
University of Waterloo

Lecture Notes

Automatic Sequences

Prof. Jeffrey Shallit

typed by
Andrej Vuković

February 27, 2020

Contents
1 Jan. 7, 2020. 2

2 Jan. 9, 2020. 6

3 Jan. 14, 2020. 10

4 Jan. 16, 2020. 14

5 Jan. 21, 2020. 18

6 Jan. 23, 2020. 23

7 Jan. 28, 2020. 27

8 Jan. 30, 2020. 32

9 Feb. 4, 2020. 37

10 Feb. 6, 2020. 41

11 Feb. 11, 2020. 41

12 Feb. 13, 2020. 42

13 Feb. 25, 2020. 43

14 Feb. 27, 2020. 47

1

Abstract

This is a series of lecture notes for a class on automatic sequences taught by Jeffrey
Shallit.

1 Jan. 7, 2020.
The course code is CS 860. There will be a final project for this course involving a re-
port and presentation. But if you don’t like presenting, you can take the option of edit-
ing Wikipedia articles related to some topic in the course too. If you do your own re-
search in this course, you can talk about that for the final project too. The course URL is
https://cs.uwaterloo.ca/~shallit/Courses/860. We can come by whenever the door
is open, but Professor Shallit asks that we do not knock if the door is closed. Office hours
are 2:30 to 3:20 on Wednesdays in DC 3134. There will be three problem sets. One can also
earn bonus marks by solving open problems (automatic 100), finding an interesting sequence
that is not in the OEIS, and finding errata in the course textbook that are not already on
the errata page. The course textbook should be available at the school bookstore.

Let Σ be some alphabet, usually finite. A sequence is a function s : N→ Σ. In this course,
we use the convention N := {0, 1, 2, . . . }. A bi-infinite sequence is a function s : Z→ Σ. For
example, we might define the sequence

pn :=

{
1, if n is a prime
0, otherwise

By the prime number theorem, we have that∑
0≤n<N

pn = Θ

(
N

logN

)
.

If S is a set, let

χS(n) :=

{
1, if n ∈ S
0, if n /∈ S

The function χS(n) is known as the characteristic function or indicator function of S.

Perhaps the most famous non-trivial example of an automatic sequence is the Thue–Morse
sequence t := (tn)n≥0 given by

tn := s2(n) (mod 2)

where s2(n) is the sum of the bits in n’s base 2 representation. The rows in the following
table, from top to bottom, are n, s2(n), and tn.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

2

https://cs.uwaterloo.ca/~shallit/Courses/860

We have t0 = 0, t2n = tn, and t2n+1 = 1 − tn. This is because (n)20 (i.e., the base 2 repre-
sentation of n with a right-appended 0) is equal to (2n)2, and (n)21 = (2n+ 1)2.

Informally, a sequence (sn)n≥0 is k-automatic if:

(a) the range is finite, and
(b) it satisfies a system of equations where subscripts are kin+ a where k ≥ 2 is an integer
and 0 ≤ a < ki.

The first version of the Thue–Morse sequence that Professor Shallit knows about appeared in
the literature in 1851. It was later systematically studied by Axel Thue, and independently
by Marston Morse.

The simplest sequences are ultimately periodic. These are defined by the property that there
exist some p ≥ 1 and N ≥ 0 such that sn = sn+p for all n ≥ N . The value p is referred to
as the period and N is referred to as the preperiod. (Note that our sequences are indexed
starting from 0, so going up to the preperiod gives us (s0, s1, . . . , sN−1), and there are N
terms there.) All ultimately periodic sequences are automatic.

The most complicated sequences are random. These are hard to define precisely, but morally
they should not be automatic.

Automatic sequences mimic random sequences, in some sense. One example is the Rudin–
Shapiro sequence (rn)n≥0. It is given by

rn := a11(n) (mod 2)

where a11(n) is the number of occurrences of the block "11" in the base 2 representation of
n. The resulting sequence is tabulated here, the first row from the top down being labelled
by n, the second by a11(n), and the third by rn.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 1 0 0 1 2 0 0 0 1 1 1 2 3
0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1

We have the following summatory result for this sequence. For every c,∑
0≤n<N

[rn = rn+c] =
N

2
+ o(N).

The notation on the left-hand side is the Iverson bracket, named after Ken Iverson, a Cana-
dian Turing Award winner. It is defined as follows:

[x = y] =

{
1, if x = y

0 otherwise

3

Thus, this summatory result is telling us that the sequence (rn) is hardly correlated with its
shifts. We have that r2n = rn, r4n+1 = rn, r8n+3 = 1− rn, and r8n+7 = 1− r4n+3.

Apparently a few years ago, a student in a previous installment of this course studied the
applications of automatic sequences in music theory; they ended up publishing in a music
journal, and there was a collaboration with composer Per Nørgård.

We are interested in the computational, logical, algebraic, combinatorial, and number-
theoretic properties of automatic sequences.

Automatic sequences are precisely those sequences generated by deterministic finite automata
with output (DFAOs). To compute an, we express n in base k ≥ 2 and start at the initial
state of the corresponding DFAO. Then we follow transitions on input and end at a state
whose output is an.

For example, the Rudin–Shapiro sequence is generated by the following DFAO.

q0/0, 00 q1/0, 01 q2/1, 10 q3/1, 11

0

1

0

1

1

0

1

0

The notation of a circle with q/a in it represents a state called q whose output is a. The
numbers 00, 01, 10, and 11 describe the state.

We are interested in questions like the following.

-What is the dependence on k?
-Does the definition depend on the order you read the digits? (It turns out it does not.)
-How many states are needed?
-What are the sequences that are both k- and k′-automatic?

Here are some more computational questions about automatic sequences.

-What techniques can we use to prove a sequence is not k-automatic?
-What transformations on sequences preserve k-automaticity?

We are also interested in the logical properties of automatic sequences. For k ≥ 2 and n ≥ 1,
let

Vk(n) := max
{
ki | ki divides n

}
.

4

Then FO(N,+, Vk), i.e., the first-order logical theory of N, +, and Vk, is precisely the theory
of k-automatic sequences. It is known to be decidable. We then have the following question.

-What related logical theories are decidable or undecidable?

It is known that FO(N,+, V2, V3) is undecidable.

Define

Pk(n) :=

{
1, if n = kj, j ≥ 0

0, otherwise

The theory FO(N,+, P2) is decidable. It is not known whether FO(N,+, P2, P3), which is a
subtheory of FO(N,+, V2, V3), is decidable.

-What questions about automatic sequences are decidable?

We now discuss algebraic properties of automatic sequences. Suppose we make the following
formal power series out of the Thue–Morse sequence:

T (X) :=
∑
n≥0

tnX
n ∈ GF(2)[[X]].

Here GF(2) just means F2, the field of two elements. We calculate

T (X) =
∑
n≥0

t2nX
2n +

∑
n≥0

t2n+1X
2n+1

=
∑
n≥0

tnX
2n +

∑
n≥0

(1− tn)X2n+1

= T (X2) +
X

1−X2
−XT (X2).

Over GF(2), we have (X + Y)2 = X2 + Y 2, so

T (X) = T (X)2 +
X

1 +X2
+XT (X)2,

which implies that

(1 +X)T (X)2 + T (X) +
X

1 +X2
= 0,

so
(1 +X)(1 +X2)T (X)2 + (1 +X2)T (X) +X = 0.

Thus, T (X) is algebraic over GF(2)[X], the collection of polynomails with coefficients mod
2. More generally, we have Christol’s theorem, which states that (an)n≥0 is p-automatic for
p prime if and only if

∑
n≥0 anX

n is algebraic over GF(p)[X].

5

We now discuss combinatorial properties of automatic sequences.

-Given a sequence a = (ai)i≥0, how many distinct length n blocks occur in a?

The function sending n to the number of length n blocks in a is called the subword complexity
of a and is denoted by ρ(n). If a is an automatic sequence, we have

ρ(n) = O(n).

Here are some more questions.

-Given a sequence a = (ai)i≥0, what is
∑

0≤n<N [an = c] for different c?
-Given two distinct automatic sequences, what blocks occur in common?

Finally, we look at automatic sequences from the perspective of number theory. Given a
sequence (an)n≥0, consider the real number∑

i≥0

aib
−i

for b ≥ 2. Then we have the result that this number is either rational or transcendental
when (an) is automatic, for any b ≥ 2.

2 Jan. 9, 2020.
Today we start discussing some basic concepts for the course.

We let (n)k denote the canonical base k representation of n, i.e., the unique representation
that only uses digits in {0, 1, . . . , k − 1} and that has no leading zeroes, starting with the
most significant digit (msd). By convention, (0)k = ε, the empty string, since to set (0)k to
0 would violate the "no leading zeroes" rule.

We let [w]k denote the evaluation of w, treated as a base k representation, msd first. That
is, if w = a1a2 . . . at, then

[w]k :=
t∑
i=1

aik
t−i.

For example, [21]2 = 5.

We let νk(n) be the exponent of the highest power of k dividing n. If νk(n) = e, we write
ke || n. We also set Vk(n) := kνk(n). Apparently there was a famous paper that used Vk in
place of νk but became correct when these were switched.

Let wR be the reversal of the word w. For example, (drawer)R = reward. Let Σk :=
{0, 1, . . . , k − 1}. Let Σ∗ denote the set of finite words over Σ. Let Σw denote the set of

6

1-sided infinite words over Σ. Let wΣw and ΣZ denote the set of 2-sided infinite words over
Σ. Let xw denote the infinite string xxx Let |x| denote the length of x. Let |x|a denote
the number of occurrences of a in x. Let x[i] denote the ith letter of x. Let x[i . . . j] denote
the subword x[i]x[i+ 1] . . . x[j] of x.

Theorem 2.1. Let k ≥ 2. Every integer n ≥ 0 has a unique canonical base k representation.

Proof. Suppose n < k. We have that (0)k = ε is the unique canonical base k representation
of n = 0. For 1 ≤ n < k, (n)k = n is the unique canonical base k representation of n. Now
suppose n ≥ k. Then we can write n = kn′ + a for some n′ and a with 0 ≤ a < k. Suppose
(n′)k =: x. Then [xa]k = n because [x]k = (n− a)/k.

Suppose w and x are distinct canonical words such that [w]k = [x]k. Pad the shorter
word with leading zeroes if necessary to obtain that w and x start with digits a1 and b1,
respectively. Assume a1 < b1. Then

[x]k − [w]k ≥ kt−1 + (1− k)(1 + k + · · ·+ kt−2)

= kt−1 + (1− k)

(
kt−1 − 1

k − 1

)
= kt−1 − (kt−1 − 1)

= 1.

We now discuss bijective representation. Here we use an alternate digit set for base k. In-
stead of {0, 1, . . . , k − 1}, we use {1, 2, . . . , k}. This is used the fix the issue of ambiguity
with leading zeroes in base k representation. In base 2 bijective representation, 0 is written
as ε, 1 is written as 1, 2 is written as 2, 3 is written as 11, 4 is written as 12, 5 is written as
21, 6 is written as 22, 7 is written as 111, etc.

