-abelian cohomology
groups of Γ and X.
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Definition 2.20. [26] Let Γ be a profinite group and X a Γ-set. Define

H0(Γ, X) = XΓ,

the set of elements of X fixed by the Γ-action. If X is a Γ-group, the group structure on X
induces a group structure on H0(Γ, X).

Suppose now that X is a Γ-group. Define

H1(Γ, X) = Z1(Γ, X)/ ∼coho,1 .

Note that the set H1(Γ, X) has a unit element, denoted 1, which is the equivalence class of
the constant cocycle given by sending each σ ∈ Γ to the identity of X. This will allow us to
define exact sequences in Galois cohomology.

Defining the second non-abelian Galois cohomology set is more difficult; we include a de-
scription in the appendix.

Every cohomology theory obeying the Eilenberg–Steenrod axioms has the property that,
given a short exact sequence (in the correct category for that theory), there is a corre-
sponding long exact sequence in cohomology. Since many objects in algebraic geometry and
algebraic number theory fit into short exact sequences, it is useful to know how to compute
certain basic cohomology sets and groups in order to compute the rest using long exact se-
quences in cohomology. The next few results show us a few such computations.

A famous theorem from the late 1800s, known as “Hilbert’s Theorem 90”, has taken on a life
of its own. Many generalizations and variants of the original theorem are casually referred
to by the same name. We now state what could be described as a generalization of Hilbert’s
Theorem 90 written in the language of Galois cohomology.

Theorem 2.21. [26] Let L/K be a Galois field extension with G = Gal(L/K). Let n ∈ N,
and let H be either GLn(L) or SLn(L). Then H1(G,H) is trivial. Moreover, H1(G,L) is
trivial. (In fact, part of this theorem can be generalized further to a result in étale cohomology,
which we discuss later.)

The next result will let us perform more computations. We will show that two classical
areas of number theory (Kummer theory and Artin–Schreier theory) are its consequences.
The proof we give is similar to the one on p. 91 of [4]. Note that the statement concerns
profinite group cohomology.

Proposition 2.22. Let G be a profinite group, and let A be a G-module. Suppose we have a
surjective G-module homomorphism π : A→ A. Suppose that G acts trivially on C = ker(π)
and that H1(G,A) is trivial. Then, letting AG denote the G-fixed points of A, we have that

AG/π(AG) ' Hom(G,C).

Proof. Consider the short exact sequence
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0 C A A 0π

Since G acts trivially on C, CG = C and H1(G,C) = Hom(G,C). Since H1(G,A) is trivial
by assumption, by applying the long exact sequence in group cohomology, we obtain

0 C AG AG Hom(G,C) 0π

and from exactness it follows that AG/π(AG) ' Hom(G,C), as claimed.

Kummer theory is a type of Galois theory that involves the adjunction of roots of unity to
a base field. We now show that it is a corollary of the previous proposition. First, we define
the type of field extension with which we are concerned in this setting.

Definition 2.23. A Kummer extension is a Galois extension L/K such that K contains
n distinct nth roots of unity for some fixed n ∈ N and such that Gal(L/K) is abelian of
exponent n (i.e., the least common multiple of the orders of its elements is n).

Now we recover the main result in Kummer theory.

Corollary 2.24. Let k be a field with a choice of separable closure ks. Suppose k contains
the group µn of nth roots of unity. (Note that this implies char(k) - n.) Then

k×/(k×)n ' Hom(Gal(ks/k), µn) ' H1(Gal(ks/k), µn).

In particular, cyclic extensions of k of exponent dividing n are of the form k( n
√
a)/k for some

a ∈ k×.

Proof. In the notation of Proposition 2.22, let G = Gal(ks/k) be equipped with the profinite
topology. Let A = (ks)×, and let π(x) = xn for some fixed n ∈ N. Then C = ker(π) consists
of nth roots of unity contained in (ks)×, which by assumption all lie in k×, so C ' µn and G
acts trivially on C. Moreover, H1(G,A) = H1(Gal(ks/k), (ks)×) is trivial by Theorem 2.21
applied to GL1. By Proposition 2.22,

AG/π(AG) ' Hom(G,C),

that is,
k×/(k×)n ' Hom(Gal(ks/k), µn).

More explicitly, this isomorphism is given by a 7→ (σ 7→ ( n
√
a)σ/ n
√
a). Suppose now that L/k

is a cyclic extension of exponent dividing n. Fix an embedding Gal(L/k) ↪−→ µn. Composing
it with a quotient map in Galois groups gives a group homomorphism Gal(ks/k)→ µn. Let
ϕ denote this map. By the isomorphism we obtained, we know that there exists a ∈ k× such
that ϕ(σ) = ( n

√
a)σ/ n
√
a. Then ker(ϕ) is the subgroup of Gal(ks/k) with fixed field k( n

√
a).

Since ϕ factors through an embedding of Gal(L/k) into µn, it follows that L ' k( n
√
a) for

some a ∈ k×.

Artin–Schreier theory is the analogue of Kummer theory for fields of positive characteristic.
We can recover its main result as well.
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Corollary 2.25. Let k be a field, and let ks be a separable closure of k. Suppose char(k) = p.
Let π : ks → ks be defined by π(x) = xp − x. Then

k/π(k) ' Hom(Gal(ks/k),Z/pZ) ' H1(Gal(ks/k),Z/pZ).

In particular, Z/pZ-extensions of k are of the form k[x]/(xp− x− a) over k for some a ∈ k.
Proof. In the notation of Proposition 2.22, let G = Gal(ks/k) be equipped with the discrete
topology. Let A = (ks,+) be the additive group of ks. Then, since xp − x − a is separable
for every a ∈ A, π is surjective on A. Also,

C = ker(π) ' Fp

is a copy of the prime field Fp inside K. In particular, G acts trivially on C. Moreover,
H1(G,A) = H1(Gal(ks/k), A) is trivial by Theorem 2.21. By Proposition 2.22,

AG/π(AG) ' Hom(G,C),

that is,
k/π(k) ' Hom(Gal(ks/k),Z/pZ).

The form of Z/pZ-extensions of k follows by the same sort of argument as in the proof of
the previous corollary.

Remark 2.26. Note that although there is a unique group of prime order up to isomorphism,
µp and Z/pZ, viewed as a group schemes over a field K, generally have different Galois
modules structures. These structures coincide precisely when K contains µp so that µp is
fixed under the Galois action. As group schemes over a field, µp and Z/pZ are also not
isomorphic in general.

Later in the paper, when doing some Galois cohomology calculations, we will use the following
standard terminology.

Definition 2.27. Let k be a field with a choice of separable closure ks. The Galois co-
homology group H2(Gal(ks/k),Gm(ks)) is known as the Brauer group of k and is denoted
Br(k).

Finally, we summarize some facts about étale cohomology without giving proofs. Recall that
étale cohomology is a Weil cohomology theory and therefore satisfies all the usual properties
we would expect from a well-behaved cohomology theory (e.g., Poincaré duality, Künneth
isomorphism, versions of the Eilenberg–Steenrod axioms). Étale cohomology can be thought
of as an analogue of Galois cohomology over an arbitrary base scheme. The following result
makes this precise.

Proposition 2.28. [28] Let k be a field with separable closure ks. Let G = Gal(ks/k). Let
M be a G-module equipped with the discrete topology. Let M be the sheaf associated to M .
Then for all n ≥ 1,

Hn
cont(G,M) ' Hn

ét(Spec(k),M)

where the left-hand side is continuous Galois cohomology and the right-hand side is étale
cohomology.
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Proof. See §2.4 of [28].

We now summarize certain calculations in étale cohomology that we will use later.

Proposition 2.29. [22], [16] (i) (Hilbert’s Theorem 90 for étale cohomology). Let X be a
scheme. Then H1

ét(X,Gm) = Pic(X).

(ii) Let K be a number field with ring of integers OK. Let X = Spec(OK). Then

H i
ét(X,Gm) =



O×K i = 0

Pic(X) i = 1

0 i = 2

Q/Z i = 3

0 i ≥ 4

Proof. (i) See Corollary 11.6 of [22].

(ii) See p. 538 of [16].

When R is a commutative ring, we will often write H i
ét(R,F) instead of H i

ét(Spec(R),F).

2.3 Orthogonal spaces

Every definition, statement, and proof in this section is taken from [17], possibly with slight
modifications, except where otherwise indicated.

Definition 2.30. Let R be a unital commutative ring. Let M be a left R-module. We
say a map b : M ×M → R is a bilinear form on M if it is linear in each coordinate. If
b additionally satisfies b(x, y) = b(y, x) for all x, y ∈ M , we say it is symmetric. If b sat-
isfies b(x, y) = −b(y, x) for all x, y ∈ M , we say it is skew-symmetric or anti-symmetric.
If b(x, x) = 0 for all x ∈ M , we say it is alternating. If the following two non-degeneracy
conditions are satisifed, b is called an inner product:

(i) For each R-linear map φ : M → R, there exists a unique element x ∈ M such that
y 7→ b(x, y) is equal to φ.

(ii) For each R-linear map φ : M → R, there exists a unique element y ∈ M such that
x 7→ b(x, y) is equal to φ.

When b is symmetric or skew-symmetric, (i) and (ii) are equivalent. IfM is finitely-generated
and free over R and b is a symmetric bilinear form, the pair (M, b) is called an orthogonal
space. If, in addition, b is an inner product, the orthogonal space (M, b) is said to be non-
degenerate.
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Two orthogonal spaces (X1, b1) and (X2, b2) are isomorphic if there exists an R-linear bijec-
tion f : X1 → X2 such that b2(f(x), f(y)) = b1(x, y) for all x, y ∈ X1.

We observe that an alternating form b is necessarily skew-symmetric because for any x, y,

0 = b(x+ y, x+ y) = b(x, x) + b(x, y) + b(y, x) + b(y, y) = b(x, y) + b(y, x).

Conversely, any skew-symmetric form is alternating if 2 is not a zero divisor since skew-
symmetry implies that b(x, x) + b(x, x) = 0 for any x.

Definition 2.31. Let (M, b) be an orthogonal space over the ring R. Since any two bases of
a free module over a unital commutative ring have the same cardinality, M has an R-basis
{e1, ..., en} for some unique n ≥ 1. This value n is the rank or dimension of M and is equal
to the rank of M as an R-module.

The n× n matrix B = (b(ei, ej))1≤i,j≤n is called a Gram matrix of (M, b).

Lemma 2.32. Let (M, b) be an orthogonal space where M is an R-module. The bilinear
form b is an inner product if and only if the Gram matrix B = (b(ei, ej)) is invertible.

Proof. The dual module HomR(M,R) has a dual basis, which we denote {e∗1, ..., e∗n}. There
is a homomorphism M → HomR(M,R) given by x 7→ b(x,−) for x ∈ M . In terms of the
bases of M and HomR(M,R), this map is given by

ei 7→
∑

1≤j≤n

b(ei, ej)e
∗
j .

The non-degeneracy conditions required of an inner product then hold if and only if B is
invertible.

Definition 2.33. Given a unital commutative ring R and a matrix B = (bij) ∈ Mn(R),
the symbol 〈B〉 will denote the orthogonal space (Rn, b) with standard basis {e1, ..., en} and
bilinear form b defined by b(ei, ej) = bij.

Lemma 2.34. The orthogonal spaces 〈B〉 and 〈B′〉 are isomorphic if and only if B′ = ABAT

for some invertible A.

Proof. Suppose that 〈B〉 ' 〈B′〉. Then their underlying modules, being free and finitely-
generated, have the same rank. Suppose {e1, ..., en} and {e′1, ..., e′n} are bases for the underly-
ing modules of 〈B〉and 〈B′〉, respectively. Then there exists some invertible matrix A = (aij)
such that

e′i = ai1e1 + ...+ ainen

for every 1 ≤ i ≤ n. Let b be the bilinear form corresponding to B (i.e., if B = (bij), then
b(ei, ej) = bij) and b′ the bilinear form corresponding to B′. Then

b′(e′i, e
′
j) =

∑
1≤k,l≤n

aikb(ek, el)ajl,

and it follows that B′ = ABAT . The converse follows by the same argument played in
reverse.
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Note that if B is a Gram matrix of a non-degenerate orthogonal space (M, b), then b is an
inner product, so det(B) lies in R× by Lemma 2.32. Suppose B′ = ABAT for some invertible
A. Then by Lemma 2.34, 〈B〉 ' 〈B′〉. Also, det(B′) = det(A)2 det(B). Therefore, the value
of the determinant can be viewed as lying in R×/R× 2. This motivates the following definition
from [17].

