
DELIGNE–LUSZTIG THEORY

ANDREJ VUKOVIĆ

Abstract. We show how Deligne–Lusztig theory is used to produce irreducible represen-
tations of SL2(Fq). We begin by discussing sheaves and schemes, eventually moving on to
the theory of group schemes and reductive linear algebraic groups. We look at the represen-
tation theory of SL2(Fq) and show how it runs into difficulties that are resolved by a clever
technique of Drinfeld. We then explain how Deligne and Lusztig generalized this technique
to other finite groups of Lie type and show that their method really does coincide with
Drinfeld’s in the particular case of SL2(Fq).

1. Sheaves and Schemes

Deligne–Lusztig theory, first developed in [3], is a method for constructing representations
ρ : G → GL(V ) where V is a vector space and G is a finite Lie group. These ideas, which
the namesake authors have written about from 1976 onwards, heavily relies on results about
`-adic cohomology, a tool developed by Alexander Grothendieck and many others throughout
the 1960s. To discuss Deligne–Lusztig theory therefore requires an introduction to algebraic
geometry. We will have to assume knowledge of category theory (e.g., functors, pullbacks,
equalizers), commutative algebra (e.g., radical and homogeneous ideals), and representation
theory (e.g., induced representations), and Lie theory (the content of this course) but will
define the new terminology from algebraic geometry as it comes up. Because of the amount
of algebraic geometry required to begin defining the basic objects of Deligne–Lusztig theory,
we will omit proofs with impunity.

The material of the current section can be found in any textbook on modern algebraic ge-
ometry. The canonical reference is [4], and a good modern presentation can be found in [11].

The notion of sheaf is central to modern algebraic geometry. Sheaves were first invented by
Jean Leray while he was in a prisoner of war camp during World War Two. (Amazingly,
Leray invented the concepts of spectral sequence and sheaf cohomology at the same time! We
will not discuss these, however.) Although Leray was concerned with what seemed like a
rather specific problem in algebraic topology, Henri Cartan quickly saw that his work could
be applied to algebraic geometry, and Cartan’s doctoral student, Jean-Pierre Serre, wrote
the foundational text [5] on the matter.

Very often in topology, one tries to study a topological space by looking at functions of
a given type on open sets of that space. One might look at all (real- or complex-valued)
functions on an open set, or one might restrict to continuous or smooth functions on the
open set. We will see that these are examples of a presheaf.

Definition 1.1. Let X be a topological space, and let C be the category of sets, the category
of commutative rings, or the category of abelian groups. (We consider only these categories
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for convenience in defining sheaves later on, although their definition can be given in greater
generality than ours.) Let Open(X) be the category whose objects are open subsets of X
and such that there is a morphism U → V if and only if U ⊆ V . A presheaf F on X is a
contravariant functor from Open(X) to C. If U ⊆ X is open, elements of F (U) are known
as sections of F , and elements of F (X) are known as global sections. If V ⊆ U and s ∈ F (U)
is a section, we often use the notation s|V for resV,U(s).

We expand on this definition. It means that for every open subset U of X, there is an object
F (U) in C, and for every inclusion of open subsets V ⊆ U , there is a restriction morphism
resV,U : F (U)→ F (V ) in C. Moreover, the morphism resU,U coincides with the identity map
for every U , and given open subsets W ⊆ V ⊆ U , we have resW,V ◦ resV,U = resW,U .

Example 1.2. (i) Suppose U ⊆ Rn is open. Let
F (U) := {functions U → R}.

Given V ⊆ U , let the restriction morphism resU,V be given by restricting a function on U to
a function on V . Then F is a presheaf.

(ii) If we replace "functions" by "continuous functions" or "smooth functions" in (i), F is
still a presheaf.

(iii) If instead U ⊆ Cn is open, and we define
G(U) := {holomorphic functions U → C}

and define the restriction morphisms as restriction of functions again, then G is a presheaf.

We are now ready to define a sheaf. The definition may look intimidating at first, but we
will soon motivate it.

Definition 1.3. Let X be a topological space, let I be an indexing set, and suppose {Ui}i∈I
is an open cover of X. Let F be a presheaf from X to some category C that is the category
of sets, of commutative rings, or of abelian groups. We say F is a sheaf if it satisfies two
additional conditions.

(i) If s, t ∈ F (U) are sections and s|Ui
= t|Ui

for every i ∈ I, then s = t.

