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Abstract. This article is an introduction to geometric group theory from the perspective
of topology. We begin by reviewing covering space theory, culminating in a proof of the
Seifert–van Kampen Theorem. We then develop the notion of graphs of groups. Finally, we
study Bass–Serre theory, the theory of groups acting on trees.

1. Introduction

Geometric group theory is the field of mathematics which is concerned with applying topo-
logical and geometric methods to the study of group-theoretic problems. One important tool
in geometric group theory is Bass–Serre theory, the study of group actions on trees, first de-
veloped by Hyman Bass and Jean-Pierre Serre in [7]. This work was in some ways a precursor
to the ideas of Gromov, which lie at the foundation of contemporary geometric group theory.

This expository paper concludes with some basic definitions and results from Bass–Serre
theory. However, that area of mathematics is highly reliant on earlier results from algebraic
topology. In particular, we need to be able to calculate (and define!) fundamental groups,
which means we need the Seifert–van Kampen theorem at our disposal. There are two main
approaches to proving this theorem. The first, as presented for example in [2, Theorem 1.20],
is essentially geometric in character and constructs the required map basically from a free
product of fundamental groups. The second, as presented in [1, Theorem 14.4] and also in
this paper (Theorem 8.1), is algebraic, and instead requires a large amount of covering space
theory which then leads to a much shorter proof. In [1], this proof is attributed to Alexander
Grothendieck.

Throughout this paper, we have cited the sources of the results we use. To this end, we have
included a citation to the bibliography next to or in the preamble preceding each result.

2. Liftings

Definition 2.1. Given topological spaces X and X̃, we say that a continuous map p : X̃ →
X is a covering map if for any x ∈ X there exists an open neighbourhood U of x such
that p−1(U) is a disjoint union of (arbitrarily many) open sets, each of which is mapped
homeomorphically by p onto U . If there exists such a p, we say that X is (evenly) covered
by X̃ and that p is an (even) covering of X.

Given two coverings p : X̃ → X and p′ : Y → X, a homeomorphism f : X̃ → Y is said to
be an isomorphism of coverings if p′ ◦ f = p, i.e., if the following diagram commutes:
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X̃ Y

X

p

f

p′

Example 2.2. We obtain a trivial cover by taking n discrete copies of a topological space
X. Formally speaking, our covering space is X̃ = X × {1, ..., n} equipped with the product
topology, where {1, ..., n} is equipped with the discrete topology. Then our covering map
is given by p(x, n) = x, and every open set is evenly covered. Here is a trivial two-sheeted
covering of the circle S1:

Example 2.3. Consider S1 as the unit circle in C. Then p : S1 → S1 given by p(z) = zn

is a covering map for any n ∈ N. The following illustration, which is a modification of an
image from [2], is a depiction of this map when n = 3:

However, this map cannot exactly be depicted in three-dimensional space: one must imagine
that the covering space in the picture does not intersect itself. In the picture, I have indicated
an open subset of S1 and its preimage by p.
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Definition 2.4. A topological space X is connected if it cannot be written as the union of
two or more disjoint non-empty open subsets. It is path-connected if for any x, y ∈ X there
exists a path, i.e., a continuous map f : [a, b] → X, such that f(a) = x and f(b) = y. (We
will often use paths with a = 0, b = 1.)

Lemma 2.5. [1, Lemma 11.5]. Suppose p : X̃ → X is a covering, Y is a connected topological
space, and f, g : Y → X̃ are continuous maps such that p ◦ f = p ◦ g. If there exists y ∈ Y
such that f(y) = g(y), then f = g.

Proof. Recall the well-known result that a topological space is connected if and only if it
only has two clopen subsets, namely the whole space and the empty set. Applying this to Y ,
it suffices to show that the set Z := {y ∈ Y |f(y) = g(y)} is open and has open complement.
(It is non-empty by assumption.)

Suppose z ∈ Z and take a neighbourhood N of p(f(z)) = p(g(z)) ∈ X that is evenly covered
by p. Then p−1(N) is a union of disjoint open sets Ni for i ∈ I where I is some indexing set
and each Ni is mapped homeomorphically to N by p. Since f and g are continuous, they
must map a neighbourhood U of z into the same Ni. Moreover, since p ◦ f = p ◦ g, f and g
must agree on U . We have chosen an arbitrary point z ∈ Z and shown that it must have an
open neighbourhood also contained in Z, so Z is open.

Now suppose z /∈ Z, i.e., z ∈ Z{. By continuity of f and g, we may find a neighbourhood V
of z such that f(V ) ∩ g(V ) = ∅. Thus V ⊆ Z{, and Z{ is open as well. �

The following lemma is sufficiently well-known that no proof will be given here, although we
have cited one.

Lemma 2.6. (Lebesgue) [1, Lemma A.19]. Given any covering of a compact metric space
K by open sets, there is some ε > 0 such that any subset of K of diameter less than ε is
contained in some open set from the covering.

The next proposition allows us to lift paths from a space to paths in its covering space.

Proposition 2.7. [1, Proposition 11.6]. Let p : X̃ → X be a covering, let γ : [a, b]→ X be a
continuous path, and let y ∈ X̃ be such that p(y) = γ(a). Then there is a unique continuous
lift γ̃ : [a, b]→ X̃ such that γ̃(a) = y and p(γ̃(t)) = γ(t) for all t ∈ [a, b].

Proof. First, note that if such a γ̃ exists, then it is necessarily unique because if there exists
a continuous γ′ : [a, b]→ X̃ satisfying γ′(a) = y = γ̃(a) and (p ◦ γ′)(t) = γ(t) = (p ◦ γ̃)(t) for
all t ∈ [a, b], then by Lemma 2.5 and the fact that [a, b] is connected, we have γ′ = γ̃.

If p is a trivial covering, then there is a unique component of X̃ containing y and mapping
homeomorphically to the component of X containing γ([a, b]); in this case, we may simply
use the inverse homeomorphism to lift the path.

In the general case, apply Lemma 2.6 to the open sets γ−1(N ∩γ([a, b])) where N varies over
open sets inX that are evenly covered by p; the collection of open subsets ofX that are evenly
covered by p is an open cover of X because every point of X has an open neighbourhood
evenly covered by p (by definition of covering maps), so the collection of γ−1(N ∩ γ([a, b]))
is an open cover of the compact metric space [a, b]. (Note that we use γ−1(N ∩ γ([a, b]))
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rather than γ−1(N); the latter is not well-defined because there may be points of N not in
γ([a, b]).) As N varies, the open sets γ−1(N∩γ([a, b])) produce an open cover of [a, b], and by
compactness of [a, b] there exists a subdivision of [a, b] into a = t0 < ... < tn = b where each
γ([ti−1, ti]) is contained in some open set that is evenly covered by p. From our solution of
the trivial case we may lift the restriction γ([t0, t1]) to a path in X̃ from y to some point y1.
Similarly, we may lift γ([t1, t2]) to a path starting at y1 and ending at some y2. Proceeding
in this way, we will be done lifting γ after n steps. �

We now present some basic topological terminology that will be useful for us later when we
introduce the fundamental group.

Definition 2.8. A homotopy of paths in X is a family ft : [0, 1] → X, t ∈ [0, 1] of paths
satisfying the following two conditions:
(i) ft(0) and ft(1) are independent of t, i.e., the endpoints stay fixed; and
(ii) the map F : [0, 1]2 → X given by F (s, t) = ft(s) is continuous.

When there exist two paths f0 and f1 in X and a homotopy that at t = 0 gives f0 and at
t = 1 gives f1, we say f0 and f1 are homotopic and write f0 ' f1.

We want to be able to lift homotopies in a similar way to how we lift paths. We will prove
a proposition allowing us to do so, but first we must prove the following lemma, known as
the pasting lemma, which we will subsequently use.

Lemma 2.9. [4, Theorem 18.3]. Let X be a topological space, and let S ⊆ X be a subset
such that S = S1∪S2 where S1 and S2 are closed in X. (In particular, this implies S is also
closed in X.) Let Y be a topological space, and let f : S1 → Y , g : S2 → Y be continuous. If
f(x) = g(x) for every x ∈ S1 ∩S2, then there exists a unique continuous function h : S → Y
defined by h|S1 = f and h|S2 = g.

Proof. First, the map h is well-defined because f and g agree on S1 ∩S2. Let C be closed in
Y . Then h−1(C) = f−1(C) ∪ g−1(C) by definition of the restriction. By continuity of f and
g, f−1(C) and g−1(C) are closed, so h−1(C) is closed. This proves h is continuous. �

Proposition 2.10. [1, Proposition 11.8]. Suppose that p : X̃ → X is a covering and
H : [a, b]× [0, 1] → X is a continuous map, i.e., H is a path homotopy in X. Suppose that
γ0(t) = H(t, 0), a ≤ t ≤ b is the initial path and that γ̃0 is a lifting of γ0 to X̃. Then there
is a unique lifting H̃ of H to X̃ whose initial path is γ̃0. To be precise, there is a continuous
map H̃ : [a, b]× [0, 1]→ X̃ such that p ◦ H̃ = H and H̃(t, 0) = γ̃0(t) for all t ∈ [a, b].

Proof. Apply Lemma 2.6 to produce subdivisions a = t0 < t1 < ... < tn = b and 0 = 0 =
s0 < s1 < ... < sm = 1 such that if Rij = [ti−1, ti] × [sj−1, sj], then H(Rij) is a subset of
some evenly covered open set. Thus we can construct H̃ by first lifting the restriction of
H to R11, R21, ..., Rn1, then lifting the restriction of H to R12, R22, ..., Rn2, and continuing
this way until all of H is lifted to H̃. The resulting lift is unique because each H(Rij) in
the sequence (other than H(R11)) intersects some previous H(Rk`) in the sequence. (For
example, H(R22)∩H(R12) 6= ∅ because the sets intersect along their boundaries.) Therefore,
the lift of H(R11) determines the lifts of all the other H(Rij) in succession by Lemma 2.9. �

Next, we prove that being homotopic is an equivalence relation.
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Proposition 2.11. [2, Proposition 1.2]. The relation between two paths of being homotopic
in a fixed topological space is an equivalence relation.

Proof. Reflexivity: Clear because we can use the constant homotopy ft = f for a given map f .

Symmetry: Clear because if f0 ' f1 by ft, then f1 ' f0 by f1−t.

Transitivity: Suppose that f ' g by ft and g ' h by gt. Set ht = f2t for 0 ≤ t ≤ 1/2
and ht = g2t−1 for 1/2 ≤ t ≤ 1. At t = 1/2, we have f1 = g0, so h1/2 is well-defined.
Consider the associated map H(x, t) = ht(x). We have H(x, t) = F (x, 2t) for 0 ≤ t ≤ 1/2
and H(x, t) = G(x, 2t− 1) for 1/2 ≤ t ≤ 1, where F,G are the maps associated to ft and gt,
respectively. Thus H is continuous on [0, 1] × [0, 1/2] and [0, 1] × [1/2, 1], and as these sets
are closed, we conclude that H is continuous on [0, 1]2 by Lemma 2.9. �

Definition 2.12. By Proposition 2.11, we may define the equivalence class of a path
f : [0, 1]→ X under homotopy and denote it by [f ].