Definition 2.35. Given a non-degenerate orthogonal space (M, b) over a unital commutative
ring R, the determinant of (M, b) is the element of R×/R× 2 represented by det(B), where
B is any matrix with 〈B〉 ' (M, b). If M has dimension 2n or 2n + 1 over R, then its
discriminant is defined to be (−1)n times its determinant.

Definition 2.36. Let (M1, b1),..., (Mn, bn) be orthogonal spaces over a unital commutative
ring R. Their orthogonal sum is the orthogonal space whose underlying module is M =
M1 ⊕ ...⊕Mn and whose bilinear form b is defined by

b(x1 ⊕ ...⊕ xn, y1 ⊕ ...⊕ yn) =
∑

1≤i≤n

bi(xi, yi).

We note that the orthogonal sum (M, b) is a non-degenerate orthogonal space if and only
if each (Mi, bi) is a non-degenerate orthogonal space. Since the Mi are all free and finitely-
generated over R, the rank of M is the sum of the ranks of the Mi, and the determinant of
M is the product of the determinants of the Mi.

Definition 2.37. Let X = (M, b) be an orthogonal space. The perpendicular space of
M with respect to b, denoted by M⊥, consists of all x ∈ M such that b(x,M) = 0, i.e.,
b(x, y) = 0 for all y ∈M . The perpendicular space of X is defined to be X⊥ = (M⊥, b).

Remark 2.38. Suppose that X = (V, b) is an orthogonal space over a field k (so that V is
a k-vector space), b is a non-degenerate bilinear form on V , and W is a subspace of V . In
this case, non-degeneracy of b reduces to the condition that if b(v, w) = 0 for all w ∈ V , then
v = 0 (and similarly for the second coordinate). It follows that b|W is non-degenerate if and
only if W ∩W⊥ = {0}.

Definition 2.39. Let X = (M, b) be an orthogonal space over a unital commutative ring
R. If rankR(M) is even, we say X is split if there exists a free submodule N ⊆M such that
N is a direct summand of M and N = N⊥. If rankR(M) is odd, say rankR(M) = 2n + 1,
we say X is split if there exists a free submodule N ⊆ M such that N is a direct summand
of M and rankR(N) = n. In either case, such a submodule N is said to be isotropic.

We will encounter the next example once again in a later section.

Example 2.40. Let V be a 2n-dimensional vector space over a field k with char(k) 6= 2,
with basis {e1, ..., en, fn, ..., f1}, and with symmetric inner product defined by

〈ei, ej〉 = 〈fi, fj〉 = 0, 〈ei, fj〉 = δij.

Let W be a (2n + 1)-dimensional vector space over a field k with char(k) 6= 2, with basis
{e1, ..., en, u, fn, ..., f1}, and with symmetric inner product defined by

〈ei, ej〉 = 〈fi, fj〉 = 〈ei, u〉 = 〈fi, u〉 = 0, 〈ei, fj〉 = δij, 〈u, u〉 = 1.
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Then V and W are both split over k with spank{e1, ..., en} being an isotropic subspace for
either.

Lemma 2.41. Suppose (M, b) is an orthogonal space, so that in particular b is symmetric.
Let N be a submodule of M , and suppose that the restriction of b to N × N is an inner
product on N . Then M ' N ⊕N⊥.

Proof. Suppose n ∈ N ∩ N⊥. Then b(n, n′) = 0 for all n′ ∈ N , so n = 0, which implies
N ∩N⊥ = {0}. It remains to prove that every element of M can be written as a sum of one
element from N and one element from N⊥.

Fix any x ∈ M . Consider the map n′ 7→ b(x, n′) defined on N . By the non-degeneracy
conditions on inner products, there exists a unique n ∈ N such that b(n, n′) = b(x, n′) for
every n ∈ N . But by definition of N⊥, x − n ∈ N⊥, which implies that x = n + (x − n) is
the decomposition we required.

Lemma 2.42. Let (M, b) be an orthogonal space. Let x1, ..., xn ∈M be such that the matrix
(b(xi, xj)) is invertible. Let N be the submodule of M spanned by the xi. Then {x1, ..., xn}
is a linearly independent set, and M ' N ⊕N⊥.

Proof. Suppose for the sake of contradiction that {x1, ..., xn} is not a linearly independent
set. Then there exist ci ∈ R for 1 ≤ i ≤ n, not all zero, such that c1x1 + ... + cnxn = 0. By
bilinearity of b, for any fixed j we have c1b(x1, xj)+ ...+cnb(xn, xj) = 0, contradicting invert-
ibility of (b(xi, xj)). Therefore, {x1, ..., xn} must be linearly independent. Since (b(xi, xj)) is
invertible, by Lemma 2.32, b is an inner product when restricted to N . The result follows
by Lemma 2.41.

Corollary 2.43. Let (M, b) be an orthogonal space, where M is a module over a unital
commutative ring R. Then for some n ≤ rankR(M),

M ' 〈u1〉 ⊕ ...⊕ 〈un〉 ⊕N

where u1, ..., un are units, and for every x ∈ N , b(x, x) is not a unit.

Proof. If b(y, y) is a unit for some y ∈ M , then by Lemma 2.42, M ' Ry ⊕ (Ry)⊥. Note
that if we let u1 = b(y, y), then Ry ' 〈u1〉. Inductively, we apply the process to (Ry)⊥, and
for rank reasons it terminates after finitely many steps.

Definition 2.44. Let X = (M, b) be a non-degenerate orthogonal space over a unital com-
mutative ring R. Given an R-basis {e1, ..., en} for X, we define the dual basis {e∗1, ..., e∗n} by
the conditions b(ei, e∗k) = 0 for i 6= k and b(ei, e∗i ) = 1 for all 1 ≤ i ≤ n.

Lemma 2.45. Let X = (M, b) be a non-degenerate orthogonal space. Given a basis {e1, ..., en}
for X, there exists a unique dual basis {e∗1, ..., e∗n} in X.

Proof. Under these conditions, the matrix (b(ei, ej))1≤i,j≤n is invertible. Let its inverse be
(ak`). Consider the products P = b(ei, ej)(ak`) and Q = (ak`)b(ei, ej), which are equal to the
identity. Then

[P ]ij = a1jb(ei, e1) + ...+ anjb(ei, en), and
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[Q]ij = ai1b(e1, ej) + ...+ ainb(en, ej).

Therefore, if, for 1 ≤ k ≤ n, we set

e∗k = a1ke1 + ...+ anken,

then b(ei, e
∗
k) = 0 for i 6= k and b(ei, e

∗
i ) = 1, as desired. Moreover, this is the only linear

combination of {e1, ..., en} satisfying the conditions required of e∗k.

Remark 2.46. We sketch two alternative proofs of the previous lemma.

Alternative proof 1. Consider the 1-dimensional subspace span{e2, ..., en}⊥. Suppose it is
spanned by v1 with b(e1, v1) 6= 0 ∈ R×. Then scale v1 so that b(e1, v1) = 1. Let e∗1 = v1.
Repeat this procedure for span{e3, ..., en}⊥, span{e4, ..., en}⊥, etc., to obtain e∗2, e∗3, and the
rest in succession.

Alternative proof 2. Define fi : X → R by

ej 7→

{
0 if j 6= i

1 if j = i

Then there exists e∗i such that fi(ej) = b(e∗i , ej) for every j.

Definition 2.47. Let (M, b) be an orthogonal space over a unital commutative ring R. Let
M ' 〈u1〉 ⊕ ...〈uk〉 ⊕ N be a decomposition obtained by Corollary 2.43. A unital basis for
(M, b) with respect to that decomposition is an R-basis {e1, ..., en} (n = dimR(M)) of M as
an R-module such that b(ei, ei) = ui for every 1 ≤ i ≤ k. A unital basis for (M, b) is a basis
that is unital with respect to some such decomposition.

Corollary 2.48. Let R be a unital commutative local ring in which 2 is a unit. Let (M, b)
be a non-degenerate orthogonal space over R. Then (M, b) has a unital basis.

Proof. Let M ' 〈u1〉 ⊕ ... ⊕ 〈un〉 ⊕ N be the decomposition of M obtained by Corollary
2.43. Since the restriction of b to N × N is an inner product, (N, b|N) is a non-degenerate
orthogonal space. It suffices to prove that N is trivial. Suppose not. Since N is an orthogonal
space, hence free, we can choose a basis {e1, ..., ek} of N . Let {e∗1, ..., e∗k} be the dual basis.
By definition of the dual basis of a free module, we have b(e1, e

∗
1) = 1. Thus

2 = 2b(e1, e
∗
1) = b(e1 + e∗1, e1 + e∗1)− b(e1, e1)− b(e∗1, e∗1).

Since non-units form an ideal in any local ring, 2 is a non-unit, contradicting the assumption
that it is a unit. It follows that N is trivial, so X ' 〈u1〉 ⊕ ...⊕ 〈un〉. There is an element ei
such that b(ei, ei) = ui, and {e1, ..., en} is then a unital basis.

Definition 2.49. Let X be an orthogonal space over a unital commutative ring R. Let
X = X1 ⊕ X2 be an orthogonal sum decomposition. The reflection of X with respect to
(X1, X2) is the linear transformation T : X → X that acts as the identity on X1 and sends
each element of X2 to its negative. Note that T preserves the underlying bilinear form.
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Lemma 2.50. Let R be a unital commutative local ring in which 2 is a unit. Let X = (M, b)
be an orthogonal space over R, and let x, y ∈ X be such that b(x, x) = b(y, y) is a unit. Then
there exists a reflection T such that T (x) = y.

Proof. Write x = u+v, where u = (x+y)/2 and v = (x−y)/2. Then b(x, x) = b(u, u)+b(v, v).
Since b(x, x) is a unit and R is a local ring, at least one of b(u, u) and b(v, v) is a unit.
Suppose b(u, u) is a unit. Then X ' Ru ⊕ (Ru)⊥ by Lemma 2.42. Let T be the reflection
with respect to (Ru, (Ru)⊥). Since x = u+ v with respect to this direct sum decomposition,
T (x) = u − v = y. If b(v, v) is a unit instead, we can apply a similar argument, reflecting
about ((Rv)⊥, Rv) to send y to x.

We are finally ready to prove Witt’s cancellation theorem.

Theorem 2.51. Let X, Y, Z be symmetric non-degenerate orthogonal spaces over a unital
commutative local ring R in which 2 is a unit. Let Z be symmetric. Suppose X⊕Y ' X⊕Z.
Then Y ' Z.

Proof. It follows from Corollary 2.48 that X is an orthogonal direct sum of non-degenerate
orthogonal spaces that are free of rank 1. (This is where we use the hypothesis that the spaces
are symmetric.) We therefore need only prove the theorem in the case where X is free of
rank 1. Suppose {e1} is a basis for X. Since X⊕Y ' X⊕Z, we can pick some isomorphism
ι : X ⊕ Y → X ⊕ Z of orthogonal spaces. Let 0X , 0Y , and 0Z denote the zero elements of
X, Y , and Z, respectively. Consider f(e1 ⊕ 0Y ) and e1 ⊕ 0Z , which are both elements of
X ⊕ Z. These elements satisfy the hypothesis of Lemma 2.50. Therefore, there exists some
reflection T of X ⊕ Z such that T (ι(e1 ⊕ 0Y )) = e1 ⊕ 0Z . Now, T ◦ ι : X ⊕ Y → X ⊕ Z is
an isomorphism, and (T ◦ ι)(e1 ⊕ 0Y ) = e1 ⊕ 0Z . Thus T ◦ ι maps the perpendicular space
of 0X ⊕ Y isomorphically to 0X ⊕ Z, from which it follows that Y ' Z.

The next theorem is known as Witt’s extension theorem. The statement and proof we give
are essentially those of Theorem 7.2 in [8].

Theorem 2.52. Suppose X1 and X2 are isomorphic symmetric non-degenerate orthogonal
spaces over a unital commutative local ring R in which 2 is a unit, and suppose they have
orthogonal direct sum decompositions X1 = U1⊕ V1 and X2 = U2⊕ V2. Suppose f : V1 → V2

is an isomorphism. Then there is an isomorphism F : X1 → X2 such that F |V1 = f and
F (U1) = U2.

