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Abstract

This is a series of lecture notes for a class on category theory and homological
algebra taught by Jason Bell.

1 Sept. 5, 2019.
Adam has eaten four bananas in the last 24 hours. Dan and Jason are smoothie brothers.

In this class, we will use the notion of a class, i.e., a collection of objects (usually sets)
defined by some list of properties. We can’t talk about the set of all sets because of Russell’s
paradox, so instead we talk about the class of all sets. Classes that are not sets are called
proper classes. For example, the set of all groups is not a set, so we talk about the class of
all groups. For similar reasons, we talk about the class of all vector spaces.

Definition 1.1. A category C consists of the following data:

(i) A class of objects, denoted Ob(C).

(ii) For all A,B ∈ Ob(C), a class of morphisms (also called arrows or maps), denoted
HomC(A,B). Each morphism has a source and a target, each of which is a single object.
(The source and target objects are not necessarily distinct.) If f ∈ HomC(A,B), we will
write f : A→ B for short.

(iii) We have a composition ◦ : HomC(A,B)×HomC(B,C)→ HomC(A,C) whose action we
denote by (f, g) 7→ g ◦ f .

(iv) The composition is required to be associative, so if f : A → B, g : B → C, and
h : C → D, we require that h ◦ (g ◦ f) = (h ◦ g) ◦ f .

(v) For every A ∈ Ob(C), ther eexists an identity morphism idA ∈ HomC(A,A) such that
for all f : B → A, f ◦ idA = f and for every g : A→ B, idA ◦ g = g.

Remark 1.2. We remark that the notion of the source and target of a morphism can be
made rigorous by including the data of source and target maps that send a morphism to its
source and target, respectively. But we will not be that rigorous here.

Remark 1.3. Often the HomC(A,B) are sets, in which case we call them Hom-sets of C.
The category C is said to be locally small in this case. It is said to be small if in addition,
Ob(C) is a set. Adina asks what we call it if the morphisms form a proper class but the
objects form a set. Jason doesn’t know. I don’t know either. But the reason this isn’t usually
considered is that in category theory, you want to be able to use Yoneda’s lemma (which we
will encounter later), and you cannot do this if the morphisms form a proper class.

Example 1.4. The category of sets is denoted Set. Its objects are sets (which form a proper
class), and its morphisms are functions from one set to another.
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Example 1.5. The category of groups is denoted Grp. Its objects are groups (which form
a proper class), and its morphisms are group homomorphisms.

Example 1.6. The category of abelian groups is denoted Ab. Its objects are abelian groups
(which form a proper class), and its morphisms are group homomorphisms.

Example 1.7. The category of topological spaces is denoted Top. Its objects are topological
spaces (which form a proper class), and its morphisms are continuous maps.

Example 1.8. The category of compact Hausdorff spaces is denoted CHaus. Its objects are
compact Hausdorff topological spaces, and its morphisms are continuous maps.

Example 1.9. The category of pointed topological spaces is denoted Top∗. The objects
are pairs (X, x) where X is a topological space and x ∈ X is a point (which we call the
distinguished point of X). A morphism f : (X, x)→ (Y, y) is a continuous maps f : X → Y
such that f(x) = y.

Example 1.10. Let X be a topological space. The category Top(X) has as its objects the
open subsets U ⊆ X and as its morphisms the inclusion map i : U → V if U ⊆ V and the
empty set otherwise (i.e., there are no morphisms in this second case). It is easy to check
that composition is associative, that there is an identity morphism, and that the identity
morphism behaves the way it should. This is a small category because X is a set, and so its
subsets are a set by the power set axiom of ZFC, and there’s at most one morphism between
any two (not necessarily distinct) objects.

Example 1.11. A group can be thought of as a category with only one object. But I
interrupt Jason to say this is an assignment question (A1, Q7), so he stops.

Example 1.12. Given a ring R, we have categories R-Mod and Mod-R of left and right R-
modules, respectively. The morphisms are R-module homomorphisms. In particular, when
k is a field, we have a category of k–vector spaces, denoted Veck.

We also want to have a notion of maps between categories, so we invent functors.

Definition 1.13. Given categories C and D, a functor F : C → D consists of a map
F : Ob(C) → Ob(D) and for all A,B ∈ Ob(C), a map which, misusing notation, we also
denote by F : HomC(A,B) → HomC(F (A), F (B)), such that these maps satisfy the following
conditions:

(i) For every A ∈ Ob(C), F (idA) = idF (A).

(ii) For every f : A→ B and g : B → C, F (f ◦ g) = F (f) ◦ F (g).

Remark 1.14. Sometimes functors defined this way are called covariant functors, and you
can also define contravariant functors which have exactly the same definition except they
satisfy F (f ◦ g) = F (g) ◦ F (f) instead.
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Remark 1.15. This definition is not usually given in a rigorous way. A forgetful functor is
one that "forgets" part of some algebraic structure. For example, there is a forgetful functor
F : Grp → Set that forgets the group structure. There is a functor from Ab to Grp given
by sending an abelian group to its corresponding group. Notice that this is a bit different
because you aren’t really forgetting any structure here. Rather, this second forgetful functor
"forgets predicates". There is a pretty good discussion of the different types of forgetful
functors on the Wikipedia page: enwp.org/Forgetful_functor.

Example 1.16. There is a forgetful functor F : Grp→ Set that forgets the group structure.
That is, it sends a group to its underlying set and sends a group homomorphism to its
underlying map of sets.

Example 1.17. There is a functor from Ab to Grp given by sending an abelian group to
its corresponding group; whether you consider this forgetful or not depends on whether you
consider an abelian group a group that is abelian or whether you consider it a group equipped
with the data of being abelian.

It takes more work to check that the next two examples form a category. I encourage the
reader not to care about those details, unless they really want to.

Example 1.18. There is an abelianization functor F : Grp → Ab given by G 7→ G/G′

where G′ is the commutator subgroup of G.

Example 1.19. There is a functor F : Top∗ → Grp by (X, x) 7→ π1(X, x), where π1(X, x)
is the fundamental group of X with respect to x. Similarly, there is a functor Top → Grp
that gives you the fundamental groupoid. This is done in Assignment 1.

Example 1.20. The category of small categories is denoted Cat0. Its morphisms are func-
tors. (He restricted to small categories to be sure this forms a set. Note that the functors
have to come from set maps, and set maps form a set, so even the Hom-classes of this
category are actually Hom-sets.)

What if we also want a notion of morphisms between functors? These are called natural
transformations, and we introduce them now.

Definition 1.21. Let C, D be categories, and let F,G : C → D be functors. A natural
transformation α : F → G consists of the following data:

(i) For every A ∈ Ob(C), there is a morphism αA ∈ HomD(F (A), G(A)).

(ii) These maps are chosen so that for all objects A,B ∈ Ob(C) and all morphisms f : A→ B
in C, the following diagram commutes:

F (A) F (B)

G(A) G(B)

F (f)

αA αB

G(f)
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Example 1.22. Retaining our previous notation, let idF be the natural transformation
whose associated morphisms are all the identity. This is called the identity natural transfor-
mation.

Definition 1.23. Let C, D be categories, and let F,G : C → D be functors. If there exist
natural transformations α : F → G and β : G→ F such that α ◦ β = idG and β ◦ α = idF ,
we say that the functors F and G are (naturally) isomorphic and say we have a natural
isomorphism from C to D (or from D to C).

Example 1.24. Let C := FVecC be the category of finite-dimensional C–vector spaces,
whose morphisms are just linear maps.

We have an identity functor F : C → C given by F (V ) := V for all V ∈ Ob(C) and F (T ) := T
for all T ∈ HomC(V,W ), where V,W ∈ Ob(C).

We also have a functor G : C → C given by G(V ) := V ∗∗, where V ∗∗ denotes the double
dual vector space of V , and, for T : V → W , given by a map G(T ) : V ∗∗ → W ∗∗ defined by
G(T )(ev) := eT (v) where ev : V ∗ → C is given by ev(f) = f(v) for f : V → C.

Are F and G isomorphic functors? They are. You can define natural transformations α and
β by αV (v) := eV and βv(ev) := v. Then the composition gives the identity. (It actually
requires a lot of detail checking to make this example work. It’s probably good to go through
all the details once and then never again.)

2 Sept. 10, 2019
Definition 2.1. Given a category C, its opposite category Cop is defined as having the
same objects as C but with each morphism reversed. That is, Ob(Cop) := Ob(C), but
HomCop(A,B) := HomC(B,A).

Example 2.2. Consider VecopC , the opposite category of the category of finite-dimensional
C–vector spaces. Consider (once again) the dual functor F : VecC → VecopC defined by
F (V ) := V ∗ and F (T ) : W ∗ → V ∗ for T : V → W where F (T ) is given by taking the dual of
T . Then if T1 : X → Y and T2 : Y → Z, we have T2 ◦ T1 : X → Z. Also, F (T1) : Y ∗ → X∗,
F (T2) : Z∗ → Y ∗, F (T1) ◦ F (T2) : Z∗ → X∗, and F (T2 ◦ T1) : Z∗ → X∗. Thus, F is
a contravariant functor from VecC to VecC. Notice (and this is basically a terminological
point) that it is not a contravariant functor from VecC to VecopC .

Remark 2.3. This is true in general. The contravariant functors F : C → D are precisely
the covariant functors F : C → Dop, and vice versa.

From last class, we know that if F : VecC → VecopC and G : VecopC → VecC both take the dual,
then G ◦F : VecC → VecC is not equal to the identity functor but is naturally isomorphic to
it. Now Jason gives an exercise that was suggested in my notes for last class.

Exercise 2.4. Prove that there exist natural transformations α : G ◦ F '−→ IdVecC and
β : IdVecC → G ◦F such that β ◦α : G ◦F → G ◦F and α ◦β : IdVecC → IdVecC are identities.
Similarly, show that F ◦G ' IdVecopC .
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The example from this exercise motivates the following definition.

Definition 2.5. Suppose C and D are categories and F : C → D, G : D → C are functors.
Suppose further that G◦F ' IdC and F ◦G ' IdD. Then we say that C and D are equivalent
as categories or that there is an equivalence of categories between C and D.

Example 2.6. Suppose that C is the category having two objects, which we call 1 and 2,
with corresponding identity morphisms id1 and id2 as well as morphisms f : 1 → 2 and
f−1 : 2 → 1 (so that 1 and 2 are isomorphic in C). Define F : C → D by 1 7→ A, 2 7→ A,
id1 7→ idA, and id2 7→ idA. Define G : D → C by A 7→ 1 and idA 7→ id1. Then one can check
that F ◦ G = idD and G ◦ F ' idC, although I haven’t actually checked (but it should be
true). Incidentally, originally Jason had tried this without having the morphisms f and f−1

in C, and there it failed to be true.

In general, since equivalence of categories is analogous to homotopy equivalence, it should
preserve the "connected components" of a category, which is why the maps f and f−1 are
needed. I have not made this intuition precise. Probably you can make it precise by looking
at the geometric realization of the nerve of the category, which is a way of turning it into a
topological space and under which correspondence equivalence of categories literally becomes
homotopy equivalence. Jason suggests taking skeletal subcategories, and I am not sure how
this relates to the previous notion.

Example 2.7. Even though VecC ' VecopC , we now give an example of a category that is
not equivalent to its opposite category. Let C be the following category (with the implied
identity morphisms):

0 1 2 ...

Note that this category has a unique morphism i → j if and only if i ≤ j. Its opposite
category looks like this (with the implied identity morphisms):

0 1 2 ...

This category has a unique morphism i→ j if and only if i ≥ j. Jason sketches an argument
that we cannot have functors F : C → Cop and G : Cop → C such that G ◦ F ' IdC and
F ◦G ' IdD. I do not write it down, but it does not seem complicated.

Example 2.8. Let k be an algebraically closed field. Let C be the category of finitely-
generated reduced commutative k-algebras. Let D be the category of affine varieties over k.
Then C ' Dop.

If A ∈ Ob(C), then we can write A ' k[x1, ..., xn]/(p1(x1, ..., xn), ..., pd(x1, ..., xn)). Define
F : C → D by F (A) := Z(p1, ..., pd) ⊆ kn. Similarly, writing V = Z(p1, ..., pn), define
G : D → C by G(V ) := k[x1, ..., xn]/

√
(p1, ..., pd). These two functors induce an equivalence

of categories.

In algebraic geometry, we love sheaves, and therefore we love presheaves.
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Definition 2.9. Let X be a topological space. Recall that we had a (small) category Top(X)
whose objects are open subsets of X and whose morphisms are inclusions i : U → V when
(and only when) U ⊆ V .

A presheaf of sets (resp. groups, abelian groups, rings, R-modules,...) on X is a contravariant
functor F : Top(X)→ Set (resp. Grp, Ab, Ring, R-Mod,...).

But what does that even mean?

Example 2.10. Let X = S3. Let F : Top(X) → Ringop be defined by F (U) := C∞(U),
the ring of smooth functions U → R. For every inclusion U → V in Top(X), we have a
restriction map F (V ) → F (U) that just restricts each smooth function on V to one on U
(which preserves smoothness). Then F is a functor.

Definition 2.11. Let A and B be categories. Suppose F : A → B and G : B → A are
functors such that for all A ∈ Ob(A) and B ∈ Ob(B), there exists an isomorphism

αA,B : HomB(F (A), B)
'−→ HomA(A,G(B))

(and notice that if we cut this definition off here, it would be too weak, because in the category
of sets, for example, this would just be saying these Hom-sets have the same cardinality) such
that the following holds. Suppose that objects and maps are chosen so that the following
two diagrams commute:

A′ G(B)

A G(B′)

f

G(ψ)ϕ

F (A′) B

F (A) B′

g

ψF (ϕ)

Then the following diagram, which we call (*), also commutes:

HomA(A′, G(B)) HomB(F (A′), B)

HomA(A,G(B′)) HomB(F (A), B′)

G(ψ)◦f◦ϕ

αA′,B

ψ◦g◦F (ϕ)

αA,B′

Definition 2.12. Let C and D be categories. The product category C × D is defined as
follows. First, we define Ob(C ×D) := Ob(C)×Ob(D). Next, we define the morphisms from
an object (C1, D1) to an object (C2, D2) to be the pairs (f, g) where f ∈ HomC(C1, C2) and
g ∈ HomD(D1, D2). Composition is defined by (f1, g1) ◦ (f2, g2) := (f1 ◦C f2, g1 ◦D g2). The
identity morphisms are defined by 1(C,D) := (1C , 1D).

It is pretty easy to verify that product categories are categories.

Definition 2.13. A bifunctor is a functor whose domain is a product category.

Intuitively, we can think of a bifunctor as something that is a (co- or contravariant) functor
in each of its two coordinates. Note that bifunctors can be contravariant in one coordinate
and covariant in the other.
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Example 2.14. Given a category C, HomC(−,−) is a bifunctor. It is covariant if you fix
the first coordinate and contravariant if you fix the second.

Remark 2.15. Natural transformations between bifunctors are just natural transformations
between the corresponding functors. Notice that the commutativity of the diagram (*) looks
like the commutativity condition in the definition of natural transformations.

Indeed, suppose we have functors F : C → D and G : D → C and a natural isomorphism
Φ : HomD(F−,−)

'−→ HomC(−, G−). This happens if and only if F is left adjoint to G (resp.
G is right adjoint to F ).

3 Sept. 12, 2019
Example 3.1. We have a forgetful functor G : Ab → Set. We also have a free func-
tor F : Set → Ab that sends a set X to the abelian group F (X) :=

⊕
x∈X Zex where

{ex}x∈X is a basis. Given a map of sets f : X → Y , there is a corresponding map of bases
F (f) : {ex}x∈X → {e′y}y∈Y .

This example satisfies the following universal property. Suppose X is a set and iX : X →
F (X) is the inclusion map. Suppose A is an abelian group and f : X → A is some map
of sets. Then there exists a unique group homomorphism f̃ : F (X) → A such that the
following diagram commutes:

X F (X)

A

iX

f
∃!f̃

The functors F and G are adjoints. Suppose A,A′ are sets and B,B′ are abelian groups.
Suppose ϕ : A→ A′ is a set map and ψ : B → B′ is a group homomorphism. Plugging this
into the first definition we gave of adjoint functors, you can check that it is satisfied.

Remark 3.2. In general, free functors are left adjoint to forgetful functors. Suppose C is
a category whose objects are sets with a forgetful functor G : C → Set. If a free functor
F : Set→ C exists, then it satisfies the universal property that for every setX (with inclusion
iX : X → F (X)) and every map of sets f : X → Y where Y ∈ Ob(C), there exists a unique
f̃ ∈ HomC(F (X), Y ) such that the following diagram commutes:

X F (X)

Y

iX

f
∃!f̃

Example 3.3. Let C := Ab. Given a basis {ex}x∈X , we have an inclusion map iX : X →⊕
x∈X Zex. Analogously, if we consider Veck for some field k, we have an inclusion map

iX : X →
⊕

x∈X kex. Analogously, if we consider commutative k-algebras, we have an
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inclusion map X → k[ti : i ∈ X] for some {ti}i∈X . Analogously, if we consider non-
commutative (associative) k-algebras, we have an inclusion map X → k〈ti : i ∈ X} where
the ti are non-commuting variables. Analogously, if we consider groups, we have an inclusion
map X → 〈X〉 where 〈X〉 is the free group generated by X.

Remark 3.4. We will sometimes use the notations FX and GX for F (X) and G(X),
respectively, especially in the context of adjoint functors.

Example 3.5. Let F be the category of fields. We have a forgetful functor G : F → Set.
However, its adjoint, which would be a free functor F : Set→ F , does not exist. Why not?
Let X := {1}. Suppose we have a left adjoint F : Set→ F . Then we have an inclusion map
iX : X → FX, where FX is some field. Let K be a field with characteristic different from
that of FX. We have a set map from X = {1} to K given by sending the only element of
X to 1 ∈ K. However, this does not extend to a field homomorphism FX → K making the
usual diagram commute because FX and K have different characteristics.

Note that when G and F are adjoint functors, Hom(X,GFX) ' Hom(FX,FX). This
sometimes comes in handy.

Example 3.6. We have a forgetful functor G : CHaus → Top. It has a left adjoint β :
Top→ CHaus given by X 7→ βX where βX is the Stone–Čech compactification of X. This
is a problem on Assignment 1.

Example 3.7. Let Top∗ be the category of pointed topological spaces. We have a functor
π1 : Top∗ → Grp given by (X, x) 7→ π1(X, x), the fundamental group of X based at x. We
claim there does not exist an adjoint F : Grp→ Top∗ to π1.

Let X := C and Y := S1 ⊂ C. Let H := Z ∈ Ob(Grp). Then, if F satisfies the definition
of the adjoint functor to G := π1, the following two statements hold by definition of adjoint
functors:

(i) HomGrp(H, π1(X, 1)) ' HomTop∗(F (H), (X, 1));

(ii) HomGrp(H, π1(Y, 1)) ' HomTop∗(F (H), (Y, 1))).

However,
HomGrp(H, π1(X, 1)) = HomGrp(H, {1}).

Each has cardinality one. Also,

HomGrp(H, π1(Y, 1)) ' HomGrp(H,Z),

which has infinitely many elements. The inclusion Y ↪−→ X induces an inclusion

HomGrp(H, π1(Y, 1)) ↪−→ HomGrp(H, π1(X, 1)),

which is impossible because the former has infinitely many elements and the latter only has
one. This is the contradiction for which we were looking.
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4 Sept. 17, 2019
Today’s class was cancelled.

5 Sept. 19, 2019
Ehsaan teaches today’s class. He explains that Jason sent him Chris Hawthorne’s class notes
to use for the lecture. He then gives us the following exercise (and then solves it).

Exercise 5.1. Consider the following two diagrams:

A B

C D

f

u v

g

Hom(A,X) Hom(B,X)

Hom(C,X) Hom(D,X)

f∗

u∗

g∗

v∗

(Here if ϕ : B → X is a morphism, then f ∗(ϕ) := ϕ ◦ f .) Prove that the left diagram
commutes if and only if the right diagram commutes.

Proof. The forward direction (left commutes implies right commutes) just uses the fact that
Hom(−, X) is a contravariant functor. The other direction can be done as follows. We want
to show that v ◦ f = g ◦ u assuming the right diagram commutes. We know that for all
ψ : D → X,

f ∗(v∗(ψ)) = u∗(g∗(ψ)).

We set X := D and ψ := idD. Then

f ∗(v∗(id)) = u∗(g∗(id)),

so
v ◦ f = g ◦ u,

and we are done.

Today we want to (i) prove right adjoints are unique, (ii) discuss Yoneda’s lemma, and (iii)
give some examples of adjoints. First we discuss adjoints. Recall that if F : A → B and
G : B → A are functors, then G is a right adjoint for F if

HomB|(FA,B) ' HomA(A,GB),

where ' denotes natural isomorphism of bifunctors. Indeed, given a (covariant) functor
F : A → B. Let F := Hom(F (−),−). Then F can be viewed as a functor from the prod-
uct category Aop ×B → Set since it is contravariant in the first coordinate and covariant in
the second. (There was a similar discussion earlier in these notes but not in Jason’s lectures.)

Example 5.2. (i) The forgetful functor from VecC to Set and the free functor going the
other direction are adjoints. Then the free functor is left adjoint to the forgetful functor.
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Example 5.3. The category R can be defined as the category having exactly one object for
each real number and an arrow x → y if and only if x ≤ y. Similarly, the category Z has
exactly one object for each integer and an arrow x → y if and only if x ≤ y. We have an
inclusion functor i : Z ↪−→ R and a floor functor b·c : R→ Z that sends each real number to
its floor and sends a morphism x→ y to the corresponding morphism bxc → byc. Then i is
left adjoint to b·c.

(This construction is an example of how to make a category out of a poset. You have one
object for each element of the poset and a morphism x→ y if and only if x ≤ y.)

Example 5.4. We have a functor Grp→ Ring given byG 7→ Z[G] and a functor Ring→ Grp
given by R 7→ R×. Then

Hom(G,R×) ' Hom(Z[G], R×),

so these are adjoint functors.

Example 5.5. Let VectG denote the category of linear representations of G. If H ≤ G, we
have a restriction functor resGH : VectG → VectH . The left adjoint is an induction functor
indGH : VectH → VectG. The statement that these functors form an adjoint pair is called
Frobenius reciprocity.