Given a path f , define a reparametrization of f to be a composition fs where s : [0, 1]→ [0, 1]
is continuous and satisfies s(0) = 0, s(1) = 1. Note that fs ' f by the homotopy fgt where
gt(x) = (1− t)s(x) + tx.

If we are given paths f, g : [0, 1] → X such that f(1) = g(0), we can define their path
composition (or composition for short, where context makes it clear we are not talking about
function composition) f · g as follows. For 0 ≤ x ≤ 1/2, we set (f · g)(x) = f(2x) and for
1/2 ≤ x ≤ 1, we set (f · g)(x) = g(2x − 1). It is clear these agree at x = 1/2. Moreover, if
F (x, t) is a homotopy f0 ' f1 and G(x, t) is a homotopy g0 ' g1, thenH(x, t) := G(F (x, t), t)
is a homotopy g0 ◦ f0 ' g1 ◦ f1, so path composition also preserves homotopy classes.

3. Group Actions and G-Coverings

In this section, we follow [1, §11c]. Recall the following definitions from elementary group
theory.

Definition 3.1. A (left) group action of a group G on a topological space Y is a mapping
G× Y → Y given by (g, y) 7→ g.y and satisfying the following:

(i) g.(h.y) = (gh).y for all g, h ∈ G and y ∈ Y , where gh denotes the multiplication of g
with h in G;

(ii) e.y = y for all y ∈ Y , where e is the identity in G; and

(iii) y 7→ g.y is a homeomorphism of Y for all g ∈ G.

Remark 3.2. Equivalently, a group action can be thought of in the following way. Given
a topological space X, let Hom(X) be the set of homeomorphisms f : X → X. Since the
inverse of a homeomorphism and the composition of two homeomorphisms are homeomor-
phisms and since the identity is a homeomorphism, Hom(X) is a group under the operation
of composition. An action of the group G on X is then a homomorphism σ : G→ Hom(X).
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Indeed, for any element g ∈ G, we then have a homeomorphism fg : X → X. We replace
the notation g.x with fg(x). The fact that fg is a homeomorphism means condition (iii) of
Definition 3.1 is satisfied. The fact that fe (where e is the identity of G) is the identity map
fe(x) = x means that condition (ii) is satisfied. Finally, letting σ : G → Hom(X) be the
homomorphism, condition (i) follows from

fg(fh(x)) = (fg ◦ fh)(x) = (σ(g) ◦ σ(h))(x) = σ(gh)(x) = fgh(x).

The key point is that in the category of topological spaces, Hom(X) is the automorphism
group of the object X, i.e., the collection of morphisms from X to itself. Similarly, an action
of a group G on an object X in some other category (for example, the category of sets) is
a group homomorphism G → Aut(X). (For example, if X is a finite set, then Aut(X) is
the symmetric group on X.) This observation allows us to define group actions in other
categories.

Definition 3.3. Given y ∈ Y and an action of G on Y , we say the orbit of y is the set
G.y := {gy ∈ Y |g ∈ G}.

Definition 3.4. An action of a group G on a space X is free if for any x ∈ X gx = x implies
g is the identity.

We might suspect that being in the same orbit is an equivalence relation. This is the content
of the next proposition, which is stated but not proved in [1, §11c].

Proposition 3.5. Define the relation R on Y by yRy′ if y′ is in the orbit G.y. Then R is
an equivalence relation.

Proof. Clearly R is reflexive. It is symmetric because if x, y ∈ Y are in the same orbit, then
x = g.y, so

g−1.x = g−1.(g.y)

= (g−1g).y

= e.y = y.

We have used the existence of inverse elements in groups here. R is also transitive, since if
x, y, z ∈ Y are such that x = g1.y and y = g2.z, then x = g1.(g2.z) = (g1g2).z, and of course
g1g2 ∈ G. Therefore, R is an equivalence relation. �

Remark 3.6. In light of Proposition 3.5, we can write [g] for the equivalence class of an
element corresponding to its orbit. This is not to be confused with the similar notation from
Definition 2.12.

Definition 3.7. Let G act on Y . Then we define the space of orbits

X = G\Y := {G.y|y ∈ Y }
with the quotient topology from the map p : Y → X that sends a point to the orbit containing
it. We may equip X with the quotient topology, so that U ⊆ X is open when p−1(U) is open
in Y .

Note that we have not yet said the map p : Y → X is a covering map. We will come to this
point later.
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Definition 3.8. We say that G acts evenly on Y if for any y ∈ Y there is a neighbourhood
N of y such that g.N and h.N are disjoint for any distinct g, h ∈ G.

Remark 3.9. In calling this an "even" action, we are using Fulton’s terminology. The more
common terminology is "properly discontinuous". As Fulton notes, this terminology is used
inconsistently in the literature; sometimes it is less restrictive, requiring only that each point
has a neighbourhood such that at most finitely many translates of that neighbourhood can
intersect. In such cases, the correct terminology for what we call an "even" action is a
"free and properly discontinuous" action. To avoid misleading a reader who is used to one
definition or the other of a "properly discontinuous" action, we have chosen to stick with
Fulton’s word for it.

Lemma 3.10. [1, Lemma 11.17]. If G acts evenly on Y , then the projection p : Y → G\Y
is a covering map.

Proof. First, notice that p is continuous because if U is open in G\Y , then p−1(U) is open
in Y by definition of the quotient topology, so p is continuous. Next, let us show p is open.
By definition, again, of the quotient topology, it suffices to show that p−1 ◦ p is open, i.e.,
that if U is open in Y , then p−1(p(U)) is open in Y . But we have that

p−1(p(U)) =
⋃
g∈G

g.U,

where every g.U is open since g acts homeomorphically on Y , so p−1(p(U)) is open and p is
an open map. This will help us prove that p is a covering map.

Moreover, as G acts evenly on Y , for any y ∈ Y we can find a neighbourhood U of y such
that

⋃
g∈G g.U is a disjoint union. In particular, if we pick some representative y ∈ Y so that

[y] ∈ G\Y and choose such a neighbourhood U of y, we have that p(U) is a neighbourhood
of [y], that p−1(p(U)) =

⊔
g∈G g.U , and that p|g.U is continuous, open, and surjective for each

g ∈ G. It only remains to check that p|g.U is injective, and then we will have that p is a
covering map.

Suppose we take y1, y2 ∈ U such that p(gy1) = p(gy2). Then there exists h ∈ G such that
h.g.y1 = g.y2. Because G acts evenly on Y it follows that h = e, so y1 = y2. Therefore, p is
a covering map. �

If a covering map is induced from an even group action as in Lemma 3.10, we call it a
G-covering. We restate this more precisely.

Definition 3.11. Suppose p : Y → G\Y is a covering map, where Y is a topological space on
which the group G acts evenly. Then p is called a G-covering. If p : Y → X, p′ : Y ′ → X are
G-coverings and ϕ : Y → Y ′ is a homeomorphism such that p′ ◦ ϕ = p and ϕ(g.y) = g.ϕ(y)
for all y ∈ Y, g ∈ G, then we say that ϕ is an isomorphism of G-coverings and that the
G-coverings Y and Y ′ are isomorphic.

4. The Fundamental Group

Our next definition introduces one of the most important concepts in algebraic topology.
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Definition 4.1. A loop is a path f : [0, 1] → X such that f(0) = f(1) = x0, x0 ∈ X. We
call x0 the basepoint of the loop. We denote the set of homotopy classes of loops at the
basepoint x0 by π1(X, x0). We call π1(X, x0) the fundamental group of X.

The previous definition seemingly makes two assumptions. The first is that π1(X, x0) is a
group, and the second is that π1(X, x0) does not depend, as a group, on the choice of x0.
As it turns out, π1(X, x0) is always a group, and if X is path-connected, π1(X, x0) will not
depend on the choice of x0 (up to group isomorphism). This is the content of the next two
propositions.

Proposition 4.2. [2, Proposition 1.3]. π1(X, x0) forms a group with respect to the product
[f ][g] = [f · g].

Proof. Fix x0 ∈ X. We already know that the product of two loops f and g based at x0

exists and that the product [f ][g] = [f ·g] is well-defined. We must check the three conditions
for a set to be a group under a binary operation.

Existence of identity element: Let c be the constant loop at x0, i.e., c(x) = 0 for all x ∈ [0, 1].
Then f ·c ' f by the reparametrization s1 given by s1(x) = 2x for x ∈ [0, 1/2] and s2(x) = 1
for x ∈ [1/2, 1]. Similarly, c · f ' f by the reparametrization s2(x) = 0 for x ∈ [0, 1/2] and
s(x) = 2x− 1 for x ∈ [1/2, 1]. Then [c] is the identity in π1(X, x0).

Associativity of the group operation: Given loops f, g, h based at x0, we have (f · g) · h '
f · (g · h) by the reparametrization s given by s(x) = (1/2)x for x ∈ [0, 1/2], s(x) = x− 1/4
for x ∈ [1/2, 3/4], and s(x) = 2x− 1 for x ∈ [3/4, 1].

Existence of inverses: Let f(x) = f(1 − x). Then f · f ' c, where c is the constant loop
defined earlier by the homotopy gtht, where gt equals f on [0, 1− t] and stays at f(1− t) on
[1 − t, 1] and where ht is, for each value of t, the reverse of gt. For example, g0(x) = f(x)
for all x, g1(x) = f(0) = x0 for all x, and g1/2 is given by g1/2(x) = f(x) for x ∈ [0, 1/2]

and g1/2(x) = f(1/2) for x ∈ [1/2, 1]. Thus it is clear that gtht is a homotopy from f · f to
c · c = c, so that we indeed have f · f ' c. Switching f and f in the above gives the result
that f · f ' c as well. We have shown that [f ]−1 = [f−1]. �

Notice that if x0, x1 ∈ X lie in the same path component of X, i.e., have a path h between
them, then, given a loop f based at x1, h · f · h is a loop based at x0. (Notice that the
distinction between the two orders in which this product may be formed, h · (f · h) and
(h · f) · h, is moot here as we are only working up to homotopy now, and the two resulting
paths are homotopic.) We will now show that this relationship between loops at x0 and x1

gives an isomorphism between π1(X, x0) and π1(X, x1), so that the fundamental group does
not depend on choice of basepoint for path-connected spaces.

Proposition 4.3. [2, Proposition 1.5]. If X is path-connected, the map βh : π1(X, x1) →
π1(X, x0) given by βh([f ]) = [h · f · h] is an isomorphism.