(ii) Let si ∈ F (Ui) for every i ∈ I. Suppose
si|Ui∩Uj

= sj|Ui∩Uj

for all i, j ∈ I. Then there exists s ∈ F (U) such that s|Ui
= si for every i ∈ I.

Given two sheaves F,G onX with values inC, amorphism φ : F → G consists of a morphism
φU : F (U) → G(U) for every open subset U ⊆ X such that each morphism φU commutes
with the restriction maps.

The first of these conditions says that if two sections are equal on every element of an open
cover, then they are equal. The second says that a family of sections equal on intersections
of an open cover can be "glued" to produce a single section.
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Example 1.4. (i) Presheaves of arbitrary, continuous, smooth, or holomorphic functions are
still sheaves. For example, given an open cover {Ui} of an open set X ⊆ Rn, if f |Ui

= g|Ui
,

where f, g : X → R are continuous functions, then f = g. If fi ∈ Ui is a family of continuous
functions and fi|Ui∩Uj

= fj|Ui∩Uj
for all i and j, then there is a continuous f : X → R such

that f |Ui
= fi for every i. These are basic results in real analysis, and similar results hold

for smooth and holomorphic functions.

(ii) If U ⊆ Rn is open, let F (U) consist of constant functions U → R with the usual re-
striction maps. Then F (U) is a presheaf but not necessarily a sheaf. Indeed, if U1, U2 are
disjoint open subsets of Rn, then if we let s1 ≡ 0 on U1 and s2 ≡ 1 on U2, both s1 and s2 are
constant, but they cannot be glued to a constant function on U1 ∪ U2.

(iii) If U ⊆ Rn is open and we let F (U) consist of locally constant functions U → R, then F
is a sheaf.
Part (iii) of the last example illustrates the intuition that a family of functions forms a sheaf
if it is somehow determined by local data. This is the motivating idea of sheaf theory.

The following definition will come in handy later.
Definition 1.5. Suppose f : X → Y is a continuous map of topological spaces. Let Sh(X)
denote the category of sheaves on X. The direct image functor f∗ : Sh(X) → Sh(Y ) is
defined by

f∗F (U) = F (f−1(U)).

This turns out to be a sheaf on Y .
Sheaf theory provides a powerful language for discussing algebraic geometry because the
data of a sheaf gives us a family of sections for every open set of a particular space at once.
Historically, schemes were defined using sheaves. To explain what a scheme is and why they
are important, we first discuss classical algebraic geometry.

Classical algebraic geometers, who, roughly speaking, worked during the first half of the
20th century, were concerned, as all algebraic geometers are, with solutions to families of
equations of the form fj(x1, ..., xn) = 0 where the fj’s are polynomials. Generally speaking,
they studied solution sets of such equations over a field. The following example shows how
a new point of view came about among them.
Example 1.6. Suppose we are interested in the line x = 0 in the affine plane, which for our
purposes is R2. Notice that the locus of points cut out by this equation is the same as the
locus cut out by x2 = 0.
Because of examples like this one, algebraic geometers began to study particular ideals in
polynomial rings, rather than simply studying families of polynomial equations. Rather than
studying the line x = 0 in R2, it makes sense to study the ideal (x) ⊂ R[x, y]. The fact that
x = 0 corresponds to the same line as x2 = 0 corresponds to the fact that the ideal (x) is
the radical of the ideal (x2).

Given an ideal I generated by n-variable polynomials, we let V (I) denote the set of points P
in kn, for some field k, for which f(P ) = 0 for every f ∈ I. Conversely, given a set of points
V in kn, we let I(V ) denote the ideal of n-variable polynomials vanishing at those points.
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Definition 1.7. A subset of kn that is of the form V (I) for some ideal I in k[x1, ..., xn] is
called an affine algebraic set. A non-empty affine algebraic set is called irreducible if it cannot
be written as the union of two proper algebraic subsets. An irreducible affine algebraic set
is called an affine variety. (Note that if V is an affine variety, the ideal I(V ) is prime, as we
will discuss shortly.) Given an affine variety V in n-dimensional affine space kn,

k[V ] := k[x1, ..., xn]/I(V )

is called the affine coordinate ring of V . A projective variety is a subset of some projective
n-space Pn over a field k that is the vanishing locus of a finite family of homogeneous
polynomials in n+ 1 variables {x0, ..., xn} with coefficients in k that generate a prime ideal
I. The quotient ring k[x0, ..., xn]/I is then called the homogeneous coordinate ring of the
projective variety.
The following is one of the central results of classical algebraic geometry.
Theorem 1.8. Suppose {fj} is a family of polynomials on kn that generate an ideal J
in k[x1, ..., xn]. The functions V and I just described induce mutually inverse, inclusion-
reversing bijections between maximal ideals in k[x1, ..., xn]/J and points of V (J), between
prime ideals of k[x1, ..., xn]/J and irreducible algebraic subsets of V (J), and between radical
ideals in k[x1, ..., xn] and algebraic subsets of k[x1, ..., xn]/J .

