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ANDREJ VUKOVIĆ

Abstract. We begin by defining tensor products as certain linear functionals on spaces of
bilinear forms and by proving several elementary properties about them. We recall some
basic results from Banach space theory, then proceed to define the projective tensor norm
on the tensor product of two Banach spaces and to calculate an example of it. After that, we
prove a useful duality theorem that gives another characterization of the projective norm,
which is often easier to work with. Finally, we define nuclear operators and discuss the
approximation property.

1. Notation

Our notation is almost identical to that of [1], but in the interest of keeping this article rela-
tively self-contained, I go over the notation again. We use X, Y, Z to denote Banach spaces
over the fields R or C. We denote the closed unit ball of a Banach space X by BX . We
use the word operator to mean a bounded linear map, and we denote the space of operators
from X to Y by L(X, Y ).

We denote the continuous dual space (or dual space for short) of X by X∗. This is the space
of continuous linear functionals on X, and is a subspace of the algebraic dual space, which
is the space of all linear functionals on X and which we denote X#.

Given two Banach spaces X, Y , we denote the space of bounded bilinear forms on the prod-
uct X × Y by B(X, Y ) and abbreviate this to B(X) when X = Y . B(X, Y ) comes equipped
with the usual norm ‖B‖ = sup{|B(x, y)| : x ∈ BX , y ∈ BY }.

Familiarity with standard examples of Banach spaces, particularly c0(X) and `p(X) for
1 ≤ p ≤ ∞, is assumed.

2. Preliminaries

In what follows, we define the tensor product of vector spaces V andW as a certain subspace
of B(X, Y )#. This approach is convenient because it works in both the finite- and infinite-
dimensional settings.

Definition 2.1. Given vector spaces V,W and elements v ∈ V,w ∈ W , v ⊗ w ∈ B(X, Y )#

is the unique linear functional given by evaluation at (v, w), i.e., (v ⊗ w)(A) = A(v, w) for
every A ∈ B(X, Y ). V ⊗W is the subspace of B(X, Y )# spanned by elements of the form
v ⊗ w.

Remark 2.2. Even for finite-dimensional vector spaces, a given representation u =
∑n

i=1 v1⊗
w1 of u ∈ V ⊗W is not unique. For example, taking C3 with standard basis {e1, e2, e3}, we
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have
(e1+e2)⊗(e1−e2)+(e2+e3)⊗(e2−e3)+(e3+e1)⊗(e3−e1) = e1⊗(e3−e2)+e2⊗(e1−e3)+e3⊗(e2−e1).
This shows that there is not even a unique representation consisting of exactly three terms
in this case.

The following two propositions will be useful to us in the following section, but are also
important in their own right.

Proposition 2.3. Let X, Y be vector spaces. We have the following.
(a) If E and F are linearly independent subsets of X and Y respectively, then {x ⊗ y|x ∈
E, y ∈ F} is a linearly independent subset of X ⊗ Y .
(b) If {ei|i ∈ I} and {fj|j ∈ J} are bases for X and Y respectively, then {ei ⊗ fj|i ∈
I and j ∈ J} is a basis for X ⊗ Y .

Proof. We prove (a); (b) clearly follows. Let u =
∑n

i=1 λixi ⊗ yi = 0, where xi ∈ E, yi ∈ F
for all i. Suppose ϕ, ψ are linear functionals on X and Y respectively, and let A be the
bilinear form given by A(x, y) := ϕ(x)ψ(y). Then, since u(A) = 0,

n∑
i=1

λiϕ(xi)ψ(yi) = ψ(
n∑
i=1

λiϕ(xi)yi) = 0.

As ψ was arbitrary, we conclude that
∑n

i=1 λiϕ(xi)yi = 0, so because F is a linearly indepen-
dent set, we have λiϕ(xi) = 0 for every ϕ ∈ X#. However, since E is a linearly independent
set as well, each xi is nonzero so λi = 0 for all i. Therefore, {x ⊗ y|x ∈ E, y ∈ F} is also
linearly independent. � �

Proposition 2.4. (We retain the notation from the previous proposition.) If

u =
n∑
i=1

xi ⊗ yi ∈ X ⊗ Y,

then the following are equivalent:
(i) u = 0;
(ii)

∑n
i=1 ϕ(xi)ψ(yi) = 0 for every ϕ ∈ X#, ψ ∈ Y #;

(iii)
∑n

i=1 ϕ(xi)yi = 0 for every ϕ ∈ X#;
(iv)

∑n
i=1 ψ(yi)xi = 0 for every ψ ∈ Y #.