Proof. The assumption that X is path-connected is needed so that the required path h
between x0 and x1 exists. Now, given two loops based at x1 and a homotopy ft between
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them, h · ft · h is a homotopy of loops based at x0. Thus βh is well-defined. Moreover, we
calculate

βh[f · g] = [h · f · g · h]

= [h · f · h · h · g · h]

= [h · f · h][h · g · h]

= βh[f ]βh[g],

so βh is a homomorphism. Finally,

βhβh[f ] = βh[h · f · h]

= [h · h · f · h · h]

= [f ],

and similarly βhβh[f ] = [f ]. Because βh is also a homomorphism, we conclude that βh is
an isomorphism with inverse βh, and therefore that π1(X, x1) and π1(X, x0) are isomorphic
groups. �

We now calculate the fundamental group of S1 from first principles to demonstrate the
inconvenience of doing so.

Theorem 4.4. [2, Theorem 1.7]. The map φ : Z→ π1(S1) given by φ(n) = [ωn(s)], where

ωn(s) = (cos 2πns, sin 2πns)

is a loop based at (1, 0), is an isomorphism. That is, π1(S1) ' Z.

Proof. Notice that we have a projection p : R → S1 given by p(s) = (cos 2πs, sin 2πs). We
can think of this as a helix being projected down onto a circle:

Notice that ωn may be obtained as the composition pω̃n, where ω̃n : [0, 1] → R is the path
ω̃n(s) = ns, s ∈ [0, 1].

We may think of φ slightly differently if we set φ(n) to be the homotopy class of pf̃ where f̃
is any path in R from 0 to n, as such an f̃ is homotopic to ω̃n by the homotopy (1−t)f̃+tω̃n,
t ∈ [0, 1], so pf̃ ' pω̃n = ωn, which agrees with our first definition of φ. This reformulation
simplifies our subsequent calculations slightly.
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Now suppose we have a loop f : [0, 1] → S1 with f(0) = f(1) = x0. By Proposition 2.7 we
can lift this to a path f̃ starting at 0, as 0 ∈ p−1(x0). Moreover, f̃(1) must be some integer
n because pf̃(1) = f(1) = x0 and p−1(x0) = Z. But the path ω̃n that we previously defined
also goes from 0 to n, and f̃ ' ω̃n by the homotopy (1− t)f̃ + tω̃n, so we may compose this
homotopy with p to get [f ] = [ωn].

It remains to prove that the value of n is uniquely determined by [f ]. Suppose f ' ωn
and f ' ωm for m,n ∈ Z. We know ωm ' ωn, so choose a homotopy ft achieving this.
By Proposition 2.10, we can lift ft to a homotopy f̃t in R. By the uniqueness part of
Proposition 2.7, we have f̃0 = ω̃m, f̃1 = ω̃n. But f̃t(1) is independent of t ∈ [0, 1], so
f̃0(1) = m = f̃1(1) = n, which was what we wanted. �

Clearly the method used above is cumbersome to generalize to other more complicated
topological spaces. We should therefore seek a more general way to calculate fundamental
groups. This is the purpose of the Seifert–van Kampen Theorem, which we will encounter
in §8.

5. Universal Coverings

The following definitions establish the topic of this section.

Definition 5.1. A topological space X is simply connected if it is path-connected and for
each x ∈ X, π1(X, x) is trivial.

Definition 5.2. A cover X̃ of a topological space X is universal if it is simply connected.

A universal cover exists for a topological space X under some fairly weak conditions.1 How-
ever, we must build up some more covering space theory before we can prove this.

Given a covering map p : (X̃, x̃0) → (X, x0) (i.e., a covering map p : X̃ → X such that
p(x̃0) = x0), we may speak of the induced homomorphism p∗ : π1(X̃, x̃0)→ π1(X, x0). This
homomorphism is defined by sending the equivalence class of a loop based at x̃0 to the
equivalence class of its image under p, which will be a loop based at x0. We then have the
following result.

Proposition 5.3. [2, Proposition 1.31]. The induced homomorphism p∗ : π1(X̃, x̃0) →
π1(X, x0) is injective, and the subgroup p∗(π1(X̃, x̃0)) of π1(X, x0) consists of homotopy
classes of loops based at x0 that remain loops when lifted to X̃.

Proof. What does an arbitrary element in ker p∗ look like? It can be represented by a loop f̃
whose image in X is homotopic to the trivial loop.Thus there is a lifted homotopy of loops
f̃t that starts with f̃ and ends with the constant loop in X̃. So [f̃ ] = [c] and p∗ is injective.

Clearly loops at x0 that lift to loops at x̃0 are in p∗(π1(X̃, x̃0)). On the other hand, if a loop
represents an element of p∗(π1(X̃, x̃0)), then it must be homotopic to a loop that lifts to a
loop, so by Proposition 2.10 it must have such a lift itself. �

1Indeed, under these conditions, the universal cover is unique. However, we will not need this fact, so we
will not prove it. For a reference, see the paragraph after [2, Theorem 1.38].
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The following definition will be important in describing the conditions under which a topo-
logical space has a universal cover.

Definition 5.4. A topological space X is said to be locally path-connected if for every x ∈ X
and each neighbourhood U of x there exists an open path-connected neighbourhood V ⊂ U
of x. X is said to be semilocally simply connected if for each x ∈ X there is a neighbourhood
U of x such that every loop in U is homotopic in X to the constant loop, or equivalently,
the map π1(U, x)→ π1(X, x) induced by the inclusion U ⊆ X is trivial.

The next example gives a space with no universal cover, as will follow from Theorem 5.7.

Example 5.5. Consider the Hawaiian earring, a topological space X given by the following
construction. For each n ∈ N, let Cn be the circle of radius 1/2n in R2 centered at (1/2n, 0),
and let X =

⋃
n∈NCn. Here is a picture:

Then X is clearly connected and locally path-connected. However, it is not semilocally
simply connected. Indeed, if we take an ε-neighbourhood of the origin for some ε > 0, we
can choose n large enough that 1

2n
< ε. Thus the neighbourhood will contain Ck for all

k ≥ n, and we may choose a loop based at the origin that winds around one of these Ck once
counterclockwise. It is clear that this loop is not homotopic to the constant loop in X.

We will need the following lemma.

Lemma 5.6. [5]. A topological space that is connected and locally path-connected is path-
connected.

Proof. Let X be such a space. Let p ∈ X. Let C ⊆ X be the set of points that can be joined
by a path to p. C is non-empty because X is locally path-connected; indeed, p ∈ C. We will
show that C is both closed and open, which will prove C = X.

Let c ∈ C, and let U be an open path-connected neighbourhood of c. If u ∈ U , we can give
a path from u to c, then join that path to a path from p to c. Therefore, u ∈ C, so C is open.

Now let c ∈ C, the closure of C, and choose an open path-connected neighbourhood U of c
again. The set C ∩ U is non-empty, so choose q ∈ C ∩ U . Join c to q by a path, and join q
to p by a path. Therefore, p can be joined to c by a path, so c ∈ C. This proves C is closed.
Therefore, C = X, which gives the result. �

We are almost ready to prove the existence of universal coverings under certain conditions.
First, because in algebraic topology we are often concerned with having paths in our spaces,
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we will assume our topological space is locally path-connected. Next, we will assume it is
connected because otherwise the results we prove will reduce to results about the connected
components of our space.

We have proved that the induced map p∗ is injective and it remains to prove it is surjective.
In particular, we might ask whether the trivial subgroup of π1(X, x0) can be obtained as
p∗(π1(X̃, x̃0)) for some covering space X̃. By the aforementioned injectivity of p∗, it suffices
to prove the existence of a simply connected covering space of X, that is to say, a universal
cover.

For X to have a universal cover, it must be semilocally simply connected. Indeed, suppose
p : X̃ → X is a universal cover. For each x ∈ X, there exists an open neighbourhood U
containing x such that p−1(U) is a union of open sets homeomorphic to U . Given a loop in
U , we can lift it to a loop in p−1(U), and because π1(X̃) = 0, the lifted loop must be homo-
topic to the constant map. But composing this homotopy with p, we get that the original
loop is also homotopic to the constant map in X. We conclude that each point x ∈ X has
a neighbourhood U such that the map π1(U, x) → π1(X, x) induced by inclusion is trivial.
This is precisely the statement that X is semilocally simply connected.

We finally have the following theorem.

Theorem 5.7. [1, Theorem 13.20]. If X is connected and locally path-connected, it has a
universal cover if and only if it is semilocally simply connected.

Proof. In the paragraph preceding the theorem, we showed that if X is connected, locally
path-connected, and has a universal cover, then it must be semilocally simply connected. It
remains to show the converse.

Suppose X is connected, locally path-connected, and semilocally simply connected. We give
an explicit construction of its universal cover. Choose x ∈ X and define X̃ to be the space
of homotopy classes of paths γ : [0, 1]→ X such that γ(0) = x. In a few paragraphs, we will
define a topology on X̃ (given by sets of the form U[γ], also soon to be defined), but first we
require some more exposition. Define a map p : X̃ → X by p([γ]) = γ(1). Recall that we
require homotopies to fix endpoints, so p is well-defined. Since X is connected and locally
path-connected, it is path-connected by Lemma 5.6, so p is surjective.

Define S to be the collection of path-connected open subsets U ⊆ X such that the inclusion-
induced map π1(U) → π1(X) is trivial. Note that whether this map is trivial or not does
not depend on choice of basepoint because X is path-connected. Moreover, given a path-
connected open subset V ⊆ U , we have that the map π1(V )→ π1(U)→ π1(X) is also trivial,
so V ∈ S as well. Because X is semilocally simply connected, every point has a neighbour-
hood in S, and because X is locally path-connected, arbitrarily small open neighbourhoods
of x ∈ X will also be in S; more precisely, given any neighbourhood W of x, we can find an
open neighbourhood W ′ ⊆ W containing x such that W ′ ∈ S. It follows that S is a basis
for the topology on X.
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Now suppose we are given a set U ∈ S and a path γ : [0, 1] → X such that γ(0) = x0 and
γ(1) ∈ U . Define

U[γ] := {[γ · σ]|σ : [0, 1]→ U is a path and σ(0) = γ(1)} ⊂ X̃.

Notice that p : U[γ] → U is surjective because U is path-connected and injective because that
X is semilocally simply connected implies that any two different choices of σ from γ(1) to a
point in U are homotopic in X. Therefore, p is bijective on sets of the form U[γ], U ∈ S.

Moreover, if [γ′] ∈ U[γ], then U[γ] = U[γ′] because if γ′ = γ · σ, then elements of U[γ′] look like
[γ · σ · η] ∈ U[γ] and elements of U[γ] look like

[γ · η] = [γ · σ · σ · η]

= [γ′ · σ · η] ∈ U[γ′].