Example 5.6. This example is called Hom-tensor adjunction. Let R be a commutative
ring, and let ModR be the category of R-modules. If M,N ∈ ModR, then we can consider
M ⊗R N ∈ ModR. The bilinear map f : M × N → M ⊗R N given by (m,n) 7→ m ⊗ n
satisfies the following universal property. Given a bilinear map β : M ×N → P there exists
a unique map g : M ⊗R N → P making the following diagram commute:

M ×N P

M ⊗R N

f

β

g

A bilinear map β : M × N → P can be viewed as a map M → (N → P ) by currying.
Therefore, letting Bilin(A,B) denote the collection of bilinear maps from A to B, we have
that

Hom(M,Hom(N,P )) = Bilin(M ×N,P ) ' Hom(M ⊗N,P ).

Fixing N , the functor (−)⊗N is therefore left adjoint to the functor Hom(N,−).

Theorem 5.7. Left adjonts are unique. More precisely, if G : B → A is a functor and
F, F ′ : A → B are functors that are left adjoint to G, then F ' F ′.

The proof will be aas follows. Given suitable objects A,B, we have

Hom(FA,B) ' Hom(A,GB) ' Hom(F ′A,B).

These isomorphisms should be "natural" in A and B. Then we can use the Yoneda lemma
to conclude that FA ' F ′A. We now introduce some notation, followed by the lemma.
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Let C be a category. For A ∈ Ob(C), let hA : C → Set be defined by

hA(X) := Hom(A,X).

Given maps A → X and X → Y , we have a map A → Y given by composing them. This
defines the behaviour of hA on morphisms. We know this already from the discussion of
Hom functors.

Let Funct(C, Set) be the category of functors C → Set. Therefore, we have a functor C →
Funct(C, Set)op given by A 7→ hA.

Lemma 5.8. Let C be a locally small category. (We need the locally small condition so that
the Hom-classes are actually Hom-sets.) Let A,B ∈ Ob(C). If hA ' hB, then A ' B.

We do not prove Yoneda’s lemma yet.

Definition 5.9. Let C be a locally small category. A functor F : C → Set is said to be
representable if it is naturally isomorphic to one of the Hom functors hA. Let Rep(C) be the
full subcategory of representable functors, i.e., the category whose objects are representable
functors and whose morphisms are all natural transformations between those functors. (Here
there is a difference of terminology. Jason calls a functor "representable" if it is equal (as
opposed to naturally isomorphic) to some hA. This issue will be brought up again later.)

We can now rephrase Yoneda’s lemma as follows.

Lemma 5.10. Let C be a locally small category. Then C ' Rep(C)op, where as usual '
denotes a natural isomorphism.

Jason will prove Yoneda’s lemma. Assuming Yoneda’s lemma, we can now prove that left
adjoints are unique.

Proof. Suppose G : B → A is a functor with two left adjoints F, F ′ : A → B. Then given
objects A,B in the appropriate categories,

Hom(FA,B) ' Hom(A,GB) ' Hom(F ′A,B).

We want to show that FA ' F ′A naturally in A. Fix A. Then the assumption of adjointness
gives hFA ' hF ′A. By Yoneda’s lemma, we have an isomorphism ηA : FA ' F ′A. It remains
to show it is natural. This means we need to show the following diagram commutes for all
A,A′ and ϕ : A→ A′:

FA F ′A

FA′ F ′A′

ηA

Fϕ F ′ϕ

ηA′

But applying Hom(−, X), we obtain the diagram
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Hom(FA,X) Hom(F ′A,X)

Hom(FA′, X) Hom(F ′A′, X)

η∗A

(Fϕ)∗

η∗
A′

(F ′ϕ)∗

and this diagram commutes by

Hom(FA,B) ' Hom(A,GB) ' Hom(F ′A,B)

that we obtained from adjointness, we are done.

6 Sept. 24, 2019
Let A be a category. Recall that the functor hA : A → Set is defined by hA(B) :=

HomA(A,B). Given B1
f−→ B2, we have a map hA(B1)

hA(f)−−−→ hA(B2) since if we have
maps φ : A→ B1 and f : B1 → B2, we can send φ 7→ f ◦ φ, and f ◦ φ : A→ B2.

Now suppose A is a locally small category. Then we can form the category Funct(A, Set).
(See Assignment 1 for the definition of this category.) We have an inclusionA ↪−→ Funct(A, Set)op
given by A 7→ hA.

Example 6.1. Let Abfin be the category of finite abelian groups. Any object A in this
category can be written as A '

⊕n
i=1 Z/p

di
i Z. We can then look at |Hom(A,B)|. For

example, if A = Z/2Z⊕ Z/9Z, then

|HomAbfin(A,Z/pZ)| =


1 if p ≥ 5,

2 if p = 2,

3 if p = 3.

Also,

|HomAbfin(A,Z/p2Z)| =


1 if p ≥ 5,

2 if p = 2,

9 if p = 3.

We now go back to considering the map A 7→ hA. Note that if there is a natural isomorphism
η : hA → hB with inverse ε : hB → hA, then for each object we have maps hA(C)

ηC−→ hB(C)
and εC : hB(C) → hA9C), so we have bijections ηC : HomA(A,C) → HomA(B,C) and vice
versa, so

HomA(A,C) ' HomA(B,C).

Example 6.2. Let G : Grp → Set be the forgetful functor. Let F : Set → Grp be its left
adjoint, which is the free functor. We claim that G is representable, in fact that G ' hZ.
Given a group H, we have

hZ(H) = Hom(Z, H) ' H.
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Thus,
HomGrp(F ({x}), H) ' HomSet({x}, G(H)) ' H.

We then have a natural transformation given by the data of maps ηH : G(H) → hZ(H). It
suffices to specify a map H → HomGrp(Z, H), and we define this by h 7→ φh(n) := hn (so
φh(1) = h). We also define a map going the other way by giving the data of morphisms
εH : hZ(H)→ G(H), i.e., Hom(Z, H)→ H given by εH(φ) := φ(1) ∈ H. The corresponding
maps η and ε define a natural isomorphism.

Definition 6.3. Let k be a field, and let C be a commutative k-algebra. Let C-Mod be the
category of C-modules. Then HomC-Mod(M,N) is the set of maps f : M → N such that
f(c1m1 + m2) = c1f(m1) + f(m2). Given a C-module M , a derivation is a k-linear map
d : C → M such that d(c1c2) = c1d(c2) + c2d(c1). Let Derk(M) denote the set of k-linear
derivations d : C →M .

We observe that Derk(M) is a C-module since linear combinations d1 + cd2 where c ∈ k
of derivations are derivations. In fact, even if c ∈ C, then d̂(a) := cd(a) is a derivation if
d is a derivation. We have a functor Derk : C-Mod → C-Mod given by M 7→ Derk(M).

Given a homomorphism M1
f−→ M2, we have a map Derk(M1)

Derk(f)−−−−→ Derk(M2) because if
d : C →M1 is a derivation, then f ◦ d : C →M2 is also a derivation since we have

f(d(c1c2)) = f(c1d(c2) + c2d(c1)) = c1f ◦ d(c2) + c2f ◦ d(c1).

It turns out that Derk is a representable functor (in a sense that we will describe). We can
now define Kähler differentials.

Definition 6.4. Let k be a field and C a commutative k-algebra. Let ΩC/k be the module
of Kähler differentials, which we construct as follows. Let M be the free C-module on all
symbols {d(c) | c ∈ C}. Let N be the submodule generated by d(1), d(c1 + λc2) − d(c1) −
λd(c2), and d(c1c2)− c1d(c− 2)− c2d(c1) for all c1, c2 ∈ C and all λ ∈ k. Let ΩC/k := M/N .

Example 6.5. Take C := k[T ]. Elements are polynomials p(t) := p0 + p1t1 + ... + pnt
n for

pi ∈ k. A short calculation repeatedly using the product rule gives

d(p0 + p1t+ ...+ pnt
n) = (p1 + 2p2t+ ...+ npnt

n−1)d(t).

(For example, d(t2) = td(t) + td(t) = 2td(t).) In general, d(p(t)) = p′(t)d(t), so Ωk[t]/k =
k[t]d(t) (often written k[t] dt). This is isomorphic to C as a C-module.

More generally, we always have a map hΩC/k
: C-Mod→ C-Mod given byB 7→ HomC-Mod(ΩC/k, B).

Example 6.6. We have a natural isomorphism η : Derk → hΩC/k
given as a family of

morphisms Derk(M)
ηM−−→ HomC-Mod(ΩC/k,M) given by d 7→ (d(c) 7→ d(c)) where d(c) is

the formal symbol d(c), which is a generator of ΩC/k. (Recall that Kähler differentials were
defined in terms of a bunch of generators which are formal symbols d(c). To check the maps
in this example are well-defined, we just use the fact that the relations satisfied by these
formal symbols are the same as the relations satisfied by derivations in Derk.) We have an
inverse natural transformation given as morphisms HomC-Mod(ΩC/k,M)

εM−→ Derk(M) given
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by (εM)(f)(c) := f(d(c)) where d(c) is again the formal symbol d(c), which is a generator of
ΩC/k.

Recall that we defined presheaves earlier in this course. Now we define sheaves.

Definition 6.7. Let X be a topological space, and let Top(X) be the category whose objects
are open subsets of X and with a morphism V → U if and only if V ⊆ U . A sheaf is a
presheaf F : Top(X)op → C (where C could be the category of sets, groups, rings, abelian
groups, C-modules, etc.) with two additional properties.

(i) (Separatedness.) If U =
⋃
i∈I Ui is an open cover and f, g ∈ F(U) satisfy f |Ui

= g|Ui
for

every i ∈ I, then f = g.

(ii) (Gluing.) If U =
⋃
i∈I Ui is an open cover and there is fi ∈ F(Ui) such that fi|Ui∩Uj

=
fj|Ui∩Uj

for all i, j ∈ I, then there exists f ∈ F(U) such that f |Ui
= fi for all i ∈ I.

Example 6.8. Take X := R and F : Top(X)op → Ring by letting F(U) be the ring of
bounded continuous maps f : U → R. Then F is a presheaf. However, F does not have
gluing! Indeed, take the open set Un := (−n, n). Take the map fn ∈ F(Un) given by
fn(x) := x. Consider an inclusion Ui ↪−→ Uj. Then fj|Ui

= fi. However,
⋃
n Un = R so the

map f(x) obtained by gluing the fi along the inclusions is unbounded on R.

What are the representable presheaves? In other words, when F : Top(X)op → Set is a
presheaf, when does F ' hU for hU(V ) = Hom(U, V ) (assuming U ⊆ V )? This question
motivates Yoneda’s lemma.

7 Sept. 26, 2019
Let A be a locally small category. Let F be the full subcategory of Funct(A, Set) containing
precisely the functors hA. (Here there is a terminological difference. Jason calls these "rep-
resentable functors", but to me that means a functor naturally isomorphic to some hA, not
necessarily equal to some hA. Both approaches work. In Jason’s approach, we are technically
passing to a skeletal subcategory. In the other approach, we would have to prove that it
suffices to define the functor G (to be introduced later) on representatives of isomorphism
classes of functors. But in our approach we are sweeping stuff under the rug as well by as-
suming that the theory works out when we pass to a skeletal subcategory.) Then A ' Fop,
where ' denotes natural isomorphism. Jason explains that in proving Yoneda, we pass to
this subategory because it is locally small and because, as Jason puts it, "Equivalence does
not care about the number of copies of isomorphic objects."

Consider hU : Top(X)op → Set given by V 7→ Hom(U, V ). Jason explains that if η : hU ' F ,
then η is determined by the map ηU → F (U). He also explains that there is a natural
transformation η : hU → hV if and only if U ⊆ V . We will now prove these things in the
course of proving Yoneda’s lemma.

We begin by restating the lemma.
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Lemma 7.1. Let A be a locally small category. (We need the locally small condition so that
the Hom-classes are actually Hom-sets.) Let A,B ∈ Ob(A). If hA ' hB (where ' denotes
natural isomorphism), then A ' B (where ' denotes isomorphism).

Proof. Let F be the full subcategory of Funct(A, Set) containing all representable functors.
We begin by constructing functors F : A → Fop and G : Fop → A.

First, we define F . Let F (A) := hA. Given f : A → B we have a map η = F (f) :
hB → hA. For every C ∈ Ob(A), ηC : hB(C) → hA(C), which can be thoguht of as a map
HomA(B,C)→ HomA(A,C), is given by ψ 7→ ψ ◦ f . Checking that this defines a functor is
a short exercise.

Next, we define G. Let G(hA) := A. (We are assuming that we can do this, as I explained
in the first paragraph of today’s notes.) Also, given η : hB → hA, we define G(η) : A → B
by G(η) := ηB(idB). One can check as an exercise that G is a functor.

We also need to check that G◦F = idA and F ◦G ' idFop . We have G(F (A)) = G(hA) = A.
Given f : A → B, we have ηf : hB → hA and G(ηf ) : A → B. We claim that G(ηf ) = f .
Now, we have (ηf )B : hB(B)→ hA(B) and

G(ηf ) = (ηf )B(idB).

We then have
f = G(ηf ) = (ηf )B(idB) = idB ◦ f = f.

This proves that G ◦ F = idA.

We also calculate F (G(hA)) = F (A) = hA. Also, given η : hB → hA we have G(η) : A→ B
and ηG(η) : hB → hA. We claim that η = ηG(η). We have to check that for all C ∈ Ob(A),
ηC = (ηG(η))C . We have G(η) = ηB(idB). What is (ηG(η))C? It is the map hB(C) → hA(C)
given by φ 7→ φ ◦G(η). We want to show that

ηC = (ηG(η))C .

We have
(ηG(η))C(φ) = φ ◦ (ηB(idB)).

We therefore want to show that ηC(φ) = φ ◦ (ηB(idB)). We want to use the fact that η is
a natural transformation to show this. We have φ ∈ Hom(B,C). Thus, we can make the
following commutative diagram:

hB(B) hA(B)

hB(C) hA(C)

ηB

hB(φ) hA(φ)

ηC

Take idB ∈ hB(B). Mapping it to the right and then down, we get φ ◦ ηB(idB). Mapping
it down and then to the right instead, we get ηC(φ). Therefore, ηC(φ) = φ ◦ ηB(idB) by
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naturality of η, which was what we wanted.

Definition 7.2. A category is concrete if each object in that category is a set. (Sometimes
you see "concrete" meaning that it has a faithful functor to Set. Jason would call that
"concretizable". We will stick to his terminology.)

Corollary 7.3. Let A be a small category. Then A ' Â, where Â is some concrete category,
i.e., A is concretizable.

We sketch a proof.

Proof. The idea is that given A ∈ Ob(A), we can consider (hA(B))B∈Ob(A), which is a set.
We define

Â :=
⊔

B∈Ob(A)

HomA(A,B).

Given f : A→ B, we define f̂ : B̂ → Â as follows. If φ ∈ B̂, then φ ∈ HomA(B,C) for some
C. We want f̂(φ) ∈ Â. Thus, we can simply define f̂(φ) := φ ◦ f ∈ HomA(A,C). Let Â be
the category whose objects are Â for A an object of A and whose morphisms are f̂ : B̂ → Â
for f : A → B. Then Â is indeed a category by the Yoneda lemma. Moreover, A ' Âop

since Â ' F .

We will now discuss the following topics: limits and colimits, initial and final objects, con-
structions and examples of the former, products and equalizers, and RAPL (pronounced
"rapple", stands for "right adjoints preserve limits").

Colimits are denoted lim−→. Limits are denoted lim←−. Jason says he remembers this because it’s
exactly the opposite of what he would expect.

Definition 7.4. Let C be a category. An object I ∈ Ob(C) is initial if there exists a unique
morphism from it to any other object in C. It is final or terminal if there exists a unique
morphism to it from any other object in C.

Example 7.5. The initial object in Set is ∅. The terminal object is any singleton {x}.

Example 7.6. The initial object in Ring is Z. The terminal object is the ring with one
element.

Example 7.7. Let C := Field∗ be the category of non-zero fields. This has no initial object
by the following argument. A homomorphism of non-zero fields is injective. So the kernel
is trivial. So if F is an initial object, then using the map φ : F → F2 we see that F ' F2.
But we also have a map F → Q, and homomorphisms preserve field characteristic, which is
a contradiction.

The category C also has no terminal objects by the following argument. Suppose that K is
terminal. We have a map φ : Q → K, so char(K) = 0. We also have a map F2 → K, so
char(K) = 2. This is a contradiction.
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The moral of this story is that whenever you have some invariant preserved by the morphisms
of a category such that any object has a unique value of that invariant and such that there
exist two objects with different values of that invariant, then there cannot exist initial or
terminal objects.

Proposition 7.8. If initial objects exist, they are unique up to unique isomorphism.

Proof. Suppose that I1 and I2 are initial. Then there exists a unique f : I1 → I2 and a
unique g : I2 → I1. Then g ◦ f : I1 → I1 and f ◦ g : I2 → I2. But idI1 is the unique map
I1 → I1 since I1 is initial, and idI2 is the unique map I2 → I2 since I2 is initial. Therefore, f
and g are isomorphic, and since the isomorphism f : I1 → I2 is unique, they are unique up
to unique isomorphism.

We now begin our discussion of limits and colimits.

Definition 7.9. Let B be a category (generally small). Let C be a category (generally B
is a subcategory of C). Let T : B → C be a functor (usually the inclusion functor). The
data (C,B, T ) is called a diagram based on B. (Sometimes we will just give the functor
T : B → C.) If B is small, it is called a small diagram.

8 Oct. 1, 2019
We will use the notation lim−→ for colimits and lim←− for limits.

Definition 8.1. Let (C,B, T ) be a diagram. A cone over that diagram is an object N ∈
Ob(C) along with maps

ϕB ∈ HomC(N, TB)

for all B ∈ Ob(B) such that for all B,B′ ∈ Ob(B) and all f ∈ HomB(B,B′), the following
diagram commutes:

N

TB TB′
ϕB

ϕB′

Tf

We write such a cone as (N, {ϕB}B∈B).

Note that we can define a category of cones as follows. The objects are cones (N, {ϕB})
(over a diagram (C,B, T )). The morphisms (N ′, {ψB}) → (N, {ϕB}) are morphisms g ∈
HomC(N ′, N) such that the following diagram commutes (for all choices of the appropriate
variables):

N ′

N

TB TB′

g

ψB′

ψB ϕB′

ϕB

Tf
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One can check that this satisfies the definition of a category.

Definition 8.2. A limit of the diagram T : B → C is a terminal object in the corresponding
category of cones. We denote it by lim←−T .

Remark 8.3. Since terminal objects are unique up to unique isomorphism, so is lim←−T (when
it exists).

Suppose T : B → C is a diagram and that L := lim←−T exists. If (N, {ϕB}) is another cone,
then there exists a unique map ϕ such that the following diagram commutes (for arbitrary
choices of the appropriate variables):

N

L

TBi TBj

ϕi

ϕj

∃!ϕ

νi

νj

Tf

(We have abbreviated maps ϕBi
to ϕi, and likewise for ν.)

Reversing the arrows gives the dual notion of a colimit (an initial object in the category of
cocones):

TBi TBj

lim−→T

N

ϕi

νi

Tf

ϕj

νj

∃!ϕ

Jason writes the following table.

TABLE
Limits Colimits Diagram
lim←− lim−→ T : B → C
Terminal object of C Initial object of C B = ∅
Equalizer (kernel) Coequalizer (cokernel) A B1A 1B

Product Coproduct B = a collection of objects
with only identity maps as
morphisms

Inverse limit Direct limit B = directed set
Pullback Pushout B = X ←− Z −→ Y (for pull-

backs) or X → Z ←− Y (for
pullbacks)
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Example 8.4. Let B be a subcategory of Ab. Consider the diagram

Z⇒ Z/5Z

where the top arrow is the map π and the bottom arrow is the map 0 given by π(n) := n+5Z
and 0(n) := 0. What is the limit if B := {Z,Z/5Z} (with T : B → Ab given by inclusion).
We have the following diagram:

L

5Z ' Z

Z Z/5Z

ϕ
0

i

0

π

[The bottom horizontal arrow should be an equalizer with a second 0 arrow below the π
arrow. Fix this later. Probably also missing some arrows...] We claim that im(ϕ) ⊆ ker(π).
This is just the statement that im(ϕ) ⊆ 5Z, which is true.

Example 8.5. Let Zp be the p-adic integers. Recall that a directed set is a set I with a
preorder ≤ (so ≤ is transitive and reflexive) such that if a, b ∈ I, there exists c ∈ I such that
a ≤ c and b ≤ c. We will see how these can be defined as a limit.

Take I := (N,≤). Then I can be thought of as a category with a unique morphism i→ j if
and only if i ≥ j. We have a functor T : I → Ab (or Ring) given on objects by T (i) := Z/piZ
and, for morphisms θij : i → j, by morphisms T (θij) =: πij : Z/piZ → Z/pjZ defined by
a+ piZ 7→ a+ pJZ.

We claim that

Zp := {(a1, a2, ...) ∈
∞∏
i=1

Z/piZ | πi+1,i(ai+1) = ai for all i ≥ 1}

is lim←−T . Sequences satisfying the condition πi+1,i(ai+1) = ai for all i ≥ 1 are called ad-
missible. For example, if p = 5, then (1 + 5Z, 6 + 25Z, 31 + 125Z, . . . ) is admissible, but
(1 + 5Z, 7 + 25Z, . . . ) is not.)

Suppose that we have a cone

L

· · · Z/pi+1Z Z/piZ · · · Z/pZ

f1
fifi+1

πi+2,i+1 πi+1,i πi,i−1 π2,1

We claim that without loss of generality, we may assume L is a subset of
∏∞

i=1 Z/piZ. We
have a map f : L→

∏∞
i=1 Z/piZ given by a 7→ (f1(a), f2(a), f3(a), . . . ). If f is not injective,

then we can make the following diagram:
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L

L/ ker(f)

· · · Z/psZ · · · Z/pZ

f1

fs
f1

fs

We may replace L with L/ ker(f) since L is a terminal object. So we may assume that f is
the inclusion of L into

∏∞
i=1 Z/piZ.

We also claim that L ⊆ Zp. Indeed, let (a1, a2, . . . ) ∈ L, and consider the following diagram:

L

Z/piZ Z/pjZ
fi

fj

πij

Because πij(fi(a1, a2, . . . )) = πij(ai) = aj = fj(a1, a2, . . . ), the diagram commutes, so L ⊆ Zp
as claimed.