Proof. Since U1 ⊕ V1 ' U2 ⊕ V2 and V1 ' V2, by Theorem 2.51, U1 ' U2. (The hypotheses
are required by the cited theorem.) Call this isomorphism fU . Then F = fU ⊕ f satisfies
the required conditions.

The following definitions are variants of ones found in [1] and [2].

Definition 2.53. [1] Let (M, b) be a non-degenerate orthogonal space, where M is over a
unital commutative ring R. Let T : M → M be an R-module homomorphism. The adjoint
map T ∗ is defined by the condition

b(Tx, y) = b(x, T ∗y)

16



for every x, y ∈M . The uniqueness of T ∗ for fixed T follows from non-degeneracy of (M, b).
The homomorphism T is orthogonal if

b(Tx, Ty) = b(x, y)

for all x, y ∈ M . This condition implies that T is invertible, T−1 = T ∗, and det(T ) = ±1.
The special orthogonal group of M is defined by

SO(M) = {T ∈ HomR(M,M) | TT ∗ = T ∗T = 1, det(T ) = 1}.

Note that since b(Tx, Ty) = b(T ∗Tx, y) = b(x, y) for all T ∈ SO(M) and all x, y ∈ M ,
elements of SO(M) are orthogonal. If M is split, we say SO(M) is split as well.

Definition 2.54. [2] Let k be a field with char(k) 6= 0. Let W be an orthogonal space of
rank n over k. Let e be a basis vector of ∧n(W ). Let A = 〈·, ·〉 be a symmetric bilinear
form in Sym2(W ∗), the space of symmetric bilinear forms on W . Let 〈·, ·〉n be the induced
symmetric bilinear form on ∧n(W ). The discriminant of A is defined by

disc(A) = (−1)n(n−1)/2〈e, e〉n.

Note that if {w1, ..., wn} is a basis ofW , we can take e = w1∧ ...∧wn, in which case 〈e, e〉n =
det(〈wi, wj〉), where 〈wi, wj〉 is evaluated with respect to A (i.e., 〈wi, wj〉 = A(wi, wj)).

3 Arithmetic invariant theory over fields

3.1 First principle of AIT

Let G be a group scheme over a field k with a representation V . Let K/k be a field extension.
We will occasionally refer to a G(K)-orbit of an element v ∈ V (K) as a K-orbit for short.

The following lemma, which we dub the first principle for AIT over fields, is the key to
classifying k-orbits lying within a given ks-orbit and is the foundation on which AIT is built.

Lemma 3.1. [1] Let k be a field with separable closure ks. Let G be a group scheme over
k, and let V be a representation of G on a finite-dimensional vector space over k. Suppose
v ∈ V (k) with stabilizer Gv. Then there is a bijection between the set of G(k)-orbits of
vectors w ∈ V (k) lying in the same G(ks)-orbit as v and the kernel of the map of pointed
sets

γ : H1(k,Gv)→ H1(k,G)

in Galois cohomology.

Proof. If w ∈ V (k) lies in the same ks-orbit as v, then there exists g ∈ G(ks) such that
w = g(v). Note that if h ∈ Gv(k

s), then g(h(v)) = g(v), so g is only well-defined up to
right multiplication by elements of Gv(k

s). Let gσ be the image of g ∈ G under the action
of σ ∈ Gal(ks/k). Define

aσ = g−1gσ ∈ G(ks).
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We claim the map σ 7→ aσ is a 1-cocycle with values in G(ks). Because G(ks) is equipped
with the discrete topology, to check that the map is continuous, it suffices to check that
the preimage of every point is open. The preimage of a point is of the form τΓg where
Γg = {σ ∈ Gal(ks/k)|gσ = g}. If Γg is open, the translates τΓg will certainly be open. The
stabilizer Γg is open by the argument from the proof of Lemma 2.17.

Also, for g ∈ G(ks) and σ, τ ∈ Gal(ks/k), we calculate

gaστ = gστ = (gaτ )
σ = gaσa

σ
τ ,

so aστ = aσa
σ
τ , which is precisely the 1-cocycle condition.

Moreover, aσ ∼coho,1 1 in H1(k,G) by definition of aσ. Since the Galois action fixes the
elements of V (k), we have

aσ(v) = g−1gσ(v) = g−1gσ(vσ) = g−1(wσ) = g−1(w) = v,

which shows that aσ ∈ Gv(k
s), so we can in fact view (σ 7→ aσ) as a 1-cocycle with values in

Gv(k
s). We note that the cohomology class of (σ 7→ aσ) as a 1-cocycle with values in Gv(k

s)
does not depend on the choice of g and that (σ 7→ aσ) is an element of ker(γ).

Conversely, given an element (σ 7→ aσ) ∈ ker(γ), the image of the class of (σ 7→ aσ) is trivial
in H1(k,G), so there exists g ∈ G(ks) such that

aσ = g−1gσ.

Let w = g(v). Then

wσ = gσ(vσ) = gσ(v) = gaσ(v) = g(v) = w.

Therefore, w ∈ V (k), and w lies in the same G(ks)-orbit as v.

We observe that if the map γ in Lemma 3.1 is injective, then the arithmetic invariant theory
of the representation coincides with its geometric invariant theory.

3.2 Preamble to examples

Theorem 3.2. Let G be a reductive group scheme over a field k acting on some represen-
tation V . Let ks be a separable closure of k. Let k[V ]G denote the algebra of G-invariant
polynomials on V . Suppose we wish to prove that k[V ]G is freely generated by some candidate
generating set {p1, ..., pn}. It suffices to work over ks. Let inv : V → An be defined by

inv(v) = (p1(v), ..., pn(v)).

Suppose there exists a regular map s : An → V such that given values r1, ..., rn of p1, ..., pn,
respectively, pi(s(r1, ..., rn)) = ri for all 1 ≤ i ≤ n. Consider the following two statements.
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(i) Each element of the set {p1, ..., pn} is an invariant polynomial.

(ii) For any separably closed field extension K/k and generic points v, w ∈ V (K) satisfying
pi(v) = pi(w) for all 1 ≤ i ≤ n, there exists g ∈ G(ks) such that g(v) = w.

Under our assumptions, if (i) and (ii) hold, then {p1, ..., pn} generates k[V ]G.

Proof. Step (i) is clearly necessary. Note that existence of the map s implies that given
arbitrary values r1, ..., rn of p1, ..., pn, respectively, there exists some v ∈ V (ks) such that
pi(v) = ri for all 1 ≤ i ≤ n. Therefore, there are no relations among the pi, i.e., there is
no non-trivial polynomial q such that q(p1, ..., pn) = 0, since that would imply that the pi
cannot take arbitrary values, a contradiction.

It remains to prove that, under the assumption of (ii), {p1, ..., pn} generates k[V ]G. Let
p ∈ k[V ]G, and let v ∈ V (k[x1, ..., xdim(V )]) be the generic point. We wish to show that p is
a polynomial in p1, ..., pn. By our assumption about the existence of the map s, for every
1 ≤ i ≤ n,

pi(v) = pi(s(inv(v))).

By the assumption we made at the start of step (ii), there exists g ∈ G(ks) such that
s(inv(v)) = g(v). Since p is G-invariant,

p(s(inv(v))) = p(g(v)) = p(v).

But since s is a regular map and p is a polynomial, p(s(inv(v))) will be some polynomial in
the pi, which means p is in the algebra generated by the pi, as desired.

Let W be a non-degenerate split orthogonal space over a field k with characteristic not
equal to 2. Suppose W has odd dimension 2n + 1 where n ≥ 1 and has determinant
(−1)n ∈ k×/k× 2, so that it has discriminant 1. Suppose further that W has a k-basis
{e1, e2, ..., en, u, fn, ..., f2, f1} and an inner product defined by

〈ei, ej〉 = 〈fi, fj〉 = 〈ei, u〉 = 〈fi, u〉 = 0, 〈ei, fj〉 = δij, 〈u, u〉 = 1.

Then G = SO(W ) is a reductive group over k. We will now consider three different represen-
tations V of G: first, the standard representation V = W ; second, the adjoint representation
so(W ) ' ∧2(W ); and third, the symmetric square representation Sym2(W ), which we now
define.

Definition 3.3. Let V be a finite-dimensional representation. Let {e1, ..., en} be a basis for
V . Let S be the endomorphism of V ⊗ V defined by S(ei ⊗ ej) = ej ⊗ ei. The symmetric
square of V is defined by

Sym2(V ) = {v ∈ V ⊗ V | S(v) = v}.

For each of these representations, we will determine the ring k[V ]G of polynomial invariants
and describe the orbits via Lemma 3.1.
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3.3 Example 1: The standard representation

First, we consider the standard representation V = W . We assume char(k) 6= 2. This rep-
resentation is irreducible of dimension dim(V ) = 2n+ 1.

When V = W , we claim the invariant q2(v) = 〈v, v〉 generates the ring of invariant poly-
nomials. As an example, we will show how to apply Theorem 3.2 to prove this. In later
cases, we will just cite that remark. The section s from Theorem 3.2 is given by d 7→ e1+ 1

2
df1.

(i) Observe that since g ∈ SO(W ) is orthogonal, 〈gv, gv〉 = 〈v, v〉 for all v.

(ii) If two vectors v, w ∈ V (ks) have the same inner product, we claim that there exists
some element of the rotation group SO(W )(ks) sending one to the other. When v = w, the
identity is such an element. When v and w are distinct vectors, there are two cases. First,
suppose 〈v − w, v − w〉 6= 0. Then the reflection

x 7→ x− 2〈x, v − w〉
〈v − w, v − w〉

(v − w)

sends v to w, and composing it with any reflection that fixes w, we obtain an element of
SO(W )(ks) sending v to w.

Next, suppose 〈v−w, v−w〉 = 0. This occurs precisely when 〈v, v〉 = 〈v, w〉 = 〈w,w〉. Choose
a vector u such that 〈u,w〉 6= 〈w,w〉 and 〈u, v〉 6= 〈v, v〉. By solving a linear equation, we can
find c such that 〈u + c(v − w), u + c(v − w)〉 = 〈v, v〉, which is necessarily equal to 〈w,w〉.
We have 〈u+ c(v−w), v〉 = 〈u, v〉 6= 〈v, v〉 and similarly 〈u+ c(v−w), w〉 6= 〈w,w〉. We can
now apply the previous case to find reflections in SO(W )(ks) that send v to u + c(v − w)
and that send u + c(v − w) to w. The composition of these two maps gives an element of
SO(W )(ks) that sends v to w, as desired.

Since (i) to (ii) are satisfied, q2(v) generates the ring of invariant polynomials as claimed.

We define ∆ = q2 in this case. Since special orthogonal groups are rotation groups, we see
geometrically that for ∆(v) 6= 0, the stabilizer Gv is the reductive subgroup SO(U), where
U is the hyperplane in W of vectors orthogonal to v.

Note that a bilinear form can be defined on the subspace U by restricting the inner product
on V , and the resulting bilinear form is non-degenerate by Remark 2.38. A Gram matrix
can be obtained for forms obtained by restriction from the matrix defining the original form
by a combination of changing the basis and restricting to a submatrix.

We now classify orbits over k. Let d ∈ k×, and consider the vector v = e1 + 1
2
df1. Observe

that q2(v) = ∆(v) = d, which shows that there exist vectors v ∈ V (ks) with arbitrary val-
ues of q2(v). We see geometrically that the stabilizer Gv acts on the perpendicular space
U ′ = (kv)⊥ in W , and indeed we can make the identification Gv = SO(U ′). By choosing an
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element in SO(W )(k) that is an isomorphism from kv to kw and applying Witt’s extension
theorem to (kv) ⊕ (kv)⊥ = (kw) ⊕ (kw)⊥, all vectors w with q2(w) = d lie in the same
G(k)-orbit as v, and it follows that the invariant polynomials separate the orbits over k with
non-zero discriminant. The vector v = e1 also gives a single non-zero orbit with q2(v) = 0.

We now wish to compare this work with the first principle of AIT. To calculateH1(k, SO(U)),
we observe that by [26] it classifies non-degenerate orthogonal spaces U ′ of dimension 2n and
discriminant d over k. Similarly, H1(k, SO(W )) classifies non-degenerate orthogonal spaces
W ′ of dimension 2n + 1 and determinant (−1)n over k. The trivial class corresponds to W
itself. The map

γ : H1(k,Gv) = H1(k, SO(U))→ H1(k,G) = H1(k, SO(W ))

is then given by U ′ 7→ U ′⊕ 〈d〉. By Witt’s cancellation theorem, γ is injective, which means
the arithmetic invariant theory of odd orthogonal groups coincides with their geometric in-
variant theory in this case.