Proof. (i) =⇒ (ii): Simply define the linear functional A(x, y) := ϕ(x)ψ(y), and this follows
as in the proof of the previous proposition since u(A) = 0.

(ii) =⇒ (iii): Write
n∑
i=1

ϕ(xi)ψ(yi) = ψ(
n∑
i=1

ϕ(xi)yi)

and the result follows.

(iii) =⇒ (iv): Apply ψ to both sides of the equality in (iii) to get
n∑
i=1

ϕ(xi)ψ(yi) = 0 = ϕ(
n∑
i=1

ψ(yi)xi),
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and the result follows.

(iv) =⇒ (i): Let A ∈ B(X×Y ) be arbitrary. Let E,F be the subspaces of X, Y spanned by
{x1, ..., xn} and {y1, ..., yn} respectively. Let B := A|E×F . As E,F are finite-dimensional, we
may choose bases for them and expand B relative to these bases to obtain a representation

B(x, y) =
m∑
j=1

θj(x)ωj(y),

where θj ∈ E#, ωj ∈ F#. We may choose algebraic complements G,H for E,F respectively
and set θj|G := 0, ωj|H := 0; in this way we extend θj and ωj to X and Y respectively. Now
B can be thought of as a bilinear form on X × Y . As A and B agree on E × F , we have

u(A) =
n∑
i=1

A(xi, yi) =
n∑
i=1

B(xi, yi)

=
n∑
i=1

M∑
j=1

θj(xi)ωj(yi) =
m∑
j=1

θj(
n∑
i=1

ωj(yi)xi) = 0,

by (iv). Therefore, u(A) = 0 for every A ∈ B(X × Y ). �

Definition 2.5. A subset S of the algebraic dualX# of a Banach spaceX is called separating
if for any x, y ∈ X such that x 6= y, there exists ϕ ∈ S such that ϕ(x) 6= ϕ(y).

Remark 2.6. It is clear that instead of considering ϕ ∈ X#, ψ ∈ Y # in Proposition 2.4, we
may take ϕ ∈ X#

1 , ψ ∈ Y
#
1 where X#

1 ⊆ X#, Y #
1 ⊆ Y # are separating subsets. The proof

of Proposition 2.4 remains essentially unchanged because the following statement still holds,
carried over from X# to X#

1 and from Y # to Y #
1 : if f(u) = 0 for all f ∈ X#

1 , u ∈ X, then
u = 0. This fact is used several times and is the only part of the proof that directly relies
on the structure of our spaces of functionals.

The next two propositions are well known. The proof of the first will be omitted as I believe
we have used it earlier in the course, but I will prove the second.

Proposition 2.7. Given Banach spaces X, Y, Z and a bilinear map B : X × Y → Z, there
exists a unique, well-defined linear map Ã : X ⊗ Y → Z such that A(x, y) = Ã(x ⊗ Y ) for
all x ∈ X, y ∈ Y . This linear map is called the linearization of B.

Proposition 2.8. Given a bounded linear transformation T from a normed vector space V
to a a Banach space X, T can be uniquely extended to a bounded linear transformation T̃
from the completion Ṽ of V to X.

Proof. Suppose (vn) is a Cauchy sequence in V . Then ‖Tvn − Tvm‖ ≤ ‖T‖‖vn − vm‖ and
‖T‖ < ∞ as T is bounded, so (Tvn) is Cauchy, and by completeness of X it converges.
Define T̃ v := limn Tvn where (vn) is an arbitrary Cauchy sequence converging to v ∈ Ṽ .

T̃ is well-defined because if v′n → v as well, then ‖Tvn − Tv
′
n‖ ≤ ‖T‖‖vn − v

′
n‖ → 0 as

n → ∞, so limn Tvn = limn Tv
′
n = T̃ v. Taking constant sequences shows that T̃ |V = T .