Next, we discuss Fibonacci (or Zeckendorf) representation. Let F0 := 0, F1 := 1, and
Fn := Fn−1 + Fn−2 be the Fibonacci numbers. (Professor Shallit says, "This is the standard
way to index them, and anyone who indexes them any other way is just wrong.") Then we
can express n as

n =
t∑
i=1

aiFt+2−i

where ai ∈ {0, 1} for each i. In this representation, 0 is written as ε, 1 is written as 1, 2 is
written as 10, 3 is written as 100, 4 is written as 101, 5 is written as 1000, 6 is written as
1001, 7 is written as 1010, 8 is written as 10000, etc. This representation is unique subject
to the constraint that aiai+1 6= 1 for all i. Many game theory results can be simply expressed
if you write the numbers involved in Fibonacci representation.

Example 2.2. Suppose we have a sequence of replacement rules a 7→ ab, b 7→ a. (This is

7

called a morphism.) Applying these rules to a iteratively, we get the successive words

a,

ab,

aba,

abaab,

abaababa.

In the limit, we get some infinite word abaababa . . . , which is a fixed point of the morphism.
Now, suppose we write out n = 0, 1, 2, 3, 4, 5, 6, 7, etc., and below each number we write its
Fibonacci representation vertically with the leading digit at the top. Then the bottom digit
of each number’s Fibonacci representation determines whether the corresponding letter in
the word abaababa . . . is an a or a b. (For example, the second leftmost letter is b, so we look
at n = 1, write its Fibonacci representation 1 below, and then the bottom digit is a 1, so we
expect to get a b. The third leftmost letter is an a, and the corresponding number is n = 2,
and the bottom digit of its Fibonacci representation 10 is 0, so we expect to get an a.)

We now discuss the generalized Fibonacci representation. We let F (k)
n := 0 for 0 ≤ n ≤ k−2,

F
(k)
n = 1 for n = k − 1, and F

(k)
n := F

(k)
n−1 + · · · + F

(k)
n−k for n ≥ k. For k = 2, we get

the Fibonacci sequence (Fn). For k = 3, we get the Tribonacci sequence (Tn). Professor
Shallit says, "I won’t even tell you what the k = 4 case is called because it’s too stupid."
(Tetranacci, by the way...)" We write

n =
t∑
i=1

aiF
(k)
t+k−i

with ai ∈ {0, 1} for all i. This is unqiue provided that aiai+1 · · · ai+k−1 6= 1 for all i.

We now discuss the greedy representation. Let 1 = u0 < u1 < u2 < · · · be a strictly
increasing sequence of integers. We write n =

∑
0≤i≤r aiui where ai ∈ N for each i. (Recall

that N includes 0 in this course.) We can write the following pseudocode greedy algorithm
to generate this representation.

Algorithm 1 Obtaining the greedy representation.
1: procedure Greedy(n)
2: t := 0
3: while (ut+1 ≤ n) do t := t+ 1
4: for i := t downto 0 do
5: ai := bn/vic
6: n := n− aiui
7: return (atat−1 . . . a0)

We say m ≤ n if and only if (m)G ≤ (n)G where the subscript G denotes the greedy repre-
sentation and we use radix ordering.

8

For words x, y, we say x < y if |x| < |y| or if |x| = |y| and there exist w, x1, y1, a, b such that
x = wax1, y = wby1, and a < b.

The following theorem is due to Fraenkel. It can be used to prove uniqueness of all the
expansions we have discussed so far.

Theorem 2.3. Let 1 = u0 < u1 < u2 < · · · be an increasing sequence of integers. Every
non-negative integer n has exactly one representation of the form n =

∑
0≤i≤s aiui where

as 6= 0, the ai’s are all in N, and the ai’s satisfy

a0u0 + a1u1 + · · ·+ aiui < ui+1

for all i.

We now discuss balanced ternary representations. This can be used to describe all integers,
not just positive ones. This is essentially ternary representation with digits −1, 0, 1. One
of the earlier computers ever built used balanced ternary, with "trits" instead of bits. Here
0 is represented as ε, 1 is represented as 1, −1 is represented as −1, −2 is represented as
−11, −3 is represented as −10, −4 is represented as −1,−1, −5 is represented as −111, 2 is
represented as 1,−1, 3 is represented as 10, 4 is represented as 11, etc. One can prove that ev-
ery integer has a unique balanced ternary representation provided there are no leading zeroes.

Balanced ternary is a special case of the (k, `)-numeration system. In this system, we work
in base (k+ `+ 1) with digits {−k,−k+ 1, . . . ,−1, 0, 1, . . . , `}. Balanced ternary is obtained
when k = ` = 1.

We can also work in a negative base, say base (−k) for k ≥ 2. We use the digits {0, 1, . . . , k−
1}, and every element of Z has a unique representation. For example, in base −2 we repre-
sent −4 as 1100, −3 as 1101, −2 as 10, −1 as 11, 0 as ε, 1 as 1, 2 as 110, 3 as 111, 4 as 100, etc.

There are other representation systems for representing, for example, the Gaussian integers.
It is not so easy to get unique representation there; the only bases that work are of the form
i− n where n is an integer, or something like that.

A deterministic finite automaton with output (DFAO) is a 6-tuple M = (Q,Σ,∆, q0, δ, τ)
where:

(i) Q is a finite non-empty set of states, often denoted {q0, q1, . . . , qt−1};
(ii) Σ is an input alphabet, often the alphabet Σk := {0, 1, . . . , k − 1};
(iii) ∆ is an output alphabet;
(iv) q0 is an initial state;
(v) δ is a transition function δ : Q× Σ→ Q; and
(vi) τ is an output function τ : Q→ ∆.

9

We can extend the domain of δ toQ×Σ∗ by letting δ(q, x) be the state we get to on reading an
input word x, starting from q. More formally, we set δ(q, ε) := q and δ(q, xa) := δ(δ(q, x), a)
for all x ∈ Σ∗ and a ∈ Σ. On input x, the output of M is defined to be τ(δ(q0, x)).

Then M computes a sequence (an)n≥0 by letting x = (n)k be the canonical base k represen-
tation of n and letting an be the output when the input is n.

Next time, we will discuss how we can read the reversal xR instead of x (with a different
automaton) but pay a price. The price is that the number of states can be as large as |∆||Q|.
It is difficult to actually build automata with more than order a hundred million states on a
computer, so this exponential blowup can cause problems in actually building automata to
do various tasks, if they involve a word reversal.

3 Jan. 14, 2020.
A sequence (an) is k-automatic if its nth term can be obtained by writing n in base k, feeding
it into some DFAO, and getting output an. Note that even if we put 0i(n)k (for any i ≥ 0)
into the DFAO instead of (n)k, we can change the DFAO a bit so that δ(q0, 0) = q0, and then
the sequence will still be accepted by the DFAO. So the notion of "automatic sequence" is
robust to small changes like inputting 0i(n)k instead of (n)k.

Theorem 3.1. Suppose f : Σ∗ → ∆ is a finite-state function (i.e., is computed by a DFAO).
Then fR, defined by fR(w) := f(wR), is also a finite-state function.

This is a generalization of a theorem often seen in a first course on automata theory, but
now we’re doing it for functions rather than languages. We will get slightly bogged down in
notation in the course of the proof.

Proof. Suppose that f is computed by a DFAO (Q,Σ,∆, q0, δ, τ). Then fR will be computed
by (S,Σ,∆, q′0, δ

′, τ ′) where S := ∆Q (i.e., the set of all functions from Q to ∆), q′0 is the
function q 7→ τ(q), τ ′(h) := h(q0), and δ′(g, a) := h where h(q) := g(δ(q, a)).

We claim that δ′(q′0, w) = h where h(q) := τ(δ(q, wR)). We prove this by induction on the
length of w.

Base case: |w| = 0. Then w = ε, and δ′(q′0, ε) = q′0 = (q 7→ τ(q)), so since δ(q, εR) = δ(q, ε) =
q, the base case is proved.

Now assume that our claim is true for |w| = n; we wish to prove it for |w| = n + 1. Write
w = xa where |x| = n and |a| = 1. Then

δ′(q′0, xa) = δ′(δ′(q′0, x), a)

= δ′(g, a) =: h

10

where g := δ′(q′0, x). By induction, g(q) = τ(δ(q, xR)). Let’s figure out what h is. For all
q ∈ Q,

h(q) = g(δ(q, a))

= τ(δ(δ(q, a), xR))

= τ(δ(q, axR))

= τ(δ(q, (xa)R))

= τ(δ(q, wR)).

This completes the proof.

Example 3.2. Consider the characteristic sequence of the powers of two: c0 = 0, c1 = 1,
c2 = 1, c3 = 0, c4 = 1, c5 = 0, etc. It’s generated by the following automaton.

q0/0 q1/1 q2/0

0

1

0

1

0,1

Applying the word reversal construction to this automaton gives a new, more complicated
automaton that I will describe in words. Its start state, say state Q0, is the function q0 7→ 0,
q1 7→ 1, q2 7→ 0 with output 0. Its second state, say Q1, is the function q0 7→ 1, q1 7→ 0,
q2 7→ 0 with output 1. Its accepting state, say Q2, is the function q0 7→ 0, q1 7→ 0, q2 7→ 0
with output 0. There is an arrow from Q0 to itself labelled 0, an arrow from Q0 to Q1

labelled 1, an arrow from Q1 to itself labelled 0, an arrow from Q1 to Q2 labelled 1, and an
arrow from Q2 to itself labelled 0, 1.

We now get a review of the different types of automata. There are DFAs, which can be
thought of as DFAOs with output alphabet {0, 1}. There are NFAs, which are a generaliza-
tion of DFAs. DFAs correspond to regular languages (which in Europe are called rational
languages) and to regular expressions.

A DFA is like a DFAO, but the output mapping given by ∆ and τ is replaced by a subset
F ⊆ Q of "final" or "accepting" states. To think of a DFA as a DFAO with output alphabet
{0, 1}, we set τ(q) = 1 if q ∈ F and τ(q) = 0 if q /∈ F .

The Thue–Morse sequence is computed by the following DFAO.

q0/0 q1/1

0
1

0

1

11

The corresponding DFA is as follows.

q0 q1

0
1

0

1

The language of this DFA is

{x ∈ {0, 1}∗ | |x|1 ≡ 1 (mod 2)} .

Now we discuss languages. Suppose L1, L2, and L are languages (sets of strings). Then we
can form their union L1 ∪ L2, their concatenation

L1L2 := {xy | x ∈ L1, y ∈ L2},

the n-fold concatenation given by L0 := {ε} and Ln := LLn−1 for n ≥ 1, and the Kleene star

L∗ :=
⋃
i≥0

Li = {x1x2 · · ·i | i ≥ 0, xi ∈ L for all i}.

In the order of operations, ∗ has the highest precedence, then concatenation, then union.

We define the fibre of a sequence (an)n≥0 over a finite alphabet ∆ to be the sets of the form

Ikd := {(n)k | an = d}.

Then we have the following theorem.

Theorem 3.3. Let (an)n≥0 be a sequence over a finite alphabet ∆. Then (an)n≥0 is k-
automatic if and only if each of the fibres Ikd is regular for d ∈ ∆.

Proof. We give a sketch.

Suppose (an)n≥0 is generated by a DFAO. For each d, turn it into a DFA by making the final
states those q for which τ(q) = d. This proves the forward direction.