3.4 Example 2: The adjoint representation

The second representation is the adjoint representation V = so(W ). This representation is
irreducible, and the dimension of the corresponding Lie algebra (hence the representation)
is 2n2 + n.

The adjoint representation is isomorphic to the exterior square ∧2(W ). We can realize it as

V = {T : W → W | T = −T ∗}

with g ∈ G acting by
g · T = gTg−1 = gTg∗, T ∈ V.

The characteristic polynomial is an invariant of any G(k)-orbit.

Any operator T ∈ V is skew self-adjoint, so its characteristic polynomial is of the form

f(x) = det(xI − T ) = x2n+1 + c2x
2n−1 + c4x

2n−3 + ...+ c2nx

with c2m ∈ k for all m. The coefficients c2m are polynomial invariants of the representation,
and these polynomials generate the ring of invariant polynomials of V over k and are alge-
braically independent by [7]. Let ∆ be the discriminant of f(x), which is also an invariant
because it lies in the algebra generated by the coefficients c2m. Note that ∆ 6= 0 if and only
if f(x) is separable.

Suppose
f(x) = x2n+1 + c2x

2n−1 + c4x
2n−3 + ...+ c2nx ∈ k[x]

has non-zero discriminant. We will construct a skew self-adjoint operator T on W with
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characteristic polynomial f(x). This construction will serve as the section s from Theorem
3.2. Writing f(x) = xh(x) = xg(x2) for appropriate h(x) and g(x), by the standard formula
for the discriminant of products of polynomials, we have

disc(f(x)) = c2
2ndisc(h(x)) = (−4)nc3

2ndisc(g(x))2.

Let K = k[x]/(g(x)), E = k[x]/(h(x)), and L = k[x]/(f(x)). Note that L ' K ⊕ k. Since
we assumed that ∆ 6= 0, these are étale k-algebras of ranks n, 2n, and 2n + 1, respectively.
The map x 7→ −x induces an involution τ of the algebras E and L. The corresponding fixed
algebras are K and K ⊕ k, respectively. Let β be the image of x in L.

Observe that L can be viewed as the k–vector space with basis {1, β, ..., β2n}. We can de-
fine a symmetric bilinear form on this space by letting 〈λ, µ〉 be the coefficient of β2n in
(−1)nλµτ . This form is non-degenerate with discriminant 1, and the map t(λ) = βλ is skew
self-adjoint with characteristic polynomial f(x). The subspace M = k ⊕ kβ ⊕ ...⊕ kβn−1 is
isotropic of dimension n, so L is split and isomorphic to W over k. Choosing an isometry
θ : L → W allows us to define a skew self-adjoint operator T = θtθ−1 on W with charac-
teristic polynomial f(x). The orbit of T is well-defined since θ is unique up to composition
with an orthogonal transformation of W . The stabilizer subgroup GT is a maximal torus in
G = SO(W ) of dimension n over k.

Over ks, a separable closure of k, the classification of orbits is relatively easy.

Proposition 3.4. [1] Let k be a field with separable closure ks. Let G = SO(W ) = SO2n+1 be
the split odd special orthogonal group over k. Let S, T ∈ V (ks) be skew self-adjoint operators.
Suppose they both have separable characteristic polynomial f(x). Then they lie in the same
G(ks)-orbit of V (ks).

Proof. Since f(x) is separable, it is the minimal polynomial of S and T . Therefore, there
exists some g ∈ GL(W ) with S = gTg−1. Since S and T are skew self-adjoint, g∗g is in
the centralizer of T in GL(W ). The centralizer of T in End(W ) is the algebra k[T ] = L.
Since g∗g is self-adjoint in L× and its determinant is a square in k×, we see that g∗g is an
element of K× × k× 2. The fixed algebra of L under τ is K ⊕ k, so any element x in this
fixed algebra has norm x1+τ = x2. Suppose k is separably closed. Then every element of
K× × k× 2 is a square, hence a norm. Let h ∈ K× × k× be such that h1+τ = g∗g. Then
gh−1 is an orthogonal transformation of W over ks that maps T to S, so S is in the same
G(ks)-orbit as T .

Since the stabilizerGT is abelian,H1(k,GT ) is an abelian group. Note thatGT = (ResE/k(Gm))1+τ=id,
so we have a short exact sequence

1→ GT → ResE/k(Gm)
NE/k=1+τ
−−−−−−→ ResK/k(Gm)→ 1,

where NE/k denotes the norm map. Taking cohomology gives the exact sequence

E×
N−→ K× → H1(k,GT )→ 1
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from which it follows that H1(k,GT ) ' K×/NE×.

The map
γ : H1(k,GT ) = K×/NE× → H1(k,G) = H1(k, SO(W ))

is given as follows. Associate to κ ∈ K× the element α = (κ, 1) ∈ (Lτ )× = K× × k×, which
has square norm from L× to k×. Then associate to α the vector space L with the new
bilinear form 〈λ, µ〉α defined to be equal to the coefficient of β2n in (−1)nαλµτ . Call the
resulting orthogonal space Wκ. It has dimension 2n + 1 (because L does) and determinant
(−1)n over k. The next result is related to this construction.

Proposition 3.5. [26], [1] LetW be an orthogonal space over a field k, and let ks be a separa-
ble closure of k. Then 1-cocycles Gal(ks/k)→ SO(W )(ks) (i.e., elements of H1(k, SO(W )))
correspond to orthogonal spaces over k.

Proof. If g is such a 1-cocycle, then we define an orthogonal space Wg over k corresponding
to g as follows. Note that there is an inclusion SO(W )→ GL(W ), which induces an inclusion
H1(k, SO(W )) → H1(k,GL(W )). Also, H1(k,GL(W )) is trivial by Theorem 2.21. There-
fore, using the aforementioned inclusion, we can write gσ = h−1hσ for some h ∈ GL(W )(ks).

Now we are ready to define the orthogonal space Wg. Its underlying module is the same
as the underlying vector space of W , and it is equipped with a k-valued non-degenerate
symmetric bilinear form defined by

〈v, w〉∗ = 〈h−1v, h−1w〉 (1)

for all v, w in that vector space.

The resulting orthogonal space Wg has dimension 2n+ 1 and determinant (−1)n. Moreover,
the isomorphism class of Wg over k is determined entirely by the cohomology class of gσ in
H1(k,G).

Lemma 3.6. [1] Let G = SO(W ). Let v be a vector, and let γ : H1(k,Gv) → H1(k,G) be
the canonical map in cohomology. The class γ(κ) ∈ H1(k,G) is represented by the orthogonal
space Wκ.

Proof. We simply apply the construction of Proposition 3.5. In our case, the 1-cocycle g
representing γ(κ) comes from a 1-cocycle with values in the stabilizer Gv. This stabilizer is
a maximal torus in SO(W ) which is a subgroup of the larger maximal torus ResL/k(Gm) of
GL(W ). But H1(k,ResL/k(Gm)) is trivial, so there exists h ∈ (L⊗ ks)× with h1+τ = α (i.e.,
with norm α) and gσ = h−1hσ. Substituting h into (1) completes the proof.

3.5 Example 3: The symmetric square representation

The third representation is the symmetric square V = Sym2(W ). Here again G acts by
conjugation. It has dimension 2n+ 1, and since it contains the trivial subspace spanned by
the identity matrix, it is not irreducible.
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Just as when V = ∧2(W ), in the present case the group G acts by conjugation on V , so the
characteristic polynomial is again an invariant of any G(k)-orbit.

The operators T ∈ V are self-adjoint, so their characteristic polynomial will have the form

f(x) = det(xI − T ) = x2n+1 + c1x
2n + c2x

2n−1 + ...+ c2nx+ c2n+1

with coefficients cm ∈ k for all m. The cm are degree m polynomial invariants that generate
the ring of polynomial invariants of V over k and are algebraically independent. The dis-
criminant ∆ = disc(f(x)) is non-zero if and only if f(x) is separable, just as before.

Suppose
f(x) = x2n+1 + c1x

2n + ...+ c2n+1

is separable. We wish to construct a self-adjoint operator T ∈ V with characteristic polyno-
mial f(x). Let L = k[x]/(f(x)), and let β be the image of x in L. Define a non-degenerate
symmetric bilinear form on the k–vector space L = k ⊕ kβ ⊕ ...⊕ kβ2n by

〈λ, µ〉α = the coefficient of β2n in αλµ.

This bilinear form has determinant (−1)n, and the map t(λ) = βλ is self-adjoint with
characteristic polynomial f(x). The subspace M spanned by {1, β, ..., βn−1} is isotropic of
dimension n. Thus L is isomorphic to W over k. Picking an isometry θ : L→ W allows us
to define the self-adjoint operator T = θtθ−1 on W with characteristic polynomial f(x), as
desired. Observe that θ is unique up to composition with an orthogonal transformation of
W , so the orbit of T is well-defined. The stabilizer subgroup GT is the kernel of the norm
map ResL/K(µ2)→ µ2, which is a finite étale group scheme of order 22n.

Proposition 3.7. [1] Let k be a field with separable closure ks. Let G = SO(W ) = SO2n+1

be the odd special orthogonal group over k. Let S, T ∈ V (ks) be self-adjoint operators.
Suppose they both have separable characteristic polynomial f(x). Then they lie in the same
G(ks)-orbit.

Proof. Since f(x) is separable, it is the minimal polynomial of S and T . Therefore, there
exists some g ∈ GL(W ) with S = gTg−1. Since S and T are self-adjoint, g∗g is in the
centralizer of T in GL(W ). The centralizer of T in End(W ) is the algebra k[T ] = L. Thus
g∗g ∈ L×. But over a separable closure, every element of L× is a square, so g∗g = h2 for
some h ∈ L×. Then gh−1 is an orthogonal transformation of W over ks mapping T to S, so
S lies in the same G(ks)-orbit as T .

Now that we have characterized the G(ks)-orbits, we may use the first principle of AIT to
characterize the G(k)-orbits. Over k, the stabilizer GT is abelian, so H1(k,GT ) is an abelian
group. Indeed, GT = (ResL/k(µ2))N=1, so we have a short exact sequence

1→ GT → ResL/k(µ2)
N−→ µ2 → 1.
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Taking cohomology, we see that H1(k,GT ) ' (L×/L× 2)N=1. The map

γ : H1(k,GT ) = (L×/L× 2)N=1 → H1(k,G) = H1(k, SO(W ))

may be defined as follows. Given α ∈ (L×)N=1, consider the orthogonal space L defined by
the bilinear form

〈λ, µ〉α = the coefficient of β2n in αλµ.

The orthogonal spaceWα defined by this bilinear form has dimension 2n+1 and determinant
(−1)n over k. Moreover, it is determined up to isomorphism by the image of α inH1(k,GT ) =
(L×/L× 2)N=1. The proof that Wα represents the class γ(α) ∈ H1(k,G), is the same as the
proof of Lemma 3.6.

4 Obstructions to lifting k-rational orbits over fields

4.1 Pure inner forms

Definition 4.1. [26] Let G be a reductive algebraic group acting on a representation V over
k. Polynomials on V can be identified with the space k[V ]G. We thus define a space, called
the GIT quotient, by

V �G = Spec(k[V ]G).

Since this is a categorical quotient, there is a canonical morphism π : V → V �G. (See [24]
for the relevant details about GIT and categorical quotients.) The fibres of this morphism
can be identified with certain G-orbits on V . Sometimes we are lucky and can produce a
canonical section of the morphism π, i.e., a canonical map s : V � G → V such that π ◦ s
is the identity, in which case all k-rational points of V � G lift to k-rational points of V .
However, such a section does not always exist.

One notable case where such a section may not exist is the action of odd orthogonal groups
SO(W ′) that are not split over k. The odd orthogonal groups we have considered up until
now have all been split. We will now describe some non-split groups by introducing more
notions from Galois cohomology.

Definition 4.2. Let G be an algebraic group with a representation V over the field k. Let
σ 7→ cσ be a 1-cocycle from Gal(ks/k) to G(ks), where ks denotes a separable closure of k.
Then cστ = cσc

σ
τ for all σ, τ ∈ Gal(ks/k). The pure inner form Gc of G over k is described

by giving its ks-points and a Galois action. Let Gc(ks) = G(ks), and let the Galois action
be given by

σ(h) = cσh
σc−1
σ .