Also,
T̃ v = lim

n
Tvn ≤ ‖T‖ lim

n
‖vn‖ = ‖T‖ lim

n
‖vn‖,
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by continuity of the norm,
= ‖T‖‖v‖,

so T̃ is bounded. Finally, if S is another bounded linear extension of T to Ṽ , then T̃ vn = Svn
for all n, so as T̃ − S is bounded and linear, and therefore continuous, (T̃ − S)v = 0 for any
v ∈ Ṽ , which establishes uniqueness. �

Suppose X, Y are Banach spaces. If we want to make X ⊗ Y into a Banach space, we will
need to impose a norm on it. But given that the representation of a given element in X ⊗Y
is not unique, as described in Remark 2.2, we must define the norm on X ⊗ Y in a way that
is independent of the representation chosen for any element of X ⊗ Y . We now present one
way of doing this.

3. The Projective Tensor Norm and Duality

3.1. The Projective Tensor Norm. We impose an additional algebraic condition to sim-
plify the problem of determining a suitable norm on X ⊗ Y . If x ∈ X, y ∈ Y , we impose the
condition

‖x⊗ y‖ ≤ ‖x‖‖y‖.
Let u ∈ X ⊗ Y so that u =

∑n
i=1 xi ⊗ yi for some xi ∈ X, yi ∈ Y . (We can represent u in

this way because if an element of the form λxi ⊗ yi appears in the sum, we may rewrite xi
as λxi, which is still in X.) Then, as ‖·‖ is assumed to be a norm, we have by the triangle
inequality that

‖u‖ ≤ inf{
n∑
i=1

‖xi‖‖yi‖}.

This motivates our next definition.

Definition 3.1. Given Banach spaces X and Y , the projective norm on X ⊗ Y is given by

π(u) = inf{
n∑
i=1

‖xi‖‖yi‖ : u =
n∑
i=1

xi ⊗ yi},

where the infimum is taken over all possible representations of u.

Proposition 3.2. π is a norm on X ⊗ Y and π(x⊗ y) = ‖x‖‖y‖ for every x ∈ X, y ∈ Y .

Proof. Let λ be a scalar. We will first show that π(λu) = |λ|π(u). This clearly holds when
λ = 0, so suppose λ 6= 0. Suppose also that u =

∑n
i=1 xi ⊗ yi is a representation of u. Then

π(λu) ≤
n∑
i=1

‖λxi‖‖yi‖

= |λ|
n∑
i=1

‖xi‖‖yi‖,

and since this holds for every representation of u, π(λu) ≤ |λ|π(u). For the same reason,
π(u) = π(λ−1λu) ≤ |λ|−1π(λu), so |λ|π(u) ≤ π(λu). Therefore, π(λu) = |λ|π(u).

Next, let u, v ∈ X⊗Y and ε > 0. We will show that π satisfies the triangle inequality. From
the definition of π, we may choose representations u =

∑n
i=1 xi ⊗ yi and v =

∑m
j=1wj ⊗ zj
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such that
n∑
i=1

‖xi‖‖yi‖ ≤ π(u) + ε/2 and
m∑
j=1

‖wj‖‖zj‖ ≤ π(v) + ε/2.

As
∑m

i=1(xi ⊗ yi) +
∑m

j=1(wj ⊗ zj) represents u+ v, we have

π(u+ v) ≤
n∑
i=1

‖xi‖‖yi‖+
m∑
j=1

‖wj‖‖zj‖ ≤ π(u) + π(v) + ε.

As ε > 0 was arbitrary, π(u+ v) ≤ π(u) + π(v) as desired.

Finally, we show that π(u) = 0 implies u = 0. Suppose π(u) = 0. Then for every ε > 0 there
is a representation u =

∑n
i=1 xi ⊗ yi such that

n∑
i=1

‖xi‖‖yi‖ ≤ ε.

It follows that for every ϕ ∈ X∗, ψ ∈ Y ∗,

|
n∑
i=1

ϕ(xi)ψ(yi)| ≤ ε‖ϕ‖‖ψ‖

by definition of ‖ϕ‖, ‖ψ‖.

The value of
∑n

i=1 ϕ(xi)ψ(yi) is independent of the representation of u, so we have
n∑
i=1

ϕ(xi)ψ(yi) = 0.

By Remark 2.6 and the fact that X∗ ⊂ X#, Y ∗ ⊂ Y # are separating subsets, we may apply
Proposition 1.2 to obtain u = 0.