The notion of a scheme was created by Cartier, Chevalley, Grothendieck, and others because
of their dissatisfaction with this correspondence. They noticed that in many situations, it
was useful to use the full correspondence between prime ideals and irreducible algebraic sub-
sets, rather than the correspondence between maximal ideals and points. Therefore, they
began to regard prime ideals as "generic points" of a variety, which are a more fundamental
object than the usual points corresponding to maximal ideals of the affine coordinate ring.
The idea is that we can identify affine varieties with their affine coordinate rings, and then
we can regard prime ideals as "generic points" of a ring! Thinking along these lines, they
made three key generalizations.

(i) They allowed for the "affine coordinate ring" of a scheme to contain nilpotent elements,
something that could never happen for affine varieties. Thus, in scheme theory, an ideal
and its radical carry different geometric information, something that does not happen in the
classical theory where they correspond to the same variety.

(ii) Rather than working over a base field, they worked over an arbitrary base ring. This
approach is very fruitful because many situations in number theory require us to study ob-
jects like Z, which do not form a field. In this way, scheme theory unifies classical algebraic
geometry and number theory.

(iii) They observed that projective varieties can be viewed as multiple affine varieties "glued
together" along certain maps. Therefore, taking their cue from the definition of a manifold,
they allowed arbitrary schemes to be made up of simpler "affine schemes" that are identified
along certain maps.

Because we are generalizing algebraic varieties, we cannot use them in the definition of
a scheme. Instead, a scheme is defined as a topological space with some extra structure.
Motivated by our discussion of sheaves, we wish to associate a commutative ring to each
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open subset of the topological space, which in many cases can be regarded as the ring of
all/continuous/smooth/holomorphic functions on U .

Definition 1.9. A ringed space is a pair (X,OX) where X is a topological space and OX is
a sheaf of commutative rings on X. The sheaf OX is called a structure sheaf. A morphism
from a ringed space (X,OX) to a ringed space (Y,OY ) is a pair (f, φ) where f : X → Y is a
continuous map and φ : OY → f∗OX is a morphism of sheaves.

Because of the way in which sheaves depend on local data, it is often useful to consider the
following construction.

Definition 1.10. Given a topological space X and a sheaf F on the open subsets of X, the
stalk of F at x ∈ X, denoted Fx, is defined by

Fx = lim−→
U3x

F (U).

The direct limit is indexed over all open sets U ⊆ X containing x where U < V in the
ordering if U ⊇ V . By definition of the direct limit, an element of the stalk is an equivalence
class of families of elements sU ∈ F (U), U an open subset of X, where two elements sU and
sV are equivalent if their restrictions are equal on some neighbourhood of X contained in U
and V .

Definition 1.11. A locally ringed space is a ringed space (X,OX) such that every stalk of
OX is a local ring (i.e., has a unique maximal ideal). (Note that we do not require OX(U)
to be a local ring for any open set U , and in fact this usually is not the case.) A morphism
of locally ringed space is a morphism of ringed spaces (f, φ) such that the homomorphisms
induced by φ map the maximal ideal of the local ring of f(x) ∈ Y to the maximal ideal of
the local ring of x ∈ X; φ is said to be a local homomorphism.

The following definitions help set up the next example.

Definition 1.12. If X and Y are affine varieties in kn and km respectively, where k is the
base field, then a regular map f : X → Y is the restriction of a polynomial map kn → km.
If X and Y are arbitrary varities, a map f : X → Y is regular at a point x if there is an
open neighbourhood U of x and V of f(x) such that f(U) ⊆ V and the restricted function
f : U → V is regular as map on some affine charts of U and V . We then say that f is a
regular map if it is regular at all points of X.

Definition 1.13. Suppose X and Y are varieties. A rational map f : X → Y is an
equivalence class of pairs (fU , U) where U is an open subset of X and fU : U → Y is a regular
map. Two pairs (fU , U) and (fV , V ) are equivalent if they are equal on the intersection U∩V .