Note that if g ∈ G(ks) and bσ = g−1cσg
σ is a 1-cocycle that is cohomologous to c, then the

map on ks-points Gb → Gc given by h 7→ ghg−1 commutes with the Galois actions, so it
gives an isomorphism over k. It follows that up to isomorphism, Gc is determined over k by
the image of c in H1(k,G).

25



Given a 1-cocycle c : Gal(ks/k) → G(ks) and a homomorphism ρ : G → GL(V ), we can
form a 1-cocycle ρ(c) : Gal(ks/k)→ GL(V )(ks). By Theorem 2.21,

H1(k,GL(V )) = 1.

Thus there exists some g ∈ GL(V )(ks), well-defined up to left multiplication by GL(V )(k),
such that

ρ(cσ) = g−1gσ

for every σ ∈ Gal(ks/k). We can use this g to define a twisted representation of Gc on V
over k. Indeed, the homomorphism ρg : Gc(ks)→ GL(V )(ks) given by

ρg(h) = gρ(h)g−1

commutes with the Galois actions and therefore gives a representation over k. Note that if
G(ks) acts on a subset T ⊆ V (ks), then this definition by conjugation means that Gc(ks)
acts on gT ⊆ V c(ks)

Since g is well-defined up to left multiplication by an element a ∈ GL(V )(k), it is important
to know whether ρg is in fact determined up to isomorphism independently of the GL(V )(k)-
multiple of g. Indeed, if g′ = ag, then conjugation by a gives an isomorphism from ρg to
a representation ρ′g. The isomorphism class of this representation depends only on c, so we
may justifiably write V c for it.

Next, let f be a rational point of V �G, and let Vf be the corresponding fibre in V induced
by the canonical morphism π : V → V � G. Assume that Vf (k) 6= ∅ and that G(ks) acts
transitively on Vf (ks). Let v ∈ Vf (k), and let Gv be the stabilizer of v in G.

Note that G(k) acts on Vf (k). We know from the first principle of AIT that G(k)-orbits on
Vf (k) are in bijection with elements of

ker(H1(k,Gv)→ H1(k,G)),

this being the canonical map γ induced by the inclusion Gv → G. We now generalize this to a
parameterization of orbits of twists Gc(k) with c ∈ H1(k,G). By hypothesis, Gc(ks) = G(ks)
acts transitively on gVf (ks) in V (ks), where g ∈ GL(V )(ks) is such that ρ(cσ) = g−1gσ for
every σ ∈ Gal(ks/k).

Now, we define
V c
f (k) = V (k) ∩ gVf (ks)

which is acted on by Gc(k). The following example illuminates this abstract construction.

Example 4.3. [2] Let k be a field with char(k) 6= 2. Let G be the group scheme µ2 over
k. Let V be the non-trivial one-dimensional representation of G on k, which is equivalent
to just the standard representation of the orthogonal group O(1) over k. By Theorem 3.2,
its polynomial invariants are generated by q(x) = x2, so the geometric quotient V �G is the
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affine line. Let f be a non-zero rational invariant in k. The fibre Vf is then the subscheme
of V defined by {x | x2 = f}. Thus Vf (k) 6= ∅ if and only if f is a square in k×. This holds
over ks, and G(ks) acts simply transitively on Vf (ks).

Note that H1(k,G) = k×/k× 2 by Corollary 2.24. Any c ∈ k× defines a 1-cocycle cσ =√
c
σ
/
√
c that is G(ks)-valued and whose class in H1(k,G) only depends on the image of c

modulo elements of k× 2. Then g =
√
c ∈ GL(V )(ks) trivializes this class in H1(k,GL(V )).

The pure inner form Gc and corresponding representation V c remain the same, but

V c
f (k) = V (k) ∩ gVf (ks) = {x ∈ k× | x2 = fc}.

Therefore, V c
f (k) 6= ∅ if and only if fc ∈ k× 2. Moreover, given any f , there is a unique pure

inner form Gc for which V c
f has k-rational points, in which case Gc(k) acts simply transitively

on V c
f (k).

We are now ready to generalize the first principle of AIT.

Proposition 4.4. [2] Let G be an algebraic group with representation V . Suppose there
exists v ∈ V (k) with invariant f ∈ (V � G)(k) and stabilizer Gv such that the action of
G(ks) on Vf (ks) is transitive. Then for every 1-cocycle c, there is a bijection between the set
of Gc(k)-orbits on V c

f (k) and the elements of the fibre γ−1(c) of

γ : H1(k,Gv)→ H1(k,G)

above c ∈ H1(k,G). In particular, the set of pure inner forms of G for which f lifts to a
k-rational orbit of Gc on V c is determined by the image γ(H1(k,Gv)) in H1(k,G), and for
c = 1 we recover the first principle of AIT.

Proof. Let c be a G(ks)-valued 1-cocycle. Let g ∈ GL(V )(ks) be such that cσ = g−1gσ for
all σ ∈ Gal(ks/k).

Suppose V c
f (k) 6= ∅. We wish to show that c ∈ γ(H1(k,Gv)). Let w ∈ Vf (k

s) for which
gw ∈ V c

f (k). Since we assumed that G(ks) acts transitively on Vf (ks), we can find h ∈ G(ks)
such that w = hv. By our assumption that gw ∈ V c

f (k), for every σ ∈ Gal(ks/k) we have
cσh

σv = hv, so
h−1cσh

σ ∈ Gv.

Hence, (σ 7→ cσ) ∼coho,1 (σ 7→ h−1cσh
σ), which belongs to γ(H1(k,Gv)).

Now suppose that c ∈ γ(H1(k,Gv)). We show that V c
f (k) 6= ∅. Assume without loss of

generality that cσ ∈ Gv(k
s) for every σ ∈ Gal(ks/k). Set w = gv ∈ V c

f (ks). Then if
σ ∈ Gal(ks/k), we have

wσ = gcσv = gv = w.

It follows that w ∈ V c
f (k), so there is a bijection between Gc(k) \ V c

f (k) and ker(γc) where
γc is the canonical map

γc : H1(k,Gc
w)→ H1(k,Gc).
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It remains to prove that there is a bijection between γ−1(c) and ker(γc). We claim there are
maps γ−1(c)→ ker(γc) given by

(σ 7→ dσ) 7→ (σ 7→ dσc
−1
σ )

and ker(γc)→ γ−1(c) given by

(σ 7→ aσ) 7→ (σ 7→ aσcσ).

We must verify that these maps are well-defined. Suppose (σ 7→ dσ) ∈ γ−1(c). We need to
prove that (σ 7→ dσc

−1
σ ) is a 1-cocycle in ker(γc). Observe that for all σ, τ ∈ Gal(ks/k), we

have
(dσc

−1
σ ) · σ(dτc

−1
τ ) · (dστc−1

στ )−1 = dσc
−1
σ (cσd

σ
τ (c−1

τ )σc−1
σ )(dστc

−1
στ )−1 = 1.

Also, we can find h ∈ G(ks) such that for every σ ∈ Gal(ks/k) we have

dσ = h−1cσh
σ

and therefore have
h−1σ(h) = h−1cσh

σc−1
σ = dσc

−1
σ .

It follows that (σ 7→ dσc
−1
σ ) ∈ ker(γc). Likewise, we can show that the second map is

well-defined. Since these two maps are inverses, we have proved the claim.

Let f ∈ (V �G)(k) be an invariant. Suppose G(ks) acts transitively on Vf (ks). We now con-
sider how to determine when V c

f (k) 6= ∅ for a given c ∈ H1(k,G). In other words, we consider
the problem of determining when a rational invariant lifts to a rational orbit for some pure
inner form of G. A general principle in mathematics suggests that if solutions are given by
H1, then obstructions to their existence are given by the vanishing of a class in H2. Under
the assumption that Gv is abelian for every v ∈ Vf (ks), we show that the stabilizers Gv are
canonically isomorphic to some commutative k-group scheme Gf depending only on f . Then
we construct a class df ∈ H2(k,Gf ) such that if df 6= 0, the orbit does not descend to k,
and such that if df = 0, there exists a pure inner form of G that has k-orbits with invariant f .

The following method for obtaining the group scheme Gf is from [2]. We suppose that G is
an algebraic group so that it is of finite type over k. Then the canonical map G× Vf → Vf
will be fpqc, i.e., faithfully flat and quasi-compact. We recall the basic definitions of fpqc
descent.

Definition 4.5. [30, §54.15] Let S be a scheme, and let {fi : Si → S}i∈I be a family of
morphisms to S. We say the family is an fpqc (or faithfully flat and quasi-compact) cover of
S if the following two conditions hold.

(i) Each fi is flat, and the images fi(Si) cover S.

(ii) For every affine open U of S, there exists a finite set K, a map i : K → I, and affine
opens Ui(k) ⊆ Si(k) such that U =

⋃
k∈K fi(k)(Ui(k)).

28



Definition 4.6. [36] Suppose U = {Ui → S}i∈I is an fpqc cover of a scheme S. Let
Uij = Ui×S Uj and Uijk = Ui×S Uj ×S Uk. A descent datum relative to U is a quasi-coherent
sheaf Fi on Ui for every i ∈ I and an isomorphism ϕij : Fi|Uij → Fj|Uij for all i, j ∈ I such
that ϕik|Uijk = ϕjk|Uijk ◦ ϕij|Uijk (the cocycle condition) holds for all i, j, k ∈ I. We say the
descent datum descends or is effective if there exists a quasi-coherent sheaf F on S and a
family of isomorphisms ιi : F|Ui → Fi satisfying ϕij ◦ ιi|Uij = ιj|Uij .

According to the general theory of fpqc descent, given an fpqc map G × Vf → Vf × Vf as
above, any descent datum will be effective. A general reference for this theory is §34 of [30].
In particular, the type of descent we apply in the following argument is Galois descent, a
special case of fpqc descent. The relationship between Galois descent and fpqc descent is
described in §34.6 of [30].

Given v ∈ Vf (k
s) and σ ∈ Gal(ks/k), we have vσ inVf (k

s) as well, so we can choose
gσ ∈ G(ks) such that gσvσ = v, and this gσ is well-defined up to left multiplication by
elements of Gv. We have isomorphisms θσ : (Gv)

σ → Gv given by h 7→ gσhg
−1
σ , and these are

independent of the choice of gσ because each Gv is abelian. (Indeed, the isomorphisms are
trivial.) They satisfy the 1-cocycle condition θστ = θσ ◦ θστ for all σ, τ ∈ Gal(ks/k), so they
give descent data for Gv. This descent data determines the commutative k–group scheme Gf .

Let ιv : Gf (k
s)
→−→ ∼Gv be the family of canonical isomorphisms. Then if h ∈ G(ks) and

v ∈ Vf (ks), we have, for every b ∈ Gf (k
s),

ιhv(b) = hιv(b)h
−1. (2)

Moreover, for every σ ∈ Gal(ks/k), v ∈ Vf (ks), and b ∈ Gf (k
s), we have

(ιv(b))
σ = ιvσ(bσ). (3)

We now construct a class df ∈ H2(k,Gf ) whose triviality is equivalent to existence of a
rational orbit. Let v and gσ be as above with gσvσ = v. Let

dσ,τ = ι−1
v (gσg

σ
τ g
−1
στ ).

By standard arguments, dσ,τ is a 2-cocycle whose image df ∈ H2(k,Gf ) does not depend
on the choice of gσ. We also claim that dσ,τ does not depend on the choice of v ∈ Vf (ks).
Indeed, suppose v′ = hv ∈ Vf (ks) where h ∈ G(ks). Then for any σ ∈ Gal(ks/k), we have

hgσ(h−1)σ(v′)σ = hgσv
σ = hv = v′.

Furthermore, for all σ, τ ∈ Gal(ks/k), we have

hgσ(h−1)σ(hgτ(h−1)τ )σ(hgστ (h
−1)στ )−1 = hgσg

σ
τ g
−1
στ h

−1.

Thus by (2), we find that

ι−1
v′ (hgσ(h−1)σ(hgτ (h

−1)τ )σ(hgστ (h
−1)στ )−1) = ι−1

v (gσg
σ
τ g
−1
στ ).
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If Vf (k) 6= ∅, then we can take v to be in Vf (k), gσ = 1, and df = 0. We summarize the
above in the following result.