Finally, we will show that π(x⊗ y) = ‖x‖‖y‖. We have π(x⊗ y) ≤ ‖x‖‖y‖ by definition of
π. To prove the other direction, let ϕ ∈ BX∗ , ψ ∈ BY ∗ satisfy ϕ(x) := ‖x‖ and ψ(y) := ‖y‖.
Let B(w, z) := ϕ(w)ψ(z), which is a bounded bilinear form on X × Y . Let B̃ denote the
linearization of B, so that

|B̃(
n∑
i=1

xi ⊗ yi)| ≤
n∑
i=1

|B̃(xi ⊗ yi)| =
n∑
i=1

|ϕ(xi)ψ(yi)| ≤
n∑
i=1

‖xi‖‖yi‖.

Then |B̃(u)| ≤ π(u) for every u ∈ X ⊗ Y , so ‖x‖‖y‖ = B̃(x ⊗ y) ≤ π(x ⊗ y), and we are
done. �

Definition 3.3. Let X ⊗π Y := (X ⊗ Y, π) be the space X ⊗ Y equipped with the norm π.
This space is not complete, so let X⊗̂πY denote its completion. We call this completion the
projective tensor product of X and Y .

Remark 3.4. Recall that if X,W, Y, Z are Banach spaces and S ∈ L(X,W ), T ∈ L(Y, Z)
are operators, then there is a unique linear map S ⊗ T : X ⊗ Y → W ⊗ Z satisfying
(S ⊗ T )(x⊗ y) = (Sx)⊗ (Ty) for every x ∈ X, y ∈ Y . If u ∈ X ⊗ Y and u =

∑n
i=1 xi ⊗ yi,
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then

π((S ⊗ T )(u)) = π(
n∑
i=1

(Sxi)⊗ (Tyi))

≤
n∑
i=1

‖Sxi‖‖Tyi‖ ≤ ‖S‖‖T‖
n∑
i=1

‖xi‖‖yi‖,

so π((S ⊗ T )u) ≤ ‖S‖‖T‖π(u). Hence, when we take the projective norms on X ⊗ Y and
W ⊗Z, S⊗T is an operator and ‖S⊗T‖ ≤ ‖S‖‖T‖. However, taking norms of both sides of
the equation (S⊗T )(x⊗y) = (Sx)⊗(Ty), we obtain the other inequality ‖S⊗T‖ ≥ ‖S‖‖T‖.
Therefore, ‖S ⊗ T‖ = ‖S‖‖T‖. Finally, by Proposition 2.8 there exists a unique bounded
linear extension of S ⊗ T to X⊗̂πY and W ⊗̂πZ. Denote this operator by S ⊗π T . We
summarize this procedure in the following result.

Proposition 3.5. Let S : X → W and T : Y → Z be operators. Then there exists a unique
operator S ⊗π T : X⊗̂πY → W ⊗π Z such that (S ⊗π T )(x ⊗ y) = (Sx) ⊗ (Ty) for every
x ∈ X, y ∈ Y . Moreover, ‖S ⊗π T‖ = ‖S‖‖T‖.

Example 3.6. We will construct the space `1⊗̂πX for an arbitrary Banach space X. Given
a = (an) ∈ `1, x ∈ X, we associate the elementary tensor a ⊗ x with the sequence (anx) ∈
`(X). Notice that

∞∑
n=1

‖anx‖ ≤ (
∞∑
n=1

|an|)‖x‖ <∞.

We equip `1(X) with the usual norm

‖(xn)‖1 =
∞∑
n=1

‖xn‖.

Then we may extend the construction above linearly to all of `1 ⊗ X to obtain a map
J : `1 ⊗ X → `1(X) given on elementary tensors by J(a ⊗ x) = (anx). Now, if u =∑m

i=1 ai ⊗ xi ∈ `1 ⊗X, where ai = (ai,n)n for each i, then

‖J(u)‖1 = ‖(
m∑
i=1

ai,nxi)n‖1 =
∞∑
n=1

‖(
m∑
i=1

ai,nxi)n‖

≤
∞∑
n=1

m∑
i=1

‖ai,nxi‖ =
m∑
i=1

(
∞∑
n=1

|ai,n|)‖xi‖ =
m∑
i=1

‖ai‖‖xi‖,

and, since we chose an arbitrary representation of u, we have ‖J(u)‖1 ≤ π(u).
Next, we will prove that ‖J(u)‖1 ≥ π(u). As before, let u =