Finally, we claim that L ' Zp. This is proved by considering the following diagram:

L

Zp

Z/piZ Z/pjZ

i

fi

fj

θi

θj

πij

Indeed, commutativity of the triangle with vertices L, Zp, and Z/piZ gives that i must be
the identity.
Why is Zp a limit? Consider the following diagram:

N

Zp

Z/piZ Z/pjZ

g

νi

νj

πij

We have g(n) := (ν1(n), ν2(n), . . . ) and it satisfies the admissibility condition so lies in Zp.
This shows that Zp is a limit, completing this example.

Example 8.6. Think of N as a category with one object · and an arrow i : · → · for each
natural number i. Consider the following diagram:
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·

· · ·
km

n

i

j

This is a cone when mi = k = nj. Translating back to number-theoretic language, this says
that i | k and j | k. Reasoning this way, one can show that the pullback of m and n is the
object · together with maps lcm(m,n)/m and lcm(m,n)/n. (This is also the pushout in this
category.)

Example 8.7. The product of a collection {Gi} of groups in Grp is the usual product
∏
Gi.

9 Oct. 3, 2019
We now prove that right adjoints preserve limits.

Theorem 9.1. Let B, C,D be categories. Let J : B → D be a diagram. Let F : C → D,
G : D → C be an adjoint pair (so G is right adjoint to F ). If lim←− J exists, then lim←−GJ exists
in C and lim←−GJ = G(lim←− J).

Proof. First, observe that the following diagram forms a cone in C:

GL = lim←−GJ

GJBi GJBj

Gνi

Gνj

GJf

Next, we need to show that lim←−GJ = GL. We write down the following diagram:

X

GL

GJBi GJBj

∃!h

fi

fj

Gνi

Gνj

GJf

We want to show we have such a diagram. By adjointness, we have the following diagram
where the horizontal arrows are isomorphisms:

HomD(FX, JBi) HomC(X,GJBi)

HomD(FX, JBj) HomC(X,GJBj)

Given gi in the top-left corner, it gets sent to J(f) ◦ gi = gj in the bottom-left corner and
then to fj in the bottom-right corner. On the other hand, gi gets sent to fi in the top-right
corner and then GJ(f) ◦ fi in the bottom-right corner. Since the diagram commutes by
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adjointness, GJ(f) ◦ fi = fj.

Now, for all Bi ∈ Ob(B), we have a map HomD(FX, JBi) → HomC(X,GJBi) which is
an isomorphism. Let gi be the morphism corresponding to fi : X → GJBi along this
correspondence. Then J(f) ◦ gi = gj. We thus have the following cone in D:

FX

JBi JBj

gi

gj

J(f)

Since this is a cone, there exists g : FX → L. Thus, we have the following diagram:

FX

L

JBi JBj

gi

gj

∃g

νi

νj

J(f)

Now, suppose there exists g′ 6= g making that commute. Then we have a correspondence
between νi ◦ g′ and G(νi) ◦ h′, so a correspondence between gi and fi. This means g = g′, so
applying G, we get the result.

Corollary 9.2. Left adjoints preserve colimits.

We now give a bunch of examples of products.

Suppose we have a set S, which we regard as a category with one object (with an identity
morphism) for each element and no other objects or morphisms. Suppose we have a functor
J : S → C where C is some other category, and let Bi be the image of i ∈ Ob(S) along J .
Then lim−→ J is the coproduct of {Bi | i ∈ S}, i.e.,

lim−→ J =
⊔
i

Bi.

Also,
lim←− J =

∏
i

Bi.

The product in the category of pointed topological spaces is
∏

i(Xi, xi) = (
∏

iXi, (xi)i). The
product in the category of topological spaces is just their usual product as topological spaces.
Since the Stone–Cech compactification functor β is left adjoint to the forgetful functor by
Assignment 1, and since left adjoints preserve colimits,

β
(⊔

Xi

)
=
⊔

β(Xi)

when everything exists.
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Given a singleton ∗ that’s sent to x in the topological space X and y in the topologial space
Y , the pushout along the inclusions in the category of topological spaces is X

⊔
Y/ ∼ where

x ∼ y. The pushout in the category of pointed topological spaces is similar except you want
∗ to be sent to x in X and y in Y (where the pointed spaces are (X, x) and (Y, y)), and then
your distinguished point in X

⊔
Y is x ∼ y.

In the categories Ab and Grp, the product is just the product of abelian groups (resp.
groups). The coproduct in Ab is the direct sum. The coproduct in Grp is the free product.
More generally, if we have homomorphisms i : A → G and j : A → H of groups, then the
colimit along these maps is the amalgamated free product G ∗A H, defined as the group
generated by G and H where we set j(a) = i(a) for all a ∈ A.

10 Oct. 8, 2019
Definition 10.1. We say a functor F : C → D is continuous if F (lim←− J) = lim←−FJ for all
diagrams J . Similarly, if F preserves colimits, it is cocontinuous.

Definition 10.2. If all small limits (resp. small colimits) exist in a category C, we say C
is complete (resp. cocomplete). (Note that saying small limits exist just means that for all
small diagrams F : B → C, lim←−F exists.) If a category is both complete and cocomplete, we
say it is bicomplete.

Theorem 10.3. Let C be a category. Then C is complete if and only if all small products
exist in C and equalizers exist in C.

Proof. We will only prove that a category is cocomplete if and only if (small) coproducts
and coequalizers exist.

The forward direction is immediate. It remains to prove that if small coproducts and co-
equalizers exist, then the category is cocomplete. Let B be a small category. Let F : B → C
be a diagram. We need to show lim−→F exists. Let

C ′ :=
⊔

B∈Ob(B)

F (B). (*)

This exists because Ob(B) is a set and coproducts exist. Given a morphism ϕ : B → B′ in
B, we want to have a picture like this in C:

FB FB′

C ′

L

iB

Fϕ

iB′

∃!

25



Note that
Mor(B) =

⊔
B,B′∈Ob(B)

HomB(B,B′).

All of the Hom-sets are indeed sets because B is small. Therefore, Mor(B) is a set. Given a
morphism ϕ : B → B′, we can define source and range maps by s(ϕ) := B and r(ϕ) := B′.
Let

C :=
⊔

ϕ∈Mor(B)

F (s(ϕ)). (**)

We do this because we are about to use it to make a coequalizer. We wish to construct two
maps φ, ψ : C → C ′. Let ϕi : B → Bi be maps for i = 1, 2, 3 where the {Bi}i=1,2,3 are some
objects in B. Let ϕ4 : B′ → B4 be some other map between two objects of B. Then these
induce maps αB,ϕi

: FB → C for i = 1, 2, 3 and αB,ϕ4 : FB′ → C.

Given ϕ : B → B′, we have a diagram

FB C

C ′

iB

αB,ϕ

∃!Φ

Since C is defined as a coproduct, in this new picture C ′ will be a colimit so will satisfy the
universal property, which means there exists a unique Φ satisfying Φ ◦ αB,ϕ = iB. Similarly,
we have the picture

FB C

FB′ C ′

αB,ϕ

Fϕ ∃!Ψ
iB′

where there exists a unique Ψ satisfying Ψ ◦ αB,ϕ = iB′ ◦ Fϕ.

We now claim that lim−→F = lim−→(C
Φ,Ψ−−→ C ′). Here this notation just means the coequalizer

along those two maps. Because the RHS is a limit of a coequalizer, it exists by assumption.
We should have a map h : C ′ → L where L is the limit such that h ◦ Φ = h ◦ Ψ. Consider
the following diagram:

FB FB′

L

Fϕ

h◦iB
h◦iB′

We need to check that this commutes, i.e., that h ◦ iB′ ◦ Fϕ = h ◦ iB. We know that
h ◦ Φ = h ◦Ψ. Thus,

h ◦ Φ ◦ αB,ϕ = h ◦Ψ ◦ αB,ϕ,

so h ◦ iB = h ◦ iB′ ◦ Fϕ as desired.
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Next, we want to show that L is initial in the category of cocones. Suppose T is another
cocone equipped with maps θB : FB → T and θB′ : FB′ → T . We want to show there exists
a unique k : L→ T such that the following diagram commutes:

FB FB′

L

T

θB

Fϕ

h◦iB

θB′

h◦iB′

∃!k

We know that the following diagram commutes:

FB FB′

C ′

T

iB

θB
iB′

θB′

∃!α

Therefore, we claim the following diagram also commutes:

C C ′

T

α

Here I am using the swallowtail arrow to represent the two maps Φ : C → C ′ and Ψ : C → C ′

of the coequalizer. We need to show that α ◦ Φ = α ◦Ψ. Consider the following diagram:

FB FB ...

C

C ′

T

θB

αB,ϕ1

θB

αB,ϕ2

φ,ψ

α

Since C is an initial object for this cocone category and since θB = α◦Φ◦αB,ϕ = α◦Ψ◦αB,ϕ,
we must have α ◦ Φ = α ◦ Ψ for this diagram to commute (which it does because C is
initial). This implies commutativity of the second-last diagram as well, which completes the
proof.

Corollary 10.4. The following categories are bicomplete:

(i) Ab. The products are
∏

i∈I Ai and the coproducts are
⊕

i∈I Ai.
(ii) Grp. The products are

∏
i∈I Gi and the coproducts are ∗i∈IGi. (Note: If someone knows
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a good way to write big asterisks in LaTeX, let me know!)
(iii) R-Mod, R a ring. The products are

∏
Mi and the coproducts are

⊕′Mi.
(iv) Comm-rings (i.e., the category of commutative rings). The products are

∏
Ri and the

coproducts are
⊗Res

Z Ri. This notation indicates that the tensor products are taken over Z
and that the elementary tensors are finite sums of the form ri1⊗ri2⊗· · · where all but finitely
many rij ’s are equal to 1. Indeed, if

Ri = Z[x(i)
s : s ∈ S]/〈Ji〉,

then
Res⊗
Z

Ri ' Z

[⋃
i

x(i)
s

]
/〈Ji : i ∈ I〉.

(v) Set. The products are
∏
Xi and the coproducts are

⊔
Xi (disjoint union).

(vi) Top.

One can show that the equalizer of maps f, g in R-Mod is ker(f − g) and the coequalizer
is coker(f − g). In the categories Set and Top, the equalizer of maps f and g is {x ∈ X |
f(x) = g(x)}.

11 Oct. 10, 2019
ASSIGNMENT 2 IS NOW DUE OCT. 24, NOT OCT. 22.

In a concrete category, we expect that the equalizer of maps f, g : X → Y is {x ∈ X | f(x) =
g(x)}, and we expect that the coequalizer is Y/ ∼ where∼ is the smallest equivalence relation
under which f(x) ∼ g(x) for all x ∈ X and Y/ ∼ is an object in the category.

Example 11.1. In Grp, given homomorphisms f, g : G→ H, the coequalizer is H/N where
N is the smallest normal subgroup of H containing f(x)g(x)−1 for all x ∈ G.

Let R be a commutative ring. In R-Mod, we have notions like "injective", "projective",
"flat", "faithfully flat", and "free". Given A ∈ Ob(R-Mod), we have functors F,G given by

F (M) := M ⊗R A

and for f : M → N , F (f) := f ⊗ idA : M ⊗R A → N ⊗R A, and G := HomR-Mod(A,−).
Then F is left adjoint to G, so F preserves colimits.

Definition 11.2. A sequence of modules and module homomorphisms

M1
f−→M2

g−→M3

is exact at M2 if im(f) = ker(g) (which implies g ◦ f = 0). A sequence of modules and
homomorphisms is said to be an exact sequence if it is exact at every module.
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Example 11.3. The sequence
Z ×2−→ Z π−→ Z/2Z

is exact, where the first map is multiplication by 2 and the second is reduction modulo 2.

In general, M f−→ N → 0 is exact if and only if f is onto, and 0 −→ M
g−→ N is exact if and

only if g is one-to-one.

Definition 11.4. A sequence of the form

0→M → N → Q→ 0

that is exact is called a short exact sequence.

The following result follows from tensor-Hom adjunction.

Corollary 11.5. If M f−→ N
g−→ Q −→ 0 is exact in R-Mod, then so is

M ⊗R A
f⊗idA−−−→ N ⊗R A

g⊗idA−−−→ Q⊗R A −→ 0.

Does F preserve limits? No. If F preserved limits, it would preserve kernels. But the
following example shows it does not.

Example 11.6. Consider the exact sequence

0 −→ Z ×2−→ Z.

(We consider these as R-modules over the ring R := Z, and ×2 denotes the multiplication
by 2 map.) Take A := Z/2Z and tensor on the right with A. Then we obtain the sequence

0→ Z⊗Z Z/2Z
(×2)⊗id−−−−→ Z⊗Z Z/2Z.

But this sequence is no longer exact because the kernel of (×2) ⊗ id is non-trivial. Indeed,
1⊗ 1 6= 0 in Z⊗Z Z/2Z, but 1⊗ 1 gets sent to

2⊗ 1 = 2(1⊗ 1) = 1⊗ 2 = 1⊗ 0 = 0

in Z⊗Z Z/2Z.

Definition 11.7. An R-module A is flat if any of the following equivalent conditions holds:

(i) If M f−→ N is injective, then

M ⊗R A
f⊗idA−−−→ N ⊗R A

is injective.

(ii) The functor F = −⊗R A preserves exact sequences.
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Definition 11.8. A module A is faithfully flat if

0→M → N → Q→ 0

is exact if and only if

0→M ⊗R A→ N ⊗R A→ Q⊗R A→ 0

is exact.

Remark 11.9. Dan asks where the term "flat" comes from. Jason doesn’t know. I google it
and find out that Serre came up with this term in his GAGA paper. There is an MO question
about this where Brian Conrad comments that he asked Serre where the term came from
and Serre did not remember. However, Serre emphasized that the importance of flatness
was first understood by Grothendieck.

Example 11.10. We have Z/nZ⊗Z Q = (0) because

1⊗ 1 = 1⊗ (n(1/n)) = n(1⊗ (1/n)) = n⊗ (1/n) = 0.

We put this fact to the following use. Consider the following short sequence (which is not
exact at Z/4Z). (We add the extra 0 on the right just so it matches the definition of a short
exact sequence.)

0→ Z/2Z ↪−→ Z/4Z→ 0→ 0.

Then applying −⊗Z Q gives the sequence

0→ 0→ 0→ 0→ 0

which is exact. Therefore, Q is not faithfully flat as a Z-module. However, Q is flat as a
Z-module.

Remark 11.11. If A is flat, then − ⊗ A preserves kernels but not necessarily products.
Also, −⊗ A is a left adjoint, so it preserves coproducts.

Remark 11.12. Someone asks whether tensoring (on the right) with flat modules preserves
products (or more generally limits). Jason says that it does not and comes up with the
following example. As a Z-module, Q is flat. Let A := Q and R := Z. Let Mi := Z/iZ.
Then (∏

i

Mi

)
⊗R A

is non-trivial, but ∏
i

(Mi ⊗R A)

vanishes because each tensor product Z/iZ ⊗Z Q vanishes. (To define the tensor product
(
∏

iMi)⊗R A, note that we have a map Z→
∏

iMi given by 1 7→ (1 + iZ)i.
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Similarly, Hom(A,−) preserves kernels, so if

0 −→M
f−→ N

g−→ Q

is exact, then so is

0 −→ Hom(A,M)
f◦−−−→ Hom(A,N)

g◦−−−→ Hom(A,Q),

i.e., Hom(A,−) is left exact.

Definition 11.13. A module P is called projective if any of the following equivalent condi-
tions holds:

(i) If M f−→ N −→ 0 is exact, then so is

Hom(P,M)
f◦−−−→ Hom(P,N) −→ 0.

(ii) For every surjective module homomorphism f : N → M and every module homomor-
phism g : P → M , there exists a module homomorphism h : P → N such that f ◦ h = g.
(We do not require uniqueness.) This can be summarized in the following diagram:

N

P M

f

g

∃h

(iii) The functor Hom(P,−) preserves exact sequences.

Remark 11.14. Adina asks whether there’s a notion of "faithfully projective" that is anal-
ogous to being faithfully flat. Jason says that in R-Mod, being faithfully projective is equiv-
alent to being projective and faithfully flat. This should all generalize to abelian categories.

Proposition 11.15. Let R be a commutative ring. Then every free R-module is faithfully
flat.

Proof. We can write a free R-module in the form
⊕

i∈I R. Then

M ⊗

(⊕
i∈I

R

)
'
⊕
i∈I

(M ⊗R R) '
⊕
i∈I

M.

Therefore,
0 −→M

f−→ N
g−→ Q −→ 0

is exact if and only if

0 −→
⊕
i

M
(f,f,... )−−−−→

⊕
i

N
(g,g,... )−−−−→−→

⊕
i

Q −→ 0.
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But this latter sequence is just

0
M−→ ⊗

(⊕
i

R

)
−→ N ⊗

(⊕
i

R

)
−→ Q⊗

(⊕
i

R

)
−→ 0.

The notion of projective objects extends to an arbitrary category.

Definition 11.16. Given a category C and M f−→ N in C, we say that f is an epimorphism
if whenever g ◦ f = h ◦ f for some other morphisms g, h, then g = f .

In Set, the epimorphisms are precisely the onto maps. However, epimorphisms are not
necessarily onto in every category, as the following example shows.

Example 11.17. Work in Haus, the category of Hausdorff topological spaces. The map
f : (0, 1) → S1 given by x 7→ e2πix is not onto because im(f) = S1 \ {1}. However,
suppose we have maps g, h : S1 → Z for some other Hausdorff topological space Z such
that f ◦ f = h ◦ f . Then we can form a map Ψ : S1 → Z × Z given by x 7→ (g(x), h(x)).
Consider the diagonal ∆(Z) := {(z, z) | z ∈ Z} ⊆ Z × Z. Since Z is Hausdorff, ∆(Z)
is closed. Since Ψ is continuous, Ψ−1(∆(Z)) is closed. But S1 \ {1} ⊆ Ψ−1(∆(Z)), so
S1 = S1 \ {1} ⊆ Ψ−1(∆(Z)). It follows that g(x) = h(x) for all x ∈ S1, so g = h. Therefore,
f is an epimorphism.

Note that Hom(A,−) is covariant and Hom(−, A) is contravariant. In particular, if

M
f−→ N

g−→ Q −→ 0

is exact, then so is

0 −→ Hom(Q,A)
−◦g−−→ Hom(N,A)

−◦f−−→ Hom(M,A).

We can use this duality to define the notion of an "injective" module by analogy with the
projective case.

Definition 11.18. An R-module I is injective if any of the following equivalent conditions
holds:

(i) If 0 −→M
f−→ N is exact, then

Hom(N, I)
−◦f−−→ Hom(M, I) −→ 0

is exact.

(ii) For every injective module homomorphism f : M → N and every module homomorphism
g : M → I, there exists a module homomorphism h : N → I such that h ◦ f = g. (We do
not require uniqueness.) This can be summarized in the following diagram:
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M

I N

f
g

∃h

(iii) The functor Hom(−, I) reverses short exact sequences and preserves exactness.

12 Oct. 22, 2019
Last week was reading week.

Last time we discussed the following concepts: flatness, injectivity, faithful flatness, projec-
tivity. We recall what these mean.

(i) The R-module M is flat if the functor F := −⊗RM : R-Mod→ R-Mod is exact. (Note
that since this functor is always right exact, we need only prove left exactness.)

(ii) The R-module M is faithfully flat if the sequence of R-modules

0→M →M ′ →M ′′ → 0

is exact if and only if
0→ F (M)→ F (M ′)→ F (M ′′)→ 0

is exact.

(iii) The R-module P is projective if Hom(P,−) is exact. (Note that since this functor is
always left exact, we need only prove right exactness.)

(iv) The R-module I is injective if Hom(−, I) is exact. (Note that since this functor is always
left exact, we need only prove right exactness.)

Suppose P is projective. Then if
M

g−→M ′ → 0

is exact, so is
Hom(P,M)→ Hom(P,M ′)→ 0

where the first map is given by ψ 7→ g ◦ ψ. In R-Mod, P is projective if and only if P is a
direct summand of a free module. Why? Suppose P is projective. Then:

(i) There exists a free module R⊕I that surjects onto P (just take all the generators), so we
get an exact sequence

R⊕I
g−→ P → 0.

Thus, we have an exact sequence

Hom(P,R⊕I)→ Hom(P, P )→ 0.
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Take the identity map id : Hom(P, P ). Then there exists ḡ : P → R⊕I such that the following
diagram commutes:

P R⊕I

P

id

ḡ

g

Let Q := ker(g). Then we have an exact sequence

0→ Q ↪−→ R⊕I
g−→ P → 0.

Definition 12.1. We say a short exact sequence

0→ A→ B → C → 0

splits if B ' A⊕ C.

Example 12.2. The short exact sequence

0→ Z ×2−→ Z π−→ Z/2Z→ 0

does not split.

Definition 12.3. Suppose we have a short exact sequence

0→ A→ B
g−→ C → 0.

A map h : C → B is called a section if g ◦ h = idC : C → C.

Lemma 12.4. If we have a section, then the short exact sequence splits.

Proof. We do not prove this in class. Basically, given a short exact sequence

0→ A→ B → C → 0,

we define ψ : A⊕C → B by (a, c) 7→ f(a) + h(c), and then we prove this is an isomorphism
using the existence of a section.

Now, returning to our earlier setting, since the diagram

P R⊕I

P

id

ḡ

g

commutes and since

0→ Q ↪−→ R⊕I
g−→ P → 0
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is a short exact sequence, ḡ : P → R⊕I is a section. Therefore, the short exact sequence
splits. Therefore, R⊕I ' Q⊕ P .
Conversely, suppose P is a direct summand of R⊕I . Then R⊕I = P ⊕Q. We want to show
P is projective. We have the following diagram in which all sequences are exact:

M M ′ 0

P

f

g

We define a map g̃ : P ⊕Q = R⊕I →M ′ by g̃(p, q) := g(p). Then we also have the following
diagram where all sequences are exact:

M M ′ 0

P ⊕Q = R⊕I

f

g̃
∃ḡ

(I will explain the "∃ḡ" part shortly.) We remark that free modules are projective. Indeed,
a map g : R⊕I → M ′ is determined by where it sends the basis elements x ∈ I. Since
f is onto, for every x ∈ I, there exists ax ∈ M such that f(ax) = g(x). So since R⊕I is
free, there exists ḡ : R⊕I → M making the diagram commute. Now, ḡ|P gives the following
commutative diagram in which all sequences are exact:

M M ′ 0

P

f

g
ḡ|P

We have proved the following result.