Proposition 4.7. [2] Let G be a reductive algebraic group acting on a representation V over
k. Suppose f ∈ (V �G)(k), and suppose G(ka) acts transitively on Vf (ka) so that for every
v ∈ Vf (ka), the stabilizer Gv is abelian. Suppose that the canonical map G× Vf → Vf × Vf
is fppf. Let df ∈ H2(k,Gf ) be constructed as above. If Vf (k) 6= ∅, then df = 0.

A partial converse also holds. We will prove this, but first we must prove a technical lemma.

Lemma 4.8. [2] Let G be a reductive algebraic group acting on a representation V over
k. Let ks be a separable closure of k. Let v ∈ Vf (ks), and let Gv be its stabilizer. Suppose
f ∈ (V �G)(k), and suppose G(ks) acts transitively on Vf (ks) so that for every v ∈ Vf (ks),
the stabilizer Gv is abelian. Let gσ be chosen as earlier so that gσvσ = v. Then there exists
a 1-cochain eσ with values in Gv(k

s) such that (σ 7→ eσgσ) is a 1-cocycle.

Proof. Let ιv : Gf (k
s)
∼−→ Gv be a family of canonical isomorphisms. Let σ ∈ Gal(ks/k). Let

bσ = g−1cσg
σ as earlier, and define

eσ = ιv(b
−1
σ ).

There exists gσ such that gσvσ = v. Then by (2) and (3), for every σ ∈ Gal(ks/k) and
b ∈ Gf (k

s) we have
gσ(ιv(b))

σg−1
σ = ιv(b

σ).

Therefore, for any σ, τ ∈ Gal(ks/k), we have

(eσgσ)(eτgτ )
σ(eστgστ )

−1 = ιv(b
−1
σ )gσ(ιv(b

−1
τ ))σgστ g

−1
στ ιv(bστ )

= ιv(b
−1
σ )ιv(b

−1
τ )σgσg

σ
τ g
−1
στ ιv(bστ )

= ιv(b
−1
σ )ιv((b

−1
τ )σ)ιv(bσb

σ
τ b
−1
στ )ιv(bστ )

= 1,

where the last equality holds because Gf (k
s) is abelian by assumption.

Theorem 4.9. [2] Let G be a reductive algebraic group acting on a representation V over
k. Suppose f ∈ (V �G)(k), and suppose G(ks) acts transitively on Vf (ks) so that for every
v ∈ Vf (ks), the stabilizer Gv is abelian. Then df = 0 ∈ H2(k,Gf ) if and only if there exists
a pure inner form Gc of G such that V c

f (k) 6= ∅. In other words, df = 0 is a necessary and
sufficient condition for the existence of rational orbits for some pure inner form of G.

In particular, if H1(k,G) = 1, then G(k)-orbits on Vf (k) exist if and only if df = 0.

Proof. We claim that df does not depend on the pure inner form of G. Suppose c ∈ H1(k,G)
and g ∈ GL(V )(ks) are such that cσ = g−1gσ for every σ ∈ Gal(ks/k). Take any v ∈ Vf (ks).
Let gσ be chosen so that gσvσ = v as earlier. Observe that gv ∈ V c

f (ks) and

(ggσc
−1
σ g−1) · (gv)σ = gv.
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We then calculate
(gσc

−1
σ ) · σ(gτc

−1
τ ) · (cστg−1

στ ) = gσg
σ
τ g
−1
στ .

By that computation and Proposition 4.7, necessity holds, so we need only prove sufficiency.
Note that by definition of the Galois action on a pure inner form, we have Gc

v = Gg−1v since if
gρ(h)g−1v = v, then ρ(h) ∈ Gg−1v. We wish to show that the collection {Gc

v} descends to Gf

just as {Gv} does. We consider the collection of isomorphisms ιcv = ιg−1v : Gf (k
s)→ Gc

v(k
s).

Since this collection satisfies (2) and (3), we indeed obtain the same group scheme Gf in this
way and thus the same class df .

Let v ∈ Vf (ks). Pick gσ such that gσvσ = v for every σ ∈ Gal(ks/k). If df = 0, we claim we
can pick gσ so that (σ 7→ gσ) is a 1-cocycle and such that k-orbits exist for the pure inner
twist associated to this 1-cocycle. Indeed, suppose df = 0. Let ιv : Gf (k

s)
∼−→ Gv be a family

of canonical isomorphisms. Then we can find a 1-cochain (σ 7→ bσ) with values in Gf (k
s)

such that for every σ, τ ∈ Gal(ks/k) we have

gσg
σ
τ g
−1
στ = ιv(bσb

σ
τ b
−1
στ ).

We now see how Lemma 4.8 completes the proof. Consider the twist of V obtained from the
1-cocycle

c = (σ 7→ eσgσ) ∈ H1(k,G).

Choose g ∈ GL(V )(ks) such that g−1gσ = eσgσ for every σ ∈ Gal(ks/k). Then we have that
gv ∈ V c

f (k) since, for every σ ∈ Gal(ks/k),

(gv)σ = geσgσv
σ = geσv = gv.

This completes the proof.

Under a stronger assumption on the action of G(ks) on Vf (ks), it now follow that a unique
pure inner form Gc renders V c

f (k) non-empty.

Corollary 4.10. [2] Let G be a reductive algebraic group acting on a representation V over
k. Suppose f ∈ (V �G)(k), and suppose G(ks) acts simply transitively on Vf (ks). Then there
exists a unique pure inner form Gc of G over k such that V c

f (k) is non-empty. Moreover,
Gc(k) acts simply transitively on V c

f (k).

Proof. Since the action is simply transitive, therefore free, we have Gf = 1 in this case. It
follows that H2(k,Gf ) = 0, so the cohomological obstruction df vanishes. It follows that
there exists a pure inner form Gc for which rational orbits exist. Let v0 ∈ V c

f (k) be a rational
lift. Then since Gv0 = 1, we find that γ(H1(k,Gc

v0
)) is a singleton. Therefore, no other pure

inner form has a rational orbit with invariant f , and there is just one orbit of Gc(k) on
V c
f (k).

4.2 Example of obstruction to lifting rational points

Let G = SLn. Let k be a field with char(k) 6= 2. Let W be an n-dimensional k-vector space.
Let e be a basis vector of ∧n(W ). Note that G acts on the space Sym2(W ∗) of symmetric
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bilinear forms 〈v, w〉 on W by
g · 〈v, v′〉 = 〈gv, gv′〉

for all v, v′ ∈ W .

By Theorem 3.2, the ring of G-invariant polynomials for this representation is generated by
the discriminant, which is a polynomial of degree n.

Next, consider the action ofG on V = Sym2(W ∗)⊕Sym2(W ∗). Let A = 〈·, ·〉A and B = 〈·, ·〉B
be symmetric bilinear forms on W . We associate a corresponding degree n binary form over
k to these symmetric bilinear forms by defining

f(x, y) = disc(xA− yB) = f0x
n + f1x

n−1y + ...+ fny
n.

The coefficients of f(x, y) are polynomial invariants of degree n on V , and these n + 1
coefficients freely generate the ring of polynomial invariants for G for this representation,
as we will see shortly. We call f(x, y) the invariant binary form associated to the vector
v = (A,B), or more precisely, to its orbit.

Definition 4.11. Let k be a field. Let f(x, y) be a degree n binary form, say

f(x, y) = f0x
n + f1x

n−1y + ...+ fny
n.

Let ka be an algebraic closure of k. Over ka, we can factor f(x, y) as

f(x, y) =
∏

(αix− βiy)

for some αi, βi ∈ ka. The discriminant of f is defined to be

∆(f) =
∏
i<j

(αiβj − αjβi)2.

Then ∆(f) is a homogeneous polynomial of degree 2n− 2 in the fj.

It follows from this definition that the discriminant ∆(f) is a polynomial invariant of degree
2n(n− 1) on V .

Theorem 4.12. [2] Let k be a field with separable closure ks. Let

f(x, y) = f0x
n + f1x

n−1y + ...+ fny
n

be a binary form of degree n over ks with f0 6= 0 and ∆(f) 6= 0. Let G = SLn, let W be an
n-dimensional k-vector space, and let V = Sym2(W ∗)⊕ Sym2(W ∗). Then there exist vectors
(A,B) in V (ks) whose invariant form is f(x, y), and all these vectors lie in a single closed
G(ks)-orbit. Moreover, the stabilizer of any vector in the orbit is an elementary abelian
2-group of order 2n−1.
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Proof. We claim that we can find symmetric bilinear forms A and B on W over ks such
that disc(xA− yB) = f(x, y). Indeed, f(x, y) splits into linear factors over ks, so the claim
follows from the correspondence between symmetric bilinear forms and symmetric matrices
and Definition 2.54. The forms A and B both induce ks-linear maps W → W ∗, which, by
abuse of notation, we also denote A and B, respectively. Since f0 6= 0 by assumption, the
map A : W → W ∗ is an isomorphism, and so is B by the same argument. Therefore, we
can define an endomorphism T = A−1B : W → W . Since both A and B are symmetric, T
is self-adjoint with respect to 〈·, ·〉A on W .

Now, write f(x, 1) = f0g(x). Observe that det(xI − T ) = g(x). By assumption ∆(f) 6= 0,
so g(x) is separable. It follows that T is regular and semisimple. Note that G(ks) acts
transitively on bilinear forms with discriminant f0, and note also that the stabilizer of A
is the orthogonal group we denote by SO(W,A). Since SO(W,A)(ks) acts transitively on
self-adjoint operators T with separable characteristic polynomial equal to g(x), there is only
one G(ks)-orbit on vectors (A,B) with invariant form f(x, y). Note that the stabilizer is
then the centralizer of T in SO(W,A), which is an elementary abelian 2-group of order 2n−1.
For proofs of these assertions, see Proposition 4 of [1].

Theorem 4.13. [2] Let k be a field with separable closure ks. Let

f(x, y) = f0x
n + f1x

n−1y + ...+ fny
n

be a binary form of degree n over ks with f0 6= 0 and ∆(f) 6= 0. Let G = SLn, let W be an
n-dimensional k-vector space, and let V = Sym2(W ∗) ⊕ Sym2(W ∗). Let f(x, 1) = f0g(x).
Let L = k[x]/(g(x)). In this setting, there is a canonical bijection between the set of orbits
(A,B) of G(k) on V (k) with invariant binary form f(x, y) and the set of equivalence classes
of pairs (α, t) with α ∈ L× and t ∈ k× satisfying

f0N(α) = t2.

The equivalence relation is defined by saying (α, t) ∼ (α′, t′) if there exists c ∈ L× with
c2α′ = α and N(c)t′ = t. Orbits having invariant f(x, y) exist if and only if f0 ∈ N(L×)k× 2.

Moreover, by descending the stabilizers GA,B for (A,B) ∈ Vf (k
s) to k, we obtain a group

scheme Gf ' (ResL/k(µ2))N=1 of order 2n−1 over k.

Proof. Suppose (A,B) ∈ V (k) satisfies disc(xA − yB) = f(x, y). As before, A and B give
two isomorphisms abusively denoted by the same variables, and we thus obtain an endomor-
phism T = A−1B : W → W that is self-adjoint with respect to 〈·, ·〉A and has g(x) as its
characteristic polynomial. Moreover, g(x) is separable since ∆(f) 6= 0 by assumption, and
W is a free L = k[T ] = k[x]/(g(x))-module of rank one. Let β be the image of x in L. Then
we have a basis {1, β, β2, ..., βn−1} of L over k.

Let m be a basis vector for W over L. Note that A and B arise as traces of L-bilinear forms
on W . Consider the k-linear map L→ k given by

λ 7→ 〈m,λm〉A.
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By separability of g(x), we see that g′(β) ∈ L×. Since the trace form (x, y) 7→ Trace(xy) is
non-degenerate, there exists a unique κ ∈ L× such that

〈m,λm〉A = Trace(κλ/g′(β))

for every λ ∈ L. But since every element of L is self-adjoint with respect to 〈·, ·〉A, for every
µ, λ ∈ L we have that

〈µm, λm〉A = Trace(κµλ/g′(β)).

Since f0 6= 0, we see that κ ∈ L×. Define α = κ−1 ∈ L×. Then

〈µm, λm〉A = Trace((µλ/α)g′(β)).