If each Ikd is regular, it is recognized by a DFA. Set Md := (Qd,Σ, δd, q0,d, Fd). Create
M := (Q,Σ, δ, q0,∆, τ) where ∆ = {d1, d2, . . . , di}, Q := Qd1 ×Qd2 × · · · ×Qdi ,

δ([p1, p2, . . . , pi], a) := [δd1(p1, a), . . . , δdi(pi, a)],

and τ([p1, p2, . . . , pi]) := dj where pj is the unique final state among p1, p2, . . . , pi. This
completes the sketch.

We now discuss morphisms. A morphism is a map h : Σ∗ → ∆∗ such that h(xy) = h(x)h(y)
for all x, y ∈ Σ∗. It suffices to define h on Σ. (Note that h(ε) = ε.)

12

Example 3.4. The morphism given by µ(0) := 01, µ(1) := 10 is called the Thue–Morse
morphism because it generates the Thue–Morse word. The morphism ϕ(0) := 01, ϕ(1) := 0
is called the Fibonacci morphism. (Can you see why?)

For k ≥ 1, a morphism is said to be k-uniform if |h(a)| = 1 for all a ∈ Σ. For example, the
morphism µ is 2-uniform and ϕ is not k-uniform for any k. For example, the Thue–Morse
morphism is 2-uniform, and the Fibonacci morphism is not k-uniform for any k.

A morphism h : Σ∗ → Σ∗ is called prolongable if:

(a) there exists a ∈ Σ∗ such that h(a) = ax for some x ∈ Σ∗, and
(b) hi(x) 6= ε for all i ≥ 0.

If h is prolongable on a, then limn→∞ h
n(a) exists in the sense that there exists a unique

infinite word having hi(a) as a prefix for each i ≥ 0. Moreover, this limit is an infinite word
of the form

w = axh(x)h2(x)h3(x) . . . ,

and we have h(w) = w, so w is a fixed point of h. Indeed,

h(w) = h(a)h(x)h2(x) . . .

= axh(x)h2(x)h3(x) . . .

= w.

We often write hω(a) = w.

The following theorem is known as Cobham’s little theorem.

Theorem 3.5. Let (an)n≥0 be a sequence. Then (an) is k-automatic if and only if there
exists a k-uniform morphism h prolongable on some letter a, a finite alphabet ∆, and a
coding (1-uniform morphism) τ such that

(an)n≥0 = τ(hω(a)).

We will prove this theorem next class.

Example 3.6. Consider the morphism g(0) := 01, g(1) := 12, g(2) := 22 and the coding
τ(0) := 0, τ(1) := 1, τ(2) := 0. We have

gω(0) = 0112122212222222 . . .

Applying the coding τ gives the sequence

011010001000

This is the characteristic sequence of the powers of 2. Now, the automaton we built for
the automaton recognizing this sequence had three states. This sequence has three letters.
Coincidence?

13

4 Jan. 16, 2020.
Problem Set 1 is up on the course website and is due in two weeks. We can hand in a problem
set in class or via email if necessary. Outside sources should be cited.

Today we will prove Cobham’s little theorem, and then we will see another characterization
of automatic sequences in terms of something called the kernel.

Suppose h is a k-uniform morphism with some fixed point w. If w = a0a1a2 . . . where the
ai’s are in the alphabet Σ, then h(ai) = akiaki+1 . . . aki+k−1. We now state Cobham’s little
theorem.

Theorem 4.1. Let b = (bn)n≥0 be a sequence over ∆. Then b is k-automatic if and only if
there exist a finite alphabet Γ, a k-uniform morphism h : Γ∗ → Γ∗ with h(a) = ax for some
a, and a coding τ : Γ→ ∆ such that b = τ(hω(a)).

Proof. Suppose that b is k-automatic. Then there exists a DFAO M = (Q,Σk,∆, δ, q0, τ)
accepting it. Take Γ := Q, and let

h(q) := δ(q, 0)δ(q, 1) . . . δ(q, k − 1).

Assume without loss of generality that δ(q0, 0) = q0. (We can always modify our DFAO to
make this the case.) Take a := q0. Define w := hω(a). We will prove that

δ(q0, y) = w[[y]k] (*)

for all y ∈ Σ∗. (This notation w[[y]k] means the y in base kth index of the word w.)

Our base case is |y| = 0. Then δ(q0, y) = δ(q0, ε) = q0 = a, by definition of transition
functions. We also have w[0] = a, so the base case is proved.

Now assume that (*) holds for all y with |y| < i; we will prove it for |y| = i. If |y| = i, we
can write y = xa with a ∈ Σ. Then

δ(q0, y) = δ(q0, xa) = δ(δ(q0, x), a)

= δ(w[[x]k], a)

= h(w[[x]k])[a]

= (w[k[x]k . . . k[x]k + k − 1])[a]

= w[k[x]k + a]

= w[[xa]k]

= w[[y]k].

We skip the other direction; it’s in the course notes on Professor Shallit’s website.

14

There is a correspondence between k-DFAOs and pairs (τ, h) where τ is a coding applied
to a fixed point of morphism h. Under this correspondence, states Q correspond to domain
and range elements of h, the transition function δ corresponds to the image of h on a letter,
and the output mapping corresponds to the coding τ .

Example 4.2. Recall the Rudin–Shapiro sequence a11(n) (mod 2) where a11(n) is the num-
ber of binary 11’s in (n)2. Recall also that it is given by the following four-state DFAO.

q0/0 q1/0 q2/1 q3/1

0
1

0

1

1

0

1

0

The corresponding morphism and coding are given by h(q0) := q0q1, h(q1) := q0q2, h(q2) :=
q3q1, h(13) := q3q2 and τ(q0) := 0, τ(q1) := 0, τ(q2) := 1, τ(q3) := 1.

Example 4.3. The following sequence, related to the Thue–Morse sequence, is known as
the Mephisto waltz sequence. It is generated by the morphism g(0) := 001, g(1) := 110, with
infinite word gω(0) = 001001110 It is recognized by the following DFAO.

q0/0 q1/1

0,1
2

2

0,1

Note that there are 3 letters in the DFAO’s alphabet because the morphism g is 3-uniform.

Definition 4.4. Let a := (a(n))n≥0 be a sequence. The k-kernel of (a(n)) is the set of
subsequences

Kk(a) :=
{

(a(kin+ j))n≥0 | i ≥ 0, 0 ≤ j < ki
}
.

Example 4.5. Let k := 2. Then

K2(a) := {(a(n))n≥0, (a(2n))n≥0, (a(2n+ 1))n≥0, (a(4n))n≥0,

(a(4n+ 1))n≥0, (a(4n+ 2))n≥0, (a(4n+ 3))n≥0, (a(8n))n≥0, . . . }.

The following result is known as Eilenberg’s theorem. It is one of the earliest results in the
field of automatic sequences.

Theorem 4.6. Let a = (a(n))n≥0 be a sequence over a finite alphabet ∆. Then a is k-
automatic if and only if Kk(a) is finite.

15

Proof. Suppose a is k-automatic, hence computed by a k-DFAO. Then a is also computed by
a k-DFAO in the opposite order, so by a machine (Q,Σk, δ, q0,∆, τ) where a(n) = τ(δ(q0, w

R))
for all w such that [w]k = n.

Let x be such that [x]k = kin+ j. If n 6= 0, we can write x = wy where |y| = i and [y]k = j.
Then

a(kin+ j) = τ(δ(q0, x
R))

= τ(δ(q0, y
R, wR))

= τ(δ(δ(q0, y
R), wR))

= τ(δ(q, wR)).

Since q = δ(q0, y
R), the k-kernel is finite. For the n = 0 case, see the notes. Thus, the DFAO

(Q,Σk, δ, q,∆, τ) computes the subsequence (a(kin + j))n≥0. I will describe in words what
the corresponding DFAO looks like in the k = 2 case. It has five states. The start state is
(a(n))n≥0 with output a(0); call this state q0. The other four states (call them q1, q2, q3, q4 in
that order) are (a(2n))n≥0 with output a(0), (a(4n+ 2))n≥0 with output a(2), (a(2n+ 1))n≥0
with output a(1), and (a(4n + 1))n≥0 with output a(1). There is an arrow labelled 0 from
q0 to q1, an arrow labelled 1 from q1 to q2, an arrow labelled 1 from q0 to q3, and an arrow
labelled 0 from q3 to q4. Note that the output associated with state (a(kin+ j))n≥0 is a(j).

We give a heuristic procedure for guessing whether a given sequence is k-automatic. For
k = 2, start with (a(n))n≥0, then (a(2n))n≥0. If a sequence appears to match a previously
computed one, say they are equal and stop examining this subsequence. Continue along the
different subsequences a(2n+ 1), a(4n), etc.

Example 4.7. Let p1 := 0 and pn+1 := pn0pRn (where x denotes the complement of x, so
0 = 1 and 1 = 0). (This is known as the paperfolding sequence.) Then

p1 = 0, p2 = 001, p3 = 0010011, etc.

Let p := limn→∞ pn = p1p2p3 Let p0 := 2 as well. Then

(pn) = p = 2001001100011011 . . . ,

(p2n) = 20010011 · · · = (pn),

(p2n+1) = 01010101 . . . ,

(p4n+1) = 00000 . . . ,

(p4n+3) = 11111 . . . ,

and additionally we have p8n+1 = p4n+1 = p8n+5 and p6n+3 = p4n+3 = p8n+7.

So then we can make the following conjectured automaton for this sequence. Its start state
is q0 = (pn)n≥0 with output 0, and its other states are q1 := (p2n+1)n≥0 with output 0,

16

q2 = (p4n+1)n≥0 with output 0, and q3 = (p4n+3)n≥0 with output 1. There is an arrow la-
belled 1 from q0 to q1, an arrow labelled 0 from q1 to q2, an arrow labelled 1 from q1 to q3,
an arrow labelled 0, 1 from q2 to q2, and an arrow labelled 0, 1 from q3 to q3.

From this automaton, we can get the following heuristic formula for the paperfolding se-
quence. Let n = 2i(2j + 1) for n > 0. Then

pn =

{
0, if j ≡ 0 (mod 2)

1, if j ≡ 1 (mod 2)

When you repeatedly fold a piece of paper in half, then unfold, you get a sequence of valleys
and hills in the paper, which obeys the paperfolding sequence; that’s where it gets its name.
We now do this as a class.

We will now prove our conjectural formula for the paperfolding sequence by induction on n.

Proof. We give a sketch. Recall that p1 = 0 and pn+1 = pn0pRn . Note that |pn| = 2n − 1. In
the base case, n = 1. Then i = 0, j = 0, and p1 = 0. If n = 2i, then j = 0 and p2i = 0 for
all i. Now assume the result holds for all n′ < n. We will prove it for n.

If 2m−1 < n < 2m, then pm = pm−10pRm−1. Note that pn = p2m−n. We calculate that

2m − n = 2m − 2i(2j + 1)

= 2i(2m−i − 2j − 1)

= 2i(2r + 1)

where r = 2m−i−1− j−1. Then r (mod 2) 6= j (mod 2). Comparing lengths, this completes
the sketch.