Suppose we are given open sets U, V ∈ S and paths γ, γ′ : [0, 1] → X such that γ(0) =
γ′(0) = x0 and γ(1) ∈ U, γ′(1) ∈ V . Then we can consider U[γ], V[γ′]. Given [γ′′] ∈ U[γ] ∩V[γ′],
we have U[γ] = U[γ′′], V[γ′] = V[γ′′] by the previous paragraph. Thus if W ∈ S, W ⊆ U ∩ V ,
and γ′′(1) ∈ W , then W[γ′′] ⊆ U[γ′′] ∩ V[γ′′] and [γ′′] ∈ W[γ′′]. Therefore, sets of the form U[γ],
U ∈ S, form a basis for X̃ because sets of the form U ∈ S form a basis for X.

Suppose [γ′] ∈ U[γ], γ′ has its other endpoint in V , and V[γ′] ⊆ U[γ′] = U[γ]. Then p(V[γ′]) = V
and p−1(V ) ∩ U[γ] = V[γ′], so p : U[γ] → U gives a bijection between subsets V[γ′] ⊆ U[γ] and
sets V ∈ S such that V ⊆ U . Thus p : U[γ] → U is a homeomorphism, and since sets of the
form U[γ] form a basis for X̃, p : X̃ → X is continuous.

Moreover, if we fix U ∈ S, we have that sets of the form U[γ] partition p−1(U) because
[γ′′] ∈ U[γ] ∩ U[γ′] implies U[γ] = U[γ′′] = U[γ′]. Thus X̃ is indeed a covering space of X.

It is only left to show that X̃ is simply connected. Suppose [γ] ∈ X̃. We want to show
that X̃ is path-connected. We also want to show that [γ] = [x0], as this will imply that
p∗(π1(X̃, x̃0)) is trivial, and thus, by injectivity of p∗, that π1(X̃, x̃0) is trivial.

Let γt be the path in X that equals γ on [0, t] and equals γ(t) on [t, 1]. Then t 7→ [γt] is a
lift of γ in X̃ that starts at [x0] and ends at [γ]. Therefore, X̃ is path-connected.

Now, given an element in the image of p∗, we can represent it by a loop γ at x0 that lifts to a
loop in X̃ at [x0]. We already gave a path t 7→ [γt] which lifts γ starting at [x0]. If this path
is a loop, then [γ1] = [x0]. But γ1 = γ, so [γ] = [x0], which was what we wanted. Therefore,
X̃ is a universal cover of X. �

6. Deck Transformations

Suppose X is a topological space and p : Y → X is a covering where Y is path-connected.
In this section, we will define an action of the fundamental group π1(X, x) on Y . The
fundamental group will be said to act by deck transformations on Y . This will allow us to
construct G-coverings from the universal covering of a topological space in the next section,
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as the (somewhat more complicated) action defined there will rely in the first coordinate on
the deck transformation action of this section.

Example 6.1. We have seen that if x ∈ S1, then π1(S1, x) ' Z. We have also seen that R
is a covering space of S1 and that we can visualize of it as a spiral lying above S1. Imagine
rotating this spiral counterclockwise or clockwise by 360 degrees; the fibre p−1(y) for any
y ∈ S1 will be sent to itself by this rotation. Indeed, repeating such a rotation n times will
still preserve the fibres of the covering. If we think of rotating clockwise n times as rotating
counterclockwise −n times, this defines an action of Z on the covering space R. This is an
example of a deck transformation.

Definition 6.2. Recall that we were considering a covering p : Y → X, Y path-connected.
Suppose [σ] ∈ π1(X, x) and z ∈ Y . We want to define [σ].z. We do it as follows.

Let y ∈ p−1(x). Lift [σ] to a path in Y going from y to y′. Let γ be a path from y to
z in Y . (This is where we use path-connectedness of Y .) Now the path p ◦ γ starts at x
(since p(y) = x) and ends at p(z), but by definition of y′, we have p(y′) = p(y) = x. We
can therefore lift p ◦ γ to a map starting at y′ instead, and we can define [σ].z := w(z, σ, γ),
where w(z, σ, γ) is the endpoint of this lift of p ◦ γ.

Lemma 6.3. [1, §13b]. If we have another path γ′ that goes from y to z in Y and if
p∗(π1(Y, y)) is a normal subgroup of π1(X, x), then w is well-defined, i.e., w(z, σ, γ) =
w(z, σ, γ′).

Proof. We want the lifts of σ ◦ (p◦γ′) and σ ◦ (p◦γ) that start at y to end at the same point.
By Proposition 5.3, this is the case precisely when the class [(σ ◦ (p ◦ γ′))(σ ◦ (p ◦ γ))−1] is
an element of p∗(π1(Y, y)). Now by definition of γ′, the composition γ′ ◦ γ−1 is a loop based
at y, so we have

[(σ ◦ (p ◦ γ′))(σ ◦ (p ◦ γ))−1] = [(σ ◦ (p ◦ γ′) ◦ (p ◦ γ−1) ◦ σ−1]

= [σ][p ◦ γ′ ◦ γ−1][σ]−1

= [σ]p∗([γ
′ ◦ γ−1])[σ]−1 ∈ [σ]p∗(π1(Y, y))[σ]−1.

If p∗(π1(Y, y)) is a normal subgroup of π1(X, x), then [(σ◦(p◦γ′))(σ◦(p◦γ))−1] ∈ p∗(π1(Y, y))
by the above calculation. We therefore assume in what follows that p∗(π1(Y, y)) is normal.
In that case our mapping π1(X, x)× Y → Y is well-defined. �

Lemma 6.4. [1, §13b]. The mapping π1(X, x) × Y → Y defined above is a (continuous)
group action.

Proof. Suppose [σ], [τ ] ∈ π1(X, x). We want to show that ([σ][τ ]).z = [σ].([τ ].z). Suppose
γ is a path from y to z. Lift τ ◦ (p ◦ γ) to a path starting at y; this path then ends at
[τ ].z by definition. Thus we see that [σ]([τ ].z) is the endpoint of the lift, starting at y, of
σ ◦ (τ ◦ (p ◦ γ)). But (σ ◦ τ) ◦ (p ◦ γ) is homotopic to σ ◦ (τ ◦ (p ◦ γ)), so this endpoint is
([σ][τ ]).z. The identity with respect to our action is just the deck transformation induced
by the trivial element of π1(X, x), which fixes every point of Y .

It remains to prove that if [σ] is fixed, then the map z 7→ [σ].z is continuous. To do this,
we will need to assume that X is locally path-connected. (If you are beginning to lose
track of our assumptions at this point, do not worry, because we will summarize everything
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with a nice theorem a few paragraphs from now.) Given z ∈ Y , take a path-connected
and evenly-covered neighbourhood N of p(z). (To see that such a neighbourhood exists,
produce a path-connected neighbourhood of p(z), which exists by local path-connectedness,
and produce an evenly-covered neighbourhood of p(z), which exists by definition of a covering
projection, then take their intersection, which will have both properties.) Let V and V ′ be
the components of p−1(N) containing z and z′ := [σ].z, respectively. It suffices to show
that [σ].V ⊆ V ′. (To see this works, recall the following definition of continuity: f is
continuous at x if for any neighbourhood N ′(f(x)) there is a neighbourhood N(x) such that
f(y) ∈ N ′(f(x)) whenever y ∈ N(x).) Now suppose v ∈ V and α is a path in V from z to
v. Let γ be a path from y to z in Y . Then γ ◦ α is a path from y to v. Moreover, [σ].v is
the endpoint of the lift of p ◦ α starting at z′, and this lift is in V ′ by definition. This shows
z 7→ [σ].z is continuous. �

Let Aut(Y/X) denote the group of covering transformations, which is the automorphism in
the category of coverings. (We know by Remark 3.2 that this is indeed a group.) We have
thus far produced a homomorphism π1(X, x)→ Aut(Y/X).

Lemma 6.5. [1, §13b]. The homomorphism π1(X, x)→ Aut(Y/X) is surjective.

Proof. Suppose ϕ : Y → Y is a covering transformation with ϕ(y) = y′. Since Y is assumed
connected, a covering transformation is determined by the image of one point, so it suffices
to produce [σ] ∈ π1(X, x) such that [σ].y = y′. But this is simple: let γ be a path from y to
y′ in Y , and let σ = p ◦ γ. Then [σ].y = y′ by definition. �

Finally, to measure the failure of injectivity, we compute ker(π1(X, x)→ Aut(Y/X)). Since
Y is connected, it suffices to characterize the [σ] ∈ π1(X, x) such that [σ].y = y. But
this happens precisely when the lift of σ to Y is a path from y to y, i.e., when [σ] ∈
p∗(π1(Y, y)) by Proposition 5.3. We have proved the following theorem, which characterizes
deck transformations.

Theorem 6.6. [1, Theorem 13.11]. Suppose Y is connected, X is locally path-connected,
and p : Y → X is a covering projection. Let y ∈ Y with p(y) = x. Suppose p∗(π1(Y, y)) is a
normal subgroup of π1(X, x). Then there is an isomorphism

π1(X, x)\p∗(π1(Y, y)) ' Aut(Y/X).

7. Constructing G-Coverings from the Universal Covering

Let X be a connected, locally path-connected, semilocally simply connected space, so that
X has a universal covering X̃. Let u : X̃ → X be the corresponding covering map. We take
all our spaces to have basepoints and all our maps to take basepoints to basepoints. We
denote the basepoint of X by x and the basepoint of X̃ over x by x̃.

Proposition 7.1. [1, §14a]. Given a homomorphism ρ : π1(X, x) → G, where G is an
arbitrary group, we can construct a G-covering pρ : Yρ → X with basepoint yρ ∈ Yρ over
x, where Yρ is a topological space equipped with the quotient topology under an action of
π1(X, x).

Proof. First, we endow G with the discrete topology so that X̃ ×G is a product of copies of
X̃ with one copy per element of G. Given [σ] ∈ π1(X, x), [σ] acts on X̃ ×G by

[σ].(z, g) := ([σ].z, gρ([σ])−1), (∗)
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where (z, g) ∈ X̃×G and [σ].z denotes the action of π1(X, x) on X̃ described in the previous
section. This is a common way of extending an action on the first coordinate to an action
on the Cartesian product; the inverse in ρ([σ])−1 is just there so that the action is associative.

Next, define
Yρ := π1(X, x)\(X̃ ×G),

where the quotient is by the action, and let yρ be the image of (x̃, e) in Yρ, where e denotes
the group identity in G. Let 〈z, g〉 denote the image of (z, g) in Yρ. Note that, retaining the
notation of Equation (*), we have

〈[σ].z, g〉 = 〈z, gρ([σ])〉.
Indeed, [σ]−1〈[σ].z, g〉 = 〈z, ρ([σ])〉, but since we quotient out by the action of π1(X, x) in
Yρ, these two pairs are identical.

Define pρ : Yρ → X by pρ(〈z, g〉) := u(z). (We recall that u is the universal covering map.)

Now G acts on Yρ by
h.〈z, g〉 := 〈z, hg〉,

where h, g ∈ G, z ∈ X̃. This is an action because h = e gives the identity, because the map
z 7→ hz is continuous on G, and because

(h1h2).〈z, g〉 = 〈z, h1h2g〉
whereas

h1.(h2.〈z, g〉) = h1.〈z, h2g〉
= 〈z, h1h2g〉.