By a result from [27, Ch. III, §6], for every µ, λ ∈ L the value 〈µm, λm〉A is the coefficient
of βn−1 in the expansion of µλ/α with respect to the basis. Therefore, 〈µm, λm〉B is the
coefficient of βn−1 in the expansion of βµλ/α with respect to the basis.

Define t ∈ k× by
t(m ∧ βm ∧ β2m ∧ ... ∧ βn−1m) = e ∈ ∧n(W ).

Then we calculate
〈e, e〉n = t2 det(〈βim,βjm〉A).

Now,
〈e, e〉n = (−1)n(n−1)/2f0 and det(〈βim,βjm〉A) = (−1)n(n−1)/2N(α)−1,

so t2 = f0N(α).

So far, we have given an étale algebra L corresponding to the binary n-ic form f(x, y). We
have also explained how elements α ∈ L× and t ∈ k× satisfying t2 = f0N(α) correspond to
the vector (A,B). In defining α and t, we needed to choose a basis vector m for W over
L. If we had instead chosen m′ = cm with c ∈ L×, we would have obtained α = c2α′ and
t = N(c)t′, so the vector (A,B) only determines the pair (α, t) up to the equivalence relation
we described earlier.

It will follow that orbits with invariant f(x, y) exist if and only if f0 ∈ N(L×)k× 2. If n is
odd, the pair (α, t) = (f0, f

(n+1)/2
0 ) will produce an orbit. If n is even, there may be no orbits.

For example, when n = 2, there do not exist orbits over R with invariant f(x, y) = −x2−y2.

Every equivalence class (α, t) determines an orbit. Since L is n-dimensional over k and
W is also n-dimensional over k, there exists a linear isomorphism θ : L → W that maps
1 ∧ β ∧ ...βn−1 ∈ ∧n(L) to t−1e ∈ ∧n(V ). Every other isomorphism that maps these two
elements to each other is of the form hθ for h ∈ SL(W ). With θ, we can define bilinear forms

〈θ(µ), θ(λ)〉A = Trace(µλ/(αg′(β))) and

〈θ(µ), θ(λ)〉B = Trace(βµλ/(αg′(β)))
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onW . The G(k)-orbit of (A,B) in V (k) is well-defined and has invariant polynomial f(x, y).

Next, we need to figure out what the stabilizer of (A,B) ∈ V (ks) is in an orbit corresponding
to the binary form f(x, y). To this end, let Ls = ks[x]/(g(x)) be a ks-algebra of degree
n. Since 〈·, ·〉A is non-degenerate, the stabilizer of A in G is the special orthogonal group
SO(W,A). Similarly, the stabilizer of B in SO(W,A) is the subgroup of elements g that
commute with T . Since T is regular and semisimple, we find that the centralizer of T in
GL(W ) is ks[T ]× = (Ls)×, and every operator in (Ls)× is self-adjoint. It follows that the
intersection

(Ls)× ∩ SO(W,A)(ks)

consists of those g ∈ (Ls)× that are self-adjoint and orthogonal, i.e., those g satifying g2 = 1
and N(g) = 1. For any ks-algebra E we can make a similar argument, from which it follows
that the elements in G(E) that stabilize (A,B) are precisely those h ∈ (E ⊗ Ls)× such that
h2 = 1 and N(h) = 1. Thus letting GA,B denote the stabilizer of (A,B), we have

GA,B ' (ResLs/ks(µ2))N=1

over ks.

Finally, we need to show that these group schemes descend to (ResL/k(µ2))N=1. Since both
schemes are flat, we construct isomorphisms and apply faithfully flat descent. The isomor-
phisms are given by

ιv : (ResL/k(µ2))N=1(ks)→ Gv

and are compatible with the descent data for each v ∈ Vf (ks), i.e., satisfy (2) and (3). Let
α1, ..., αn ∈ ks be the roots of g(x). For each i = 1, ..., n, define

hi(x) =
g(x)

x− αi
and gi(x) = 1− 2

hi(x)

hi(αi)
.

Suppose v = (A,B) ∈ Vf (ks) and (m1, ...,mn) is an n-tuple of 0’s and 1’s such that
∑
mi is

even. Let T = A−1B as before. Then we set

ιv(m1, ...,mn) =
n∏
i=1

gi(T )mi .

Given a linear operator T on W with characteristic polynomial g(x), gi(T ) acts as mul-
tiplication by −1 on the αi-eigenspace of T and acts trivially on every other eigenspace.
This implies that ιv is injective. Surjectivity follows because Gv(k

s) has the same cardinal-
ity as (ResL/k(µ2))N=1(ks), and a short calculation shows that Equations (2) and (3) are
satisfied.

We now interpret this result cohomologically. To do so, we have to study the cohomology of
certain finite group schemes. Let n ≥ 1 be an integer. Consider the action of Sn on the vector
space N = (Z/2Z)n by permuting the elements ei of its natural basis. The non-degenerate
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symmetric bilinear form
〈n,m〉 =

∑
nimi

is invariant under this action.

Now, let L be an étale k-algebra of rank n, and let R = ResL/k(µ2). Let ks be a separable
closure of k. The absolute Galois group Gal(ks/k) acts by permuting the n different ho-
momorphisms L → ks. This gives a homomorphism Gal(ks/k) → Sn up to conjugacy. We
also have an isomorphism R(ks) ' N of Gal(ks/k)-modules. Letting β be the image of x in
L = k[x]/(g(x)) = k[β] with g(x) monic and separable of degree n, we see that the n distinct
homomoprhisms are obtained by mapping β to the n distinct roots βi of g(x). Therefore,
the points of R over any field extension K of k are in bijection with the monic factors h(x)
of g(x) over K.

Let R0 = (ResL/k(µ2))N=1 be the subgroup scheme of norm 1 elements of µ2. The isomor-
phism above sends R0(ks) to N0. The points of R0 over a field extension K correspond to
monic factors h(x) of g(x) of even degree over K.

There is a diagonal embedding µ2 → R corresponding to the trivial Galois submodule M of
N . The points of R/µ2 over K likewise correspond to monic factorizations g(x) = h(x)j(x)
such that either h(x) and j(x) have coefficients in K or they have conjugate coefficients in
some quadratic extension of K. Such factorizations are said to be rational over K. For even
n, µ2 is a subgroup of R0. The points of R0/µ2 over K then correspond to even degree monic
factorizations g(x) = h(x)j(x) rational over K.

We now wish to calculate the Galois cohomology of these group schemes. LetR = ResL/k(µ2).
Then

H0(k,R) = L×[2], H1(k,R) = L×/L× 2, H2(k,R) = Br(L)[2],

where Br(L)[2] denotes the 2-torsion subgroup of the Brauer group of L. LetR0 = (ResL/k(µ2))N=1.
Then

H0(k,R0) = L×[2]N=1.

Moreover, by the long exact sequence in cohomology, we obtain the exact sequence

1→ 〈±1〉/N(L×[2])→ H1(k,R0)→ L×/L× 2 → k×/k× 2 → H2(k,R0)→ Br(L)[2].

The map H1(k,R0) → L×/L× 2 induces a surjection H1(k,R0) � (L×/L× 2)N≡1, where
(L×/L× 2)N≡1 denotes the subgroup of L×/L× 2 consisting of elemenets with square norm to
k×/k× 2. The kernel

ker(H1(k,R0)→ L×/L× 2) = im(〈±1〉/N(L×[2])→ H1(k,R0))

has order one if −1 is the norm of an element of L×[2], i.e., if g(x) has a factor of odd degree.
Otherwise, the kernel has order two.
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Now, if f ∈ (V �G)(k) is given by

f(x, y) = f0x
n + ...+ fny

n

with f(x, 1) = f0g(x), and if f0 6= 0 and ∆(f) 6= 0, then the stabilizer Gf satisfies Gf '
R0 = (ResL/k(µ2))N=1. Moreover,

ker(H2(k,R0)→ H2(k,R)) ' k×/(N(L×)k× 2).

Note that this agrees with Theorem 4.13’s statement about orbits with invariant f(x, y)
existing if and only if f0 ∈ N(L×)k× 2.

We claim, but do not prove, that, under this isomorphism, the class of f0 ∈ k×/(N(L×)k× 2)
is the class df ∈ H2(k,R0) defined earlier. This follows from Theorem 9 of [2]. Since
H1(k, SLn) = 0 by Theorem 2.21, the only obstruction to the existence of an SLn(k)-orbit
with invariant form f(x, y) is the non-vanishing of df . When df vanishes, the SLn(k)-orbits
with rational invariant f form a torsor for H1(k,R0), i.e., they are equipped with a transitive
action of H1(k,R0) such that the stabilizer of every point under the action is trivial.

5 A few examples of AIT over Z
The original AIT papers [1] and [2] already considered the possibility of applying arithmetic
invariant theory not only over fields, but over rings. The ring Z is particularly useful for the
number-theoretic applications of AIT that inspired those two papers, so the examples in the
original AIT papers dealt with AIT over Z. Because the methods used in those examples
were largely ad hoc, we refer to them as examples of “classical” AIT over Z.

Later, in the preprint [3], the authors observed that a generalized version of the fundamental
principle of AIT (i.e., Lemma 3.1) follows basically from a long exact sequence in non-abelian
group cohomology. Using this principle, the authors are able to obtain some results over Z.
We conclude with a few examples.

5.1 AIT over Z via long exact sequences

In [3], the authors observe that Proposition 3.2.2 from [14] gives an analogue of Lemma 3.1
for arbitrary schemes. We now state but do not prove this result. It basically follows from
standard results about the long exact sequence in non-abelian group cohomology, given in
§3 of [14].

Proposition 5.1. [14], [3] Let G be a group scheme over a base scheme S. Let H be a
subgroup scheme of G, and let X = G/H, which we take a priori to be a sheaf quotient, i.e.,
the sheafification of the presheaf defined by X(U) = G(U)/H(U). Then there is a functorial
long exact sequence of pointed sets

0→ H(S)→ G(S)→ X(S)→ H1(S,H)→ H1(S,G).
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We specify more precisely what exactness means for this sequence. We mean that (i) H(S)→
G(S) is injective and the non-empty fibres of the map of sets G(S)→ X(S) are H(S)-orbits
of G(S), (ii) the images of elements of X(S) are identified in H1(S,H) if and only if the
elements are the same modulo the action of G(S), and (iii) an element of H1(S,H) is sent
to the trivial element of H1(S,G) if and only if it is in the image of X(S).

Corollary 5.2. [3] Let G/S be a group scheme over a base scheme acting on a representation
V over S. Let v ∈ V (S). Let Gv denote the stabilizer of G at v. Then there is a functorial
long exact sequence

0→ Gv(S)→ G(S)
g 7→g(v)−−−−→ (G/Gv)(S)→ H1(S,Gv)→ H1(S,G).

In particular, if Gv is commutative, then

(G/Gv)(S)/G(S) ' ker(H1(S,Gv)→ H1(S,G)).

Proof. Take H = Gv in Proposition 5.1.

Remark 5.3. As mentioned in the statement of Proposition 5.1, in general we simply take
the quotient X = G/H to be a sheaf quotient. However, in general we have more structure
available to us. When H is flat, as is generically the case, then G/H can be equipped with
the structure of an algebraic space, a slight generalization of a scheme that we will not define.
The result holds with any choice of topology: Zariski, étale, fppf, fpqc, Nisnevich, etc.

Remark 5.4. The term (G/Gv)(S) can be thought of as the set of v′ ∈ V (S) that are
in the same G(S ′)-orbit as v for some cover S ′ → S. Then (G/Gv)(S)/G(S) consists of
G(S)-equivalence classes of such v′.

5.2 Examples

Throughout this section, we use Corollary 5.2 in conjunction with Remark 5.4 to parametrize
Z-orbits of representations of various reductive group schemes.

Example 5.5. Let G = GL2 over Z act on the representation V of 2× 2 matrices. Fix an
element v ∈ V (Z) with characteristic polynomial x2 + d where ±d is not a perfect square.
Over Q, all such elements are equivalent under the G(Q)-action, but we will show this is not
the case over Z. The quadratic order O corresponding to such an element is isomorphic to
Z[x]/(x2 + d) ' Z[

√
−d]. The stabilizer at v is then Gv ' ResZ[

√
−d]/Z(Gm).

Note that H1
ét(Z,GL2) vanishes by [3]. Therefore, the G(Z)-orbits are in correspondence with

the elements ofH1
ét(Z,ResZ[

√
−d]/Z(Gm)). By an argument from [3], if O is any quadratic order

corresponding to some element v ∈ V (Z),

H1
ét(Spec(Z),ResO/Z(Gm)) = H1

ét(Spec(O),Gm) = Pic(O).