Proposition 12.5. An R-module P is projective if and only if P is a direct summand of
R⊕I for some generating set I.

Definition 12.6. A projective module P is stably free if there exists n ∈ N such that
P ⊕Rn ' R⊕I .

Proposition 12.7. Let P be a projective module. Then there exists some free module R⊕J
(with J not necessarily finite) such that P ⊕R⊕J is free.

Proof. The following trick is known as Eilenberg’s swindle. Since P is projective, there exists
Q such that P ⊕Q ' R⊕I for some set of generators I. Then

(P ⊕Q)⊕ (P ⊕Q)⊕ · · · = R⊕I ⊕R⊕I ⊕ · · · ,

which is free. But we also have

(P ⊕Q)⊕ (P ⊕Q)⊕ · · · = P ⊕ (Q⊕ P )⊕ (Q⊕ P )⊕ · · ·

= P ⊕ (R⊕I ⊕R⊕I ⊕ · · · ),

where the parenthetical summand is free.
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Proposition 12.8. There exists a commutative ring R and a projective R-module P such
that P ⊕R ' R3 but P��'R2.

Proof. This is known as Swan’s counterexample. Let

R := R[x, y, z]/(x2 + y2 + z2 − 1).

(These are just functions vanishing on the 2-sphere.) We have an exact sequence

R3 f−→ R→ 0

where f : R3 → R is given by f(a, b, c) := ax+ by+ cz. We claim that f is onto. Indeed, let
u ∈ R, so f(ux, uy, uz) = ux2 + uy2 + uz2 = u in R. In particular, f(x, y, z) = 1.

Now, let P := ker(f). Then we have a short exact sequence

0→ P ↪−→ R3 f−→ R→ 0.

Here f(x, y, z) = 1, and since 1 generates R, we can define a homomoprhism f̄ : R→ R3 by
f̄(1) := (x, y, z). This is a section, so our short exact sequence splits and we have R3 ' P⊕R.
We claim that P��'R2.

Suppose for the sake of contradiction that P ' R2. Then P ⊆ R3 has an R-basis of size 2,
say

v = (a(x, y, z), b(x, y, z), c(x, y, z)) and w = (d(x, y, z), e(x, y, z), f(x, y, z)).

Recall that we have an isomorphism R3 ' P⊕R. Thus, we have a map P⊕R→ R3 given by
(v, 0) 7→ v, (w, 0) 7→ w, and (0, 1)

f̄−→ (x, y, z). So {v, w, (x, y, z)} is a basis for R3. Therefore,
letting {e1, e2, e3} be the standard basis for R3, there exist rij ∈ R for 1 ≤ i, j ≤ 3 such that

r11v + r12w + r13u = e1,

r21v + r22w + r23u = e2,

r31v + r32w + r33u = e3.

Then there exists an invertible matrix A ∈ GL3(R) such that

A =

− v −
− w −
− u −

 = I.

It follows that

det

− v −
− w −
− u −
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is non-zero whenever we evaluate (x, y, z) at a point in S2. Swan showed that

det

(
− v −
− w −

)
vanishes at some point (x, y, z) = (α, β, γ) ∈ S2. He used topology to do this, as follows. No
non-topological proof of this theorem is known (afaik).

Recall that if ψ : S2 → S2 is continuous, then either ψ(α, β, γ) = (α, β, γ) or (ψ(α, β, γ) =
(−α,−β,−γ) for some (α, β, γ) ∈ S2. We can view v as a map

v = (a(x, y, z), b(x, y, z), c(x, y, z)) : R3 → R3.

If v(α, β, γ) = 0 for some (α, β, γ) ∈ S2, we have a contradiction, since then the determinant
vanishes at (α, β, γ). We may thus assume that v(α, β, γ) 6= 0 for all (α, β, γ) ∈ S2. Then
the map

v 7→ v/||v|| ∈ S2

is a continuous map ψ : S2 → S2. So there exists (α, β, γ) such that

v(α, β, γ) = ||v(α, β, γ)||(α, β, γ).

But now the first row of our 3×3 matrix from earlier is a scalar multiple of the third row.

Definition 12.9. A map f : A → B is a monomorphism (like an injection) if whenever
h1, h2 : C → A are such that f ◦ h1 = f ◦ h2, we have h1 = h2.

Remark 12.10. Monomorphisms do not have to be one-to-one, even when the objects are
sets.

Example 12.11. An abelian group (A,+) is divisible if for all a ∈ A and n ∈ Z \ {0}, there
exists b ∈ A such that nb = a. For example, Q and Q/Z are divisible. Let C be the category
of divisible abelian groups. Then π : Q→ Q/Z given by a 7→ a+ Z is not one-to-one but is
a monomorphism.

Indeed, suppose h1, h2 : A→ Q, h1 6= h2, and π ◦ h1 = π ◦ h2. Then there exists a ∈ A such
that h1(a) 6= h2(a). Let α := h1(a) and β := h2(a). We have π(α) = π(β) if and only if
α = β +n for some n ∈ Z. But n 6= 0 since α 6= β by assumption. Since A is divisible, there
exists a′ ∈ A such that (2n)a′ = a.

We have h1(2na′) = h1(a) = α, so h1(a′) = α/(2n) in Q. Similarly, h2(a′) = β/(2n). But
α/(2n)− β/(2n) = n/(2n) = 1/2, so π ◦ h1(a′) 6= π ◦ h2(a′), which is a contradiction.

We can now say that I is an injective object in C if whenever A f−→ B is a monomorphism,
the map HomC(B, I)→ HomC(A, I) given by ψ 7→ ψ ◦ f is onto.

We will now discuss the Govorov–Lazard theorem.
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Definition 12.12. We say B is a filtered category if every finite subcategory of B has a
cocone.

The same proof as before shows that it suffices to show that we have a cocone for coproduct
and coequalizer diagrams.

Theorem 12.13. Suppose {Mi} is a family of objects in some small filtered subcategory of R-
Mod. Then lim−→Mi '

⊔
Mi/ ∼ where the equivalence relation ∼ is given by Mi 3 m ∼ m′ ∈

Mj if there exists some Mk and maps f : Mi → Mk, g : Mj → Mk such that f(m) = g(m′).
(Note that the R-module structure on

⊔
Mi/ ∼ is given by [m1] + [m2] := [f(m1) + g(m2)],

which is well-defined.

We are allowed to assume this last result for Assignment 2.

Definition 12.14. If F : B → A is a diagram (i.e., a functor) and B is filtered, then lim−→F
is said to be a filtered colimit.

13 Oct. 24, 2019
I missed today’s class. Below, I have typeset Wilson’s notes combined with parts of Chris’s
notes. It seems they just stated and proved the Govorov–Lazard theorem, which I state now.

Theorem 13.1. Let R be a commutative ring. Then M ∈ Ob(R-Mod) is flat if and only if
M = lim−→B where B is a filtered subcategory of the subcategory of R-Mod consisting of free
R-modules with the usual module homomorphisms.

Proof. We will prove that if the Mi in the colimit come from a a filtered subcategory B of
R-Mod whose objects are free, then lim−→Mi is flat. The idea is to suppose that we have an
exact sequence

0→ N ′
f−→ N.

We wish to show that in this case,

0→M ⊗N ′ id⊗f−−→M ⊗N

is exact. Let F ′, F : R-Mod → R-Mod be given on objects by F ′(L) := L ⊗ N ′ and
F (L) := L⊗N . With this notation, we need to show that

0→ F ′(M)→ F (M)

is exact. For each M0 ∈ Ob(B), we have a map M0 ⊗ N ′
id⊗f−−→ M0 ⊗ N , and this is a map

F (M0)→ F ′(M0), so we claim it defines a natural transformation. (Call this map αM0 and
the corresponding natural transformation α.) Suppose h : M0 →M ′

0 is a morphism for some
M ′

0, and consider the following diagram:

F (M0) F ′(M0)

F (M ′
0) F ′(M ′

0)

αM0

F (h) F ′(h)

αM′0
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Suppose m⊗ n′ ∈ F (M0). Following it right and down, we get

m⊗ n′ 7→ m⊗ f(n′) 7→ h(m)⊗ f(n′).

Following it down and right instead, we get

m⊗ n′ 7→ h(m)⊗ n′ 7→ h(m)⊗ f(n′).

Since M = lim−→B, we claim we have the exact sequence

M ⊗N ′ = (lim−→B)⊗N ′ ' lim−→(Mi ⊗N ′)
lim−→ f

↪−−→ lim−→(Mi ⊗N) ' (lim−→Mi)⊗N = M ⊗N.

The two isomorphisms follow from LAPC (left adjoints preserve colimits) and the fact that
tensor product is a left adjoint. It remains to prove that the map

g : lim−→(Mi ⊗N ′)
lim−→ f

−−→ lim−→(Mi ⊗N)

is actually injective. This map is given by⊔
Mi ⊗N ′

id⊗f−−→
⊔

Mi ⊗N ′/ ∼

where ∼ is the usual equivalence relation. Suppose x ∈
⊔
Mi ⊗ N ′/ ∼ satisfies g(x) ∼ 0.

Then there exists some module Mj and some morphism θ = F ′(ψ) : Mi ⊗ N → Mj ⊗ N
satisfying θ(g(x)) = 0. Then by naturality of α, the following diagram commutes:

Mi ⊗N ′ Mi ⊗N

Mj ⊗N ′ Mj ⊗N

F (ψ)

αMi

θ

αMj

Since αMj
is injective, we have F (ψ)(x) = 0, so x ∼ 0. It follows that g is injective, which

completes the proof.

14 Oct. 29, 2019
Preadditive categories are more general than additive categories, which are more general
than pre-abelian categories, which are more general than abelian categories.

In a preadditive category, the Hom sets have an abelian group structure and the composi-
tion maps are bilinear. (In particular, there is a unique zero morphism in each Hom set
that is its identity element as an abelian group.) Thus, the composition operation satis-
fies g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2 and (g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f . In particular,
EndC(A) := HomC(A,A) is a ring when C is a preadditive category. The multiplication
operation is composition.
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Remark 14.1. The functor Hom(P,−) is additive because the map

Hom(M,M ′)→ Hom(Hom(P,M),Hom(P,M ′))

is given by f 7→ (ψ 7→ f ◦ ψ), and (f1 + f2) ◦ ψ = f1 ◦ ψ + f2 ◦ ψ.

We say a preadditive category is additive if any set of finitely many objects has a product
and a coproduct. (We will show these are isomorphic.)

Proposition 14.2. Let C be an additive category. Then:

(i) C has an initial object I, a terminal object T , and I ' T .

(ii) If A1, . . . , An ∈ Ob(C), then
∏
Ai '

⊔
Ai.

Proof. (i) Taking the empty coproduct gives an object L with a unique map to any other
object C. Taking the empty product similarly gives a terminal object T . We then have maps
L→ T and T → L by the universal property of each. Composing gives a map L→ L, which
must be the identity. Similarly, we get a map T → T that is the identity. It follows that the
maps L→ T and T → L are left and right inverses, so L ' T . We will call O := T = L the
initial/terminal object of C.

(ii) It suffices to do the n = 2 case; the rest follows by induction. We have projections
πj : A1

∏
A2 → Aj and inclusions ij : Aj → A1 t A2 for j = 1, 2. We thus have a map

θ : A1

∏
A2 → A1 t A2 by the universal property of product. We want to show A1

∏
A2 is

the coproduct of A1 and A2. We have maps νj : Aj → A1

∏
A2 for j = 1, 2. These satisfy

πj ◦ νj = idAj
and πj ◦ νj+1 = 0Aj+1,Aj

where addition in the subscript is taken mod 2, OA,B

is the zero map from A to B, and j = 1, 2. We have the following commutative diagram:

A1 A2

A1

∏
A2

A1 t A2

L

ν1

i1

f

ν2

i2

gθ

∃!s

Here we know the map s exists and is unique by universal properties. It satisfies s ◦ iA1 = f
and s ◦ iA2 = g.

We claim θ is the unique map making the diagram commute. Suppose instead that there
exists θ′ : A1

∏
A2 → A1tA2 that makes the diagram commute, and let ψ : θ−θ′. We claim

that ψ = 0. Note that ψ : A1

∏
A2 → A1 t A2. What is ψ ◦ ν1? We have

ψ ◦ ν1 = θ ◦ ν1 − θ′ ◦ ν1
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= i1 − i1 = 0.

Similarly, ψ ◦ ν2 = 0. We claim that ψ ◦ idA1
∏
A2 = 0. Note that idA1

∏
A2 = ν1 ◦ π1 + ν2 ◦ π2,

so we calculate
ψ ◦ (ν1 ◦ π1 + ν2 ◦ π2)

= (ψ ◦ ν1) ◦ π1 + (ψ ◦ ν2) ◦ π2

= 0.

Thus, ψ = 0. But how do we know that idA1
∏
A2 = ν1 ◦ π1 + ν2 ◦ π2? We have

π ◦ (ν1 ◦ π1 + ν2 ◦ π2)

= (π1 ◦ ν1) ◦ π1 + (π1 ◦ ν2) ◦ π2

= idA1 ◦ π1 + 0 ◦ π2

= π1,

and similarly π2 ◦ (ν1 ◦ π1 + ν2 ◦ π2) = π2. But idA1
∏
A2 also has these properties, so by the

universal property, idA1
∏
A2 = ν1 ◦ π1 + ν2 ◦ π2.

Thus, ψ really does equal 0. Now, we have a map ξ : A1

∏
A2 → L by the universal property,

and we want to show this is equal to s ◦ θ. We calculate

(ξ − s ◦ θ) ◦ ν1

= f − s ◦ θ ◦ ν1

= f − s ◦ i1
= f − f = 0.

Similarly, (ξ − s ◦ θ) ◦ ν2 = 0, so ξ = sθ from before. This completes the proof.

We say a category is preabelian if it is additive and kernels and cokernels exist. The kernel
is the equalizer of a map with the zero map, and the cokernel is defined analogously.

To be precise, let C be a preadditive category, and let f : X → Y be a morphism in C.
A kernel of f is an object K with a morphism k : K → X such that (i) f ◦ k is the zero
morphism from K to Y , and (ii) given any morphism k′ : K → X such that f ◦ k′ is the
zero morphism from K to Y , there is a unique morphism u : K ′ → K such that k ◦ u = k′.
Cokernels can be defined analogously.

Note that the cokernel of a morphism f : A→ B is often thought of as B/im(f). We think
of it instead as the morphism g : B → B/im(f).

Definition 14.3. A monomorphism is normal if it is the kernel of some morphism. Similarly,
an epimorphism is normal if it is the cokernel of some morphism.

A preabelian category is abelian if all its monomorphisms and epimorphisms are normal.
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15 Oct. 31, 2019
I begin by summarizing the definitions from last class. Preadditive = Hom-sets are abelian
groups (so in particular there’s a zero morphism) and composition is bilinear (which just
means it distributes over addition in this case). Additive = preadditive + finite products
and coproducts exist (and we proved they are isomorphic). Preabelian = additive + kernels
and cokernels exist (where kernels and cokernels are special types of equalizer and coequal-
izer, respectively). Abelian = preabelian + monomorphisms and epimorphisms are normal.

Note that we can define the image of a morphism by im(f) := ker(coker(f)). On the next
assignment, we will prove that given a morphism f : A → B in an abelian category, there
exists a monomorphism u : A→ im(f) and a monomorphism v : im(f)→ B.

Example 15.1. Let R be a ring. Then the category R-Mod of left R-modules and the
category Mod-R of right R-modules are both abelian categories. We have an addition map
HomR(M,N). What is a monomorphism in R-Mod. We claim that i : A → B is mono if
and only if it is one-to-one. Why? If i is not one-to-one, then there exists C := ker(i) ⊆ A
and C is non-zero. Thus, we have a non-zero inclusion map j : C ↪−→ A, which gives rise to
the following equalizer:

C A B
j 6=0,0 i

Thus, i ◦ j = i ◦ 0 = 0. So i is not a monomorphism.

If i is one-to-one, then we claim i is mono. Why? If i is not mono, then we have the following
equalizer:

C A B
h,k i

Applying the forgetful functor to Set, we get that i is not mono in Set. But in Set, this
implies i is not one-to-one, so i is not one-to-one in R-Mod either.

The following result is known as Mitchell’s embedding theorem.

Theorem 15.2. Let A be a small abelian category. Then there exists a ring R (not nec-
essarily commutative, but unital and associative) and a fully faithful and exact functor
F : A → R-Mod.

Jason talks about a piece of advice he would have given his undergrad self: when he sees
a famous theorem in his field, he’ll try to prove it himself. If he gets stuck, he reads the
beginning of the proof and tries again, etc. He usually tries for about two days before reading
the proof. So now he explains his thought process for trying to prove this theorem.

First, he asked himself, "Can you recover R?" No, you can’t because R-Mod 'Mn(R)-Mod.
Then he made "Attempt 1": look at endomorphisms. IfM ∈ Ob(R-Mod), then EndR(M) =
HomR(M,M). In particular, if M = (0), then EndR((0)) is the zero ring, which is un-
fortunate. But consider EndR(R) = {ϕr : R → R | r ∈ R} where ϕr(a) := ra. Then
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EndR(Rn) 'Mn(R). So this also doesn’t work.

What if we try EndR(P ) for P projective? Then Hom(P,−) is exact. Suppose R := Q and
S := Q2. Is R-Mod ' S-Mod? No! Why? Take M := Q× {0} and N := {0} ×Q. Suppose
ψ ∈ HomS(M,N). Define f by ψ(a, 0) =: (0, f(a)). Then

ψ((u, v) · (a, 0)) = (u, v) · (0, f(a)) = (0, vf(a)) = ψ((ua, 0)) = (0, f(ua)).

So f(ua) = vf(a) for all u, v, and setting u := 1, v := 2 gives f(a) = 2f(a), so f(a) = 0. So
HomS(Q× {0}, {0} ×Q) = 0.

Now, suppose we had an equivalence of categories given by functors F : R-Mod → S-Mod
and G going the other way. Then

HomR(G(Q× {0}), G({0} ×Q))

is something non-trivial because the left term in the Hom is Qa for some a and the second
is Qb for some b. But M,N are projective and we have M ⊕ N = S, which is free, and
HomS(M,N) ' Q. This means that we don’t necessarily recover the right ring this way.

At this point, Jason got stuck. It turns out Mitchell continues the proof as follows.

Build some really big projective module P instead. Take
⊕

P projective P . This is a coproduct
of projective modules, so it is projective. We say an object P in an abelian category A is a
projective generator if Hom(P,−) : A → Ab is exact and faithful.

(i) Show A embeds in a cocomplete small abelian category B with a projective generator
P ∈ Ob(B). Then we have an exact, fullly faithful functor I : A → B. Then build a functor
J : B → R-Mod where R = EndB(P ) given on objects by B 7→ Hom(P,B), and show it is
exact and fully faithful.

We don’t give the actual proof (it’s long!), but I think this sketch is a lot more interesting.

Remark 15.3. If F : A → B is an additive functor between additive categories, we claim
that F (0A) = 0B. Why? We claim that if C = 0B, then

EndB(C) = 0.

If C��'0B, then EndB(C) 6= 0 since idC 6= 0C,C . Why? Because if it were, we would have the
following equalizer:

C C D
idC ,0C,C f

Since f ◦ 0C,C = 0 (by which I mean 0C,D), f = 0C,D.

Notice also that if F is a full functor F : HomA(0A, 0A → HomB(F0, F0), then F (0) = 0.
Thus, idF (0) = 0F0,F0.
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We now consider short exact sequences in an abelian category A. We say

0→ A
f−→ B

g−→ C → 0

is exact if (i) f is mono, (ii) g is epi, (iii) g ◦ f = 0A,C , and (iv) im(f) ' ker(g), i.e.,
ker(coker(f)) ' ker(g).

Note that if f : A→ B, we can factor it as v◦u where u : A→ im(f) is epi and v : im(f)→ B
is mono. So if g ◦ f = 0, then g ◦ v = 0 since 0 = g ◦ f = g ◦ (v ◦ u) = (g ◦ v) ◦ u. Thus,
if we give condition (iv) and specify the isomorphism works this way, we can recover (iii).
Instead, we have given four separate conditions.

Remark 15.4. If F : A → B is exact, then

0
0−→ A

f−→ B
g−→ C → 0

is exact implies that
0 = F (0)

0−→ FA
Ff−→ FB

Fg−→ FC → 0

is exact. Indeed, we have Fg ◦Ff = F (g ◦ f) = F (0A,C) = 0FA,FC . Thus, if F is exact, then
we have a commutative diagram:

F (im(f)) ' im(F (f)) FB FCFv Fg,0

Remark 15.5. If A is an abelian category and M ∈ Ob(A), then Hom(M,−) : A → Ab is
left exact. It suffices to show that Hom(M,−) preserves kernels and

Hom(M,A
∏

B) ' Hom(M,A)× Hom(M,B).

Let’s show the second part first. Consider the following commutative diagram:

M

A
∏
B

A B

f

g

∃!θ

π1

π2

If (f, g) ∈ HomA(M,A)× HomA(M,B), we have a map α defined by α(f, g) := θ. We need
to check that (i) α is a group homomorphism, (ii) α is one-to-one, and (iii) α is onto.

Let’s check (i) first. If (f, g), (f ′, g′) 7→ θ, then we have the following commutative diagram:
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M

A
∏
B

A B

f,f ′

g,g′

θ

π1

π2

(Here the double arrows are not necessarily equalizers.) We get the following diagram from
this:

M

A
∏
B

A B

θ

f−f ′
g−g′

π1

π2

Thus, f − f ′ = g − g′ = 0, so α is one-to-one. Surjectivity and the fact it is a group
homomorphism are left to the reader.

16 Nov. 5, 2019
We talk about the equivalence between vector bundles and projective modules. Let R be a
unital but not necessarily commutative ring. Recall that the following are equivalent for an
R-module P :

(i) P is projective.

(ii) There exists an R-module Q such that P ⊕Q is a free module, i.e., P ⊕Q ' RI for some
indexing set I.

(iii) Hom(P,−) : R-Mod→ R-Mod is exact.