We claim that this action is even, so that pρ is a G-covering. Indeed, let N be an evenly-
covered open set in X (with respect to the covering u). Then u−1(N) is homeomorphic to
the product covering N × π1(X, x) (i.e., the covering map is P : N × p1(X, x)→ N given by
taking the first coordinate). Thus we have homeomorphisms

p−1
ρ (N) ' (N × π1(X, x))× (π1(X, x)\G) ' N ×G,

where the last homeomorphism is obtained from the map (N × π1(X, x))× (π1(X, x)\G)→
N × G given by 〈(u, [σ]), g〉 7→ (u, gρ([σ])) and the map N × G → (N × π1(X, x)) ×
(π1(X, x)\G) given by (u, g) 7→ 〈(u, e), g〉, where e is the identity, as usual. It follows
from the homeomorphism p−1

ρ (N) ' N ×G that G acts evenly on p−1
ρ (N). Since such open

sets N cover X, pρ is a G-covering of X. �

Proposition 7.2. [1, §14a]. Given a G-covering p : Y → X with p(y) = x, there exists a
homomorphism ρ : π1(X, x)→ G.

Proof. Let [σ] ∈ π1(X, x) and define ρ([σ]).y to be the endpoint of the lift of σ to y. (This is
independent of the choice of representative σ of [σ], so it is well-defined. Moreover, because
the action is even, defining ρ([σ]).y is enough to uniquely specify an image ρ([σ]) of [σ] in
G.) Indeed, let us adopt the convenient notation

y ∗ σ



BASS–SERRE THEORY 17

for the endpoint of the lift of σ starting at y. We then observe that if z ∈ p−1(x), σ is a loop
based at x, and τ is a path starting at x, then

(z ∗ σ) ∗ τ = z ∗ (σ · τ), (i)

which follows immediately from the definition of ∗. It is less obvious that if g ∈ G, z ∈ p−1(x),
and γ is a path starting at x, then

g.(z ∗ γ) = (g.z) ∗ γ. (ii)

We show this as follows. Suppose γ̃ is a lift of γ starting at z. Consider the path t 7→ g.γ̃(t),
0 ≤ t ≤ 1. This is a lift of γ starting at g.z.2 By definition of ∗, this path ends at (g.z) ∗ γ,
but by definition of g.γ̃(t), it ends at g.γ̃(1), so g.γ̃(1) = (g.z) ∗ γ. But we have γ̃(1) = z ∗ γ,
so it follows that g.(z ∗ γ) = (g.z) ∗ γ.

It remains to prove that the map ρ is a homomorphism. We show this using Equations (i)
and (ii). Indeed,

ρ([σ]).(ρ([τ ]).y) = ρ([σ]).(y ∗ τ)

= (ρ([σ]).y) ∗ τ
= (y ∗ σ) ∗ τ
= y ∗ (σ ◦ τ)

= ρ([σ][τ ]).y.

�

We are now ready to prove the correspondence between homomorphisms π1(X, x)→ G and
G-coverings up to isomorphism.

Proposition 7.3. [1, Proposition 14.1]. Suppose X is connected, locally path-connected,
and semilocally simply connected.3 Then there is a one-to-one correspondence between the
set of homomorphisms from π1(X, x) to a group G and the set of based G-coverings, up to
G-covering isomorphism.

Proof. We want to show that if we are given a G-covering p : Y → X with basepoints
p(y) = x, from which we can produce a homomorphism ρ : π1(X, x)→ G as above, then the
given covering is isomorphic (as a G-covering) to the covering pρ : Yρ → X, constructed from
ρ as above. To do this, we must produce a map Yρ → Y . It suffices to map X̃ ×G→ Y and
show that elements in the same orbit of π1(X, x) have the same image. Recall from Theorem
5.7 that we can think of the universal cover X̃ as the space of homotopy classes of paths in
X starting at x. Given such a class of paths [γ] ∈ X̃ and g ∈ G, we have a map X̃ ×G→ Y
given by ([γ], g) 7→ g.(y ∗ γ) = (g.y) ∗ γ, where we recall that y ∗ γ means the endpoint of the
lift of γ starting at y.

We must map Yρ to Y . Thus we must map X̃ × G to Y and show that orbits by π1(X, x)

have the same image. We know from Theorem 5.7 that the universal cover X̃ can be thought
of as the space of homotopy classes of paths starting at x ∈ X. We define a map X̃×G→ Y

2We are slightly abusing notation here, as G acts on X, not Y . By gγ̃(t), we really mean the lift of gγ(t),
0 ≤ t ≤ 1, starting at g.z.
3We will need these assumptions to produce a universal cover of X.
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by ([γ], g) 7→ g.(y ∗ γ) = (g.y) ∗ γ, where we recall that y ∗ γ is the endpoint of the lift of γ
starting at y. The map X ×G→ Y factors into two maps X ×G→ Y ×G→ Y given by
([γ], g) 7→ (y ∗γ, g) 7→ g.(y ∗γ). Since each of these maps is continuous, the map X̃×G→ Y
is continuous as well.

We now check that the point [σ].([γ], g) = ([σ][γ], gρ([σ]−1), which is in the same orbit as
([γ], g) under the action of π1(X, x), maps to the same point in Y . We apply Equations (i)
and (ii) to calculate

(g.ρ([σ])−1)(y ∗ (σ ◦ γ)) = (g.ρ([σ])−1)((y ∗ σ) ∗ γ)

= ((g.ρ([σ])−1)(y ∗ σ)) ∗ γ
= (g.((y ∗ σ) ∗ σ−1)) ∗ [γ]

= (g.(y ∗ (σ ◦ σ−1))) ∗ [γ]

= (g.y) ∗ [γ],

which was what we wanted. This shows that our map gives the same value in each π1(X, x)
orbit, so it is well-defined as a map of G-coverings Yρ → Y .

On the other hand, given a homomorphism ρ : π1(X, x) → G, we showed in the previous
discussion how to construct a G-covering Yρ → X. Suppose we then construct another
homomorphism ρ̃ from this covering using the construction described earlier. We must
check that ρ̃ = ρ. Let [σ] ∈ π1(X, x) and 〈x̃, g〉 ∈ Yρ. Then, by our previous definitions, we
calculate

ρ̃([σ]).〈x̃, g〉 = 〈x̃, g〉 ∗ σ
= 〈x̃ ∗ σ, g〉
= 〈[σ].x̃, g〉
= 〈x̃, g.ρ([σ])〉
= ρ([σ]).〈x̃, g〉.

This shows that ρ̃ = ρ, as desired. �

Remark 7.4. (Gluing Coverings). Suppose X = U ∪ V where U, V are open, and suppose
p : X̃ → X is a covering of X. Then p|U : p−1(U)→ U and p|V : p−1(V )→ V are coverings
of U and V , respectively, and are clearly isomorphic over U ∩ V , i.e., the restrictions over
U ∩ V are isomorphic. This shows that restriction of coverings works as we would expect it
to; indeed, in the language of algebraic geometry, coverings of X form a presheaf.

Conversely, suppose we are given coverings p1 : Ũ → U, p2 : Ṽ → V and have an isomorphism
f : p−1

1 (U ∩ V ) → p−1
2 (U ∩ V ). We claim we can construct a covering p : X̃ → X and

isomorphisms of coverings

f1 : Ũ → p−1(U), f2 : Ṽ → p−1(V )

such that f = f−1
1 ◦ f2 over U ∩ V .

To this end, we define the equivalence relation ∼ such that a point y1 ∈ p−1
1 (U ∩ V ) is iden-

tified with f(y1) ∈ p−1
2 (U ∩ V ). (Although we used the notation ∼ for previous equivalence
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relations, it will be clear from context which one we mean.) Then we set X̃ := Ũ
∐
Ṽ / ∼ and

equip X̃ with the quotient topology (i.e., the open sets in X̃ are precisely those sets whose
inverse image in Ũ

∐
Ṽ is open). Define p : X̃ → X as follows: if x ∈ Ũ , let p(x) := p1(x),

and if x ∈ Ṽ , let p(x) := p2(x).

The map p is well-defined because if two points x, y in Ũ and Ṽ , respectively, are identified
in X̃, then y = f(x) and p2(y) = p2(f(x)) = p1(x). Also, since the inclusion i1 : Ũ → X̃
is a homeomorphism onto its image p−1(U) and likewise for the inclusion of Ṽ in X̃, we see
that p|p−1(U) ' p1 and that p|p−1(U) ' p2, where ' now denotes isomorphism of coverings.
Therefore, p is a covering. Similarly, if p1, p2 are G-coverings for some group G and f is an
isomorphism of G-coverings, then p is a G-covering.

8. The Seifert–van Kampen Theorem

We have the following theorem.

Theorem 8.1. (Seifert–van Kampen) [1, Theorem 14.4]. Let X = U ∪ V , U, V open.
Suppose X,U, V, and U∩V are path-connected, locally path-connected, and semilocally simply
connected, and let x ∈ U ∩ V . Let i1 : π1(U ∩ V, x) → π1(U, x) and i2 : π1(U ∩ V, x) →
π1(V, x) be the homomorphisms induced by inclusion, and define j1 : π1(U, x)→ π1(X, x) and
j2 : π1(V, x)→ π1(X, x) similarly. Given a group G and homomorphisms h1 : π1(U, x)→ G,
h2 : π1(V, x)→ G such that h1◦i1 = h2◦i2, there is a unique homomorphism h : π1(X, x)→ G
such that h ◦ j1 = h1 and h ◦ j2 = h2.

Proof. First, it is helpful to visualize the situation through the following commutative dia-
gram depicting the homomorphisms in question:

π1(U, x)

π1(U ∩ V, x) π1(X,x) G

π1(V, x)

j1 h1i1

i2

h

j2 h2

Our assumptions guarantee that X,U, V , and U ∩ V each have universal covering spaces by
Theorem 5.7. The proof of Proposition 7.3 used the existence of a universal covering, so this
guarantees that h1 and h2 determine G-coverings Y1 → U and Y2 → V as well as basepoints
y1 and y2 over x. Since h1 ◦ i1 = h2 ◦ i2, the restrictions of these coverings to U ∩ V are
isomorphic G-coverings. (Note that the inclusion-induced maps i1, i2, j1, j2 are injective by
Proposition 5.3.) Also, since U ∩ V is connected, there is an isomorphism between these G-
coverings that maps y1 to y2. By Remark 7.4, these two G-coverings can be patched together,
using the aforementioned isomorphism over U ∩ V . Thus we obtain a G-covering Y → X
that restricts to the two given G-coverings and has the same basepoint. By Proposition 7.3,
we obtain a homomorphism h : π1(X, x) → G, and the fact that the restricted coverings
agree means h ◦ j1 = h1 and h ◦ j2 = h2 as desired. Uniqueness of h follows from uniqueness
of the G-covering. �
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We now prove a consequence of the Seifert–van Kampen Theorem that will subsequently be
of more use to us than the fully general theorem.