The paperfolding sequence discussed above is known in the literature as the regular paper-
folding sequence. In the general case, we choose to introduce a hill or valley at each fold,
and we have a sequence (fi)i≥0 of unfolding instructions. Then p0 := ε and pn+1 := pnfnpRn .
There are uncountably many paperfolding sequences, but there are only countably many
automata, so most paperfolding sequences are not automatic. The ones that are automatic
are precisely the ones where the sequence of unfolding instructions is eventually periodic.

Professor Shallit mentions the following caution for our heuristic for finding whether se-
quences are automatic. Start with the Thue–Morse sequence

t = 01101001100101101001011001101001 . . .

Look at the length of blockos of 0’s and 1’s: the first block has length 1, the second has
length 2, the third length 1, then 1, then 2, 2, 2, 1, 1, 2, 1, 1, etc. Group these like this:

(121)(12221)(121)1 . . .

17

Call this sequence s = (sn)n≥0. We can make a morphism 1 7→ 121, 2 7→ 12221, etc. Then
(s16n+1) agrees with (s64n+1) on the first 1864135 terms but fails at n = 1864135. An open
problem is to explain this. Professor Shallit has been suggesting this for like 25 years, but
no one has worked on it. It would be nice to find some reasonably good bound on how many
terms two elements in the 2-kernel of (sn) can agree on before disagreeing.

5 Jan. 21, 2020.
We need to hand a 1-page description of our final project topic by February 6. There are a
bunch of options on the website, and independent research is also allowed.

We discuss number theory today. We will demonstrate a connection between automatic se-
quences and continued fractions.

We first discuss continued fractions for real numbers. A (simple) continued fraction is an
expression of the form

α = a0 +
1

a1 + 1
a2+

1

a3+
...

where α ∈ R, ai ∈ Z for every i, and ai ≥ 1 for i ≥ 1. We abbreviate the above continued
fraction by [a0, a1, a2, . . .]. This expression can be finite or infinite in length.

For example,

157

68
= [2, 3, 4, 5],

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, . . .],

1 +
√

5

2
= [1, 1, 1, . . .],

π = [3, 7, 15, 1, 292, . . .]

If an 6= 1 (except if a0 = 1 and this is the only term, i.e., the case of the expansion for 1),
then the continued fraction expansion is unique for rational numbers. (To see why this is
required, consider 2 = [2] = [1, 1].) Expansions are unique for irrational numbers. "Here’s
where mathematicians have messed up a little bit," says Professor Shallit. By the bracket
notation, we mean the rational function of the ai’s, evaluated at the values in the brackets,
gives the constant α. There are other interpretations of the bracket notation, and this creates
an issue for the rational function case later.

The continued fraction expansion is ultimately periodic if and only if α is a quadratic irra-
tional. For example,

√
2 = [1, 2, 2, 2, . . .]. What happens when you take a continued fraction

and truncate it? Take, for example, α = [a0, a1, a2, . . .] and truncate at [a0, a1, . . . , an]. This
would be an approximation to α. How do we evaluate [a0, a1, . . . , an] from "left to right"

18

rather than "right to left" (by just calculating the fraction)? We discuss this now.

Write [a0, a1, . . . , an] = pn/qn. This fraction is known as a convergent, and the ai’s are called
partial quotients. We can calculate pn and qn by the following recurrence:

p−2 = 0, q−2 = 1,

p−1 = 1, q−1 = 0,

pn = anpn−1 + pn−2,

qn = anqn−1 + qn−2,

where n ≥ 0. For example, we have the following approximation to π.

n −2 −1 0 1 2 3 4
an 3 7 15 1 292
pn 0 1 3 22 333 355
qn 1 0 1 7 106 113

The following identity is called the Hurwitz–Frame–Kolden representation:[
a0 1
1 0

] [
a1 1
1 0

]
· · ·
[
an 1
1 0

]
=

[
pn pn−1
qn qn−1

]
.

Taking the determinant of both sides gives the identity

(−1)n+1 = pnqn−1 − pn−1qn.

Taking the transpose of both sides gives Galois’s identity (so named because it was his first
published paper): [

an 1
1 0

] [
an−1 1

1 0

]
· · ·
[
a0 1
1 0

]
=

[
pn qn
pn−1 qn−1

]
.

The following lemma is known as the folding lemma for continued fractions. This is because
it gives a relationship between the paperfolding sequence from last class and continued
fractions.

Lemma 5.1. Suppose
pn/qn = [c0, c1, c2, . . . , cn].

Let w := (c1, c2, . . . , cn), viewed as a word over the alphabet of integers. Then

[c0, w, t,−wR] =
pn
qn

+
(−1)n

tq2n
.

What this says is that if you start with a continued fraction and you do this "fold" to it by
inserting a t in the middle, what you get is a number that is an extremely close approximation
to the original number (differing only quadratically from it).

19

Proof. One can prove by induction that[
c0 1
1 0

]
· · ·
[
cn 1
1 0

]
=

[
pn pn−1
qn qn−1

]
and [

−c0 1
1 0

]
· · ·
[
−cn 1

1 0

]
=

[
−pn pn−1
qn −qn−1

]
(−1)n.

Taking the transpose of the second equation gives[
−cn 1

1 0

]
· · ·
[
−c0 1

1 0

]
=

[
−pn qn
pn−1 −qn−1

]
(−1)n.

We multiply on the right of this equation by the inverse of the rightmost matrix on the
left-hand side to get[

−cn 1
1 0

]
· · ·
[
−c1 1

1 0

]
= (−1)n

[
−pn qn
pn−1 −qn−1

] [
0 1
1 c0

]
= (−1)n

[
qn ∗
−qn−1 ∗

]
.

We calculate[
c0 1
1 0

]
· · ·
[
cn 1
1 0

] [
t 1
1 0

] [
−cn 1

1 0

]
· · ·
[
−c1 1

1 0

]
=

[
pn pn−1
qn qn−1

] [
t 1
1 0

] [
qn ∗
−qn−1 ∗

]
(−1)n

=

[
(tpn + pn−1)qn − pnqn−1 ∗
(tqn + qn−1)qn − qnqn−1 ∗

]
(−1)n

=

[
tpnqn + (−1)n ∗

tq2n ∗

]
(−1)n.

This completes the proof.

We now discuss formal power series. If P (X) :=
∑

i≥0 piX
i and Q(X) :=

∑
i≥0 qiX

i, then

(P +Q)(X) =
∑
i≥0

(pi + qi)X
i

and

(PQ)(X) =
∑
n>0

(∑
i+j=n

piqj

)
Xn.

They form a ring. We can just as well consider power series in X−1 as in X. We now talk
about formal Laurent series in X−1. These are of the form

A(X) :=
∑
i≥−c

aiX
−1

20

where c ∈ Z. An example is

x2 + x+ 7 + 3x−1 + 12x−2 +

There are a finite number of positive exponents but there might be infinitely many negative
exponents.

We now step back to describe the algorithm for finding a continued fraction for a real number
α. Set x0 := α. Set α0 := bαc. Set

x1 :=
1

x0 − a0
.

Set a1 := bx1c. Set
x2 :=

1

x1 − a1
.

Continue in this way to obtain as many ai’s as you want.

The same procedure works for formal Laurent series in X−1. We first define a notion of
floor. The floor is just the stuff before the decimal point of your real number. This is the
stuff with a positive power of 10 in its decimal expansion. So we can do the same thing for
Laurent series. Given

A(X) =
∑
i≥−c

aiX
−i,

we define
bA(X)c :=

∑
−c≤i≤0

aiX
−i.

Then we can use the exact same algorithm to find a continued fraction representation of our
Laurent series. We now do an example. Start with

f(X) := X−1 +X−2 +X−4 +X−8 +X−16 + · · · .

Then bfc = 0. We get

f1 :=
1

f
= X − 1−X−1 − 2X−1 + 3X−3 − 4X−4 + 6X−5 + · · · .

Then
a1 := bf1c = X − 1

and
f2 :=

1

f1 − a1
= X + 2 +X−1 +X−3 + 2X−5 + · · · .

So far our continued fraction representation for f is [0, X − 1, X + 2, . . .]. We will not cal-
culate more of it, but it goes on [0, X − 1, X + 2, X,X,X − 2, X,X + 2, . . .]. One can prove
that all the terms are linear integer polynomials in X, which is unusual. On the course

21

website there is some Maple code for calculating these continued fractions. (The notation is
cfps(f,X) in Maple.)

Consider the power series of the form

X
∑
i≥0

eiX
−2i

where a0 = 0 and ei = ±1 for all i ≥ 1.

Theorem 5.2. The continued fraction expansion of a power series f(X) of the above form
is

f = [1,Fold(e1X,−e2X,−e3X, . . .]

where Fa : {−1, 1}∗ → {−1, 1}∗ (which is not a morphism) is defined by

Fa(w) := (w, a,−wR)

and
Fold(an, an−1, . . . , a1) := Fa1(Fa2(Fa3(· · · (ε)))).

Recall the identity

[c0, w, t,−wR] =
pn
qn

+
(−1)n

tq2n

from the folding lemma. The analogous folding operation for Laurent series in X−1 is
[1, X] 7→ [1, X, e2X,−X]. So e2X plays the role of t.

For example, we get ∑
i≥0

X1−2i = 1 +X−1 +X−3 +X−7 +X−15 + · · ·

= [1, X,−X,−X,−X,X,X,−X,−X,X,−X,−X,X,X,X,−X, . . .].

Subbing in X := 2, we get

2
∑
i≥0

2−2
i

= [1, 2,−2,−2,−2, 2, 2,−2,−2, 2,−2,−2, . . .].

One might object that we are not allowed to have negatives (aside from the leading term) in
our real continued fractions. We can fix this using the rules [a, 0, b] = [a+ b] and [a,−b, c] =

22

[a− 1, 1, b− 2, 1, c− 1]. Applying them we successively get

[1, 2,−2,−2,−2, 2, 2,−2,−2, . . .]

= [1, 1, 1, 0, 1,−3,−2, 2, 2,−2,−2, . . .]

= [1, 1, 2,−3,−2, 2, 2,−2,−2, . . .]

= [1, 1, 1, 1, 1, 1,−3, 2, 2,−2,−2, . . .]

= [1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2,−2, 2, . . .]

= [1, 1, 1, 1, 2, 1, 1, 1, 2,−2, 2, . . .].

One number with a very good approximation by rationals is Liouville’s constant

α =
∑
n≥1

10−n!.

For Liouville’s constant α and every t, there exist integers p, q with∣∣∣∣α− p

q

∣∣∣∣ < q−t.

For general β, for all integers p, q there exists C with∣∣∣∣β − p

q

∣∣∣∣ > C

p2
.

The earlier Laurent series example gives uncountably many (though they still form a set of
measure zero) numbers having bounded partial quotients.

6 Jan. 23, 2020.
In the tower of Hanoi problem, you have three pegs and a bunch of disks that start on peg
1. The disks are sorted from smallest to largest on the peg, with the smallest at the top and
the largest at the bottom. You can never put a larger disk on top of a smaller one. The goal
is to get all of the disks on the last peg (peg 3). If there are N disks, the optimal solution
requires 2N − 1 moves and can be done in that many.