∑m
i=1 ai⊗xi. Then J(u) = (un),

where un =
∑m

i=1 ai,nxi. We claim
∑∞

n=1 en⊗un → u in `1⊗πX; here (en) is the standard basis
for `1. Let Πk be the projection onto the first k coordinates, so that Πk(a) =

∑k
n=1 anen → a

as k →∞. Then

π(u−
k∑

n=1

en ⊗ un) = π(
m∑
i=1

ai ⊗ xi −
k∑

n=1

m∑
i=1

en ⊗ ai,nxi)

= π(
m∑
i=1

(ai ⊗ xi −
k∑

n=1

ai,nen ⊗ xi)) = π(
m∑
i=1

(ai − Πkai)⊗ xi)
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≤
m∑
i=1

‖ai − Πkai‖‖xi‖.

Hence, π(u−
∑k

n=1 en ⊗ un) as k →∞ and

π(u) = π(
∞∑
n=1

en ⊗ un) ≤
∞∑
n=1

‖un‖ = ‖J(u)‖1,

as desired. This proves that J is an isometry. As `1(X) is complete, J extends to a unique
isometry from `1⊗̂πX into `1(X). Indeed, I claim this extension is surjective. Given a
sequence (xn) ∈ `1(X), it suffices to show that

∑∞
n=1 en ⊗ xn converges in `1⊗̂πX. (Recall

that u =
∑m

i=1 ai ⊗ xi.) It is then clear that J will map this series to u. As `1⊗̂πX is a
Banach space, it is enough to show the series is Cauchy, that is that its tail can be made
arbitrarily small. But we have

π(
k∑
n=j

en ⊗ xn) ≤
k∑
n=j

‖xn‖,

so this holds. Therefore, `1⊗̂πX and `1(X) are isometrically isomorphic, so we may identify
them.

3.2. Duality. The following theorem will give us a simpler characterization of the projective
norm.

Theorem 3.7. Given a bounded bilinear map B : X×Y → Z, there exists a unique operator
B̃ : X⊗̂πY → Z such that B̃(x⊗ y) = B(x, y) for every x ∈ X, y ∈ Y . The correspondence
between B and B̃ is an isometric isomorphism between Banach spaces B(X × Y, Z) and
L(X⊗̂πY, Z).

Proof. By the universal property of tensor products, there exists a unique linear map B̃ :
X ⊗ Y → Z such that B̃(x ⊗ y) = B(x, y) for every x, y. Let us show B̃ is bounded under
the projective norm. Let u =

∑n
i=1 xi ⊗ yi ∈ X ⊗ Y . Then

‖B̃(u)‖ = ‖
n∑
i=1

B(xi, yi)‖ ≤ ‖B‖
n∑
i=1

‖xi‖‖yi‖.

As the representation of u was arbitrary, it follows that ‖B̃(u)‖ ≤ ‖B‖π(u). Thus B̃ is
bounded and ‖B̃‖ ≤ ‖B‖. Also, ‖B(x, y)‖ = ‖B̃(x ⊗ y)‖ ≤ ‖B̃‖‖x‖‖y‖ so ‖B‖ ≤ ‖B̃‖.
Therefore, B̃ : X ⊗π Y → Z has a unique extension to X⊗̂πY with the same norm; we
we will also denote this map by B̃. It is clear the map B 7→ B̃ is a linear isometry, so we
just need to show it’s surjective. If L ∈ L(X⊗̂πY, Z), then B(x, y) := L(x ⊗ y) is bounded
bilinear and satisfies B̃ = L. Therefore, we have an isometric isomorphism, so we may make
the canonical identification

B(X × Y, Z) = L(X⊗̂πY, Z).

�

Remark 3.8. Taking Z to be a field of scalars in the canonical identification above, we
obtain B(X×Y ) = (X⊗̂πY )∗. This means we may consider the action of a bounded bilinear
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form B as a bounded linear functional on X⊗̂πY given by

〈
n∑
i=1

xi ⊗ yi, B〉 =
n∑
i=1

B(xi, yi).

This immediately gives the formula
π(u) = sup{|〈u,B〉| : B ∈ B(X × Y ), ‖B‖ ≤ 1}.

We give an example that showcases the utility of this equivalent definition of π.