(iv) If A f−→ B is an epimorphism, then the induced map Hom(P,A)→ Hom(P,B) given by
ψ 7→ f ◦ ψ is an epimorphism.

(v) We have the following commutative diagram where the top sequence is exact:

A B 0

P

f

g
∃ḡ

(vi) If 0 → A
f−→ B

g−→ P → 0 is exact, then there exists a section s : P → B, i.e., a map
such that g ◦ s : P → P is equal to idP . (We can obtain this from (vi) by taking B := P
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and g := idP .) This implies that the exact sequence splits, i.e., B ' A⊕ P .

Jason now gives us some wisdom about projectives. In "nice" rings, projectives are free (see
the Quillen–Suslin theorem). Polynomial rings, for example. The rings where projectives are
not free are those where something goes wrong. For example, they might have singularities,
like R := C[x, y]/(x2 − y2). (The curve x2 − y2 = 0 has a cusp at 0.) Jason also says,
"Non-finitely-generated projective modules long to be free."

Indeed, there is the following theorem, due to Bass.

Theorem 16.1. Let R be a commutative noetherian ring, and suppose that 0 and 1 are the
only idempotents of R. Then every non-finitely-generated projective module is free.

The condition about idempotents is equivalent to connectedness of Spec(R). If you suspend
it, it becomes false. For example, let P := Z×{0}, Q := {0}×Z, R := Z×Z ' P ⊕Q. Let

P̃ :=
∞⊕
i=1

P, Q̃ :=
∞⊕
i=1

Q.

Then

P̃ ⊕ Q̃ '
∞⊕
i=1

R.

However, P̃ is not free because it contains idempotents (e.g., (0, 1) · P̃ = (0)). Indeed, if we
did have P̃ ' RI for some indexing set I, then we would have (0, 1) · RI = (0), which is
impossible.

The following theorem is due to Kaplansky (who was Canadian).

Theorem 16.2. Let R be a commutative local ring. Then if P is a projective R-module, P
is free.

Proof of the finitely-generated case. Let m be the unique maximal (left) ideal of R. Let
K := R/m be the residue field. Recall Nakayama’s lemma.

Lemma 16.3. Let R be a ring, and let M be a finitely-generated R-module. Let J(R) denote
the Jacobson radical of R. Suppose

J(R)M = M.

Then M = (0).

Why do we needM to be finitely-generated here? If we did not have that condition, we could
take R := k[[t]] (which implies J(R) = tk[[t]]) and M := k((t)). Then M is an R-module
and J(R)M = M . However, M 6= (0).
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We now continue with the proof of Kaplansky’s theorem. Let p1, . . . , pn be a minimal set of
generators for P . We then have an epimorphism Rn → P given by ei 7→ pi where {e1, . . . , en}
is a generating set for Rn. Call this map π. We then have an exact sequence

0→ ker(π)→ Rn π−→ P → 0,

which implies that Rn ' P ⊕ ker(π) since P is projective. Let Q := ker(π). We now tensor
with K = R/m to obtain

Rn ⊗R K ' (P ⊕Q)⊗R K

=⇒ (R⊗R K)n ' (P ⊗R K)⊕ (Q⊗R K)

=⇒ Kn ' (P/mP )⊕ (Q/mQ) as K-modules.

This means that P/mP ' Kt and Q/mQ ' Kn−t for some 0 ≤ t ≤ n.

We claim that t = n. Suppose not. Then t < n. By relabelling, we may assume p̄1, . . . , p̄n ∈
P/mP form a basis for P/mP as a K–vector space. Let

P0 := Rp1 + · · ·+Rpt ⊆ P.

Then P = P0 + mP . Let M := P/P0, which is a finitely-generated R-module. We have

mM = m(P/P0) ' (mP + P0)/P0 = P/P0 = M.

Since R is a local ring, J(R) = m, so by Nakayama’s lemma M = (0). Thus, P = P0. But
our choice of n was minimal, and now we have generated P with t generators where t < n.

This contradiction implies that t = n, so Q/mQ = (0). Thus, Q = mQ. So if Q is finitely-
generated, then by Nakayama’s lemma Q = (0), which implies

Rn ' P ⊕Q ' P ⊕ (0) ' P,

so P is free. Why is Q finitely-generated? Fix an R-module isomorphism ψ : Rn → P ⊕ Q
given by ψ(ei) := (pi, qi). We claim that Q = Rq1 + · · · + Rqn. Why? If not, there exists
q ∈ Q \ (Rq1 + · · ·+Rqn). Since ψ is onto, there exists u := (a1, . . . , an) = a1e1 + · · ·+ anen
such that ψ(u) = (0, q). But

ψ(u) = a1ψ(e1) + · · ·+ anψ(en)

= (a1p1 + · · ·+ anpn, a1q1 + · · ·+ anqn).

Thus, q = a1q1 + · · ·+ anqn, which completes the proof.

Let R be a (not necessarily commutative) ring. We say a proper ideal P of R is prime if
whenever I, J are two-sided ideals of R such that IJ ⊆ P , then I ⊆ P or J ⊆ P . Note
that R/P does not have to be a domain in the non-commutative case, which can be seen by
taking R := M2(C) and P := (0).
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Think of Spec(R) as the set of prime ideals of R. For every two-sided ideal I of R, define

C(I) := {P ∈ Spec(R) | P ⊇ I}.

Now put a topology on Spec(R) by taking the closed sets to be precisely those of the form

{C(I) | I E R}.

We check this defines a topology. Note that C(R) = ∅ and C((0)) = Spec(R). Also,

C(I) ∪ C(J) = C(IJ).

Indeed, if p ∈ C(I) ∪ C(J) is prime, then p ⊇ I or p ⊇ J , so p ⊇ IJ . Also, if p ∈ C(IJ) is
prime, then p ⊇ IJ , so p ⊇ I or p ⊇ J , so p ∈ C(I) ∪ C(J).

Also, ⋂
α

C(Iα) = C(
∑
α

Iα)

for any family of prime ideals {Iα}. Indeed, if there is a prime ideal p such that p ⊇ Iα for
every α, then p ⊇

∑
α Iα. Also, if there is a prime ideal p such that p ⊇

∑
α Iα, then p ⊇ Iα

for every α, so p ∈
⋂
α C(Iα). This completes the proof that the topology on Spec(R) (called

the Zariski topology) is actually a topology.

We now shift back to the case where R is a commutative ring.

Theorem 16.4. Suppose R is a commutative ring. Then the following are equivalent:

(i) Spec(R) is disconnected.
(ii) R ' R1 ×R2 where R1 and R2 are non-zero rings.
(iii) There exists an idempotent e ∈ R such that e 6= 0, 1.

Proof. (ii) =⇒ (iii): Take e = (1, 0).

(iii) =⇒ (i): Let e = e2, e 6= 0, 1. Let I := (e), J := (1− e). Then

C(I) ∪ C(J) = C(IJ) = C(0) = Spec(R)

and
C(I) ∩ C(J) = C(I + J) = C(R) = ∅.

(i) =⇒ (ii): Suppose Spec(R) is disconnected. Then there exist disjoint C(I) and C(J) for
some prime ideals I, J of R. We have

C(I) ∩ C(J) = ∅

⇐⇒ C(I + J) = ∅
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⇐⇒ I + J = R.

Also,
C(I) ∪ C(J) = Spec(R)

⇐⇒ C(IJ) = Spec(R)

⇐⇒ every p ⊇ IJ

⇐⇒ IJ ⊆
⋂

p prime

p =
√

(0).

So every element of IJ is nilpotent and I + J = R. This implies there exist x, y ∈ J such
that x+ y = 1, so xy ∈ IJ , so there exists n such that (xy)n = 0. Now, we write

1 = x+ y,

so
1 = (x+ y)2n

= x2n +

(
2n

1

)
x2n−1y + · · ·+

(
2n

2n− 1

)
xy2n−1 + y2n,

and set e := x2n +
(

2n
1

)
x2n−1y + · · · +

(
2n
n

)
xnyn and the rest of the terms form 1 − e. Then

e(1−e) is a sum of terms of the form Zxiyj for i, j ≥ n, so it vanishes, so e is an idempotent.
Also e 6= 0 because if we had e = 0, we would have 1− e = 1, but 1− e ∈ (y) ⊆ J which is
a proper ideal, a contradiction.

Let S be a multiplicatively closed subset of R. Let S−1R := {s−1r | s ∈ S, r ∈ R}/ ∼ where
s−1

1 r − 1 ∼ s−1
2 r2 if there exists s3 ∈ S such that s3s2r1 = s3s1r2. If P is a prime ideal, then

set S := R − P (which is multiplicatively closed), and let RP := S−1R. Then PRP is the
unique maximal ideal of RP . If M is an R-module, define MP := M ⊗R RP . Then MP is an
RP -module, and RP itself is flat as an RP -module.

17 Nov. 7, 2019
Theorem 17.1. Let R be a commutative noetherian ring and P a finitely-generated R-
module. The following are equivalent:

(i) P is projective.
(ii) Pp := Rp ⊗R P is free for all p ∈ Spec(R).
(iii) Pm := Rm ⊗R P is free for all maximal ideals m of R.
(iv) There exist f1, . . . , fs, s ≥ 1, in R such that (f1, . . . , fs) = R and Pfi := P ⊗R R[ 1

fi
] is

free for all 1 ≤ i ≤ s.

"Proof". Recall that if p is a prime ideal of R, then Rp is a local ring with maximal ideal
pRp, and the ideals of Rp are in bijection with the ideals of R contained in p.
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(ii) =⇒ (iv): We claim that P ⊗RRp ' Rn
p for some n. (This n is called the rank and exists

because P is finitely-generated.) We use the map

Ψ : Rn
p → P ⊗R Rp

defined by writing P =: 〈p1, . . . , pk〉 and sending

(1, 0, . . . , 0) 7→ p1 ⊗ r11s
−1
11 + · · ·+ p1k ⊗ r1ks

−1
1k ,

. . .

(0, . . . , 1) 7→ p1 ⊗ rn1s
−1
n1 + · · ·+ pk ⊗ rnks−1

nk

where sij /∈ p for all i, j. Jason writes, "To see the isomorphism, it is sufficient to invert
s :=

∏
sij /∈ p." We claim that

Ps := P ⊗R[
1

s
] ' R[

1

s
]n

is free. Recall that for all p ∈ Spec(R), there exists sp /∈ p such that

Psp := P ⊗R R[
1

sp

is free. Take
I := 〈sp | p ∈ Spec(R)〉 ⊆ R.

We claim that I = R. If not, there exists a maximal ideal m such that I ⊆ m. But
m ∈ Spec(R) and sm ∈ I \m. For all primes p,

Up := {Q ∈ Spec(R) | sp /∈ Q}

is an open neighbourhood of p in Spec. Also,

U {p = C((sp)).

Recall that Spec(R) is quasi-compact. This means that if Spec(R) =
⋃
α Uα, then there exist

U1, . . . , Un ∈ {Uα | α} such that Spec(R) = U1 ∪ · · · ∪ Un. Indeed, if Uα = C(Iα){ for some
ideals {Iα}, then if ⋃

α

Uα = Spec(R),

it follows that ⋂
C(Iα) = ∅

=⇒ C(
∑

Iα) = ∅

=⇒
∑

Iα ∈ R.
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Thus, we can write 1 = x1 + · · ·+ xs where xi ∈ Iαi
, so

Uα1 ∪ . . . Uαs = Spec(R).

The implication follows.

(iv) =⇒ (i): Jason rushes through this proof, and I don’t understand what he does. He
also doesn’t prove the other directions. I’ll write down what I see anyway.

We want to show M → N → 0 is exact, so M → N is an epimorphism. This implies
Hom(P,M)→ Hom(P,N)→ 0 is exact. It apparently suffices to do it for finitely-generated
R-modules M,N . In this case we have a surjetion h : Rn → N and an identity map N → N
which lifts to a section h̄ : N → R. We have an exact sequence

0→ ker(h)→ Rn h−→ N → 0.

Because of our section, Rn ' N ⊕ ker(h), so N is projective. Jason writes P := N .

We now recall some facts from Assignment 3.

Localization is flat, i.e., S−1R is a flat R-module. This apparently has to do with the map
ψ ⊗ id→ ψ giving an isomorphism

HomR(P,M)⊗R R[
1

f
] ' HomR[1/f ](Pf ,Mf ).

Now Pf is free and we have an epimorphism M → N between finitely-generated modules,
so we get an epimorphism

HomRf
(Pf ,Mf )→ HomRf

(Pf , Nf ),

and HomRf
(Pf ,Mf ) ' Hom(P,M)⊗R Rf , so we get an epimorphism

Hom(P,M)⊗R Rf → Hom(P,N)⊗R Rf

where f ∈ (f1, . . . , fs).

Another fact: If f1, . . . , fs generate the unit ideal and B ⊆ A are finitely-generated R-
modules, then

(A/B)⊗R Rf = (0)

if and only if there exists n such that fnA ⊆ B. Why? If B ⊆ A = Ra1 + · · · + Rar, then
we have a chain

B = B0 ⊆ B1 ⊆ · · · ⊆ Br = A.

Here B0 := B, B1 := B+Ra− 1, etc. Then Bi+1/Bi = Bi +Rai+1/Bi. We have a surjection
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ψ : R→ Bi+1/Bi given by ψ(r) := rai+1 +Bi. By the first isomorphism theorem,

Bi+1/Bi ' R/ ker(ψ) ' R/Ii.

If I → R → R/J → 0 is exact, then JM → R ⊗R M → (R/J) ⊗M is exact. Notice that
(A/B)⊗R Rf = (0), so (B1/B0)⊗R Rf = (0). This implies that

Rf/(I0)f ' (0).

Now (I0)[1/f ] = R[1/f ], so there exists fn ∈ I0. Jason somehow ends the proof here. More
precisely, he writes "Sketch continued", then says:

(i) Show HomR(P,M) and HomR(P,N) are f.g.

(ii) Show M
g−→ N → 0 is an epimorphism, thus so is Hom(P,M)

g∗−→ Hom(P.N). Let
A := Hom(P,N), B := g∗(Hom(P,M)). Then by assumption

(A/B)⊗R Rfi = (0)

for i = 1, . . . , s. So there exist n1, . . . , ns such that fni
i A ⊆ B. Then

(1) = (f1, . . . , fs) = (fn1 , . . . , f
n
s ),

so A ⊆ B, so g∗ onto, so P is projective. " "

Recall that if I is an injective R-module, then Hom(−, I) is exact. The following result is
called Baer’s criterion.

Theorem 17.2. Suppose R is a ring and Q is a left R-module. Suppose that for all left
ideals I of R and R-module homomorphisms h : I → Q, there exists a map h̄ : R→ Q such
that if ι : I → R is the inclusion, then h̄◦ ι = h. Then Q is injective. (Note that the converse
just follows from the definition of injectivity.)

Proof. We need to show that we have the following commutative diagram:

0 N M

Q

f

β
∃β̄

Consider
S := {(N ′, β′) | N ⊆ N ′ ⊆M,β′ : N ′ → Q}.

We define (N ′, β′) ≤ (N ′′, β′′) if N ′ ⊆ N ′′ and β′′|N ′ = β′. By Zorn’s lemma, there exists a
maximal element of S, say (N0, β0). Then we have a commutative diagram:
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0 N N0

Q

f

β0

We claim that N0 = M . If not, there exists m ∈ M \ N0. Let M0 := N0 + Rm. Let
I := {x ∈ R | xm ∈ N0}. Now define h : I → Q by h(x) := β0(xm). We have a commutative
diagram:

I Q

R

h

h̄

Define β̃0 : M0 → Q by β̃0(rm+ n0) := β0(n0) + h̄(r) for r ∈ R and n0 ∈ N0. One can check
that this is well-defined, that the following diagram commutes:

N M0

Q

β

β̃0

and β̃0|N = β0. Thus (M0, β̃0) > (M0, β0), contradicting maximality of the latter. The result
follows.

Corollary 17.3. Let A be an abelian group. Then A is injective in Ab = Z −Mod if and
only if A is divisible.

Proof. We proved injective implies divisible on Assignment 2. Now we prove that divisible
implies injective.

Let A be divisible. Let I E Z, so we have a commutative diagram:

I A

Z

h

Without loss of generality, I 6= (0). Then I = nZ for n 6= 0. Then we have a map h̄ : Z→ A
in the diagram above. Pick some element of nZ. Let its image in A along h be a. Let b be
the image in A of 1 along the map h̄. Then nb = a by commutativity of the diagram. This
completes the proof!

Definition 17.4. An abelian category A has enough projectives if for all A ∈ Ob(A), there
exists a projective object P and an epimorphism h : P → A. It has enough injectives if for
all A ∈ Ob(A), there exists an injective object I and a monomorphism g : A→ I.

Easy fact: R-Mod has enough projectives. Hard fact: R-Mod has enough injectives. Sketch
of hard fact:
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(i) Show Z-Mod = Ab has enough injectives.
(ii) Use the "injective production lemma" to lift to the general case.

Proof of (i). Let A be an abelian group. Then we have an injection i : A → D into
some divisible (i.e., injective) abelian group. For some indexing set I, we have a surjection
f : ZI → A. Let K := ker(f) ⊆ ZI . Then A ' ZI/K. We have a chain

K ⊆ ZI ⊆ QI ,

and QI is injective (i.e., divisible). Thus, we have an inclusion

ZI/K ↪−→ QI/K =: D,

and the latter is injective. We claim that if B is divisible and C ≤ B, then B/C is divisible.
Jason actually has no proof in his notes of this. He jokes, "Well then I guess it’s easy."
Someone points out that if x + C ∈ B/C, then there is y ∈ C such that ny = x for some
n 6= 0, and then n(y + C) = ny + C = x+ C. This is the missing proof.

Proof of (ii). Let M be an R-module. Then M is a Z-module under addition as well. Define

Q := HomZ(R, I),

whereM ↪−→ I and I is an injective abelian group, i.e., an injective Z-module. We claim that
Q is an R-module. Indeed, if we take ψ : R→ I, then we want to say what r ·ψ = ψr : R→ I
is. We define rψ(x) := ψ(rx) This gives Q an R-module structure.

Also, we claim that Q is injective. Why? We have an exact sequence 0 → N ↪−→ M and
a map β : N → Q and we want to produce β′ : Q → M . How do we do it? Well, we
have a map h : Q → I. We can compose to get a map γ : N → I, then use injectivity of
I to get a map γ′ : M → I. Now, we can define β′ : M → Q. Given m ∈ M , we have
γ′(m) ∈ I. Then we define β′(m) : R→ I by 1 7→ γ′(m). This lifts uniquely to an R-module
homomorphism. We want to show that β′|N = β. At this point, we run out of time. We will
not be completing this proof. Oh well. Jason says, "Homological algebra is like a drug."

18 Nov. 12, 2019
Let A be an abelian category. If C is a small subcategory of A, then there exists a full small
abelian subcategory A′ of A containing C. Then by Mitchell’s embedding theorem, we can
embed A′ into R-Mod.

We now describe homology and cohomology. Let A be an abelian category. A chain complex
is a collection (Cn)n∈N =: C· of objects of A with a sequence of morphisms

· · · → Cn+1
dn+1−−−→ Cn

dn−→ Cn−1 → . . .
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such that dn ◦ dn+1 = 0Cn+1,Cn−1 for all n. The map dn is known as the nth differential. Since
dn ◦ dn+1 = 0, we have im(dn+1) ⊆ ker(dn). If im(dn+1) = ker(dn), we say the sequence is
exact at Cn. If it is exact at every Cn, we say it is exact.

Let Zn(C·) := ker(dn) ⊆ Cn. We call this the nth cycle. Let Bn(C·) := im(dn+1) ⊆ Cn. We
call this the nth boundary. Then

(0) ⊆ Bn(C·) ⊆ Zn(C·) ⊆ Cn.

We define
Hn(C·) := Zn(C·)/Bn(C·),

which is in Ob(A) since A is abelian. We call Hn the nth homology object of C·.

Note that Hn(C·) = 0 if and only if the chain complex is exact at Cn. Thus, homology is a
measure of how far we are from being exact at Cn.

Cochain complexes are defined similarly. We consider instead sequences of the form

· · · → Cn1 dn−1

−−−→ Cn dn−→ Cn+1 → . . .

such that dn ◦ dn−1 = 0 for all n. This implies Bn(C ·) := im(dn−1) ⊆ ker(dn) =: Zn(C ·). We
then define

Hn(C ·) := Zn(C ·)/Bn(C ·),

the nth cohomology object.

Remark 18.1. Note that given a chain complex (Cn), we can make a cochain complex by
letting (C ′)n := C−n. Then dn = d−n, and the maps satisfy the right condition.

We can make a category whose objects are cochain complexes. Similarly, we can make a
category whose objects are chain complexes. We will show how it works for chain complexes.
A morphism f : C· → B· is defined to be a collection of morphisms fn : Cn → Bn such that
if ci and bi denote the differentials of C· and B·, respectively, then the following diagram
commutes:

... Cn Cn−1 Cn−2 ...

... Bn Bn−1 Bn−2 ...

cn

fn

cn−1

fn−1 fn−2

bn

bn−1

One can show that this has all the properties a category should have (i.e., existence of iden-
tity objects, associativity of composition).

We denote the resulting category by Ch(C). We say C· ∈ Ch(C) is bounded above if Cn = 0
for all sufficiently large n and bounded below if C−n = 0 for all sufficiently large n. We say it is
bounded if Cn = 0 for all sufficiently large |n|, or equivalently if it is bounded above and below.

We have a subcategory of bounded chain complexes, denoted Chb(C), of Ch(C).

55



Remark 18.2. The category C〈(C) is abelian. Given chain complexes C· and B·, by the
universal property of coproducts, we have a commutative diagram

Cn Bn

Cn−1 Cn tBn Bn−1

Cn−1 tBn−1

in
cn

i′n
bn

in−1
∃!θn

i′n−1

Then we can prove
· · · → Cn tBn

θn−→ Cn−1 tBn−1 → . . .

is exact. Indeed, by embedding into R-Mod, we can write θn = (cn, bn) as a map between the
direct sums Cn ⊕Bn and Cn−1 ⊕Bn−1 (because the coproduct is the direct sum in R-Mod).
Then one can check that θn ◦ θn+1 = 0 for all n.