The argument for the lower bound is as follows. To move N disks, you must move the N th

one eventually. To move the N th disk, one peg (of the two pegs you’re moving between) must
hold N − 1 and the other must hold none. So the optimal sequence of moves is to (i) move
N − 1 disks to one peg somehow, then (ii) move disk N , and then (iii) move N − 1 disks
to that peg somehow. Part (i) requires ≥ 2N − 1 moves, part (ii) requires 1 move, and part
(iii) requires ≥ 2N−1 moves, so in total we need ≥ 2N−1 moves. This gives the lower bound.

Here is a goal. Given t, determine what the tth move in the optimal solution is. Then one
can ask two questions to specify the answer. From which peg to which other peg are they
moving? Which disk is being moved?

23

"The" optimal solution is defined to move peg 1 to peg 2 if N Is odd and from peg 1 to peg
3 if N is even. Then the solution for N moves is a prefix of the solution for N − 1 moves.

If the moves are numbered i = 0, 1, 2, and so forth, then on move t, the disk moved is
ν2(t+1)+1 where ν2(n) is the exponent of the highest power of 2 dividing n. (This sequence
is sometimes called the ruler function.) This answers the second question.

The first question is harder to answer. Let’s use the following notation a denotes the move
1→ 2, b the move 2→ 3, c the move 3→ 1. Let ā, b̄, c̄ be their inverses (so ā : 2→ 1, etc.).
For 1 disk the optimal solution is a. For 2 disks, it is ac̄b. For 3 disks, it is ac̄bacb̄a.

Let Hn be the optimal solution for n disks. Then H2i = H2i−1c̄σ(H2i−1) for all i ≥ 1 and
H2i+1 = H2iaσ

−1(H2i) for all i ≥ 0. Here σ is defined by σ(a) := b, σ(b) := c, σ(c) := a and
σ(ā) := b̄, σ(b̄) = c̄, σ(c̄) = ā. Let

H := lim
n→∞

Hn.

Then H is 2-automatic. Define the morphism ϕ by ϕ(a) := ac̄, ϕ(b) := cb̄, ϕ(c) := bā,
ϕ(ā) := ac, ϕ(b̄) := cb, and ϕ(c̄) := ba. Our goal is to prove that ϕ(H) = H.

Lemma 6.1. We have
ϕ(σ(w)) = σ−1(ϕ(w))

and
ϕ(σ−1(w)) = σ(ϕ(w))

for all w.

Proof. We can check it holds for w = a, b, c, ā, b̄, c̄. Then since all these maps are morphisms,
it holds in general.

Lemma 6.2. We have
H2i+1 = ϕ(H2i)a

and
H2i+2 = ϕ(H2i+1)b

for all i ≥ 0.

Proof. By induction on i, we get

H2i+1 = H2iaσ
−1(H2i)

= ϕ(H2i−1)baσ
−1(ϕ(H2i−1)b)

= ϕ(H2i−1)ϕ(c̄)ϕ(σ(H2i−1))a

= ϕ(H2i)a.

24

Here is the automaton recognizing the optimal move sequences if you input the number of
the move you want as a binary sequence. (For example, for move 23 in the optimal sequence,
you would input 10111.)

Now we consider a different problem. Let s2(n) be the sum of the bits of n in base 2.
Newman proved in the 1960s that s2(3n) is "usually" even. This can be done using the
following general result about automatic sequences.

Theorem 6.3. If (u(n))n≥0 is k-automatic, then so is (u(an+ b))n≥0 for any a, b ≥ 0.

We give two proofs. The first is "automata-theoretic", the second "language-theoretic".

Proof. We use the k-kernel characterization of automaticity. Assume without loss of gener-
ality that a ≥ 1. Let

Kk(u) = {(u1(n)), (u2(n)), . . . , (ur(n))}.

where (u1(n)), . . . , (ur(n)) are some sequences. Let

S := {(ui(an+ c))n≥0 | 1 ≤ i ≤ r, 0 ≤ c < a+ b}.

25

Let v(n) := u(an+ b). We claim that Kk(v) ⊆ S.

Consider v(ken + j))n≥0 for e ≥ 0 and 0 ≤ j < ke. Then Kk(v) consists precisely of the
sequences of this form. We divide ja + b by ke, obtaining a quotient d and a remainder f .
From the properties of division, we have

ja+ b = dke + f

where 0 ≤ f < ke and 0 ≤ d < a+ b. We have

v(ken+ j) = u(a(ken+ j) + b)

= u(ke(an+ d) + f).

There exists i such that (u(ken+ f))n≥0 = (ui(m))m≥0. Then

v(ken+ j) = ui(an+ d)

and
(v(ken+ j))n≥0 = (ui(an+ d))n≥0.

This proves that Kk(v) ⊆ S, so we are done.

We now introduce the notion of transducer before giving the second proof. A finite-state
transducer is non-deterministic automaton with inputs and outputs on transitions. The in-
puts and outputs can be arbitrary words. Each transition is labelled with a label of the form
x/w where x is the input and w is the output. Also, the input must end in a final state of
the transducer.

The following result is known as Nivat’s theorem.

Theorem 6.4. If T is a finite-state transducer and L is a regular language, then T (L) and
T−1(L) are regular. (Here T−1 means what you would expect it to mean.)

Let u := (u(n))n≥0 be a sequence. For each d ∈ ∆, the dth fibre is defined by

Id(u) := {(n)k | u(n) = d}.

The following transducer maps (3n)2 to (n)2, (3n + 1)2 to ∅, and (3n + 2)2 to ∅. In this
picture, q − i is the carry of i, and a prime next to the state (e.g., q′1) indicates that a 1 has
been output.

26

Theorem 6.5. Let a ≥ 1. Let (u(n))n≥0 be a sequence, and suppose that each (u(an+b))n≥0
is k-automatic for 0 ≤ b < a. Then (u(n))n≥0 is k-automatic.

In what follows, we will apply a transducer to an automatic sequence u. We require the
transducer to be functional, i.e., 1 input gives 1 output and there is no notion of final states.

Let t := 0110100110010110 Consider the period-doubling sequence of t, 010001010100010
Its ith entry is defined to be 1 if ti = ti+1 and 0 otherwise. The morphism which, when applied
to t, generates its period-doubling sequence is 0 7→ 01, 1 7→ 00.

Theorem 6.6. If T is a uniform transducer, i.e., 1 letter of input always gives t letters of
output for some t that works for every letter, then T (u) is k-automatic if u is k-automatic.

Consider the characteristic sequence of the powers of 2: 01101000100 Call this sequence
a and apply the morphism h given by 1 7→ 10, 0 7→ 0 to get the the sequence h(a) given
by 01010010000100 The sequence h(a) turns out not to be 2-automatic! (We will prove
this next time.) This means that we cannot relax the requirement of uniformity on our
transducer in the previous theorem because any morphism f (including, in particular, our
morphism h) can be viewed as a transducer with a single state that on input a gives f(a).

7 Jan. 28, 2020.
Let (an) be the characteristic sequence of the powers of 2, starting with a0 = 0. Let a :=
(an)n≥0. Let h : 1 7→ 10, 0 7→ 0, and consider

b := h(a) = 010102104108

Then b is the characteristic sequence of (2r + r)r≥0. We will show that b is not 2-automatic
using the pumping lemma for regular languages. This is the following.

Lemma 7.1. If L is a regular language, then there exitsts n = n(L) such that for every
z ∈ L such that |z| ≥ n, there exists a decomposition z = uvw where |uv| ≤ n and |v| ≥ 1
such that for every i ≥ 0, uviw ∈ L.

27

There is a nice proof of this in Sipser’s book on automata, which Professor Shallit now states.
Now, the fibre I1(b) is

I1(b) = {(2r + r)2 | r ≥ 0},

where the subscript 2 refers to base 2. If b is 2-automatic, then I1(b) is a regular language.
Now, (2r + r)2 is of the form

(2r + r)2 = 10r−blog2 rc−1(r)2.

The length of (r)2 is
|(r)2| = blog2 rc+ 1

for r ≥ 1. Now, if I1(b) is regular, then so is

1−1I1(b) = {0r−blog2 rc−1(r)2 | r ≥ 1}.

Let n be the pumping length for 1−1I1(b) (if it exists), and let r ≥ 2n. Decompose the word
0r−blog2 rc−1(r2) as uvw where |uv| ≤ n and |v| ≥ 1. Then uv2w /∈ 1−1I1(b), so 1−1I1(b) is not
a regular language, so I1(b) is not a regular language, so b is not 2-automatic.

We now consider deterministic transducers operating on infinite words (so all states are final).
Transducers can basically only remove information (like a transducer that turns every 1 into
a 0 and preserves all 0’s) or add a finite amount of information (like prepending each 0 with
a certain finite prefix). This motivates the following definition.

Definition 7.2. Let u and v be infinite words. We say u ≥ v if there exists a transducer T
such that T (u) = v.

We claim this gives a partial order on infinite words. (This requires us to check transitivity.)
One can also prove that under this partial order, every sequence is above every eventually
periodic sequence. (It is not hard: just use the same prefix for each period, and delete the
rest of the information in the word.)

Endrullis and Hendriks gave the following definition.

Definition 7.3. An infinite word u is an atom if whenever u ≥ v, then either v is eventually
periodic or v ≥ u.

They proved the following result.

Theorem 7.4. The sequence
01012013014 . . .

is an atom.

Endrullis and Hendriks then posed the following open problem, which Professor Shallit does
not believe is that hard: Is the Thue–Morse word t an atom? Endrullis and Hendriks suggest
the answer is no. Their proferred example, which no one has been able to disprove, is you
start with the Thue–Morse sequence, apply the periodic doubling map that sends ti to 1 if

28

ti = ti+1 and sends it to 0 otherwise (to get the period-doubling sequence), and then remove
every third symbol in the resulting word, which begins 0100 Can you get back to the
Thue–Morse word from this sequence using a transducer? This is an open problem, and it
seems like it should be easy (or maybe some other transformation works), but we do not
know the answer.

Theorem 7.5. If a = (an)n≥0 is a sequence and k ≥ 2, then a is ki-automatic for i ≥ 1 if
and only if a is kj-automatic for j ≥ 1.

Proof. It suffices to take j = 1. First, suppose a is ki-automatic. Then the fibre

Id = {(n)ki | an = d}

is regular. If |w| = i and [w]k = c where 0 ≤ c < ki, let the morphism h be defined by
h : c 7→ w. Let rlz mean "remove leading zeroes". Then

rlz(h(Id)) = {(n)k | an = d}

is regular, so a is k-automatic.

Conversely, suppose a is k-automatic. By Cobham’s little theorem, there exist a k-uniform
morphism g, a coding τ , and a letter c such that

a = τ(gω(c)).

Thus, a = τ(hω(c)) where h(d) := gi(d) for all d. Then h is ki-uniform, so by Cobham’s
little theorem, a is ki-automatic.

Example 7.6. Let µ be the Thue–Morse morphism 0 7→ 01, 1 7→ 10. Then t = µ(t) where
t is the Thue–Morse word. But also we have the morphism µ2 given by 0 7→ 0110 and
1 7→ 1001, and we have that t = µ2(t).

Recall that the notation K[X] denotes the ring of polynomials over a field K, K[[X]] denotes
the ring of formal power series over K, and K((X)) denotes the field of formal Laurent series
over K.