Example 3.9. We will calculate the tensor diagonal, D, of `2⊗̂π`2, which is the closed
subspace generated by the tensors en ⊗ en, where (en) is the standard basis for `2.
Let u ∈ D have the representation u =

∑k
n=1 anen⊗ en. Then π(u) ≤

∑k
n=1|an| by the usual

definition of π. Now consider the bilinear form on `2 × `2 given by

B(x, y) :=
k∑

n=1

sgn(an)xnyn,

where sgn(a) is a scalar of absolute value 1 such that sgn(a)a = |a|. It’s then clear that
‖B‖ = 1. Therefore, by our new formula for π,

π(u) ≥ 〈u,B〉 =
k∑

n=1

anB(en, en) =
k∑

n=1

|an|.

Therefore, π(u) =
∑k

n=1|an|, so D is isometrically isomorphic to `1.

4. Nuclear Operators and the Approximation Property

4.1. Nuclear Bilinear Forms. Given a tensor of the form u =
∑n

i=1 ϕi ⊗ ψi ∈ X# ⊗ Y #,
we can associate to it a bilinear form given by

Bu(x, y) =
n∑
i=1

ϕi(x)ψi(y).

In particular, elements of X∗ ⊗ Y ∗ define bounded bilinear forms in this way, so we obtain
an injective operator of unit norm from X∗ ⊗π Y ∗ into B(X × Y ). Extending this to the
completion gives an operator

J : X∗⊗̂πY ∗ → B(X × Y )

of unit norm. This map is not necessarily surjective, so we have the following definition.

Definition 4.1. A bilinear form on X × Y is said to be nuclear if it lies in the range of J .

Thus a bilinear form B is nuclear if and only if there exist bounded sequences (ϕn) ⊂
X∗, (ψn) ⊂ Y ∗ with

∑∞
n=1‖ϕn‖‖ψn‖ <∞ such that

B(x, y) =
∞∑
n=1

ϕn(x)ψn(y)

for every x, y. This leads to another definition.
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Definition 4.2. We call an expression of the form
∑∞

n=1 ϕn ⊗ ψn a nuclear representation
of B. We define the nuclear norm of B to be

‖B‖N := inf{
∞∑
n=1

‖ϕn‖‖ψn‖ : B(x, y) =
∞∑
n=1

ϕn(x)ψn(y)},

where the infimum is taken over all nuclear representations of B.

That this is indeed a norm can be seen by analogy with the proof that π is a norm. Let
BN(X × Y ) denote the space of nuclear bilinear forms equipped with the nuclear norm. As
BN(X × Y ) = range J , it is a vector space, and it is also not difficult to see that it is a
Banach space. Indeed, initially we might suspect BN(X×Y ) is simply X∗⊗̂πY ∗, as it would
be if the linear map J : X∗⊗̂πY ∗ described earlier were injective.

However, J can fail to be injective for the following reason. Let u ∈ X∗⊗̂πY ∗ be repre-
sented by

∑∞
n=1 ϕn ⊗ ψn. If the bilinear form B corresponding to u is 0, then B(x, y) =∑∞

n=1 ϕn(x)ψn(y) = 0 for all x ∈ X, y ∈ Y . But to deduce from this that u = 0, we must
have 〈u,A〉 =

∑∞
n=1A(ϕn, ψn) = 0 for every A ∈ B(X∗ × Y ∗) = (X∗⊗̂πY ∗)∗. These condi-

tions are not equivalent in general.

Because the nuclear norm is the quotient norm of X∗⊗̂πY ∗, we have
BN(X × Y ) = X∗⊗̂πY ∗/ ker J.

Here
ker J = {u ∈ X∗⊗̂πY ∗|Bu(x, y) = 0 ∀x ∈ X, y ∈ Y }.

We will return to this problem in the next subsection.

4.2. Nuclear Operators. We can define nuclear operators in a similar way to nuclear
bilinear forms. We have an operator J : X∗⊗̂πY → L(X, Y ) that takes u =

∑∞
n=1 ϕn ⊗ yn

as input and outputs the operator Lu : X → Y given by

Lu(x) =
∞∑
n=1

ϕn(x)yn.