For kernels, given a morphism f : C· → B·, we can produce the kernel ker(fn), and the
differential cn : Cn → Cn−1 restricts to a morphism cn|ker(fn) : ker(fn) → ker(fn−1). One
can show this gives a collection of differentials on the chain complex ker(f)· := (ker(fn))n∈N.
Cokernels can be defined similarly.

We have a zero object given by

· · · → 0
0−→ 0

0−→ 0→ dots.

We do not check the other properties of abelian categories, but they work out. This means
we can talk about exact sequences of chain complexes.

We will soon discuss the long exact sequence in homology (or cohomology). To prove it, we
will need the snake lemma.

Lemma 18.3. Suppose that in an abelian category we have the following commutative dia-
gram, where the rows are exact sequences:

M ′ M M ′′ 0

0 N ′ N N ′′

f

d

g

d d′′

f̄ ḡ

Then there is an exact sequence

ker(d′)→ ker(d)→ ker(d′′)
δ−→ coker(d′)→ coker(d)→ coker(d′′).

Proof. Prove it yourself. The hard part is constructing δ, so I will describe how this is done.
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Given x ∈ ker(d′′), view it as an element of M ′′. (We can do this by using the Mitchell
embedding theorem to reduce to the case of modules.) Since g is surjective, there exists
y ∈M with g(y) = x. Because the diagram commutes, we have

ḡ(d(y)) = d′′(g(y)) = d′′(x) = 0

(since x ∈ ker(d′′)), from which it follows that d(y) ∈ ker(ḡ). Since the bottom row is exact,
there exists z ∈ N ′ with f̄(z) = d(y), and z is unique by injectivity of f̄ . We then define
δ(x) := z + im(d′). One can check that δ is a well-defined homomorphism. One can also
check by diagram chasing that the resulting long exact sequence is in fact exact.

We now show how you can get the long exact sequence in homology using the snake lemma.
Start with an exact sequence of chain complexes

0→ A·
f·−→ B·

g·−→ C· → 0.

Taking kernels and cokernels, we get the following commutative diagram with exact rows:

Zn(A·) Zn(B·) Zn(C·)

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

An−1/im(an) Bn−1/im(bn) Cn−1/im(cn)

fn|Zn(A·) gn|Zn(B·)

fn

an

gn

bn cn

fn−1

ān

gn−1

b̄n c̄n

f̄n−1 ḡn−1

Note that the snake lemma gives us a long exact sequence

Zn(A·)
fn|−→ Zn(B·)

gn|−→ Zn(C·)
δn−→ An−1/im(an)

f̄n−1−−→ Bn−1/im(bn)
ḡn−1−−→ Cn−1/im(cn).

Note also that the maps ān−1, b̄n−1, c̄n−1 are well-defined basically because an−1(im(an)) = 0.

Now, we also have the following commutative diagram with exact rows:

ker(ān) ker(b̄n) ker(c̄n)

An/im(an+1) Bn/im(bn+1) Cn/im(cn+1) 0

0 Zn−1(A·) Zn−1(B·) Zn−1(C·)

coker(ān) coker(b̄n) coker(c̄n)

f̄n

ān

ḡn

b̄n c̄n

fn−1 gn−1
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Applying the snake lemma again, we get a long exact sequence

ker(ān)→ ker(b̄n)→ ker(c̄n)→ coker(ān)→ coker(b̄n)→ coker(c̄n).

But Hn(A·) = ker(ān) (etc.) and coker(ān) = Hn−1(A·) (etc.), so we are done.

19 Nov. 14, 2019
Given a map α : A· → B· of complexes, one can check that we get an induced map
αn : Zn(A·) → Zn(B·). We have a map Zn(B·) → Hn(B·) = Zn(B·)/im(bn+1); we call
the composed map αn as well, abusing notation. If y ∈ im(an+1) = Bn(A·), then αn(y) ∈
im(bn+1), so the map αn : Zn(A·) → Hn(B·) factors through Bn(A·). Thus, we get a map
ᾱn : Hn(A·)→ Hn(B·).

We now look at homotopy equivalence. Given maps α, β : A· → B·, we say that α ∼ β
(α is homotopy equivalent to β) if for every n ∈ Z, there exists hn : An → Bn+1 such that
αn − βn = hn−1 ◦ an + bn+1 ◦ hn for all n. One can check that this is an equivalence relation.

Theorem 19.1. If α, β : A· → B· are homotopy equivalent, then α, β induce the same maps
Hn(A)→ Hn(B) for all n.

Proof. Let γ := α− β. Then γ ∼ 0. It is enough to show that γ : Hn(A·)→ Hn(B·) is 0 for
all n. Note that γ = hn−1 ◦ an + bn+1 ◦ hn. Take x ∈ Zn(A·). Then

hn−1 ◦ an(x) = hn−1(0) = 0,

and
γn(x) = bn−1 ◦ hn(x) + hn−1 ◦ an(x)

= bn+1(hn(x)) ∈ Bn(B·).

Thus we get a map
γ̄n : Hn(A·)→ Hn(B·)

such that x̄ 7→ 0 for all x̄ ∈ Hn(A·). Since γ = α− β, this completes the proof.

Proposition 19.2. (We state this for the category R-Mod, but it holds in any abstract
abelian category by Mitchell’s embedding theorem.) Suppose we have chain complexes

→ Fi
ϕi−→ Fi−1 → · · ·

ϕ1−→ F1 → 0

and
→ Gi

ψi−→ Gi−1 → · · ·
ψ1−→ G1 → 0,

where the Fi’s and Gi’s are projective objects. Let

M := H0(F·) = F0/ϕ1(F1) = coker(ϕ1)
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and
N := H0(G·) = coker(ψ1).

Then each morphism β : M → N is induced by a chain map α : F· → G·. Moreover, α is
unique up to homotopy equivalence.

Proof. We can choose a map α0 : F0 → G0. Then we get a map α0 ◦ ϕ1 : F1 → G0, so we
get a map α1 : F1 → G1. Continuing in this way, we get maps αn : Fn → Gn for every n.
Moreover, we have quotient maps πF : F0 → M and πG : G0 → N , and β ◦ πF = πG ◦ α0

because this is precisely the map in homology. So extending the exact sequences with M
and N , respectively, we still get exactness and everything commutes.

Suppose x ∈ F1. Where does α0(F0) go? We have

α0 ◦ ϕ1(F1) ⊆ im(ψ1).

But im(ψ1) = ker(πF ), so α0 ◦ ϕ1 ⊆ im(ψ1). By a similar argument, α1 ◦ ϕ2(F2) ⊆ im(ψ2).
By repeating this idea, the first claim follows by induction.

Now, suppose β is induced by α, α′ : F· → G·. We need to show α ∼ α′. The two maps
α0, α

′
0 : F0 → G0 give us a map h0 : F0 → G1, so α′0 − α0 = ψ1 ◦ h0. By commutativity and

exactness, we get
h(α′0 − α0) ⊆ ker(πG) = im(ψ1).

Let γi := α′i − αi. We want to show that

ψ2 ◦ h1 + h0 ◦ ϕ1 = γ1.

We need im(γ1 − h0 ◦ ϕ− 1) ⊆ im(ϕ2) = ker(ψ1). This holds because

(ψ1 ◦ γ1 − ψ1 ◦ h0 ◦ ϕ1)(x) = ϕ1 ◦ γ1(x)− γ0 ◦ ϕ1(x) = 0

by commutativity. This proves the result.

We now discuss projective and injective resolutions.

Definition 19.3. Let A be an abelian category with enough projectives and injectives (e.g.,
R-Mod). A projective resolution of an object C in A is an exact sequence

→ P2
ϕ2−→ P1

ϕ1−→ P0
ϕ0−→ C → 0

where each Pi is projective. An injective resolution of C is an exact sequence

0→ C → I0 → I1 → I2 → · · ·

where each Ik is injective.

Proposition 19.4. If C has enough projectives, then projective resolutions exist in C.
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Proof. Pick P0
ϕ0−→ C where ϕ0 is an epimorphism. Then letting K := ker(ϕ0), we have an

exact sequence
0→ K

f−→ P0
ϕ0−→ C → 0.

There exists an epimorphism g : P1 → K such that f ◦ g = ψ1 : P1 → P0. Then we get an
exact sequence. Let K1 := ker(ψ1). Then we get an exact sequence

K
f1−→ P1

ψ1−→ P0
ψ0−→ C → 0.

We have an epimorphism g1 : P2 → K1 such that f − 1 ◦ g1 = ψ2 : P2 → P1. Thus, we get
an exact sequence

P2
ψ2−→ P1

ψ1−→ P0
ψ0−→ C → 0.

Continuing in this way, we get the result.

Theorem 19.5. Suppose that

· · · → P2
ϕ2−→ P1

ϕ1−→ P0
ϕ0−→ C → 0

and
0→ Q2

ψ2−→ Q1
ψ1−→ Q0

ψ0−→ C → 0

are two projective resolutions of C. Let

P· := · · · → P2
ϕ2−→ P1

ϕ1−→ P0 → 0

and
Q· := · · · → Q2

ψ2−→ Q1
ψ1−→ Q0 → 0.

Then there exist α : P· → Q· and β : Q· → P· such that

β ◦ α ∼ idP·

and
α ◦ β ∼ idQ· .

Proof. If F : C → D is an additive functor between abelian categories, then Hi(FP·) '
Hi(FQ·). Given α : P· → Q·, we get isomorphisms Fα : Hi(FP·) ' Hi(FQ·) for each i.
Using the earlier proposition, idC is induced by (βn ◦ αn)n but also induced by (idPi

)i. So
β ◦ α ∼ idP· . Similarly, α ◦ β ∼ idQ.

Since β ◦ α ∼ idP· , we apply F to our homotopy maps hn that witness this, and we get
Fβ ◦ Fα ∼ idFP· and Fα ◦ Fβ ∼ idFQ· .

20 Nov. 19, 2019
I wasn’t in class today; these notes are Zhihao’s.
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Suppose we have an exact sequence

0→ A→ B → C → 0 (*)

in an abelian category C having enough projectives. (We assume C := R-Mod here.) Let
F : C → D be a functor of abelian categories, and suppose F is right-exact and additive.

Example 20.1. Suppose R is a (not necessarily commutative) ring. Let M be a left R-
module and N a right R-module. Then we have a tensor product N ⊗RM that is a quotient
of the free abelian group (free Z-module) on N by the subgroup generated by the relations

(n+ n′)⊗m = n⊗m+ n′ ⊗m,

n⊗ (m+m′) = n⊗m+ n⊗m′,

(nr)⊗m = n⊗ (rm).

Remark 20.2. If N is an (S,R)-bimodule, then N ⊗R M is also a left S-module with
s(n⊗m) := (sn)⊗m.

Then F := − ⊗R M : R-Mod → Ab (or R-Mod → R-Mod if R is commutative) is right
exact. We will associate a homology theory to F .

Here’s the idea. If we apply F to (*) to get

FA→ FB → FC → 0

(noting that we don’t necessarily get a short exact sequence anymore), then for all n ≥ 0,
there exist left-derived functors

Ln : C → D

such that L0F = F , and (*) induces a long exact sequence

... L2A L2B L2C

L1A L1B L1C

L0A = FA L0B = FB L0C = FC 0

L2Ff L2Fg

f2
L1Ff L1Fg

f1

Now we describe the construction as a series of steps.

(i) Start with some A ∈ Ob(C).

(ii) There exists a projective resolution

P· = · · · → P2
ϕ2−→ P1

varphi1−−−−→ P0
ϕ0−→ A→ 0.
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(iii) Truncate the projective resolution (by removing A) to get the exact sequence

· · · → P2
ϕ2−→ P1

ϕ1−→ P0 → 0.

Observe that H0(P·) = A since im(ϕ1) = ker(ϕ0) implies

H0(P·) = P0/im(ϕ1) = P0/ ker(ϕ0) ' A.

(iv) Apply F to the truncated sequence to get

FP· = · · · → FP2
Fϕ2−−→ FP1

Fϕ1−−→ FP0 → 0.

Note that F (ϕ2 ◦ ϕ3) = 0.

(v) Compute homology LiFA = Hi(FP0) for all i ≥ 0. Questions: Is this well-defined? Is
this a functor?

Suppose P· and Q· are two complexes. Put one above the other, and notice that the identity
id : A→ A induces a chain map, so we get an isomorphism of homologies

Hi(FQ·) ' Hi(FP·).

Now we need to define LiF on maps f : A → B. Fix projective resolutions P· → A and
Q· → B, so we have a commutative diagram

· · · P2 P1 P0 A

· · · Q2 Q1 Q0 B

ϕ2

β2

ϕ1

β1

ϕ0

β0 f

ψ2 ψ1 ψ0

with exact rows where we know that f induces a chain map β : P· → Q·. Now apply F :

· · · FP1 FP0 FA

· · · FQ1 FQ0 FB

Fϕ1

Fβ1

Fϕ0

Fβ0 Ff

Fψ1 Fψ0

Then Fβi induces a map LiFA ' Hi(FP·) → Hi(FQ·) ' LiFB that is independent of the
choice of β.

If β and β′ both induce f , then we get a chain homotopy h : Pi−1 → Qi with γ : β − β′

satisfying
γi = ψi+1 ◦ hi + hi−1 ◦ ϕi.

Indeed, we have a commutative diagram

· · · P1 P0 A

· · · Q1 Q0 B

ϕ1

γ0
h0

ϕ0

f
0

ψ1 ψ0
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Then since F is additive, we get

F (γi) = Fβi − Fβ′i

= F (ψi+1) ◦ F (hi) + F (hi−1) ◦ F (ϕi).

Then F (h) gives a chain homotopy equivalence between F (β) and F (β′), so they induce the
same homology.

Here are some nice facts.

(i) L0F = F .
(ii) If A is projective, then LiFA = 0 for all i ≥ 1.

Proof of (ii). Fix a projective resolution of A:

· · · → P2
ϕ2−→ P1

ϕ1−→ P0
ϕ0−→ A→ 0.

Since F is right-exact, we get

FP1
Fϕ1−−→ FP0

Fϕ0−−→ FA→ 0,

which is still exact. We truncate to get

· · · → FP1
Fϕ1−−→ FP0 → 0.

Then L0FA = ker(0)/im(Fϕ1) = FP0/ ker(Fϕ1) ' FA. We have the following commutative
diagram:

P1 P0 A 0

Q1 Q0 B 0

β1 β0 f

Here A ' H0(P·) and B ' H0(Q·), so the map f : A→ B is induced by β·.

The computation of LiF is independent of our choice of projective resolution if A is projec-
tive. We can write

P· = · · · → 0→ 0→ P0 = A→ A→ 0.

We truncate to get
· · · → 0→ 0→ P0 = A→ 0.

We apply F to get
· · · → 0→ 0→ FA→ 0.

So Hi(FP·) = 0 for all i ≥ 1, and thus LiFA = 0 for all i ≥ 0.
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Example 20.3. Let F : Ab→ Ab be given by F (A) := A⊗Z Z/2Z. Then we say that

Tori(A,Z/2Z) := LiF (A).

Then Tori(−, B) = Li(−⊗B). Say we wish to find Tori(Z/2Z,Z/2Z) for all i ≥ 0.

We have the exact sequence

0→ Z ×2−→ Z π−→ Z/2Z→ 0.

We truncate to get
0→ 0→ Z ×2−→ Z→ 0.

We apply F to get

P· := 0→ 0→ 0→ Z⊗Z (Z/2Z)(' Z/2Z)→ Z⊗Z (Z/2Z)(' Z/2Z)→ 0.

Thus, LiF (Z/2Z) = 0 for all i ≥ 2. Also,

L0F (Z/2Z) = F (Z/2Z) = Z⊗Z Z/2Z ' Z/2Z.

For R a commutative ring, we have an isomorphism f : R/I ⊗R R/J → R/(I + J) for ideals
I, J of R. This map is given by (y + I)⊗ (y + J) 7→ (y) + (I + J).

Thus, L1F (Z/2Z) = H1(P·) = Z/2Z.

Theorem 20.4. Suppose we have an exact sequence

0→ A
f−→ B

g−→ C → 0,

and suppose F is an additive right-exact functor. We then have a long exact sequence

· · · L2FA L2FB L2FC

L1FA L1FB L1FC

FA FB FC 0

δ2

δ1

Example 20.5. Let F := −⊗Z Z/2Z. We have a short exact sequence

0→ Z ×2−→ Z→ Z/2Z→ 0.

Note that L1FZ = 0 since Z is projective, so we get an exact sequence
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0 = L1FZ Z/2Z

Z⊗Z Z/2Z Z⊗Z Z/2Z Z⊗Z Z/2Z 0

δ1

Proof strategy. Consider the following commutative diagram:

0 0 0

P· := · · · P1 P0 A 0

U· := · · · U1 U0 B 0

Q· := · · · Q1 Q0 C 0

0 0 0

Fix projective resolutions:

P· = · · · → P2
ϕ2−→ P1

ϕ1−→ P0 → A→ 0,

Q· = · · · → Q2
ψ2−→ Q1

ψ1−→ Q0 → C → 0.

Our goal is to construct

U0 = · · · → U2
χ2−→ U1

χ1−→ U0
χ0−→ B.

Define U0 := P0 ⊕Q0, so the exact sequence

0→ P0 → P0 ⊕Q0 → Q0 → 0

is split. Then we have the following commutative diagram:

0 0

P0 A

P0 ⊕Q0 B

Q0 C

0 0

ϕ0

i f

π

χ0

g

ψ0
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Here the map i is given by i(p) := (p, 0) and the map π is given by π(p, q) := q. We need to
find χ0. We calculate

χ0(p, q) = χ0(p, 0) + χ0(0, q)

= f ◦ ϕ0(p) + ψ̂0(q)

where ψ̂0 is defined using the projectivity of Q0 as the map that makes the following diagram
commute:

B

Q0 C

0

g
∃ψ̂0

ψ0

Then we have
g ◦ χ0(p, q) = g ◦ (f ◦ ϕ0(p)) + g ◦ ψ̂0(q)

= 0 + ψ0(q).

Now that we have χ0, we can find χ1. We have the following commutative diagram:

0

P1 P0 A 0

P1 ⊕Q1 P0 ⊕Q0 B

Q1 Q0 C

i1

ϕ1 ϕ0

i0 f

π1

χ1 χ0

π0 g

ψ1 ψ0

Let U1 := P1 ⊕Q1. We need
χ1(p, 0) = i0 ◦ ϕ1(p).

Thus,
π0(χ1(0, q)) = ψ1(q).

Since Q1 is projective, we get a commutative diagram

P0 ⊕Q0

Q Q0

π0

ψ1

∃ψ̂1

Define χ1(0, q) := ψ̂1(q). Then

χ1(p, q) = χ1(p, 0) + χ1(0, q)
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= i0 ◦ ϕ1(p) + ψ̂1(q)

and
π0 ◦ χ1(p, q) = π0 ◦ ψ̂1(q)

= ψ1(q)

as desired. We now need to check that

im(χ1) = ker(π0).

We will check that im(χ1) ⊆ ker(χ0). We have

χ0 ◦ χ1(p, 0) = χ0 ◦ i0 ◦ ϕ1(p)

= f ◦ ϕ0 ◦ ϕ1(p)

= 0.

We also calculate
χ0 ◦ χ1(0, q) = χ0 ◦ ψ̂1(q)

= (f ◦ ϕ0 + ψ̂0) ◦ ψ̂1(q).

This proves the claim.

21 Nov. 21, 2019
Continuing from last time, Jason gives us the following commutative diagram with exact
columns:

0 0

P· A

U· B

Q· C

0 0

From this we get the following commutative diagram with exact rows and second and third
columns (from the left):
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0 0 0

0 ker(ϕ0) P0 A

0 ker(χ0) P0 ⊗Q0 B

0 ker(ψ0) Q0 C

0 0 0

i0|

ϕ0

i0 f

π0|

χ0

π0 g

ψ0

The following result is called the nine lemma.

Lemma 21.1. In a picture like the above where the rows are exact and the second and third
columns from the left are exact, the first column is also exact.

We apply this lemma to get exactness of the leftmost column. Fix P1
ϕ1−→ ker(ϕ0) ⊆ P0 and

Q1
ψ1−→ ker(ψ0) ⊆ Q0. We then get a commutative diagram

P1 P0 A

P1 ⊕Q1 P0 ⊕Q0 B

Q1 Q0 A

0 0

ϕ1

i1

ϕ0

i0 f

χ1

π1

χ0

π0 g

ψ1 ψ0

Jason explains the projection maps πi. For example, (0, q1) ∈ P1 ⊕ Q1 gets sent to q1

in Q1, and (p1, 0) ∈ P1 ⊕ Q1 gets sent to 0 ∈ Q1. The map π0 is defined similarly, so
(P0, 0) = ker(π0). Starting with (p1, q1) ∈ P1 ⊕Q1, we want to define χ1(p1, q1) so that stuff
commutes. We have

χ1(p1, 0) = χ1 ◦ i1(p1)

= i0 ◦ ϕ1(p1)

= (ϕ1(p1), 0)

and
χ1(0, q1) = (f(q1), ψ1(q1)).

We need to construct h : Q1 → P0 that makes everything work. Regardless of how we choose
h though, the diagram commutes. We need to choose h so that P1 ⊕Q1

χ1−→ P0 ⊕Q0
χ0−→ B

is exact.
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Note that ψ11 : Q1 → ker(ψ0) is a surjection, so we can lift it along the projection π0| to get
h̃ : Q1 → ker(χ0) ⊆ P0 ⊕Q0. We set h̃(q1) := (p, ψ1(q1)) where p =: h(q). This gives us the
h we want. Define

χ1(p1, q1) := i0 ◦ ϕ1(p1) + h̃(q1).

By construction, one can check that χ0 ◦ χ1 = 0 and im(χ1) = ker(χ0).

Lemma 21.2. If P,Q, U are projective and F : C → D is an additive functor between abelian
categories, and if 0→ P

f−→ U
g−→ Q→ 0 is exact, then

0→ FP → FU → FQ→ 0

is also exact.

Proof. Since Q is projective, there exists a section s : Q→ U such that g ◦ s = id : Q→ Q.
We next construct t : U → P . We have an epimorphism f : P → ker(g) = im(f), and we
want to construct a map from U to ker(g). You can do this by taking id− s ◦ g. We claim
this maps into ker(g). Indeed, we need to check that

g(id− s ◦ g)(u) = 0

for u ∈ U . But we have

g ◦ (id− s ◦ g) = g − g ◦ s ◦ g = g − idQ ◦ g = 0,

so it works. Since U is projective, we get the desired map t : U → P . Then f ◦t = idU−s◦g,
or

f ◦ t+ s ◦ g = idU .