In Maple, the command for formal Laurent series is series(p/q, x = 0, 10);. For formal Lau-
rent series in X−1, use x = infinity instead of x = 0.

We say α ∈ R is algebraic over Q if there exist rationals a0, a1, . . . , an, not all zero, such that∑
0≤i≤n

aiα
i = 0.

If it is not algebraic, α is said to be transcendental. (For example, 3/5 and
√

2 are algebraic
while π is transcendental.)

29

Similarly, we say a formal power series

g(X) =
∑
i≥0

giX
i

is algebraic over K(X) if there exists n ≥ 0 and a0(X), . . . , an(X), not all zero, such that∑
0≤i≤n

ai(X)g(X)i = 0.

Example 7.7. Let

f(x) = 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 + · · ·

=
∑
n≥0

cnx
n

where

cn :=

(
2n
n

)
n+ 1

is the nth Catalan number. Then f(x) satisfies

xf 2 − f + 1 = 0.

Thus,

f(x) =
1−
√

1− 4x

2x

as a formal power series.

Example 7.8. The power series

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · ·

is transcendental in Q[[x]]. One can prove that the coefficients of an algebraic power series
cannot decrease as 1/n!, so that is why. This by itself does not imply the transcendence of
e, nor is it implied by it.

Professor Shallit remarks that these notions are where the term "transcendental function"
comes from.

Let K := GF(q) where q = pn, p is prime, and n ≥ 1. (The "GF" stands for "Galois field".
This is just the finite field of order q, and it is often denoted Fq instead.)

Of course, GF(p) is arithmetic modulo p, but GF(pn) is not arithmetic mod pn for n > 1.
Instead, in the latter case we find an irreducible polynomial f(x) of degree n over GF(p) and
then do arithmetic mod p and mod f to get GF(pn).

30

Example 7.9. For p = 2, n = 2, we can take f(x) = x2 + x + 1. By calculating the
multiplication table of {0, 1, x, x+ 1}, we can see that GF(4) ' {0, 1, x, x+ 1}.

Note that in GF(p), we have ap = a for any constant a, by Fermat’s little theorem, but we
also have Xp 6= X for the indeterminate X. Also, the "freshman’s dream" (a+ b)p = ap + bp

is true.

Example 7.10. Fix q = pn where p is prime and n ≥ 1. We consider examples of algebraic
formal power series in GF(q)[[x]]. For q = 2, an example is

f(x) = x+ x2 + x4 + x8 + · · ·

because
f 2 = x2 + x4 + x8 + · · · ,

so
f 2 + f − x = 0

(or equivalently, f 2 + f + x = 0).

Example 7.11. Consider the Rudin–Shapiro sequence. It is defined by letting rn be the
number of 11’s in (n)2 mod 2. Then r2n = rn, r4n+1 = rn, and r4n+3 = 1− r2n+1. We define
the power series

R(X) :=
∑
n≥0

rnX
n

=
∑
n≥0

r2nX
2n +

∑
n≥0

r2n+1X
2n+1

=
∑
n≥0

rnX
2n +X

∑
n≥0

r2n+1X
2n

= R(X2) +XS(X2) = R2 +XS2

where
S(X) :=

∑
n≥0

r2n+1X
n

=
∑
n≥0

r4n+1X
2n +X

∑
n≥0

r4n+3X
2n

=
∑
n≥0

rnX
2n +X

∑
n≥0

(1− r2n+1)X
2n

= R(X2) +X
∑
n≥0

X2n −X
∑
n≥0

r2n+1X
2n

= R2 +
X

1−X2
+XS(X2)

= R2 +
X

(1 +X)2
+XS2.

31

Before we had R = R2 +XS2, so XS2 = R−R2 = R +R2. Thus,

S = R2 +
X

(1 +X)2
+R +R2

=
X

(1 +X)2
+R.

Thus,

R = R2 +X

(
X

(1 +X)2
+R

)2

,

and finally we obtain
(1 +X)5R2 + (1 +X)4R +X3 = 0.

8 Jan. 30, 2020.
Today we discuss the proof of Christol’s theorem. Apparently the proof in the course text-
book is slightly wrong.

Christol’s theorem says (roughly) that a sequence (an)n≥0 is q-automatic (for q = pn, p
prime, n ≥ 1) if and only if the formal power series∑

n≥0

anX
n

is algebraic over GF(q)(X).

This statement is not quite correct because the way we defined automatic sequences, they can
be over any alphabet, whereas in GF(q)(X), the coefficients have some actual meaning. We
get around this by enlarging the finite field to include the entire alphabet of our automatic
sequence. We now give a precise statement.

Theorem 8.1. Let ∆ be a finite set. Let a = (ai)i≥0 be a sequence taking values in ∆. Let
p ≥ 2 be prime. Then a is p-automatic if and only if there exists n ≥ 1 and an injective map
β : ∆→ GF(pn) such that ∑

i≥0

β(ai)X
i

is algebraic over GF(pn)(X).

We will use the Cartier operators, which are maps from Laurent series to Laurent series. Let

A(X) :=
∑
i≥−n

aiX
i

32

Then the Cartier operator Λr is defined by

Λr(A)(X) =
∑

qi+r≥−n0

aqi+rX
i.

We will mostly omit the subscript of this summation because if i is too small, the corre-
sponding ai’s will vanish anyway. Now we have a couple of lemmas.

Lemma 8.2. With the above notation,

A(X) =
∑

0≤r<q

Xr(Λr(A))q.

Proof. We have
A(X) =

∑
i

aiX
i

=
∑

0≤r<q

∑
i

aqi+rX
qi+r

=
∑

0≤r<q

Xr
∑
i

aqi+rX
qi

=
∑

0≤r<q

Xr

(∑
i

aqi+rX
i

)q

=
∑

0≤r<q

XrΛr(A)q.

Lemma 8.3. Let G,H be Laurent series over GF(q). Then Λr(G
qH) = GΛr(H).

Proof. Let
G(X) :=

∑
k

gkX
k, H(X) :=

∑
j

hjX
j.

Then

Λr(G
qH) = Λr

((∑
k

gkX
k

)q(∑
j

hjX
j

))

= Λr

((∑
k

gkX
kq

)(∑
j

hjX
j

))

= Λr

(∑
i

X i
∑

i=qk+j,k,j

gkhj

)

=
∑
i

X i
∑

qi+r=qk+j,k,j

gkhj

33

=
∑
k

Xk+t
∑
t

gkhqt+r

=
∑
k

gkX
k
∑
t

hqt+rX
t

=

(∑
k

gkX
k

)(∑
t

hqt+rX
t

)
= GΛr(H).

We think of GF(q)((X)) as a vector space over GF(q)(X). This is an infinite-dimensional
vector space in general, but we will pick out some finite-dimensional subspace of it.

We now prove the forward direction of Christol’s theorem, the one that goes from the auto-
matic case to the algebraic case.

Proof. Assume, without loss of generality, that a = (an)n≥0 is defined over ∆ ⊆ GF(pn).
Now a is p-automatic, so it is q-automatic with q = pn. The k-kernel is

Kk(a) = {a(1), . . . , a(d)}

where a = a(1) and d ≥ 1. Let’s write a(i) =: (a
(i)
n)n≥0. Let’s define

Ai(X) :=
∑
n≥0

a(i)n X
n.

Then
Aj(X) =

∑
0≤r<q

∑
m≥0

a
(j)
qm+rX

qm+r

=
∑

0≤r<q

Xr
∑
m≥0

a
(j)
qm+rX

qm.

Now
∑

m≥0 a
(j′)
m Xqm = Aj′(X

q) for any 1 ≤ j′ ≤ d. Thus,

Aj(x) ∈ 〈A1(X
q), A2(X

q), . . . , Ad(X
q)〉 (*)

for 1 ≤ j ≤ d, where the angled brackets indicate the vector space span. Substituting Xq

for X in (*) gives
Aj(X

q) ∈ 〈A1(X
q2), A2(X

q2), . . . , Ad(X
q2)〉.

Doing this d times gives

Aj(X), Aj(X
q), . . . , Aj(X

qd) ∈ 〈A1(X
qd+1

), . . . , Ad(X
qd+1

)〉.

34

Thus, there exist rational functions B0, B1, . . . , Bd such that∑
0≤i≤d

BiAj(X
qi) = 0.

(In fact, by clearing denominators we can assume the Bi’s are polynomials.) This implies
that Aj(X) is the root of an algebraic equation of degree at most qd. This completes the
proof of the first direction of Christol’s theorem.

Soon we will prove the "algebraic =⇒ automatic" direction of the theorem. First, we need
a couple lemmas.

Lemma 8.4. If A(X) =
∑

i≥0 aiX
i is algebraic over GF(q)(X) with q = pn, then there exist

t+ 1 polynomials B0(X), . . . , Bt(X), not all zero, such that

B0A+B1A
q +B2A

q2 + · · ·+BtA
qt = 0.

Furthermore, such a relation exists with B0 6= 0.

Proof. Consider Aq, Aq2 , Aq3 , These cannot all be linearly independent, so there is a
relation between them. Assume B0A + B1A

q + · · · + BtA
qt = 0. Let j := min{i | Bi 6= 0}.

Our goal is to show that j = 0.

We have
Bj =

∑
0≤r<q

Xr(Λr(Bj))
q.

Therefore, there exists some r such that Λr(Bj) 6= 0. Now,∑
j≤i≤t

BiA
qi = 0

because B0 = B1 = · · · = Bj−1 = 0. We have

Λr

(∑
j≤i≤t

BiA
qi

)
= 0,

so if j 6= 0, then ∑
j≤i≤t

Λr(Bi)A
qi−1

= 0.

This contradicts the minimality of t, so j = 0. It follows that B0 6= 0.

Lemma 8.5. Let a = (an)n≥0 be a sequence over GF(q). Then a is q-automatic if and only
if there exists a finite collection F of power series such that (i)

∑
n≥0 anX

n ∈ F and (ii)
Λr(g) ∈ F for all g ∈ F and all 0 ≤ r < q.

This last lemma just follows because the given statement is equivalent to finiteness of the
k-kernel. Now we are ready to prove the "algebraic =⇒ automatic" direction of Christol’s
theorem.

35

Proof. Suppose A(X) =
∑

i≥0 aiX
i is algebraic. Then there exist B0, B1, . . . , Bt such that∑

0≤i≤t

BiA
qi = 0

and B0 6= 0. Let
G(X) := A(X)/B0(X),

so G ∈ GF(q)((X)) and A = GB0. Then∑
0≤i≤t

Bi(GB0)
qi = 0,

which implies that
B2

0G+
∑
1≤i≤t

Bi(GB0)
qi = 0.

Then
G = −

∑
1≤i≤t

Bi(GB0)
qiB−20

= −
∑
1≤i≤t

BiG
qiBqi−2

0

=
∑
1≤i≤t

CiG
qi

where
Ci := −BiB

qi−2
0 ,

so Ci ∈ GF(q)[X]. Set

N := max(degB0, degC1, degC2, . . . , degCt).

Let
S := {H ∈ GF(q)((X)) | H =

∑
0≤i≤t

DiG
qi , Di ∈ GF(q)[X], degDi ≤ N}.

Note that A ∈ S. We claim that Λr(S) ⊆ S and prove this now.