Definition 4.3. A nuclear operator is an operator in range J . The nuclear norm of a nuclear
operator T is given by

‖T‖N := inf{
∞∑
n=1

‖ϕn‖‖yn‖ : T (x) =
∞∑
n=1

yn},

where the infimum is taken over all representations of T of the form T (x) =
∑∞

n=1 ϕn(x)yn,
where (ϕn) ⊂ X∗, (yn) ⊂ Y ∗ are bounded sequences such that

∑∞
n=1‖ϕn‖‖yn‖ < ∞. The

(Banach) space of nuclear operators is denoted N (X, Y ) and we have

N (X, Y ) = X∗⊗̂πY ∗/ ker J.

4.3. The Approximation Property. In our discussion of nuclear operators, the question
arose of when, given two Banach spaces X, Y , we have the equality

N (X, Y ) = X∗⊗̂πY ∗.
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We saw that this reduced to the question of when, given u ∈ X∗⊗̂πY ∗ with representation∑∞
n=1 xn ⊗ yn, we have u = 0. For finite rank tensors we have that

∑n
i=1 xi ⊗ yi = 0 if

and only if
∑n

i=1 ϕ(xi)yi = 0 for every ϕ ∈ X∗, but it is not so clear in the case of the
completed tensor product that the implication goes both ways. We do know that, in the
case of X∗⊗̂πY ∗, since the dual of X⊗̂πY is B(X×Y ) = L(X, Y ∗) we have that u = 0 if and
only if

∑∞
n=1〈yn, Txn〉 = 0 for every T ∈ L(X, Y ∗). For a finite-rank operator T ∈ L(X, Y ∗),

the map ϕ(xn) := 〈·, Txn〉 ∈ X∗, so the condition
∞∑
n=1

ϕ(xn)yn = 0 ∀ϕ ∈ X∗

does imply the condition
∞∑
n=1

〈yn, Txn〉 = 0 ∀T ∈ L(X, Y ∗).

But if X and Y are infinite-dimensional, we have operators that are not finite-rank. Thus we
want to approximate infinite-rank operators by finite-rank ones. This motivates the following
proposition.

Proposition 4.4. For a Banach space X, the following are equivalent:

(i) If K ⊆ X is compact and ε > 0, there exists a finite-rank operator S : X → X such that
‖x− Sx‖ ≤ ε for every x ∈ K.

(ii) If Y is a Banach space, T : X → Y is an operator, K ⊆ X is compact, and ε > 0, then
there exists a finite-rank operator S : X → Y such that ‖Tx− Sx‖ ≤ ε for every x ∈ K.

(iii) If Y is a Banach space, T : Y → X is an operator, K ⊆ Y is compact, and ε > 0, then
there exists a finite-rank operator S : Y → X such that ‖Ty − Sy‖ ≤ ε for every y ∈ K.

Proof. First we will show that (i) implies (ii). Let T : X → Y be a nonzero operator, let
K ⊆ X be compact, and let ε > 0. Then there exists a finite-rank operator R : X → X such
that ‖x − Rx‖ ≤ ε/‖T‖ for every x ∈ K. Let S := TR. Then S : X → Y is a finite-rank
operator and ‖Tx− Sx‖ ≤ ε for every x ∈ K.

Now we will show that (i) implies (iii). Let T : Y → X be an operator, let K ⊆ Y be
compact, and let ε > 0. We may apply (i) to T (K), which is a compact subset of X, to
obtain that there exists a finite-rank operator R : X → X such that ‖x−Rx‖ ≤ ε for every
x ∈ T (K). Let S := RT . Then S : Y → X and ‖Ty − Sy‖ ≤ ε for every y ∈ K.

(ii) clearly implies (i), so we are done. �

Definition 4.5. We say a Banach space X has the approximation property if it satisfies any
of the conditions in Proposition 4.4.

Our concluding theorem shows that the approximation property is precisely what’s required
to make statements such as N (X, Y ) = X∗⊗̂πY ∗.

Theorem 4.6. If X is a Banach space, then the following are equivalent:
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(i) X has the approximation property.

(ii) If u ∈ X∗⊗̂πX is represented by
∑∞

n=1 ϕn⊗ xn, where (ϕn) ⊂ X∗, (xn) ⊂ X are bounded
sequences with

∑∞
n=1‖ϕn‖‖xn‖ <∞ and if

∑∞
n=1 ϕn(x)xn = 0 for all x ∈ X, then u = 0.