Corollary 8.2. If the conditions of Theorem 8.1 hold, then for any group G there is a
bijection

Hom(π1(X, x), G) ' {(h1, h2) ∈ Hom(π1(U, x), G)× Hom(π1(V, x), G)|h1i1 = h2i2}.
In category-theoretic language, the diagram

π1(U ∩ V, x) π1(U, x)

π1(V, x) π1(X,x)

is a pushout diagram in the category of groups.

Proof. We define a map
F : Hom(π1(U, x), G)× Hom(π1(V, x), G)→ Hom(π1(X, x), G)

and show that F is one-to-one and onto. Given (h1, h2) ∈ Hom(π1(U, x), G)×Hom(π1(V, x), G)
such that h1i1 = h2i2, let

F (h1, h2) := h

where h ∈ Hom(π1(X, x), G) is the unique homomorphism from the statement of the Seifert–
van Kampen Theorem satisfying h ◦ j1 = h1 and h ◦ j2 = h2.

Suppose F (h1, h2) = F (h′1, h
′
2) = h, where (h′1, h

′
2) ∈ {(h1, h2) ∈ Hom(π1(U, x), G) ×

Hom(π1(V, x), G)|h1i1 = h2i2}. Then h′1 = h ◦ j1 = h1 and h′2 = h ◦ j2 = h2, so (h1, h2) =
(h′1, h

′
2). Thus F is one-to-one.

Now suppose h ∈ Hom(π1(X, x), G). Then take (h1, h2) := (h◦j1, h◦j2). Clearly F (h1, h2) =
h in this case, and clearly (h1, h2) ∈ Hom(π1(U, x), G) × Hom(π1(V, x), G)|h1i1 = h2i2} as
well. Thus F is surjective. �

9. Free Groups and Free Products

In this section, we will demonstrate how to use Corollary 8.2 to calculate fundamental groups.
Suppose X is a topological space and X1, X2 ⊆ X are path-connected open subsets. Let
X0 := X1 ∩ X2, and suppose X0 has exactly two distinct path-components, say Y and Z.
Define Z̃ by gluing X1 and X2 along Z. Define X̃ by gluing Y × [0, 1] to Z̃ as follows: identify
Y × {i} with the copy Yi+1 of Y in Xi+1 for i = 0, 1. Choose y ∈ Y , and let yi be its image
in Yi. Let ` : [0, 1]→ Z̃ be a path with `(0) = y1, `(1) = y2. We then have homomorphisms

α1 : π1(Y, y) ' π1(Y1, y1)→ π1(Z̃, y1),

α2 : π1(Y, y) ' π1(Y2, y2)→ π1(Z̃, y2) ' π1(Z̃, y1),

where the last isomorphism π1(Z̃, y2) ' π1(Z̃, y1) of the second line is induced by the path `.
(Given a loop representative σ based at y1, `−1σ` is based at y2, and similarly given a loop
at y2 we can produce a loop at y1. This induces the isomorphism of fundamental groups.)
We claim that with this notation the following holds.
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Proposition 9.1. [6, Proposition 1.2]. If G is an arbitrary group, we have a bijection

Hom(π1(X̃, y1), G) ' {(f1, t) ∈ Hom(π1(Z̃, y1), G)×G|f1α2(p) = t−1f1α1(p)t ∀p ∈ π1(Y, y)}.

Proof. We consider W := Z̃∪ (y× [0, 1]). Notice that W = Z̃∪ (y× [0, 1]) and Z̃∩ (`([0, 1])∪
(y × [0, 1])) = `. By Corollary 8.2 and the fact that the circle has fundamental group Z,
π1(W, y1) is the pushout of Z← 1→ π1(Z̃, y1). We define this pushout to be the free product
Z ∗ π1(Z̃, y1), which we will discuss in more detail later.

We now observe that X̃ = W ∪ (Y × [0, 1]) and W ∩ (Y × [0, 1]) = (Y ×{0}))∪ (y× [0, 1])∪
(Y × {1}). Therefore, applying Corollary 8.2 again, we have a pushout diagram

π1(Y, y) ∗ π1(Y, y) Z ∗ π1(Z̃, y1)

π1(Y, y) π1(X̃, y1)

φ

Here the map φ acts on the first coordinate as α1 and on the second coordinate as c 7→
tα2(c)t−1. (This follows from the h1i1 = h2i2 condition in the statement of Corollary 8.2.)
This gives the result. �

In the proof above, we think of f1 as the composition π1(Z̃, y1) → π1(X̃, y1) → G and t as
the image of the class of the loop ` ∪ y × [0, 1] in π1(X̃, y1)

Example 9.2. Take two copies of S1, each with a distinguished basepoint, and identify the
two basepoints. The resulting space is S1∨S1, the wedge product of S1 and S1. TakingX1 and
X2 to be the two circles and applying Proposition 9.1, we obtain that Hom(π1(X, x), G) '
G × G for any group G. π1(X, x) is called the free group on generators t1 and t2, where
ti is the class in π1(X, x) of Xi. This group is denoted F2. In general, the free group on
n generators is denoted Fn and is the fundamental group of the wedge product of n based
circles with all of the basepoints identified.

We will now give a concrete description of F2. We consider the symbols t, u, t, u. We say a
word is a finite (possibly empty) sequence of these symbols, and we say a word is reduced if
it does not contain the strings tt, tt, uu, uu. We now state and prove the result.

Theorem 9.3. [6, Theorem 1.4]. There is a bijection between the set W of reduced words
and the free group F on generators t, u. In particular, the symbols t, u correspond to t−1,u−1,
respectively, under this bijection.

Proof. First, F contains t, u, so because it is a group, it contains any product of t, u, t−1,
and u−1. Let H be the subgroup of such products. The embedding F → H ⊆ F coincides
with the identity on t and u, but t, u generate F , so F = H. Each element of H can be
represented by a reduced word (where we are identifying x with x−1 for x ∈ {t, u}) because
we can cancel products tt−1, uu−1, etc. So we have a surjection α : W → F . We must show
that α is injective.

Let S be the symmetric group of the set W . We define permutations τ, σ as follows. Sup-
pose w ∈ W ends in t (resp. u). Then let wτ (resp. wσ) be w with the last letter deleted.
Otherwise, let wτ (resp. wσ) be w followed by t (resp. u). It is clear that the inverses τ−1

(resp. ω−1) are defined the same way as τ (resp. ω) but with t replacing t in the definition
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(resp. u replacing u).

By definition of F as the free group on 2 generators (see Example 9.2), we have Hom(F,G) '
G × G for any group G, so there is a unique homomorphism φ : F → S with φ(t) = τ ,
φ(u) = σ. We define β : F → W by β(g) := φ(g)(1). We claim that β(α(w)) = w for all
reduced words w. If w is the empty word, this holds. If w is a reduced word of length 1,
then w ∈ {t, u, t−1, u−1}, and it is easy to check that β(α(w)) = w. Suppose this holds for all
reduced words of length ≤ n. Let w be a word of length n+1, so that it is a word of length n
with an element of {t, u, t−1, u−1} as its (n+ 1)’st letter. Then by our inductive assumption
it is easy to check that β(α(w)) = w. For example, if w = xt where x is a reduced word of
length n (and in particular x doesn’t end in t−1, or w wouldn’t be reduced), then (slightly
abusing notation) α(w) = xt as well, and

β(α(w)) = φ(xt)(1) = φ(x)φ(t)(1) = φ(x)τ(1) = φ(x)t = w,

where φ(x) doesn’t end in t since w doesn’t end in t−1. The other cases are similar. We
thus obtain that β(α(w)) = w for all reduced words w. This proves α is injective, which
completes the proof. �

The proof just given readily generalizes by induction to the case of Fn for any positive integer
n. In the notation of group presentations familiar from an introductory group theory course,
we write Fn = 〈a1, ..., an〉. If X is an infinite generating set, we define

F (X) :=
⋃
{F (Y )|Y ⊂ X, Y finite}.

Suppose yi ∈ F (Yi) ⊂ F (X) for i = 1, 2, 3 where the Yi are finite. We can then define y1y2 to
be the product in F (Y1 ∪ Y2). Associativity of the product follows from F ((Y1 ∪ Y2)∪ Y3) =
F (Y1 ∪ (Y2 ∪ Y3)). This definition makes it clear that if G is an arbitrary group, then a ho-
momorphism F (X)→ G simply corresponds to a map of sets X → G, as F (X) is generated
by X, so F (X) is indeed the free group on X.

Free groups were particularly nice cases of fundamental groups calculated by applying Corol-
lary 8.2 to certain topological spaces. We now give two more general constructions which
are ever-present in geometric group theory.

In the context of Corollary 8.2 and Proposition 9.1, we concerned ourselves with the following
two diagrams:

C A

B G

α1

α2 β1

β2

and

C A G
α1

α2

β

We introduce the following definitions.

Definition 9.4. If α1 and α2 are injective maps4, the universal group G (i.e., the group G
such that if there is a group H satisfying the same commutative diagram but with possibly

4In both of the commutative diagrams, we want α1 and α2 to be injective.
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different maps A → H, B → H, then there is a unique map G → H) is called the free
product of A and B amalgamated along C in the case of the first diagram, and is called
the HNN extension5 of A along C in the case of the second diagram. For the amalgamated
free product, we write A ∗C B, and for the HNN extension of A along C, we write A∗C . In
particular, the free product A ∗B is the special case where C is the trivial group.

Although there are concrete constructions of the amalgamated free product and of HNN
extensions just as there are for free groups, we will not use them in this paper. We refer the
interested reader to p. 145–147 of [6] for the details.

10. Graphs of Groups

In this section, we will need to introduce some definitions that are fairly elementary but have
not been needed until now. We will suppose all the topological spaces we deal with in proofs
in this section and the next have the three properties required for having a universal cover
from the statement of Theorem 5.7.

Definition 10.1. Let X and Y be topological spaces. We say they are homotopy equivalent
if there exist continuous maps f : X → Y and g : Y → X such that f ◦ g is homotopic to
the identity on Y and g ◦ f is homotopic to the identity on X.

Definition 10.2. Let X be a topological space with subspace A ⊆ X. A continuous map
r : X → A is a retraction if r|A = idA. A deformation retraction F : X × [0, 1] → X is
a homotopy between a retraction and idA, i.e., it is a continuous map such that for every
x ∈ X and every a ∈ A, we have F (x, 0) = x, F (x, 1) ∈ A, and F (a, 1) = a.

Definition 10.3. A CW complex is a topological space constructed as follows.

(i) Start with a set of points, also known as 0-cells, X0.

(ii) Inductively, construct the n-skeleton Xn from Xn−1 by attaching spaces homeomorphic
to open n-disks, or n-cells, enα via continuous maps ϕα : Sn−1 → Xn−1.