Example 1.14. (i) Ringed spaces were already in use before the introduction of schemes.
Algebraic varieties are usually equipped with the Zariski topology, under which the algebraic
subsets of a variety are defined to be its closed sets. Suppose X is a variety with the Zariski
topology, and for an open subset U ⊆ X, let OX(U) be the ring of rational maps defined on
U that do not become infinite at any point of U . Then (X,OX) is a locally ringed space.

(ii) Let R be a commutative ring. Recall that its (prime) spectrum Spec(R) consists, as a set,
of all prime ideals of R. We equip Spec(R) with a topology, known as the Zariski topology
(for spectra), as follows. For f ∈ R, let Df be the set of prime ideals not containing f , and
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let {Df : f ∈ R} be a basis of open sets for the topology. For X := Spec(R), a structure
sheaf OX is defined on this basis by OX(Df ) = Rf , the localization of R by powers of f .
One can prove that OX is indeed a sheaf, that the localization of OX at a prime ideal P is
equal to the localization of R at P , and that (X,OX) is then a locally ringed space.

We are finally ready to define schemes.

Definition 1.15. An affine scheme is a locally ringed space isomorphic to the spectrum
Spec(R) of a commutative ring R. A scheme is a locally ringed space admitting a covering
by open sets {Ui} such that each Ui, as a locally ringed space, is an affine scheme. (Note
that we think of Spec as a contravariant functor from rings to affine schemes. In fact, it
turns out to define an equivalence of categories between the two, which shows that affine
schemes really are the correct generalization of varieties.)

Example 1.16. For any commutative ring R, Spec(R), viewed as a locally ringed space, is
a scheme.

The following notion will be useful later.

Definition 1.17. Given a scheme (X,OX), an open subscheme if a scheme isomorphic to
(U,OX |U) for an open subset U ⊆ X. A morphism f : X → Y of schemes is a closed
immersion if it is a homeomorphism onto a closed subset of Y and the induced map OY →
f∗OX is surjective. A closed subscheme of X is an equivalence class of closed immersions
with codomain X where f : Z → X and f ′ : Z ′ → X are equivalent if there exists an
isomorphism g : Z → Z ′ such that f = f ′ ◦ g.

2. Group Schemes

Very often in geometry we encounter mathematical objects that simultaneously have an alge-
braic and a geometric structure. The theory of Lie groups provides an example, as do abelian
varieties, whose simplest example are elliptic curves equipped with their group structure. It
is not immediately clear how to make sense of such constructions in scheme theory. However,
there is such a notion, that of a group scheme, which we will soon define.

The development of the theory of group schemes occurred in [4] as well as the seminar notes
[7]. A good modern reference for this section is [2].

The category of schemes admits pullbacks, which are often called fibered products in this
context. For our purposes, their most important property is that if X ×S Y is a fibered
product of affine schemes, then

Spec(X ×S Y ) = Spec(X)⊗Spec(S) Spec(Y ).

It is generally the case that a problem about schemes can be quickly reduced to a problem
about affine schemes, so it is not very restrictive to consider only this case when discussing
any categorical construction in scheme theory. It is often fruitful to consider schemes over an
arbitrary base scheme, usually denoted S. Categorically, this means passing to the comma
category of the category of schemes, whose elements are morphisms X → S, where X is a
scheme and S is our base scheme, and whose morphisms are morphisms X → Y of schemes
that commute with the natural morphisms X → S and Y → S. When viewing a scheme X
as an element of this category, we refer to it as an S-scheme. This perspective is known as
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Grothendieck’s relative point of view.

We also remark that given two morphisms f, g : X → Y of schemes, the equalizer of f and
g forms a closed subscheme of X. This fact will be useful later.

Definition 2.1. Let S be a scheme. Let X and S ′ be S-schemes. By definition of a pullback,
the fibered product X ×S S ′ is equipped with a map to S ′, which means it can be viewed as
an S ′-scheme. We call it the base change of X to S ′.

Example 2.2. Suppose k is a field and k̄ is its algebraic closure. We have an inclusion
map k → k, and since Spec is a contravariant functor that gives an equivalence of categories
between rings and affine schemes, we have a corresponding map Spec(k̄)→ Spec(k) realizing
Spec(k̄) as a Spec(k)-scheme. Suppose X is a k-scheme. Then the base change X ×Spec(k)

Spec(k) is a k̄-scheme. We denote this scheme by Xk̄.