Now, t ◦ s = 0 implies Ft ◦ Fs = 0; we want t ◦ s to be a section. We know g is an
epimorphism, so we calculate

t ◦ s ◦ g = t ◦ (idU − f ◦ t)

= t− t ◦ f ◦ t = 0,

so we get it. We now apply F to get

0→ FP
Ff−→ FU

Fg−→ FQ→ 0,

and we need to check it’s exact. We also have maps Ft : FU → FP and Fs : FQ → FU .
Since F is additive, we still have

Ff ◦ Ft+ Fs ◦ Fg = idFU .

Without loss of generality, we have an inclusion of D into R-Mod of the sort described in
the Mitchell embedding theorem, so

FU ' FP ⊕ FQ.
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We thus get a map φ : FU → FP ⊕ FQ by x 7→ (Ft(x), Fg(x)). We also get a map
ψ : FP ⊕ FQ→ FU by (α, β) 7→ Ff(α) + Fs(β). We calculate

Ψ ◦ Φ(x) = Ψ(Ftx, Fgx)

= Ff ◦ Ft(x) + Fs ◦ Fg(x)

= (Ff ◦ Ft+ Fs ◦ Fg)(x)

= id(x)

= x.

This completes the proof. (In fact, Fs is a section.)

Corollary 21.3. Suppose F : C → D is a right-exact additive functor between abelian
categories with enough projectives. If 0 → A

f−→ B
g−→ C → 0 is exact in C, then we get a

long exact sequence

... L1FA L1FB L1FC

FA FB FC 0

Proof. Step 1. We extend 0 → A → B → C to get the following short exact sequence of
projective resolutions:

0 0

P· A 0

U· B 0

Q· C 0

0 0

i· f

π· g

Step 2. Let P·, U·, Q· be the truncations, so for example

P· = · · · → P2 → P1 → P0 → 0.

Then if 0→ P·
i·−→ U·

π·−→ Q· → 0 is exact, this implies that

0→ FP·
Fi·−−→ FU·

Fπ·−−→ FQ· → 0

is exact.

Step 3. This gives a long exact sequence
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· · · H2(FP·) H2(FU·) H2(FQ·)

H1(FP·) H1(FU·) H1(FQ·)

H0(FP·) H0(FU·) H0(FQ·) 0

Dually, if F : C → D is left-exact and additive and if C has enough injectives, then given
C ∈ Ob(C), there exists an injective resolution

0→ C → I0 → I1 → I2 → · · · .

Truncate to get
0→ I0 → I1 → I2 → · · · .

We calculate H0(I ·) = C and H i(I ·) = 0 for all i ≥ 1. We have a right-derived functor
RiG(C) = H i(GI ·) with the cochain complex

0→ GI0 → GI1 → · · · .

We have R0G = G, and if C is injective, RiGC = 0 for all i ≥ 1. Indeed, consider the exact
sequence

0→ C → I0 = C → 0

where C is injective. The result is independent of the injective resolution.

Example 21.4. I’m going to write {1, i,−1,−i} for Z/4Z and {±1} for Z/2Z in this ex-
ample. Take M := {1, i,−1,−i} and N := {±1} × {±1}.

If M is an R-module with R commutative, then Hom(M,−) : R-Mod → R-Mod is an
additive left-exact functor. We define

ExtiR(M,−) := RiHom(M,−).

We will compute ExtiZ(M,N) for this example.

We want to include N in some injective object I. We characterized injective abelian groups
in an assignment. We have a map N → H2 := {ω | ω2n = 1}, where the latter is the Prüfer
2-group and is injective. We get a short exact sequence

0→ N → H2 ×H2 → H2 ×H2/N ' H2 ×H2 → 0.

Here the map H2 × H2 → H2 × H2/N ' H2 × H2 is given by (x, y) 7→ (x2, y2). Applying
Hom(M,−), we get an exact sequence

0→ Hom(M,H2 ×H2)→ Hom(M,H2 ×H2)→ 0.
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We calculate
Ext0

Z(M,N) = Hom(M,N) ' N

and
ExtiZ(M,N) = 0

for all i ≥ 2. What is Ext1
Z(M,N)? It suffices to determine Hom(M,H2 ×H2). This turns

out to be isomorphic to M ×M . So we get an exact sequence

0→M ×M φ−→M ×M ψ−→ 0.

We have
H1 = ker(ψ)/im(φ) = M ×M/im(φ).

So we have to find im(φ). Now given a map f ∈ Hom(M,H2 ×H2), the map Hom(M,H2 ×
H2) → Hom(M,H2 ×H2) is given by composing with the map H2 ×H2 → H2 ×H2 given
by (x, y) 7→ (x2, y2). So Hom(M,H2 ×H2) 'M ×M/({±1} × {±1}). So

H1 = M ×M/im(φ)

'M ×M/({±1} × {±1})

' (M/{±1})× (M/{±1})

' {±1} × {±1}.

Suppose R and S are rings, not necessarily commutative. Let M be a right R-module and
N a left S-module. We have a functor F : R-Mod → S-Mod given by N 7→ M ⊗R N . Tor
is the left-derived functor of this functor.

22 Nov. 26, 2019
Let R and S be unital but not necessarily commutative rings. Let M be a right R-module.
Let N be a left S-module. Consider the functor M ⊗ − : R-Mod → S-Mod. Recall that
M⊗N is a free S-module on symbols em,n where m ∈M and n ∈ N modulo the equivalence
relation ∼ given by

emr,n ∼ em,rn,

esm1+m2,n ∼ sem1,n + em2,n,

em,n1+n2 ∼ em,n1 + em,n2 .

Remark 22.1. Note that if R is commutative, then M ⊗R N ' N ⊗RM . In general,

TorRi (M,N) ' TorRi (N,M).

The functor M ⊗− : R-Mod→ S-Mod is right exact and additive. Also,

TorRi (M,−) = Li(M ⊗−).
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The functor Tori(M,−) measures how far M is from being flat as an R-module.

Theorem 22.2. The following are equivalent.

(i) M is flat (i.e., if N ′ f−→ N is one-to-one, then so is the induced map M ⊗N ′ →M ⊗N).

(ii) TorRi (M,N) = 0 for all i ≥ 1 and all N ∈ Ob(R-Mod).

(iii) TorR1 (M,N) = 0 for all N ∈ Ob(R-Mod).

Proof. (ii) =⇒ (iii): Immediate.

(i) =⇒ (ii): Assume M is flat. Choose a projective resolution

· · · → P2 → P1 → P0 → N → 0.

Then by flatness of M , the following sequence is exact:

· · · →M ⊗ P2 →M ⊗ P1 →M ⊗ P0 →M ⊗N → 0.

Now Tori(M,N) = Hi(M ⊗ P·) where P· is the truncated complex. Thus, we consider the
exact sequence

· · · →M ⊗ P2 →M ⊗ P1 →M ⊗ P0 → 0.

Thus, Tori(M,N) = 0 if i ≥ 1 and M ⊗N if i = 0.

(iii) =⇒ (i): Let 0 → N ′
f−→ N be exact, so f is a monomorphism. Without loss of

generality, we can assume f is an inclusion. Then we have a short exact sequence

0→ N ′ ↪−→ N → N/N ′ → 0.

Applying M ⊗−, we get a long exact sequence

· · · Tor1(M,N/N ′)

M ⊗N ′ M ⊗N M ⊗ (N/N ′) 0

But Tor1(M,N/N ′) = 0, so get an exact sequence

0→M ⊗N ′ →M ⊗N →M ⊗ (N/N ′)→ 0,

which implies M is flat.

In fact, we can refine this.

Theorem 22.3. The following are equivalent.
(i) M is flat. [Jason writes that there is an (S,R)-bimodule structure induced by the map
M ⊗− : R-Mod→ S-Mod, but this isn’t part of the theorem statement.]
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(ii) M ⊗R I →M ⊗R R 'M is one-to-one for all left ideals I of R.

(iii) Tor1(M,R/I) = 0 for all left ideals I of R.

Proof. (i) =⇒ (ii): Immediate.

(ii) =⇒ (iii): We have a short exact sequence

0→ I → R→ R/I → 0.

Applying M ⊗− gives a long exact sequence

· · · TorR1 (M, I) TorR1 (M,R) TorR1 (M,R/I)

M ⊗ I M ⊗R M ⊗ (R/I) 0

The map M ⊗ I → M ⊗ R in this sequence is one-to-one by assumption. We get an exact
sequence

TorR1 (M,R)→ TorR1 (M,R/I)→ 0.

Recall that if P is projective, then TorRi (M,P ) = 0 for all i ≥ 1. In particular, since R is
projective, we get TorR1 (M,R/I) = 0.

(iii) =⇒ (i): Assume (i) does not hold. Then there exists an exact sequence 0→ N ′
f−→ N

such that 0 → M ⊗ N ′ id⊗f−−→ M ⊗ N is not exact. Pick x = m1 ⊗ n1 + · · · + ms ⊗ ns in
ker(id⊗ f). Let N0 := Rn1 + · · ·+Rns ⊆ N ′. There is a map id⊗ f |N0 : M ⊗N0 →M ⊗N
given by x 7→ 0. Without loss of generality, take N ′ = N0 and N0 finitely-generated.

By assumption,

x = m1 ⊗ n1 + · · ·+ms ⊗ ns(= m1 ⊗ f(n1) + · · ·+ms ⊗ f(ns))

is zero in M ⊗N . Thus, x ∼ 0. We have

em1,n1 + · · ·+ ems,ns

= c1(ea1r1,b1−ea1,r1b1)+· · ·+c`(easrs,bs−eas,rsbs)+b1(eθ1+θ′1,ψ1
−eθ1,ψ1−eθ′1,ψ1

)+· · ·+bt(eθt+θt′ ,ψt−· · · )+· · · .

Let Ñ be the submodule of N given by B0 and containing the bi’s and ψi’s. Then x = 0
in M ⊗ Ñ since the relations giving x = 0 in M ⊗ N are implied by relations in M ⊗ Ñ .
Without loss of generality, we can assume N ′ = N0 and N = Ñ are finitely-generated.

Then we have a filtration
N ′ = N0 ⊆ N1 ⊆ · · · ⊆ Nr = N

where Ni/Ni−1 is cyclic, i.e., generated by one element. Notice that if M ⊗N ′ →M ⊗N is
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not one-to-one, then we can consider the composition

id⊗ f : M ⊗N0 →M ⊗N1 →M ⊗N2 → · · · →M ⊗Nr,

and we see that there exists i such that M ⊗Ni →M ⊗Ni+1 is not one-to-one. We consider
the short exact sequence

0→ Ni → Ni+1 → Ni+1/Ni → 0.

We get a short exact sequence

0→ I → R
ψ−→ Ni+1/Ni → 0

since I = ker(ψ), so
R/I ' Ni+1/Ni.

Now, tensoring the exact sequence 0→ Ni → Ni+1 → Ni+1/Ni → 0 on the left with M , we
get a long exact sequence

· · · TorR1 (M,R/I)

M ⊗Ni M ⊗Ni+1 M ⊗ (R/I) 'M ⊗ (Ni+1/Ni) 0

Then since TorR1 (M,R/I) = 0 by assumption, we get that M is flat.

Corollary 22.4. Let R := k[t]/(t2). Let M be an R-module. Then M is flat if and only if
M/t̄M ' t̄M where t̄ = t+ (t2) ∈ R.

Proof. Note that M is flat if and only if TorR1 (M,R/J) = 0 for all ideals J of R. Ideals of
k[t]/(t2) are in one-to-one correspondence with ideals of k[t] that contain t2, and k[t] is a PID
so "containing t2" is the same as "dividing t2". Thus we just get the ideals (t), (t2), and (1).
In R = k[t]/(t2), these correspond to (t̄), (0), and R, respectively. Now, Tor1(M, (0)) = 0
and Tor1(M,R) = 0. (They both have free resolutions of length one.) So M is flat if and
only if Tor1(M,R/(t̄)) = 0.

We have a projective resolution

· · · → R→ R→ R→ R/(t̄)→ 0

where each map R→ R is given by 1 7→ t̄. Applying M ⊗− gives the exact sequence

· · · →M ⊗R→M ⊗R→M ⊗R/(t̄)→ 0.

Now, M is flat if and only if H1(M ⊗ R·) = 0 since H1(M ⊗ R·) = Tor1(M,R/(t̄)). Since
M ⊗R R ' M , the previous exact sequence gives an exact sequence M → M → M where
each map is m 7→ t̄m. Since the image is isomorphic to M modulo the kernel, t̄M 'M/t̄M .
But the kernel modulo t̄M is isomorphic to Tor1(M,R/(t̄)). Thus, the kernel is t̄M since
Tor1(M,R/(t̄)) = 0.
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Corollary 22.5. Let R be a commutative PID. Then M is flat if and only if M is torsion-
free.

Example 22.6. If R = Z, then Z/5Z is not flat because we can consider the exact sequence

0→ Z ×5−→ Z,

and then
0→ Z⊗ Z/5Z 0−→ Z⊗ Z/5Z

is not exact.

Proof. If M is not torsion-free, then M is not flat. For the other direction, pick 0 6= m ∈M
and 0 6= r ∈ R such that rm = 0. Since we are in an integral domain, x 7→ rx is injective.
We can consider the exact sequence

0→ R
x 7→rx−−−→ R

and tensor with M to get
0→M ⊗R R→M ⊗R R

where the map M ⊗ R → M ⊗ R is given on non-zero elements by 0 6= m ⊗ 1 7→ m ⊗ r =
(mr)⊗ 1 = 0. Thus, M is not flat.

Corollary 22.7. A Z-module is injective if and only if it is divisible, projective if and only
if it is free, and flat if and only if it is torsion-free.

Proof. Show TorR1 (M,R/I) = 0 for all ideals I of R. Since R is a PID, each ideal I = Ra
for some a ∈ R. Thus, TorR1 (M,R/Ra) = 0 for all 0 6= a ∈ R, and when a = 0 it already
vanishes. We have a short exact sequence

0→ R
r 7→ar−−−→ R

π−→ R/Ra→ 0.

Tensoring with M gives the long exact sequence

· · · TorR1 (M,R) TorR1 (M,R) TorR1 (M,R/Ra)

M ⊗R M ⊗R ⊗R/(Ra) 0

We have the exact sequence

0→ Tor1(M,R/Ra)→M ⊗R m⊗x 7→m⊗ax−−−−−−−→M ⊗R.

To show
Tor1(M,R/Ra) = 0,

it suffices to show that the map m⊗x 7→ m⊗ax is one-to-one. But M ⊗R = M ⊗RR 'M ,
and our map M → M is given by m 7→ am. This map is injective since a 6= 0 and M is
torsion-free. Thus,

TorR1 (M,R/Ra) = 0
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for all a ∈ R, so M is flat.

23 Nov. 28, 2019
Jason starts by talking about how Tor is involved in calculating intersections of varieties.
He gives the example of two lines in C3 that do not intersect. This is the generic situation.
We have L1 ∩ L2 = ∅ if and only I(L1) + I(L2) = C[x, y, z].

Now, R is commutative, then R/I ⊗ R/J ' R/(I + J) since we have a bilinear onto map
R/I ×R/J → R/(I + J) given by (x+ I, y + J) 7→ xy + I + J , and this induces the desired
isomorphism.

Notice that I and J are comaximal iff I + J = R iff R/I ⊗ R/J ' R/(I + J) = (0) iff
TorR0 (R/I,R/J) = (0).

Similarly, less generic intersections can be described by the vanishing of TorRi (R/I,R/J) = 0
for i ≥ 1. See Exercise 4 of Assignment 4. Jason mentions Serre’s intersection formula. The
idea is that the length of each module in the sum should give you the multiplicity of the part
of the intersection that’s "bad to dimension ≥ i", i.e., where the overlap of two components
is dimension i in each component. Or something like that. Then it makes sense you have an
alternating sum.

Suppose M is an R-module. Let G := Hom(M,−). Then RiG = ExtiR(M,−). Equivalently,
we can consider the functor

Ḡ := Hom(−, N) : R-Modop → Ab.

This is left exact and additive. We want to calculate RiḠ. We choose an injective resolution
in R-Modop:

0→M → I0 → I1 → I2 → · · · .

This is just a projective resolution in R-Mod:

· · · → P 2 → P 1 → P 0 →M → 0.

We apply Hom(−, N) to get:

0→ Hom(M,N)→ Hom(P 0, N)→ Hom(P 1, N)→ · · · .

We truncate our projective resolution and apply Ḡ to get

ḠP · = · · · → Hom(P 1, N)→ Hom(P 0, N)→ 0.

We have that H i(Ḡ, P ·) = ExtiR(M,N).
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Example 23.1. Let R := C[x], M := C[x]/(x3 − 1), N := C[x]/(x2 − 1). Let’s compute
ExtiR(M,N) for all i ≥ 0.

We use the classification of indecomposable injective C[x]-modules. Recall the classification
of indecomposable injective Z-modules: we got Q and the Prüfer p-group Z(p∞) for any
prime p, and that’s it. Jason explains that this is because Z(p∞) = lim−→Z/pnZ So we got
something for each non-zero prime ideal of Z. And for p = (0), we instead take the direct
limit of Frac(R/p) → Frac(R/p2) → · · · , and since p2 = p, this is just Frac(Z) = Q. So we
get every indecomposable injective this way!

You can do the same thing for C[x]. The prime ideals are of the form (0) or (x−λ) for some
λ ∈ C. In the first case, we just get Frac(C[x]/(0)) = C(x). In the second case, we get the
direct limit of

C[x]/(x− λ)→ C[x]/(x− λ)2 → · · · .

Let’s call this Iλ. Now we can continue with the example.

First, we take a projective resolution of M :

0→ 0→ C[x]→ C[x]→ C[x]/(x3 − 1)→ 0.

Here the map C[x] → C[x] is given by 1 7→ (x3 − 1) and the map C[x] → C[x]/(x3 − 1) is
given by 1 7→ 1 + (x3 − 1). Applying Hom(−, N), we get

0→ Hom(C[x],C[x]/(x2 − 1))→ Hom(C[x],C[x]/(x2 − 1))→ 0→ 0.

Thus,
Ext0

C[x](M,N) = Hom(M,N)

= Hom(C[x]/(x3 − 1),C[x]/(x2 − 1))

' C[x]/(x− 1).

Jason explains this last isomorphism on the board, but he says maybe it’s easier to check on
our own, and I don’t write it down. Also, ExtiC[x](M,N) = 0 for all i ≥ 2.

What is Ext1? We have the sequence:

HomC[x](C[x],C[x]/(x2 − 1))→ HomC[x](C[x],C[x]/(x2 − 1))→ 0,

which can be rewritten as

P0 := C[x]/(x2 − 1)
f−→ C[x]/(x2 − 1) =: P1 → 0.

What is f? It’s not the identity. We go back to our projective resolution. The map
C[x]→ C[x] is given there by 1 7→ (x3 − 1). So the corresponding map

Hom(C[x],C[x]/(x2 − 1))→ Hom(C[x],C[x]/(x2 − 1))
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is given by sending ψ where ψ : P0 → C[x]/(x2 − 1) to the map that precomposes ψ with
the map P1 → P0. So f sends 1̄ to ¯(x3 − 1). It follows that

Ext1(M,N)

= ker(C[x]/(x2 − 1)→ 0)/im(f)

= (C[x]/(x2 − 1))/((x3 − 1)C[x]/(x2 − 1))

' C[x]/(p(x))

since the above module is some cyclic C[x]-module,

= C[x]/(x− 1)

since p(x) has to divide (x− 1) but can’t be 1. This completes the example.

Theorem 23.2. The following statements are equivalent.

(i) M is projective.
(ii) ExtiR(M,N) = 0 for all N and all i ≥ 1.
(iii) Ext1R(M,N) = 0 for all N .

Proof. (i) =⇒ (ii): Since M is projective, we have a projective resolution

0→ 0→ P0 = M →M → 0.

In the usual way, we get Exti(M,N) = H i(Hom(P ·, N)). Since the first two terms of our
projective resolution are 0, we get H i(Hom(P ·, N)) = 0 for all i ≥ 1.

(ii) =⇒ (iii): Immediate.

(iii) =⇒ (i): Given a short exact sequence

0→ A→ B → C → 0,

we apply Hom(M,−) to get a long exact sequence

0 Hom(M,A) Hom(M,B) Hom(M,C)

Ext1(M,A) = 0 by (iii) · · ·

So Hom(M,−) is exact, which implies M is projective.

We now discuss Yoneda’s Ext. Suppose A,B are R-modules. Consider short exact sequences

α := 0→ A→ X → B → 0
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and
β := 0→ A→ Y → B → 0.

We say α ∼ β if there exists f : X → Y such that the following diagram commutes:

0 A X B 0

0 A Y B 0

id f id

This gives an equivalence relation, although we do not prove it. Yoneda’s Ext1, denoted
E1

Yon(A,B), is the collection of short exact sequences of the above form in A and B modulo
equivalence. Then one can show that E1

Yon(A,B) ' Ext1
R(A,B). More generally, we can

consider exact sequences

0→ A→ X1 → · · · → Xi → B → 0

and
0→ A→ Y1 → · · · → Yi → B → 0,

and we can say they’re equivalent, denoted ∼ again, if we have maps fi : Xi → Yi for each i
making the obvious diagram commute. Then we define Ei

Yon(A,B) to be exact sequences in
A and B of this form modulo ∼.

Someone asks what the abelian group structure of Ei
Yon(A,B) is, since apparently there

is one if we’re comparing it to Ext. Jason doesn’t remember off the top of his head, but
it’s called the Baer sum and is on Wikipedia at https://en.wikipedia.org/wiki/Ext_
functor#The_Baer_sum_of_extensions.

In particular, one can show that if we take A = B = C, we get that
⊕

ExtiR(A,A) is a ring.
If R is a local k-algebra with maximal ideal m and with R/m ' k, then⊕

i≥0

ExtiR(k, k)

is called the Yoneda Ext algebra of R.

We now discuss group cohomology. Let G be a group. Let

R := Z[G] =

{∑
g∈G

agg | ag ∈ Z, ag = 0 for all but finitely many g

}

be the group ring of G (with the usual operations). Let M be a left R-module. Then we
have a functor I : R-Mod→ Ab given by

I(M) = MG := {m ∈M | g ·m = m for all m ∈M}.