(iii) Either stop at some finite n, or inductively set X :=
⋃
n≥0X

n. In the latter case, equip
X with the weak topology, i.e., U ⊆ X is open iff U ∩Xn is open for each n ≥ 0.

Example 10.4. The sphere Sn is a CW complex with a 0-cell e0 and an n-cell en, where
the n-cell is attached by the constant map Sn−1 → e0. Indeed, most topological spaces are
homotopy equivalent to some CW complex, although the Hawaiian earring isn’t. (We won’t
prove this here.)

Proposition 10.5. [6, p. 142]. Given a finitely-generated group G, there exists a CW
complex X such that π1(X, x) ' G.

Proof. Let F (X) be the free group generated by a set X. Produce one circle for each element
of X, each circle having an identified basepoint. Take the wedge product of the circles along
their basepoints. By our earlier discussion of free groups, this will have fundamental group
F (X). Let K1 be this complex (the 1 indicates it is a 1-skeleton). We wish to see what

5This stands for Higman–Neumann–Neumann, as HNN extensions were introduced by Graham Higman,
B.H. Neumann, and Hanna Neumann in [3].
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happens to the fundamental group when we attach a 2-cell e2.

The cell e2 is contractible, and a neighbourhood of K1 meets e2 in a copy of S1× [0, 1] where
I is an interval. Denote this neighbourhood by N(K1). The map α : S1 → N(K1)→ K1 is
then homotopic to the attaching map of e2, and there is an induced map α∗ : π1(S1) = Z→
π1(K1). Suppose α∗(1) = r. Then π1(K1 ∪ e2) is the pushout of {1} ← Z→ π1(K1), where
the right arrow is given by α∗.

Giving the same argument when we attach other 2-cells ej, we see that if their attaching
maps give classes rj ∈ π1(K1), then the resulting 2-skeleton K2 has the property that if G
is an arbitrary group, then

Hom(π1(K2), G) = {f ∈ Hom(π1(K1), G)|f(rj) = 1 ∀j}.
We know that π1(K1) is free on some generators {gi}, so f is determined by the values f(gi).
This gives a group presentation 〈gi|rj〉. The gi are arbitrary, and the rj are arbitrary as well;
to see that the latter are arbitrary, note that given an arbitrary product of generators, we can
attach along the loop defined by that product to produce the corresponding relator in the
presentation of the fundamental group of the resulting CW complex. Since, from elementary
group theory, every group has a presentation in generators and relators, this concludes the
proof. �

We now define graphs. For our purposes, graphs will have twice as many edges as they
typically do (e.g., in the context of graph theory). This convention is typical in Bass–Serre
theory, the theory of group actions on graphs.

Definition 10.6. A graph consists of two sets E(Γ) and V (Γ), the set of edges and of
vertices, respectively, as well as an involution E(Γ) → E(Γ) given by e 7→ e, where e 6= e.
(The picture to have in mind is that e is the oriented edge with opposite orientation to e.)
We also have a map ∂0 : E(Γ)→ V (Γ) which sends each edge to an adjacent vertex (i.e., for
each edge we can make an arbitrary choice between the two vertices to send it to), and we
define ∂1e := ∂0e, saying that e joins ∂0e to ∂1e. An orientation of a graph is a choice of one
edge from each pair (e, e).

Remark 10.7. One might wonder why we want to have twice as many edges as in the usual
definition of a graph (i.e., why the map e 7→ e is useful). To the author’s best knowledge,
this is intended to allow us to easily prohibit actions that contain "inversions". For this
notion, see the first paragraph of §11.

We can now define a graph of groups.

Definition 10.8. A graph of groups is a graph Γ, always assumed for our purposes to be
connected, and a function G which assigns a group Gv to each vertex v of Γ and a group Ge

to each edge e. We also suppose that Ge = Ge and that there is an injective homomorphism
fe : Ge → G∂0e for each e.

Similarly, a graph of topological spaces is a connected graph such that to each vertex we
assign a topological space Xv and to each edge we assign a topological space Xe. We require
that Xe = Xe for all edges e, but we do not impose a requirement corresponding to the
injective homomorphism in the definition of a graph of groups.
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Given a graph X of topological spaces, we define the total space XΓ as the quotient of⋃
{Xv|v ∈ V (Γ)} ∪

⋃
{Xe × [0, 1]|e ∈ E(Γ)}

by identifications
Xe × [0, 1]→ Xe × [0, 1] by (x, t) 7→ (x, 1− t),

Xe × {0} → X∂0e by (x, 0) 7→ fe(x).

If we have a graph of connected topological spaces, we can take fundamental groups to obtain
a graph of groups G. The total space XΓ has a fundamental group, which we will denote
by GΓ. We define GΓ to be the fundamental group of G. In particular, suppose we have
vertex groups A and B connected by an edge group C. Then it follows from Corollary 8.2
that the fundamental group of the graph of groups is just the amalgamated free product
A ∗C B. Similarly, if we have a single vertex group A connected to itself by an edge group
C, it follows from Corollary 8.2 that the fundamental group of the graph of groups is the
HNN extension A∗C .

We will now demonstrate that GΓ does not depend on our choice of X . Given any G, we can,
by Proposition 10.5, choose connected 2-dimensional CW complexes such that π1(Xv) ' Gv

and π1(Xe) ' Ge. (They can be chosen to be 2-dimensional because the construction of
Proposition 10.5 only used 2-dimensional complexes. Because we rely on this construc-
tion, we will assume in what follows that all fundamental groups we work with are finitely-
generated.) This gives a graph X of topological spaces that gives rise to G. Given such
an X , we can attach cells of dimension ≥ 3 to the {Xv} and {Xe} to produce spaces {Ke}
and {Kv} which are aspherical, i.e., have trivial homotopy groups πn for n > 1.6 (This is
the higher-dimensional analogue of adding 2-cells to make the fundamental group of a CW
complex trivial, and the added higher-dimensional cells are not detected by the fundamen-
tal group, which depends only on the 1- and 2-skeletons of the CW complex.) The maps
fe : Xe → X∂0e then extend to maps ke : Ke → K∂0e, so we have a new graph K of aspherical
topological spaces, which still induces G. What is more, the total space KΓ has the same
fundamental group as XΓ, and the homotopy groups of the vertex and edge spaces are now
determined entirely by the collections {Gv} and {Ge}, respectively. It follows that GΓ does
not depend on our choice of X .

To prove the next proposition, we will need Whitehead’s theorem from algebraic topology.
The proof of this theorem would take us too far off course as it involves higher homotopy
groups, so we simply cite a proof.

Theorem 10.9. (Whitehead). If X and Y are CW complexes, and if a continuous map
f : X → Y induces isomorphisms on the n’th homotopy groups of X and Y for each n ≥ 1,
then f is a homotopy equivalence.

Proof. Refer to [2, Theorem 4.5]. �

Proposition 10.10. [6, Proposition 3.6]. (i) If G is a graph of groups as defined in the
previous discussion, then Gv → GΓ is injective.

6Higher homotopy groups are defined in many places, e.g., in [2, §4.1]. The first homotopy group of a
topological space is the fundamental group.
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(ii) If K is a graph of aspherical spaces as discussed above, then the total space KΓ is as-
pherical.

Proof. Suppose we are given the graph K of aspherical spaces. Let v be a vertex of Γ. Then
the space Lv := Kv ∪

⋃
∂0e=v

(Ke × [0, 1]) deformation retracts to Kv. In particular, this is
a homotopy equivalence. Since homotopy groups are only defined up to homotopy (as one
might expect from the name), this induces isomorphisms of n’th fundamental groups for
all n, so we may apply Theorem 10.9 to obtain that the universal cover L̃v is contractible
(since Lv deformation retracts to Kv, which is aspherical and thus has contractible universal
cover). Since the maps Ge → Gv are injective, the universal cover L̃v can be obtained from
the universal cover K̃v by attaching copies of K̃e × [0, 1], the product of the universal cover
of Ke with the unit interval.

We now inductively construct a space Y =
⋃
Yn; we will equip it with the weak topology.

Choose a vertex v0 of Γ and set Y0 := L̃v0 . For any n ≥ 1, we will have attached copies of
K̃e×[0, 1] to form Yn−1, and we define Yn to be the union of Yn−1 with a copy of L̃∂1e for every
such copy of K̃e × [0, 1], where we are attaching it along K̃e × [0, 1]. Each Yn is contractible
as we have only attached contractible sets along contractible sets. We claim that Y =

⋃
Yn

is also contractible. Indeed, a well-known result7 states that a CW complex that is the union
of an increasing sequence of subcomplexes such that the inclusion of each subcomplex in the
sequence into the next is homotopic to the constant map is contractible. Since the inclu-
sions Yi → Yi+1 are homotopic to the constant map for i ≥ 0, it follows that Y is contractible.

We have a canonical projection Y → KΓ. This projection evenly covers KΓ by construction.
This shows that KΓ is aspherical. To get (i), observe that for each Kv ⊆ KΓ, the induced
covering of Kv contains the universal covering, so taking fundamental groups, the map
Gv → GΓ is injective. �

11. Bass–Serre Theory

We now come to our final topic: group actions on trees. Suppose a group G acts on a
graph Γ. We write Gy Γ and take our action to be continuous and without inversions, this
second condition meaning that whenever g fixes an edge e ∈ E(Γ), it fixes every point of e;
in particular, this rules out the "inversion" g.e = e. The following example is another classic
geometric group theory construction.

Definition 11.1. Let G be a group, S ⊆ G a subset of G, and let Γ = Γ(G;S) be the graph
with vertex set G and edge set defined as follows: for each (g, s) ∈ G × S, include a single
edge e(g, s) from g to gs. We say Γ is an S-graph for G. When S is a generating set for G,
we say Γ is a Cayley graph for G with respect to S.

Example 11.2. Let S be a generating set for a group G. We have an action G y Γ(G;S)
given as follows: if h ∈ G, then h maps the vertex corresponding to g ∈ G to the vertex hg
and the edge e(g, s) to the edge e(hg, hs). Then G acts freely without inversions on Γ. Note
that we do not identify the edges e(g, s) and e(gs, s) even if s2 = 1.

Now we will continue our discussion of graphs of groups.

7It is given, for example, in [2, §4.1].
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Lemma 11.3. [6, §4]. Let G be a graph of groups. (Recall that we then have vertex groups
{Gv} and edge groups {Ge} such that Ge = Ge for all e and such that we have injections
α(e) : Ge → G∂0e.) As discussed earlier, we can produce a graph of connected spaces XΓ with
vertex spaces {Xv}, edge spaces {Xe}, and fundamental group GΓ. Let X̃Γ be the universal
cover of XΓ, and define X̃v, X̃e similarly. (These exist because a graph of groups is a graph
and therefore satisfies all the conditions required to have a universal cover.) Then X̃Γ can
be written as a union of copies of X̃v and X̃e × [0, 1].