(iii) For every Banach space Y , if u ∈ X⊗̂πY is represented by
∑∞

n=1 xn⊗ yn, where (xn) ⊂
X, (yn) ⊂ Y are bounded sequences with

∑∞
n=1‖xn‖‖yn‖ < ∞ and if

∑∞
n=1 ϕ(xn)yn = 0 for

every ϕ ∈ X∗, then u = 0.

(iv) For every Banach space Y , if u ∈ X⊗̂πY is represented by
∑∞

n=1 xn ⊗ yn, where (xn) ⊂
X, (yn) ⊂ Y are bounded sequences with

∑∞
n=1‖xn‖‖yn‖ < ∞ and if

∑∞
n=1 ψ(yn)xn = 0 for

every ψ ∈ Y ∗, then u = 0.

Proof. First we show that (i) implies (iv). Let u =
∑∞

n=1 xn ⊗ yn ∈ X⊗̂πY satisfy the
conditions in the first two lines of (iv). We will prove that u = 0. Without loss of generality,
assume that (xn) and (yn) are chosen so that xn → 0 and

∑∞
n=1‖yn‖ < ∞. Let T : X →

Y ∗ be an operator and take ε > 0. By assumption, X has the approximation property.
Therefore, there exists a finite-rank operator S : X → Y ∗ such that ‖Txn − Sxn‖ ≤ ε for
every n ∈ N. Then

Sx =
m∑
i=1

ϕi(x)ψi

for some ϕi ∈ X∗, ψi ∈ Y ∗, so

〈u, S〉 =
∞∑
n=1

m∑
i=1

ϕi(xn)ψi(yn) =
m∑
i=1

ϕi(
∞∑
n=1

ϕi(yn)xn) = 0.

Thus we have the bound

|〈u, T 〉| ≤ |〈u, T − S〉|+ |〈u, S〉| ≤
∞∑
n=1

‖Txn − Sxn‖‖yn‖ ≤ ε
∞∑
n=1

‖yn‖,

so since ε was arbitrary, 〈u, T 〉 = 0. But T was also arbitrary, so u = 0.

Now we show that (iv) implies (iii). Suppose u =
∑∞

n=1 xn ⊗ yn once again and that u
satisfies the conditions in (iii). Then, if ϕ ∈ X∗, ψ ∈ Y ∗ are arbitrary, we have

0 = ψ(
∞∑
n=1

ϕ(xn)yn) =
∞∑
n=1

ϕ(xn)ψ(yn) = ϕ(
∞∑
n=1

ψ(yn)xn).

It follows that
∑∞

n=1 ψ(yn)xn = 0, so since ψ was arbitrary we may apply (iv) to obtain u = 0.

Next we show that (ii) implies (i). Suppose for the sake of contradiction that X does not
have the approximation property. Let E = L(X,X), which we know to have the topology
of uniform convergence on compacta. This topology is generate by continuous seminorms of
the form

pK(T ) = sup{‖Tx‖ : x ∈ K,K compact}.
If F be the subspace of finite-rank operators in E, then stating that X does not have the
approximation property is equivalent to stating that the identity operator, I, does not belong
to the closure F . Then, by the Hahn–Banach Separation Theorem (a good source for this
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theorem is [3] in the References), there exists a continuous linear functional Φ ∈ E∗ such
that Φ(T ) = 0 for every T ∈ F and Φ(I) = 1. There exists, by continuity of Φ, a compact
subset K ⊂ X such that for every T ∈ E, |Φ(T )| ≤ ρK(T ). Since K is compact, we may
choose a sequence (xn) such that xn → 0 and K is contained in the closed convex hull of
(xn). Then we have |Φ(T )| ≤ supn‖Txn‖ for every T ∈ E. As Txn → 0 as well, we may
consider (Txn) as a subset of c0(X). Let Z be the subset of c0(X) consisting of all elements
of this form as T ranges over E; then we may think of Φ as a bounded linear functional on
Z. By the Hahn–Banach Separation Theorem again, we may extend this functional to all of
c0(X). Since c0(X) is dual to `1(X∗), there exists (ϕn) ∈ `1(X∗) such that for every T ∈ E,
Φ(T ) =

∑∞
n=1 ϕ(Txn). But this gives us

Φ(I) =
∞∑
n=1

ϕn(xn) = 1,

even though Φ(T ) = 0 for every finite rank operator T and thus
∑∞

n=1 ϕn(x)xn = 0 for
every x ∈ X. As this is a contradiction, we conclude that X must have the approximation
property. �
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