Proof. Let H ∈ S. Then
Λr(H) = Λr(D0G+

∑
1≤i≤t

DiG
qi)

=
∑
1≤i≤t

Λr(D0Ci +Di)G
qi−1

.

Now deg Λr(D0Ci +Di) ≤ 2N/q ≤ N , so Λr(H) ∈ S.

This completes the proof of Christol’s theorem.

36

The Hadamard product of formal series G(X) and H(X) is written G�H and defined by

(G�H)(X) :=
∑
n

gnhnX
n

if G(X) =
∑

n gnX
n and H(X) =

∑
n hnX

n.

Theorem 8.6. If G,H are two algebraic formal series over GF(q)(X) with q = pn, p prime,
n ≥ 1, then so is G�H.

Proof. If G,H are algebraic, then (gn)n≥0, (hn)n≥0 are q-automatic. So (gnhn)n≥0 is q-
automatic, which implies that

∑
n gnhnX

n is algebraic over GF(q)(X). By Christol’s theo-
rem, we are done.

Carlitz and Wade worked, back in the 1930s and ’40s, on proving power series over finite
fields are not algebraic. They developed many complicated arithmetic techniques for this,
but with automata theory, this becomes much easier to do.

9 Feb. 4, 2020.
Christol’s theorem states that for q = pn, p prime, n ≥ 1, a sequence is automatic if and only
if its corresponding power series is algebraic. Now we discuss the Riemann zeta function.
The values of ζ(2k) for k ≥ 1 have nice formulas. The irrationality of ζ(3), proved in 1979
by Apéry, came as such a shock that many mathematicians did not originally believe the
proof. Alf van der Poorten wrote an article for the Mathematical Intelligencer defending it.

Professor Shallit recommends the book Function Field Arithmetic by Thakur for information
about power series. Setting q := pn we can define a zeta function for GF(q)[X] by

ζq(n) :=
∏

P monic, irreducible in GF(q)[X]

(1− P−n)−1 =
∑

P monic in GF(q)[X]

P−n ∈ GF(q)[X−1].

Carlitz proved that if q − 1 | n, then

ζq(n) = Πn
q ·R

where R is a rational function and

Πq :=
∏
k≥1

(
1− Xqk −X

Xqk+1 −X

)
.

Denoting by X∗ the invertible elements of X, we have

|GF(q)∗| = q − 1.

Wade proved (c. 1941) that Πq is transcendental over GF(q)(X).

37

Example 9.1. We calculate

ζ2(1) = 1 +
1

X
+

1

X + 1
+

1

X2
+

1

X2 + 1
+

1

X2 +X
+

1

X2 +X + 1
+ · · ·

= 1 +X−2 +X−3 +X−4 +X−5 +X−9 +X−10 + · · · .
Definition 9.2. Let f be a formal power series. The logarithmic derivative of f is defined
to be f ′/f .
The formal derivative of f(x) =

∑
i≥0 aiX

−i is f ′(x) =
∑

i≥1(−i)aiX−(i+1). If f is algebraic,
then so is f ′ because by Christol’s theorem, (ai) is automatic, thus (−i)ai is also automatic.
It follows that f ′/f is algebraic because algebraic elements form a field.

The logarithmic derivative is useful because it turns products into sums. For example,

(xy)′

xy
=
x′

x
+
y′

y
.

We now give Wade’s proof.

Proof. Recall that

Πq =
∏
k≥1

(
1− Xqk −X

Xqk+1 −X

)
.

After a short calculation, we obtain

Π′q
Πq

=
∑
k≥1

1

Xqk+1 − x

=

(∑
k≥1

1

Xqk −X

)
− 1

Xqk −X
,

which implies that ∑
k≥1

1

Xqk −X

is algebraic. (In the literature, sometimes the abbreviation [k] := Xqk−X is used. Professor
Shallit remarks that the typesetters of the 1940s were probably grateful for this.)

Let
B :=

∑
k≥1

1

Xqk −X

=
∑
k≥1

1

Xqk(1− (1/x)qk−1)

=
∑
k≥1

1

Xqk

∑
n≥0

(1/X)n(q
k−1)

38

=
1

X

∑
k≥1

1

Xqk−1

∑
n≥0

(
1

X

)n(qk−1)

=
1

X

∑
k≥1,n≥0

(
1

X

)(n+1)(qk−1)

=
1

X

∑
k≥1,m≥1

(
1

X

)m(qk−1)

=
1

X

∑
r≥1

X−r

 ∑
k,m≥1,m(qk−1)=r

1


=

1

X

∑
r≥1

X−r

 ∑
k≥1,qk−1|r

1


=

1

X

∑
r≥1

c(r)X−r

where
c(r) :=

∑
k≥1,qk−1|r

1.

.
Note that (c(r) mod p)r≥1 is a q-automatic sequence. We use the following trick: if (c(r))r≥0
is k-automatic, then c(kr − 1))r≥0 is ultimately periodic. To prove this, consider outputs of
the DFAO generating (c(r)) when it is given inputs of the form (k−1, k−1, k−1, . . .), r times.

Therefore, (c(qn − 1) mod p)n≥1 is ultimately periodic. We have

c(qn − 1) =
∑

k≥1,qk−1|qn−1

1.

Note that qk − 1 | qn − 1 if and only if k | n. Thus,

c(qn − 1) =
∑

k≥1,k|n

1 = d(n),

the sum of the divisors of n. Thus, (d(n) mod p)n≥1 is ultimately periodic, i.e., there exist t
and n0 such that

d(n+ it) ≡ d(n) (mod p)

for all i ≥ 1 and n ≥ n0. Choose i := ni′, i′ ≥ 1. We get

d(n(1 + i′t)) ≡ d(n) (mod p).

By Dirichlet’s theorem, there exist infinitely many primes p′ of the form 1 + i′t, and so there

39

exists one that is greater than or equal to n0. Choose n := p′. Then

d((p′)2) ≡ d(p′) (mod p),

so 3 ≡ 2 (mod p), which is a contradiction.

We now discuss how to prove series in Q[[X−1]] or Q[[X]] are transcendental. The rough
idea is to (i) assume the series is algebraic: (ii) reduce its coefficients mod p, obtaining a
series in GF(p)[X], for example; (iii) prove the new series is not algebraic by some means;
and (iv) conclude that the original series is transcendental. What could go wrong is if all
the coefficients of the equation β0 + β1F + · · · + βtF

t = 0 witnessing the algebraicity of
the original polynomial vanish mod p. But if this happens, then all those coefficients are
divisible by p, so you could just divide out by p to begin with.

Consider
Θ3(X) :=

∑
−∞<n<∞

Xn2

.

We wish to prove that Θ3(X) is transcendental over Q(X). Assume it is algebraic. Then
since

Θ3(X) = 1 + 2
∑
n≥1

Xn2

we have that
∑

n≥1X
n2 is algebraic. So

∑
n≥1X

n2 is algebraic over GF(2)(X). By Christol’s
theorem, the characteristic sequence (an)n≥0 of the squares is 2-automatic. We now enjoy a
historical diversion.

Büchi was interested in logic circa 1960. Alan Cobham (not the pilot), circa 1968, was
working at IBM and wrote a paper called "uniform tag sequences" (1972). Today these are
called k-automatic sequences. In his paper, Cobham proved several cool theorems about
k-automatic sequences, including his "little theorem". Some of the other theorems are about
gaps that can occur between the elements of a k-automatic sequence. One of these theorems
is the following.

Theorem 9.3. Let x = (xn)n≥0 be a k-automatic sequence taking values in ∆. Let d ∈ ∆.
Let αj be the position of the jth occurrence of d in x. Then either

lim sup
n→∞

|x[0..n− 1]|d
log n

<∞

or else
lim inf
j→∞

(αj+1 − αj) <∞.

(The notation |x[0..n − 1]|d means the number of occurrences of d in x from position 0 to
position n− 1.)

Applying this theorem, the characteristic sequence of the squares is not 2-automatic, so
Θ3(X) is transcendental. We now state a corollary to Cobham’s theorem.

40

Corollary 9.4. Let p be a polynomial such that p(N) ⊆ N. Then the characteristic sequence
of {p(0), p(1), . . . } is k-automatic if and only if deg(p) < 2.

10 Feb. 6, 2020.
I was headed to Michigan this class. The notes are available on Professor Shallit’s website.

11 Feb. 11, 2020.
I will give the first presentation on March 24. Presentations should be about 20 to 25 min-
utes each, which leaves some time for questions.

Professor Shallit points out that the number of quantifiers tends to be quite low (at most
around five) for the properties people are interested in. So in practice, Walnut tends not
to time out when checking statements about automatic sequences. The other day, Jason
Bell asked him a question about automatic sequences, and it is now one of the assignment
questions.

I will not take notes on the material from the slideshow being presented today. In the slide
with "eval tmup", "eval" means "evaluate" and "tmup" is the file name you save it to. (It
stands for "Thue–Morse ultimate periodicity".) Be careful with the use of "&" and "=>".
The code "Ep (p >= 1) &" means "There exists p, and p >= 1". The final "&" binds "Ep"
to "(p >= 1)". Note that Walnut knows that "T" refers to the Thue–Morse sequence. On
the slide that says "orders of squares", the word "squares" means substrings of the form xx
where x is some non-empty substring; it does not refer to squares of integers.

A fractional power n/p is a word of length n and period p. For example, "alfalfa" is a (7/3)-
power. We say a word w avoids α-powers if it contains, as factors, no word of fractional
power β with β ≥ α.

The notation "?msd=13" means "evaluate the string in base 13, starting with the most sig-
nificant digit".

If you don’t quantify over a variable in Walnut, it gives you the automaton that accepts the
values of that variable that make the formula true.

The property of being balanced (on one of the slides) is one that we do not know how to state
in first-order logic. How can you count the number of letters in a word in first-order logic?
But then we have a nice alternative characterization that we can conver to a statement of
first-order logic instead.

41

12 Feb. 13, 2020.
We continue going through the slideshow from last class. I will only write down things that
aren’t in the slideshow.

Definition 12.1. Let (sn)n≥0 be a sequence. Its critical exponent is

sup{e | ∃ a finite block x in (sn)n≥0 such that exp(x) = e}.

Here
exp(x) :=

|x|
per(x)

where per(x) is the period of x.

Professor Shallit asks the following open problem. Consider the Cantor numbers, those base
3 numbers that can be written using only the digits 0 and 2. Call this set

C := {0, 2, 6, 8, . . . }.

Which non-negative integers can be written as the quotient of two Cantor numbers? In other
words, what are the elements of

{p
q
| p, q ∈ C, q 6= 0} ∩ Z≥0.

The Rudin–Shapiro sequence is an example of an automatic sequence that is not the fixed
point of any uniform morphism.

Definition 12.2. Let s := (sn)n≥0 be a sequence. The subword complexity (sometimes
called the factor complexity or just the complexity) of s, denoted by ρs(n), is defined to be
the number of distinct length-n blocks appearing in s.