Proof. By Proposition 10.10, the maps Gv → GΓ and Ge → GΓ are injective, so X̃Γ can be
written as a union of copies of X̃v and X̃e × [0, 1] by the proof of Proposition 10.10. �

Definition 11.4. Retaining the notation of Lemma 11.3, identify each copy of X̃v with a
point and each copy of X̃e× [0, 1] with the interval [0, 1]. Call the resulting space Z. Clearly
Z is a graph, and we have given a projection π : X̃Γ → Z. We now define a map j : Z → X̃Γ.
For each vertex (resp. edge) of Z, choose a point v (resp. a point e) in the copy of X̃v (resp.
X̃e) corresponding to it. Next, divide each edge of Z into three parts in an arbitrary way.
Define j to map the middle third of the edge e to e × [0, 1] and to map the end thirds to
paths in the space X̃v (which is of course connected) that join the corresponding points e,
v. (This is fine since e was mapped to a point, not an edge.) Then π ◦ j is homotopic to the
identity. It follows that Z is connected and simply connected and is therefore a tree.

The projection π commutes with the action of GΓ on X̃Γ, so this action descends to an action
on Z, which has no inversions. By construction, if a vertex in Z is obtained by collapsing
X̃v, then its stabilizer is a conjugate of Gv, and similarly the stabilizer of an edge obtained
by collapsing X̃e × [0, 1] is a conjugate of Ge. The space GΓ\Z is then also a graph because
the action is without inversions.

We now make the following claim.

Lemma 11.5. [6, §4]. The space GΓ\Z coincides with the geometric realization |Γ| of our
original graph Γ, i.e., the graph Γ in the graph-theoretic sense, where we do not consider a
multigraph with inverse edges e.

Proof. We have a canonical surjection GΓ\Z → |Γ|, and for each vertex (resp. edge) v (resp.
e) of |Γ|, we have Xv (resp. Xe×[0, 1]) in XΓ, so a collection of copies of X̃v (resp. X̃e×[0, 1])
in X̃Γ, and GΓ acts evenly on this collection. We thus obtain a single vertex (resp. edge) of
GΓ\Z. We can therefore recover our graph of groups G from GΓ acting on Z. �

Lemma 11.6. [6, §4]. Suppose we have a group G acting on a (topological) tree Y with no
inversions.Then there exists a graph of groups whose fundamental group is G.

Proof. By Proposition 10.5, we can produce a connected CW complex U with fundamental
group G. By the construction from Proposition 10.5, this complex will have a universal cover
Ũ , and G will act freely on it. Therefore, G will act on Ũ × Y by acting on each coordinate.
Let

X := G\(Ũ × Y ).

We then have a projection X → G\Y =: Γ. Because G acts without inversions on Y , Γ is a
graph. Moreover, if v is a vertex (resp. e is an edge) of Y with stabilizer Gv (resp. Ge), then
G\(Ũ × v) (resp. G\(Ũ × e)) has fundamental group Gv (resp. Ge) by our construction.
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This shows that X is a graph of connected spaces which is the topological realization of a
graph of groups G. G acts freely on Ũ ×Y , which is simply connected, so G = π1(X), which
is the fundamental group of G. This was what we wanted. �

Given a CW complex K, we can consider its 1-skeleton K(1), which is a graph and therefore
contains a maximal tree T . The edges of K that are not in T then correspond to generators
of π1(K). This situation motivates the following result.

Proposition 11.7. [6, Proposition 4.2]. Suppose G acts without inversions on a connected
graph Y . Then X := G\Y is a graph, so we can choose a subtree T of X containing a vertex
v, and we let ṽ ∈ Y lie above v. Then there exists a lift j : T → Y of the inclusion of T in
X such that j(v) = ṽ.

Proof. Consider pairs (S, f) where S is a subtree of T containing v and f : S → Y is a lift
of the inclusion of T in X such that f(v) = ṽ. (The set of such pairs is non-empty because
we have the trivial inclusion, which lifts the tree consisting of v alone to ṽ.) Define a partial
order on such pairs by saying that S1 ≤ S2 if S1 ⊆ S2 and f1 ≤ f2 if f2|S1 = f1. Then every
totally ordered subset of such pairs contains a maximal element given by taking unions of
trees and of maps, where f1 ∪ f2 := f2 if f1 ≤ f2. By Zorn’s lemma, we now get a maximal
such pair (T ′, j′).

Suppose T ′ 6= T . Choose a vertex w in T − T ′. T is connected, so we can join w to v by a
path, and at least one edge in the path, say e, has a vertex v0 which is in T ′ and a vertex
which is not in T ′. Let ẽ be a lift of e in Y . Then v0 has a corresponding lift ṽ0. By definition
of j′, both j′(v0) also lies over v0, so it is in the same G-orbit as ṽ0; we write g.ṽ0 = j′(v0).
But we can now define an extension j of j′ to e by setting j(e) = g.ẽ, contradicting the
maximality of j′. This proves the result. �

Now, if G acts on the tree Y as before, we choose a maximal tree T in Γ := G\Y and a lift
j : T → Y with j(T ) =: T̃ . Over each vertex v of Γ, we now have just one lift ṽ of T̃ . We
define Gv to be the stabilizer of ṽ. Similarly, for an edge e of T , we have the edge ẽ := j(e)

and the stabilizer Ge of ẽ. For the other edges e of Γ, choose a lift ẽ in Y with ∂̃0e = ∂0ẽ and
choose ge ∈ G with ∂1ẽ = ge.∂̃1e, then define Ge to be the stabilizer of ẽ. Recall from earlier
in this section that in a graph of groups we have injections α(e) : Ge → G∂0e. Let us write
αi(e) for the injection Ge → G∂ie, where i ∈ {0, 1}. Then we have that α0(e) is the natural
inclusion map and α1(e) is induced by conjugating by ge.

Conversely, we have shown that if G acts on a tree Y without inversions, then we can produce
a graph of groups over Γ = G\Y . The theory culminates in the following fundamental result.

Theorem 11.8. [6, Theorem 4.3]. Given a graph of groups G with fundamental group GΓ

and underlying space XΓ, we have an action of GΓ on the tree Z defined in Definition 11.4.

Conversely, given a group G acting on a tree Y without inversions, we can produce a graph
of groups over Γ = G\Y . The vertex groups (resp. edge groups) of this graph of groups are
vertex-stabilizers (resp. edge-stabilizers) of images of vertices (resp. edges) of the maximal
subtree T of Γ under the map j from Proposition 11.7, where they are stabilizers with respect
to the induced action of G on j(T ).
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The two constructions described above are inverses of each other up to isomorphism and up
to replacing the maps αi(e) (i ∈ {0, 1}) in the graph of groups by conjugate homomorphisms.

Proof. Many details of the proof were already given in the above discussion, but we summa-
rize it here. Given the action of G on Y , we have seen that the graph of groups over Γ = G\Y
corresponds to a graph of spaces with total space G\(Ũ × Y ). Here U is a connected CW
complex with fundamental group G. We can then collapse the Ũ × Y to obtain the tree Y
and a G-action on it.

On the other hand, suppose we are given a graph of groups G and construct, as described
earlier, an action of the corresponding fundamental group GΓ on a tree Z. We noticed ear-
lier that the vertex- and edge-stabilizers agree up to conjugation by some element with the
images in GΓ of the Gv’s and Ge’s.

We need to be more careful in dealing with the injections αi(e) described above because it
is not a priori clear when α1(e) will give an inclusion. Take X to be a graph of spaces with
choices of basepoints, and identify Γ as a subset of X with a choice of maximal tree T of Γ.
T satisfies the properties for existence of a universal cover, so we have such a cover T̃ ⊆ X̃Γ.
Given an edge e of Γ − T , we can lift it uniquely to ẽ ⊂ X̃Γ with ∂0ẽ ∈ T̃ , and we can also
produce a unique ge ∈ GΓ with g−1

e .∂0ẽ ∈ T̃ . Then G is isomorphic to a graph of groups for
which every α0(e) and those α1(e) where e ∈ T are inclusions. This means we can consider
the Gv’s and Ge’s as subgroups of GΓ.

The image of the tree T̃ under the projection π : X̃Γ → Z will be an isomorphic tree, which
we will also write as T̃ , over T . We have seen that GΓ acts on Z and that the resulting
graph of groups will have the same subgroups Gv and Ge. We have also seen in the preceding
paragraph that the α0(e) and each α1(e) with e ∈ T are inclusions. If e /∈ T , then α1(e) is
induced by conjugating by ge, and in the given graph of groups, α1(e) was induced by a map
f 1
e : (Xe, ∗) → (X∂1e, ∗), where ∗ represents the arbitrary basepoint. Since T is a maximal
tree, we can find a unique path p in T that joins ∂1e to ∂0e. We have identified Ge with
a subgroup of G∂0e, so f 1

e does not preserve basepoints, as these are translated along p. It
follows that α1(e) is induced by conjugation by g′ ∈ GΓ corresponding to the path p.e (i.e.,
the path starting at the identity and then doing p from there). In T̃ , p lifts to a path joining
∂̃1e to ∂̃0e = ∂0ẽ; the lift of p.e therefore joins it to ∂1ẽ. It follows that g′.∂̃1e = ∂̃1e, so g′ is
identified with the element ge from earlier, which shows the correspondence holds. �

We conclude this article with two special cases of the above result that are particularly
commonly-encountered. These are Corollaries 4.4 and 4.5 in [6].

Corollary 11.9. If G\Y is a single edge e between distinct vertices v and v′, then G '
Gv ∗Ge Gv′, where Gi now indicates the stabilizer of i (and i is either a vertex or an edge).
If G\Y is a single loop, then G ' Gv∗Ge.

Example 11.10. I borrow this example from [8], although J.P. Serre gives similar examples
in [7].
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The group SL2(Z) of 2× 2 integer-valued matrices with determinant 1 acts on the complex
upper half plane H2 = {z ∈ C | Im(z) > 0} by fractional linear transformations, i.e., by(

a b
c d

)
.z :=

az + b

cz + d

for all z ∈ C. Quotienting out by the scalar transformations with unit determinant (i.e., the
linear transformations I and −I) gives the projective special linear group PSL2(Z), which
also acts on H2. This action is generated by the translation z 7→ z + 1 and the inversion
z 7→ −1

z
, so a fundamental domain (i.e., a region containing a unique representative for each

orbit) is given by

{z ∈ C | |z| ≥ 1, |Re(z)| ≤ 1

2
}.

This domain contains the segment [i, e2πi/3], whose images under the action form a tree
on which PSL2(Z) acts without inversions. The stabilizer of this edge is trivial, while the
stabilizer of the vertex i is generated by z 7→ −1

z
, which is of order 2, and the stabilizer of

the vertex e2πi/3 is generated by z 7→ 1 − 1
z
, which is of order 3. It follows from Corollary

11.9 that
PSL2(Z) ' (Z/2Z) ∗ (Z/3Z)

and therefore that
SL2(Z) ' (Z/4Z) ∗Z/2Z (Z/6Z).
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