When d = 5, the corresponding quadratic order is (up to isomorphism) Z[
√
−5]. Then

|Pic(Z(
√
−5))| = 2, so matrices with characteristic polynomial x2 + 5 fall into two GL2(Z)-
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orbits.

When d = 1, the corresponding quadratic order is Z[i], so since |Pic(Z[i])| = 1, matrices
with characteristic polynomial x2 + 1 fall into one GL2(Z)-orbit.

Finally, when d = 3, |Pic(Z[
√
−3])| = 2, so matrices with characteristic polynomial x2 + 3

fall into two GL2(Z)-orbits. Notice that even though the class number of Q(
√
−3) is 1, the

order Z[
√
−3] is not the ring of integers Z[1+

√
−3

2
] of Q(

√
−3), which is why we get two orbits

rather than one.

We now do the same calculations by hand to illustrate the advantages of the cohomological
approach. Any 2× 2 integer matrix with characteristic polynomial x2 + d, where ±d is not
a square, has the form

A =

(
a b
c −a

)
and satisfies a2 + bc = −d. The group GL2(Z) is generated by the three matrices

S =

(
0 −1
1 0

)
, T =

(
1 0
1 1

)
, U =

(
1 0
0 −1

)
.

We calculate
SAS−1 =

(
−a −c
−b a

)
,

TAT−1 =

(
a− b b

2a− b+ c −a+ b

)
,

UAU−1 =

(
a −b
−c −a

)
.

Thus, applying S and U in that order, we can assume that b > 0, c < 0, and b ≤ −c.
Repeatedly applying T or T−1, we can make |a| ≤ b

2
. If at some point we find that |c| < |b|,

we can apply S and U again to make b ≤ −c and continue applying T and T−1. We stop
when |a| ≤ b

2
, b > 0, c < 0, and b ≤ −c. But then

b ≤ −c =
a2 + d

b
≤ b

2
+
d

b
,

so b2 ≤ 2d.

Now, if d = 5 (the x2 +5 case), then b ∈ {1, 2, 3}. If b = 1, we must have (a, b, c) = (0, 1,−5).
If b = 2, then (a, b, c) ∈ {(1, 2,−3), (−1, 2,−3)}, and these two triples are equivalent under
the action of T . If b = 3, then (a, b, c) ∈ {(0, 3,−1), (1, 3,−2)}, neither of which satisfies
b ≤ −c. A direct calculation shows that the 2 × 2 matrices corresponding to the triples
(a, b, c) = (0, 1,−5) and (1, 2,−3) are not GL2(Z)-conjugate.

If d = 1, then (a, b, c) = (0, 1,−1), so we only get one GL2(Z)-orbit.
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If d = 3, then b ∈ {1, 2}. If b = 1, then (a, b, c) = (0, 1,−3), and if b = 2, then (a, b, c) =
(1, 2,−2). This once again gives two GL2(Z)-orbits. We thus recover the results we obtained
cohomologically.

Example 5.6. [3], [35] Let G = GL1×GL2 over Spec(Z) act on the representation V of non-
zero binary quadratic forms by having GL1 act by scaling and GL2 act by its standard action
on A2

Z. Since 0 6= V , V (Z) contains only primitive forms (i.e., those with relatively prime
coefficients). Let v ∈ V (Z), and let ∆(v) denote its discriminant. Since H1

ét(Z, G) vanishes
by [3], integral equivalence classes of primitive binary quadratic forms with discriminant
∆(v) are in bijection with elements of H1

ét(Z, Gv), where Gv denotes the stabilizer. By §2 of
[31], Gv = ResO/Z(Gm) where O is the quadratic order of discriminant ∆(v). By [3],

H1
ét(Z, Gv) = Pic(O).

Therefore, G(Z)-equivalence classes of primitive binary quadratic forms with discriminant
∆(v) are in bijection with elements of Pic(O) where O is the quadratic order of discriminant
∆(v). This recovers the classical correspondence known as Gauss composition over Z.

However, this example is quite similar to our previous one, so now we will make it more
interesting by doing it over an arbitrary base scheme. In doing so, we will demonstrate a
limitation of AIT over arbitrary schemes.

In [35], Wood observes that the GL1-action on binary quadratic forms can be viewed, in-
stead of as a scaling, as an invertible change of coordinates. Indeed, given a form f(x, y) =
ax2 + bxy + cy2, we can instead consider the modified form g(x, y, z) = ax2z + bxyz + cy2z
and then view the GL1(Z)-action (which is just multiplication by ±1) as an invertible change
of coordinates in the z-variable. Motivated by this observation, Wood notes that the correct
generalization of the action of GL2 ×GL1 on the space Sym2(A2

Z)− {0} of non-zero binary
quadratic forms is the following.

Let S be an arbitrary base scheme, and let W be a rank 2 vector bundle over S. Let
G = GL(W )×GL1 act on V = Sym2(W )⊗ L− {0}, where GL1 acts on L and the GL(W )
action on Sym2(W ) is induced by the standard action on Sym2(W ). In §2 of [35], Wood
gives a construction of an OS-algebra, denoted C, that is analogous to the quadratic order
in Gauss composition over Z. (In fact, C = OS ⊗ ∧2(W ∗) ⊗ L∗, equipped with a certain
algebra structure, but this will not be important for our purposes.)

Let S ′ = Spec(C). Then, letting Gv denote the stabilizer of v ∈ V (S), we wish to calculate
ker(H1

ét(S,Gv)→ H1
ét(S,G)). By analogy, we would hope that the stabilizer Gv is isomorphic

to ResS′/S(Gm), but this might only be the case locally. Also, H1
ét(S,G) might not vanish.

We do not know a way of calculating these cohomology groups directly. However, it follows
from the main theorem of [35], which was obtained by other methods, that we do actually
have H1

ét(S,Gv) ' H1
ét(S,ResS′/S(Gm)).
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6 Appendix: Non-abelian second Galois cohomology
To the best of our knowledge, no text thus far published on AIT contains a summary of
how the second non-abelian Galois cohomology set is defined. The definition of this set is,
however, potentially very useful because it allows for the calculation of cohomological ob-
structions of the type discussed in [2] even in the case where the stabilizers of the algebraic
group being considered are non-abelian. (They are always assumed to be abelian in that
paper.)

The original description of the second non-abelian Galois cohomology set is in terms of
gerbes. That definition, due to Grothendieck, Dedecker, and Giraud, is given in [14]. We
discuss a different but equivalent definition first given by Springer in [29]. All definitions in
this section can be found in [12].

Definition 6.1. Let k be a field with separable closure ks. Let Γ = Gal(ks/k) be its absolute
Galois group. Fix σ ∈ Γ. Let σ∗ denote the morphism Spec(ks) → Spec(ks) induced by σ.
Let G be an algebraic group over ks, viewed as a group scheme. Let Gσ denote the base
change of G by σ∗. Then, letting p : G→ Spec(ks) be the structure morphism of G, we have
a commutative diagram

G Gσ

Spec(ks) Spec(ks)

p

σ∗

A σ-semilinear automorphism of G is an isomorphism of algebraic groups from Gσ to G. A
k-semilinear automorphism of G is a σ-semilinear automorphism of G for some σ ∈ Γ.

The k-semilinear automorphisms of G form a group, denoted SAut(G/k), under composition.
We have an exact sequence

1→ Aut(G)→ SAut(G/k)→ Γ, (4)

where the middle arrow is obtained by observing that any automorphism of G is a 1-
semilinear automorphism, and the last arrow is obtained by sending σ-semilinear automor-
phisms to σ ∈ Γ. Let Int(G) be the normal subgroup of inner automorphisms in Aut(G).
Define

Out(G) = Aut(G)/Inn(G) and SOut(G/k) = SAut(G/k)/Inn(G).

Taking (4) modulo Inn(G), we obtain the new exact sequence

1→ Out(G)→ SOut(G/k)→ Γ. (5)

There is an action of SAut(G/k) on G(ks), which we now describe. Let σ ∈ Γ, and let
fσ : G(ks)→ (Gσ)(ks) be the group isomorphism given by

fσ(x) = x ◦ σ∗.
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Now, given a σ-semilinear automorphism φ : Gσ → G, define the automorphism φ∗ : G(ks)→
G(ks) evaluated at x ∈ G(ks) by

φ∗(x) = φ ◦ x ◦ σ∗.

Observe that if φ′ is another σ-semilinear automorphism, then (φφ′)∗ = φ∗ ◦ φ′∗. We have
thus defined a homomorphism SAut(G/k) → Aut G(ks). We will often abuse notation by
writing φ instead of φ∗.

We consider SAut(G/k) equipped with the weak topology with respect to the evaluation
maps evx : SAut(G/k) → G(ks) given by φ 7→ φ(x) for x ∈ G(ks) and φ ∈ SAut(G/k), i.e.,
the coarsest topology such that each of these maps is continuous. Here G(ks) is equipped
with the discrete topology.

Definition 6.2. Given a topological space T , a map T → SAut(G/k) given by t 7→ φt is
weakly continuous if it is continuous with respect to the topology just defined on SAut(G/k),
or equivalently, if for every x ∈ G(ks), the map T → G(ks) given by t 7→ ft(x) is continuous.
Note that t 7→ ft(x) is continuous if and only if it is locally constant.

Definition 6.3. A k-form of G is an algebraic group G̃ over k together with an isomorphism
G ' G̃×k ks of algebraic groups over ks.

Note that given a k-form of G, we obtain a splitting Γ → SAut(G/k) of (4) given by
σ 7→ id×k (σ−1)∗.

Definition 6.4. Let f : Γ → SAut(G/k) be a section of (4). Let G be an algebraic group
over ks. Let K/k be a finite Galois extension for which there is a K-form G̃ of G. Let
s : Γ→ SAut(G/K) be the splitting of (4) associated with G̃. We say f is continuous if for
every σ ∈ Γ, the map Γ→ Aut(G) given by

τ 7→ s−1
τ f−1

σ fστ , τ ∈ Γ,

is locally constant.

Definition 6.5. Let G be an algebraic group over ks. A k-band in G is a group homomor-
phism κ : Γ→ SOut(G/k) which splits (5) and lifts to a continuous map f : Γ→ SAut(G/k).
A k-band is a pair (G, κ) consisting of an algebraic group G over ks and a k-band κ in G.

We observe that any k-form G̃ of G defines a splitting of (4) that is continuous, so taking
this splitting modulo Int(G) gives a k-kernel in G. We denote this k-form by κG̃. On the
other hand, any continuous splitting of (4) defines a unique k-form of G̃. We do not prove
this; it is proved in [6], Lemme 2.12.

Definition 6.6. Let (G, κ) be a k-kernel, and let Z be the centre of G. Then κ induces a
k-kernel in Z, i.e., defines a k-form Z̃ of Z. We call Z̃ the centre of the k-kernel (G, κ).

For g ∈ G, let inn(g) denote the inner automorphism induced by g.
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Definition 6.7. Let L = (G, κ) be a k-kernel. A 2-cocycle with coefficients in L is a pair
(f, g) of maps

f : Γ→ SAut(G/k) given by σ 7→ fσ, and

g : Γ× Γ→ G(ks) given by (σ, τ) 7→ gσ,τ

such that:

(i) f is continuous as a section;
(ii) f mod Int(G) = κ;
(iii) g : (σ, τ) 7→ gσ,τ is continuous (i.e., locally constant); and
(iv) for all σ, τ, υ ∈ Γ, we have

fσ ◦ fτ = inn(gσ,τ ) ◦ fστ and fσ(gτ,υ) · gσ,τυ = gσ,τ · gστ,υ.

The set of these 2-cocycles is denoted Z2(k, L).

We now define an equivalence relation on Z2(k, L).

Definition 6.8. Two 2-cocycles (f, g) and (f ′, g′) are equivalent if there is a continuous (i.e.,
locally constant) map h : Γ→ G(ks) such that

f ′σ = inn(hσ) ◦ fσ and g′σ,τ = hσ · fσ(hτ ) · gσ,τ · h−1
στ

for all σ, τ ∈ Γ. In this case, we write (f, g) ∼coho,2 (f ′, g′). Define the second cohomology set
H2(k, L) to be Z2(k, L)/ ∼coho,2.
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