If s is written in base k, we have the bound 1 ≤ ρs(n) ≤ kn. The subword complexity can be
calculated explicitly when s is k-automatic. There is a theorem saying that for automatic se-
quences, subword complexity is small. More precisely, if s is k-automatic, then ρs(n) = O(n).
Given an automaton generating s, we can produce a formula for ρs(n). These formulas can
be quite complicated. Even in the case of the Thue–Morse sequence, the formula for ρs(n) is
somewhat complicated and is given by a piecewise function depending on when n is bounded
by various powers of 2. But the problem with giving this type of formula is what exactly do
you allow as your operations in the function?

Instead, we will give a different type of formula. We will have t×tmatricesM0,M1, . . . ,Mk−1
and vectors u, v, of respective dimensions 1× t and t× 1. Then we will write

ρs(n) = vMa1 · · ·Marv

where
(n)k =: a1a2 . . . ar.

42

This is not entirely satisfactory because we will be multiplying matrices with integer entries,
which already causes undecidability issues. Mike Patterson proved in the 1970s that the
problem of whether there is a product of finitely many given 3 × 3 matrices that is equal
to the 3 × 3 zero matrix is undecidable. There is a notion of joint spectral radius of ma-
trices, though, that gives an upper bound on how fast such a product can grow and gives
a polynomial time algorithm for computing the subword complexity here. This is the way
around the undecidability issues. The representation in base k has only log n bits, so you
are multiplying some matrices log n times, which is quite efficient for large n.

In our next assignment, we will be asked how many different equivalence classes there are
for words in which all conjugates appear in Thue–Morse. You can get an automaton and get
a formula for how many there are. This is related to the previous problem.

The trick on Slide 9/56 of Slideshow 4 involving counting the first occurrence of each palin-
drome rather than just counting each palindrome is apparently a useful hint about Assign-
ment 2.

To prove a quantity is finite, often you can find a k-regular sequence, you produce the matrix
representation, you use the "semigroup trick" from Slide 14 or so of Slideshow 4, and thus
you get a bound.

Recall that a sequence s is k-automatic if and only if the k-kernel Kk(s) is finite. It turns
out that s is k-regular if and only if Kk(s) is contained in a finitely-generated Z-module.
For example, recall that s2(n) is the sum of the bits in n’s base 2 representation. Then
s2(2n) = s2(n) and s2(2n+ 1) = s2(n) + 1. Thus, the k-kernel of s2(n) will be contained in
〈s2(n), 1〉 where 1 is the sequence of all 1’s.

13 Feb. 25, 2020.
A sequence f is k-regular if there exist finitely many sequences (f1(n)), . . . , (fr(n)) such that
every sequence in the k-kernel of (f(n)) is a Q-linear combination of the (fi(n))’s.

Equivalently, in the above definition one can assume that the finitely many sequences can
be taken to be elements of the k-kernel. Equivalently, there exists a 1× r vector v, an r× 1
vector w, and r × r matrices µ(a), 0 ≤ a < k, such that

f(n) = v · µ((n)k) · w.

Prof. Shallit: "With greater generalization comes greater power and undecidability." Unlike
the case of automata, there is typically no general procedure for solving decision problems
about k-regular sequences.

Here is an example. Let s2(n) be the sum of the bits in (n)2. Take k = 2. Then the k-kernel

43

consists of elements of the form

s2(2
en+ i) = s2(n) + s2(i), 0 ≤ i < 2e.

Thus, the k-kernel is contained in
〈(s2(n))n≥0, 1〉.

Here we have used the first definition of 2-regularity. Alternatively, using the second defini-
tion, we observe that

s2(2n) = s2(n), s2(4n+ 1) = s2(2n+ 1), s2(4n+ 3) = −s2(n) + 2s2(2n+ 1).

Thus, the 2-kernel of s2 is contained in

〈s2(n), s2(2n+ 1)〉.

Alternatively, using the third definition of 2-regularity, we observe that

[s2(n), 1]µ(0) = [s2(2n), 1]

and
[s2(n), 1]µ(1) = [s2(2n+ 1), 1].

Here we take
v := [0, 1], w := [1, 0]T , µ(0) = I2, µ(1) =

[
1 0
1 1

]
.

Also, we have
[s2(n), s2(2n+ 1)]µ0 = [s2(2n), s2(4n+ 1)],

[s2(n), s2(2n+ 1)]µ1 = [s2(2n+ 1), s2(4n+ 3)].

Here we take
v := [0, 1], w := [1, 0]T , µ0 := I2, µ1 :=

[
0 −1
1 2

]
.

We now discuss closure properties of k-regular sequences. Let s := (s(n)), t := (t(n)) be
k-regular. Then (i) s + t = (s(n) + t(n)), (ii) st = (s(n)t(n)), and (iii) ct = (ct(n)) are
k-regular for any constant c.

Proof. By k-regularity, there exist (s1(n)), . . . , (sr(n)) such that the k-kernel of s is contained
in 〈s1, s2, . . . , sr〉 and there exist (t1(n)), . . . , (tr′(n)) such that the k-kernel of t is contained
in 〈t1, t2, . . . , tr′〉. Then the k-kernel of s+ t is contained in 〈s1, s2, . . . , sr, t1, t2, . . . , tr′〉, the
k-kernel of st is contained in {sitj | 1 ≤ i ≤ r, 1 ≤ j ≤ r′}, and the k-kernel of ct is contained
in 〈t1, t2, . . . , tr′〉. (For a ring, you need to change this to 〈ct1, ct2, . . . , ctr′〉, but since we are
working over Q, we do not need the constants.)

Suppose s and t are k-regular and t(n) 6= 0 for all n. Define s/t := (s(n)/t(n)). Is s/t
k-regular? It turns out that, in general, it isn’t. For example, take s(n) := 1, t(0) := 1,

44

t(2n) := n+ 1, t(2n+ 1) := t(n) + 1. Then

t(4n) = t(n) + 2t(2n)− t(2n+ 1),

t(4n+ 1) = −t(n) + t(2n) + t(2n+ 1),

t(4n+ 2) = 2t(2n),

t(4n+ 3) = −t(n) + 2t(2n+ 1).

We claim that (1/t(n)) is not 2-regular. We need to produce arbitrarily many linearly
independent sequences in its 2-kernel. Define

tj(n) := t(2jn+ 2j−1 − 1), j ≥ 1.

One can check that tj(n) = n+ j. Then (1/t(n)) has the sequence (1/(n+ j)) in its 2-kernel
for j ≥ 1. It remains to prove that these are all linearly independent. We put the first r
values of 1/(n + 1) into the first row of a matrix, the first r values of 1/(n + 2) into the
second row, and so on until the first r values of 1/(n + r) are placed in the rth row. The
resulting matrix

Hr =

1/1 1/2 1/3 1/4 . . .
1/2 1/3 1/4 1/5 . . .
.


is known as the r × r Hlbert matrix. Its determinant is known to be

det(Hr) =

(
±
∏

1≤k<r

(2k + 1)

(
2k

k

)2
)−1

.

This is really small in absolute value but non-zero. This proves the 1/(n + j)’s are linearly
independent.

We now discuss the composer Per Nørgård’s sequence

s(0) := 0, s(2n) := −s(n), s(2n+ 1) := s(n) + 1.

The sequence begins (0, 1,−1, 2, 1, 0,−2, 3,−1, . . .). Nørgård used this to compose music by
assigning the note G to 0, G# to 1, F# to −1, etc.

Let e0(n) be the number of 0’s in (n)2, e1(n) := s2(n) (the number of 1’s in base 2). Then

f(n) := e0(n)− e1(n)

is 2-regular. However, |f(n)| is not even though f(n)2 is.

Proof. Let g(n) := |f(n)|. Then

g(2jn) = |e0(n)− e1(n) + j|, n ≥ 1, j ≥ 0.

45

Suppose {(g(2jn))n≥1 | j ≥ 0} were linearly dependent. Then |m + j|, j ≥ 0, would be
linearly dependent for all m ∈ Z. Thus, for some a, we would have

|m+ a| =
∑

a+1≤j≤b

cj|m+ j|

for some constants cj. Look at the right-hand side for m ≥ −(a + 1). It is monotonic, but
evaluating the left-hand side at m := −(a+1) gives 1, at m := −a gives 0, and at m := 1−a
gives 1, so it is not monotonic. This is a contradiction, so |f(n)| is not 2-regular.

We showed that any linearly indexed subsequence of an automatic sequence is automatic.
We would now like to prove the same result for k-regular sequences. To do so, we discuss
transducers of k-regular sequences.

Let T be a deterministic finite-state transducer with transitions on single letters in Σk =
{0, 1, . . . , k} and outputs in Σ∗k. If f(n) is k-regular, we claim that so is f((T ((n)k)))n≥0.
Since we can make a transducer that on input n, outputs an + b, this claim, once proved,
will complete the argument.

Proof. Combine T with the linear representation for f . Suppose the linear representation
of f has rank s with parameters v,w, and µ(a) for 0 ≤ a < k. The transducer has r states,
say. We can think of the transducer as itself having a linear representation, with a vector
[1, 0, . . . , 0] corresponding to the initial state, matrices corresponding to the transitions, and
an output vector [1, 1, . . . , 1]T . The transition matrix has a 1 in position (i, j) if and only if
δ(qi,−) = qj, and a 0 otherwise. We will create a linear representation for the sequence

g(n) := f(T ((n)k))

using (rs) × (rs) matrices (really the tensor product). We think of these matrices as r × r
matrices where the entries are µ(a)’s. We build such a matrix by placing µ(t) in position
(i, j) if and only if δ(qi, t) = qj.

We now prove a theorem.

Theorem 13.1. The following problem is not recursively solvable (i.e., is undecidable):
Given a k-regular sequence over Z, say f(n), does there exist n0 such that f(n0) = 0?

Proof. We reduce this to Hilbert’s 10th problem: Given a multivariate polynomial p(x1, x2, . . . , xr)
with integer coefficients, decide whether there exist a1, a2, . . . , ar ∈ N with p(a1, a2, . . . , ar) =
0. This problem is known to be undecidable.

Let p be an input to Hilbert’s 10th problem. We need to make a k-regular sequence out
of it. The easiest thing to do is to take n, express it in base k, and count the number of
occurrences of each digit. Let k := r + 1 where r is the number of variables in our Hilbert’s
problem instance. Create a sequence

f(n) := p(|(n)k|1, |(n)k|2, . . . , |(n)k|r).

46

(Here |(n)k|1 denotes the number of occurrences of the digit 1 in the base-k expansion of n.)
Since k-regular sequences are closed under addition and multiplication, any polynomial in
them is going to be k-regular. (Also, everything done so far is effective: given a polynomial,
we could explicitly find the linear representation of f .) Then f(n0) = 0 if and only if
p(a1, a2, . . . , ar) = 0 where ai := |(n0)k|i. This proves the claim.

In certain special cases, questions about k-regularity are decidable, but not in general, as
the above theorem shows.

14 Feb. 27, 2020.

47

	Jan. 7, 2020.
	Jan. 9, 2020.
	Jan. 14, 2020.
	Jan. 16, 2020.
	Jan. 21, 2020.
	Jan. 23, 2020.
	Jan. 28, 2020.
	Jan. 30, 2020.
	Feb. 4, 2020.
	Feb. 6, 2020.
	Feb. 11, 2020.
	Feb. 13, 2020.
	Feb. 25, 2020.
	Feb. 27, 2020.