On Assignment 4, we show I is left exact and additive but not right exact. We can form the
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right derived functors
RiI(M) =: H i(G,M).

Now, I ' HomZ[G](Z,−). We have

H i(G,M) = RiI(M) ' RiHom(Z,M) = ExtiZ[G](Z,M).

24 Dec. 3, 2019
THE ASSIGNMENT AND FINAL PROJECT ARE NOW BOTH DUE DEC.
11 BY 5 PM.

Let G be a group, A a G-module. Recall that Exti(Z, A) = H i(G,A). We have the group of
G-invariants, denoted AG. We can also define the group of coinvariants,

AG := A/〈g · a− a | a ∈ A〉.

Taking coinvariants is right exact. We have

A⊗Z[G] Z

' A⊗Z[G] Z[G]/〈g − 1 | g ∈ G〉

' A/〈(g − 1)a | a ∈ A〉

= AG.

The ith homology group, denoted Hi(G,A), can be defined as the left derived functor of the
right exact and additive coinvariants functor A 7→ AG. Then

Hi(G,A) ' TorZ[G]
i (Z, A).

Notice that to compute ExtiZ[G](Z, A), we can take a projective resolution of Z. We can even
do it with the following standard free resolution of Z. First, we have a map g 7→ 1, which
gives an exact sequence Z[G]

ψ0−→ Z → 0. Now ker(ψ0) = 〈g − 1 | g ∈ G〉. So we extend to
an exact sequence

Z[G×G]
ψ1−→ Z[G]

ψ0−→ Z→ 0.

We claim that Z[G×G] is a free Z[G]-module. Indeed, G acts on it by g ·(g1, g2) = (gg1, gg2),
and inside Z[G×G], there is the diagonal ∆(G) = {(g, g) | g ∈ G}. We can write

Z[G×G] =
⊕
g∈G

(g, 1) · Z[∆(G)].

Indeed,
G×G =

⋃
g∈G

(g, 1) ·∆(G).
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By decomposing G as the union of cosets H1, . . . , Hs, we can write

Z[G] = {
∑
g∈G

agg} = {
s∑
i=1

∑
h∈Hi

ahh}.

This gives the desired decomposition. Why do we have im(ψ1) ⊇ ker(ψ0)? Note that
x =

∑
g∈G cgg is in ker(ψ0) if and only if

∑
cg = 0. Then

x =
∑
g∈G

cg(g − 1)

=
∑
g

cgψ1(g, 1)

=
∑

cgg −
∑

cg1

= x.

Thus, x ∈ im(ψ1).

In general, we have a free resolution

· · · → Z[G3]
ψ2−→ Z[G2]

ψ1−→ Z[G]
ψ0−→ Z→ 0.

The map ψi : Z[Gi+1]→ Z[Gi] is given by

ψi(g0, g1, . . . , gi) =
i∑

j=0

(−1)j(g0, g1, . . . , ĝj, . . . , gi)

where the hat indicates that ĝj is excluded from the tuple. Now we can apply HomZ[G](−, A)
to get

0→ Hom(Z[G], A)→ Hom(Z[G2], A)→ · · · .

Then we can compute H i(G,A).

We now discuss the correspondence between vector bundles and projective modules. (This
is due to Serre and Swan.)

Definition 24.1. Let S be a connected compact real manifold. A real vector bundle of rank
n over S is a topological space V with a continuous map π : V → S such that:

(i) For every x ∈ S,
π−1(x) = {v ∈ V | π(v) = x}

is a real vector space of dimension n.

(ii) For every x ∈ S, there exists an open neighbourhood U 3 x in S and a homeomorphism
ϕ : U × Rn → π−1(U) such that π ◦ ϕ = p where p : U × Rn → U is projection onto the
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first coordinate. (In particular, this implies that π−1(U) ' U × Rn.) Also, for every y ∈ U ,
ϕ|{y}×Rn : {y} × Rn → π−1({y}) is a lienar isomorphism of vector spaces.

The vector bundle V is trivial if V ' S×Rn, i.e., condition (ii) can be arranged with U = S.

Given a connected compact real manifold S, we let C(S) be the continuous functions
f : S → R equipped with pointwise addition and multiplication. Then there is a cor-
respondence between vector bundles V of rank n over S and finitely-generated projective
C(S)-modules P (V ) of rank n.

How do we produce P (V )? Let π : V → S be the map coming from the definition of a vector
bundle. A section s of (V, π) is a continuous map s : S → V such that π(s(x)) = x for all
x ∈ S. Let P (V ) be the set of sections s : S → V . If s ∈ P (V ) and f ∈ C(S), then define

(f · s)(x) := f(x)s(x).

This equips P (V ) with a C(S)-module structure (with the usual pointwise addition: for
s1, s2 ∈ P (V ), (s1 + s2)(x) = s1(x) + s2(x)). The following theorem is due to Swan.

Theorem 24.2. If S is a connected compact real manifold and V is a vector bundle of
rank n over S, then P (V ) is a rank n projective C(S)-module. Moreover, the functor V 7→
P (V ) gives an equivalence of categories between vector bundles over S and finitely-generated
projective C(S)-modules.

Recall Swan’s example. Let A := R[x, y, z]/(x2 + y2 + z2 − 1) be the coordinate ring of S2.
Swan produced a projective but not free A-module P such that P ⊕ A ' A3 but P��'A2.
Recall the following theorem.

Theorem 24.3. Suppose R is a unital commutative ring, Spec(R) is connected, and P is a
stably free and rank 1 R-module. Then P is free.

Proof. (i) Given an R-module M , define the ith exterior (wedge) product by

i∧
M := M ⊗ · · ·M/L

where there are i terms in the tensor product and where

L := 〈mσ(1) ⊗ · · · ⊗mσ(i) = sgn(σ)m1 ⊗ · · · ⊗mi for all σ ∈ Si〉

where Si is the symmetric group on i elements.

(ii) If M is free and finitely-generated, then M ' Rn for some n ∈ N, and we have

i∧
M '

i∧
Rn ' R(n

i).
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Why? We sketch the argument. We can write Rn = Re1 ⊕ · · ·Ren. Then Rn ⊗Rn ⊗ · · ·Rn

has basis
{ej1 ⊗ ej2 ⊗ · · · ⊗ eji | 1 ≤ j1, . . . , ji ≤ n}.

Note that given a tensor of the form

ej1 ⊗ ej2 ⊗ · · · ⊗ eji ,

we can apply the relations defining the wedge product to rearrange it so that the indices
are in "alphabetical order" (i.e., 1, 2, 3, . . . ) and the coefficient in front is the sign of the
corresponding permutation. Thus , we can show that

∧iRn has a basis

{ej1 ⊗ · · · ⊗ eji | j1 < j2 < · · · < ji}.

This has size
(
n
i

)
.

(iii) We claim that
i∧

(A⊕B) '
i⊕

j=0

j∧
(A)⊗

i−j∧
(B).

Indeed, (A⊕B)⊗i is spanned by z1⊗ · · · ⊗ zi where each zk is in A or B and, since we work
mod L, we can move the zk’s that are in A to the left and the zk’s that are in B to the right.

(iv) If P is projective of rank d, then

s∧
P = 0

for all s > d. Indeed, locally P is free as an Rm-module where m is the maximal ideal we
localize at. Then

(
s∧
P )m '

s∧
Pm '

s∧
Rd
m ' R

(d
s)
m = (0).

(v) If P is finitely-generated and stably free of rank 1, then there exists n such that P⊕Rn '
Rn+1. Applying

∧n+1 to the right-hand side gives

n+1∧
Rn+1 ' R(n+1

n+1) = R.

Applying
∧n+1 to the left-hand side gives

n+1∧
(P ⊕Rn)

'
n+1⊕
i=0

i∧
P ⊗R

n+1−i∧
Rn (by (iii))
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' (
0∧
P ⊗

n+1∧
Rn)⊕ (

1∧
P ⊗

n∧
Rn) (by (iv))

'
1∧
P ⊗

n∧
Rn

'
1∧
P ⊗R

'
1∧
P

' P.

So R ' P , which completes the proof.

We now discuss the Govorov–Lazard theorem.

Theorem 24.4. Let R be a unital commutative ring. Then an R-module M is flat if and
only if M = lim−→Fi where the Fi’s are free modules.

Proof. The backward direction is quick. We now prove the forward direction (namely that
M flat implies M = lim−→Fi).

We define a category C whose objects are finitely-generated free modules F equipped with
R-module homomorphisms ψ : F → M . The morphisms (F, ψ)

f−→ (G, φ) are given by
requiring the following diagram to commute:

F M

G M

ψ

f id

φ

We work up to isomorphism to get a small category.

Given a finite sequence in M , we have a map I that sends that sequence to C. It is defined
by I((m1, . . . ,mr)) := Rr, which is equipped with a map ψ to M given by ei 7→ mi. If M
is flat, we will show this category is filtered. Then it follows that lim←− I ' M . (This follows
from the same argument as in Assignment 2.)

To show it’s filtered, we need flatness. Suppose I((m1, . . . ,mr)) = F1
ψ1−→M and I((m′1, . . . ,m

′
s)) =

F2
ψ2−→M . We verify the first part of the definition of being filtered using the following dia-

gram:

F1 F2

F1 ⊕ F2

M
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Jason writes I((m1, . . . ,mr,m
′
1, . . . ,m

′
s)) on the board to accompany this drawing. Then,

to check the second part of the definition of being filtered, he draws this diagram:

F1 F2 G

M

f,g h

ψ
φ

Jason writes "∃" next to F1 in that diagram. The arrow labelled "f, g" means it’s actually
a double arrow indicating an equalizer of those two maps. Jason writes, "(G, φ) in our cat".
We will continue this proof next class.

Jason then says he will give us 15 minutes to fill out course evaluations. He writes "http:
//evaluate.uwaterloo.ca" on the board. He says, "I will now leave the room for a while,
maybe for the next 15 minutes, maybe for the rest of my life." Then he leaves. I have already
filled out the course evaluation. The next lecture is on Thursday, in another room.

25 Dec. 5, 2019
Last time we were looking at the hard part of the Govorov–Lazard theorem. We made a
category whose objects are free modules equipped with morphisms to a fixed module M and
whose morphisms make the following square commute:

F M

G M

f

ψ

id

φ

We used tricks to make this into a small category. Now, recall that the Govorov–Lazard
theorem says we can realize M as a filtered colimit lim←−Fi = M of free modules. The difficult
part is showing this category is filtered; the rest follows using the same arguments we used
to prove that a module is a filtered colimit of finitely presented modules. To complete the
proof, we must show that this category is filtered. Consider the following diagram:

F1 F2 G

M

f,g

ψ
φ

h

χ

We want to show that if we have a coequalizer (like the triangle with F1, F2,M), there exists
a finitely-generated free module G and morphisms χ : G → M , h : F2 → G such that the
diagram above commutes.

Let F1 = Re1 ⊕ · · · ⊕ Res. For this to make sense, we need h to vanish on f(e1) −
g(e1), . . . , f(es)− g(es). We now prove the following result.
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Theorem 25.1. Let R be a unital commutative ring. Let M be an R-module. The following
are equivalent.

(i) M is flat.

(ii) If M is finitely-generated and free, β : F → M is an R-module homomorphism, and K
is a cyclic submodule of ker(β) (i.e., it has a single generator), then there exists a finitely-
generated free module G and a homomorphism γ : G→M such that ker(γ) ⊇ K.

(iii) is the same as (ii) but with K finitely-generated instead of cyclic.

Notice that we can make the map h vanish on f(ei) − g(ei) for i ∈ {1, . . . , s} by setting
K := 〈f(e1)− g(e1), . . . , f(es)− g(es)〉 ⊆ ker(φ) and applying the theorem to the diagram

F2 G

M

h

φ

to get ker(h) ⊇ K. So this theorem will follow once we prove the most recent theorem, which
we do now.

Proof. (iii) =⇒ (ii): Immediate.

(ii) =⇒ (iii): Suppose (ii) is true and we have an R-module homomorphism β : F → M .
Suppose K = 〈c1, . . . , cr〉 with ci ∈ ker(β) for each i. By (ii), there exists a finitely-generated
free module F1 and maps γ : F → F1, β1 : F1 → M such that the following diagram
commutes:

F F1

M

γ0

β
β1

Then c1 ∈ ker(γ0) and 〈c1〉 is cyclic. Now we look at this commutative diagram:

F1 F2

M

β2

γ1

β2

Applying (ii) again, there exists a finitely-generated free module F2 and maps γ1 : F1 → F2,
β2 : F2 → M with γ1 ◦ γ0(c2) = 0 and γ0(c2) ∈ ker(β1). Concatenating these diagrams, we
get the following commutative diagram:

F F1 F2

M

γ0

β
β1

γ1

β2
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Then γ1 ◦ γ0 vanishes on c1 and c2, so we have proved the results for modules with two
generators. We can keep going in this way, repeatedly applying (ii), to complete the proof.

It remains to show that (i) holds if and only if (ii) and (iii) hold. For this we need the
equational criterion for flatness. This states that if R is a unital commutative ring and M
is an R-module, then M is flat if and only if for every relation

s∑
i=1

nimi = 0

with mi, ni ∈ R for all i, there exists t ≥ 1 and a matrix

A =

a11 a12 · · · a1s

· · · · · · . . . · · ·
at1 at2 · · · ats

 ∈Mt×s(R)

and m′1,m′2, . . . ,m′t ∈M such that

[m′1,m
′
2, . . . ,m

′
t]A = [m1,m2, . . . ,ms]

and

A

n1
...
ns

 =

0
...
0

 ,
i.e., ∑

j

aijnj = 0

for all i and
mj =

∑
i

aijm
′
i

for all j.

Note that if we have this, then ∑
j

njmj

=
∑
j

nj

(∑
i

aijm
′
i

)

=
∑
j

∑
i

aijnjm
′
i

=
∑
i

(∑
j

aijnj

)
m′i
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= 0.

One can show that (i) =⇒ (ii) and (iii) =⇒ (i) with this criterion; we leave this as an
exercise. It remains to prove this criterion.

Proof. Suppose M is not flat. Then there exists a finitely-generated ideal I of R such that
I ⊗M →M given by i⊗m 7→ m is not injective. So there exist n1, . . . , ns ∈ I such that

n1 ⊗m1 + · · ·ns ⊗ms 6= 0

but
n1m1 + · · ·+ nsms = 0.

But from the criterion, it follows that there exists A = (aij) and [m′1, . . . ,m
′
t] such that

[m′1, . . . ,m
′
t]A = [m1, . . . ,ms]

and

A

n1
...
ns

 = 0.

That means that

0 6=
s∑
j=1

nj ⊗mj

=
s∑
j=1

(
nj ⊗R

(
t∑
i=1

aijm
′
i

))

=
s∑
j=1

t∑
i=1

aijnj ⊗m′i

=
t∑
i=1

(
s∑
j=1

aijhj

)
⊗m′i

=
t∑
i=1

0⊗m′i

= 0.

To prove the converse, suppose M is flat. Then for all finitely-generated ideals I of R, we
have

TorR1 (R/I,M) = (0),

and I ⊗M → M given by i ⊗ m 7→ m is one-to-one for all finitely-generated ideals I. In
particular,

s∑
`=1

i` ⊗m` = 0 ⇐⇒
s∑
`=1

i`m` = 0.
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Now suppose
∑s

i=1 nimi = 0, where ni,mi ∈ R for all i. Let I := 〈n1, . . . , ns〉 ⊆ R. Then we
have an exact sequence

F
f−→ Rs g−→ I → 0

for some free module with generating set {e1, . . . , es}, where the map F → Rs is given by
ei 7→ ni. Applying −⊗RM gives us the exact sequence

F ⊗RM
f⊗idM−−−−→ R2 ⊗RM

g⊗idM−−−−→ I ⊗RM → 0.

Notice that under the map g⊗ idM , the element e1⊗m1 + · · ·+ es⊗ms maps to n1⊗m1 +
· · ·+ ns ⊗ms = 0. Thus,

e1 ⊗m1 + · · ·+ es ⊗ms ∈ ker(g ⊗ idM) = im(f ⊗ idM).

It follows that there exists u := y1 ⊗m′1 + · · ·+ yt ⊗m′t ∈ F ⊗M such that

(f ⊗ idM)(u) = e1 ⊗m1 + · · ·+ es ⊗ms.

Then
f(y1)⊗m′1 + · · ·+ f(yt)⊗m′t

= e1 ⊗m1 + · · ·+ es ⊗ms.

Note that f(yi) ∈ Rs, so we can write it as

f(yi) =
s∑
j=1

aijej

for some aij ∈ R. But we also have g(f(yi)) = 0 since g ◦ f = 0 by exactness. Thus,

0 = g

(
s∑
j=1

aij

)

=
s∑
j=1

aijnj.

We can therefore write
(aij)

[
n1

... ns

]
= 0.

On the other hand,
e1 ⊗m1 + · · ·+ es ⊗ms

=
t∑
i=1

f(yi)⊗m′i

=
t∑
i=1

(
s∑
j=1

aijej

)
⊗m′i.
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Comparing coefficients, we get

mi =
t∑
i=1

aijm
′
i.

This completes the proof.

Now that we have completes one nested proof, we have completed the second.

Now that we have completed two nested proofs, we have completed the third and last.

We now discuss some open problems. Suppose σ : C3 → C3 is a polynomial automorphism
given by

(x, y, z) 7→ (p(x, y, z), q(x, y, z), r(x, y, z)).

A necessary condition for σ to be a polynomial automorphism is that its Jacobian is non-
zero. It is not known whether this is sufficient, although Jason thinks it probably is; this
is the Jacobian conjecture. Now, suppose L1 and L2 are two lines in C3 with corresponding
ideals I1, I2 ⊆ C[x, y, z]. Let’s look at

{n | Tor1(C[x, y, z]/(σ∗)n(I1),C[x, y, z]/I2) 6= 0}.

This is morally the same as looking at

S := {n | σn(C1) ∩ C2 6= 0}.

Question. Is it true that either S has zero density, i.e., that

lim
n→∞

|S ∩ [−n, n]|
2n+ 1

→ 0

or that there exist a > 0 and b such that an+ b ∈ S for all but finitely many n?

More general question. Let X be an irreducible noetherian topological space. Let σ : X → X
be a homeomorphism, and let Y, Z be closed subsets of X. We have a sheaf OX of noetherian
rings. For i ≥ 1, do we have that

{n | TorOX
i (Oσn(Y ),OZ) 6= 0}

is a finite union of infinite arithmetic progressions and a set of zero density?

Jason believes this more general question is easy to answer once you’ve answered the simpler
one. He does not know how to answer either.

Now for a different problem. We say that rings R and S are Morita equivalent if R-Mod '
S-Mod. We write R 'M S if this is the case. For example, we showed that R and Mn(R)
are Morita equivalent for any n ≥ 1 even though R��'Mn(R).
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Given a unital commutative ring R, we construct its derived category D(R) as follows.
First, start with the usual category of chain complexes of R-modules with the usual mor-
phisms. Second, pass to the homotopy category of chain complexes by identifying mor-
phisms that are chain homotopic. Third, pass to the derived category D(R) by localizing at
the set of quasi-isomorphisms. What is a quasi-isomorphism, and what is localization? A
quasi-isomorphism is a morphism of chain complexes A· → B· such that the induced mor-
phisms Hn(A·) → Hn(B·) of cohomology groups (or equivalently, the induced morphisms
Hn(A·) → Hn(B·) of homology groups) are isomorphisms for all n. Localization of cat-
egories is a generalization of localization of rings, and you can look it up on Wikipedia
(https://en.wikipedia.org/wiki/Localization_of_a_category).

We say R and S are derived equivalent if D(R) ' D(S). We write R 'D S if this is the case.
Note that isomorphism implies Morita equivalence implies derived equivalence.

The following conjecture of Zariski is still open. Let X be an affine variety such that
X × C ' Cn+1. Does it follow that X ' Cn? This is known to be true for n = 1 and
n = 2, but it is open even for n = 3.

Passing to coordinate rings, we can write R[t] ' C[t1, . . . , tn+1] implies R ' C[t1, . . . , tn]
in the situation described in Zariski’s conjecture. We say R is cancellative (resp. Morita
cancellative, resp. derived cancellative) if R[t] ' S[t =⇒ R ' S (resp. R[t] 'M S[t] =⇒
R 'M S, resp. R[t] 'D S[t] =⇒ R 'D S).

We have lots of questions about these properties. For example, let X be a complex smooth
curve, and let D be a divisor on X. (We do not care about whether we use Weil or Cartier
divisors because it’s smooth.) If 0 6= f ∈ C(X), then

div(f) =
∑

P a zero of f

nP [P ]−
∑

P a pole of f

nP [P ]

where nP denotes the order of the zero or pole P . For example, ifX = P1, then C(P1) = C(t),
and if f(t) := t2/(t− 1), then div(f) = 2[0]− [1]− [∞].

Now, given two divisors, we write ∑
aP [P ] ≥

∑
bP [P ]

if and only if aP ≥ bP for all P . If D is a divisor, we write

L(D) := {0} ∪ {f ∈ C(X)∗ | div(f) ≥ −D}.

For example, if X = P1 and D = 2[∞], then C(P1) = C(t), and

L(D) = {0} ∪ {f | div(f) ≥ −2[∞]}

= span{1, t, t2}.
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(In fact, L(D) is always finite-dimensional, and you can compute it using the Riemann–Roch
theorem.) Given a divisor D :=

∑
aP [P ] and an automorphism σ : X → X, we can define

the pullback of D along σ by
σ∗(D) =

∑
aP [σ−1(P )].

Given the data of X, σ, and D as above, we can define a ring

B(X, σ,D) :=
∞⊕
i=0

L(D + σ∗(D) + (σ2)∗(D) + · · ·+ (σi−1)∗(D)).

Call the ith term in this direct sum Li. Given f ∈ Li and g ∈ Lj, define f∗g := f ·g(σi) ∈ Li+j.
With this operation, we call this ring the twisted homogeneous coordinate ring of X.

There’s a theorem that
∞⊕
i=0

ExtiR(C,C)

is finite-dimensional. We can then ask what its dimension is, in terms of X, σ,D. This is
sort of open-ended, and not much is known about it.
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