Definition 2.3. Suppose R is a commutative ring and X is an R-scheme (i.e., a scheme
over the base scheme Spec(R)). Suppose S is a commutative R-algebra. Let X(S) denote
the set of R-morphisms Spec(S)→ X. The set X(S) is called the set of S-points of X. If k
is a field, k̄ is its algebraic closure, and X is a scheme over k, then a morphism Spec(k̄)→ X
is called a geometric point.

Example 2.4. SupposeX is an affine variety over a field k defined by a system of polynomial
equations fj(x1, ..., xn) = 0. if RX denotes its affine coordinate ring, then X can be identified
with the affine scheme Spec(RX). If k̄ is a field extension of S, X(k̄) can be identified with
the set of solutions to the system fj(x1, ..., xn) for (x1, ..., xn) ∈ k̄n.

Definition 2.5. Let S be a scheme. A group scheme is an S-scheme G equipped with three
morphisms µ : G×S G→ G, e : S → G, and ι : G→ G corresponding to the multiplication,
identity, and inverse maps of a group, respectively. These maps satisfy the following prop-
erties.

(i) Associativity of multiplication is given by commutativity of the following diagram, where
1G indicates the identity map:

G×S G×S G G×S G

G×S G G

µ×1G

1G×µ

µ

µ

(ii) Let ∆ : G→ G×SG denote the diagonal map. Let π : G→ S be the canonical morphism
realizing G as an S-scheme. Then the defining property of the inverse map ι amounts to
saying that the composition defined by the following two diagrams is equal to e ◦ π:

G G×S G G×S G G∆ 1G×ι µ

G G×S G G×S G G∆ ι×1G µ

(iii) The defining property of the identity map e : S → G amounts to commutativity of the
following diagram:
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S ×S G

G G×S G G

G×S S

e×1G

µ

1G×e

Here the maps G→ G×S S and G→ S ×S G are actually isomorphisms.

Example 2.6. We can view the general linear group as a group scheme in the following way.
First, let

GLn := Spec(Z[{xij}1≤i,j≤n][1/d])

where d := det((xij)). That is, GLn is an affine scheme whose coordinate ring is the ring
of polynomials in n2 + 1 variables with coefficients lying in Z, where the last variable is the
inverse of the determinant of the matrix (xij) containing the first n2 variables. (We include
the inverse determinant because it appears in the formula for the inverse of a matrix.) The
multiplication morphism giving the group structure is defined as follows. Motivated by the
formula for an entry of the product of two matrices, we define a map

xij 7→
∑
k

xik ⊗ xkj.

This map goes from Z[xij, 1/d]→ Z[xij, 1/d]⊗ZZ[xij, 1/d]. This induces a map GLn×GLn →
GLn, as desired. In a similar way, all of the standard matrix groups may be regarded as
group schemes.

We remark that it is possible to define a quotient of group schemes in several different ways.
There are notions of geometric quotient, categorical quotient, and geometric invariant theory
(GIT) quotient. The most general notion is that of a quotient stack. Because this area is
quite technical, we will not go into the details here. We simply ask that the reader take
it for granted that a quotient of group schemes can be regarded as a group scheme in the
situations that arise in this article.

We can now define reductive group schemes, which are the central objects of study in Deligne–
Lusztig theory.

Definition 2.7. Let k be a field with algebraic closure k̄. If G is a smooth affine group
scheme over k̄, we say it is a linear algebraic group over k. One can prove that every lin-
ear algebraic group, viewed as a group, has a faithful representation j : G → GL(V ) for
some vector space V . We say g ∈ G(k̄) is semisimple (resp. unipotent) if j(g), viewed as a
linear endomorphism on V , is diagonalizable (resp. j(g) − IV is nilpotent). One can prove
that for any g ∈ G(k̄), there exist unique commuting elements gu, gss ∈ G(k̄) such that
g = gssgu = gugss, gss is semisimple, and gu is unipotent. (This is the Jordan decomposition
of g.) We say the linear algebraic group G is unipotent if g = gu for every g ∈ G(k̄). We say
G is solvable if G(k̄) is solvable.

A closed (resp. open) subgroup of a linear algebraic group G is an algebraic group H that is
a closed (resp. open) subscheme of G such that the inclusion map H → G is a morphism of
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algebraic groups. We say G is reductive if no non-trivial unipotent normal connected linear
algebraic subgroups. If G is instead defined over k, we say it is reductive if the base change
Gk̄ is reductive. Similarly, G is solvable if the base change Gk̄ is solvable.

The identity component of the maximal normal solvable subgroup of a linear algebraic group
is called its radical. The set of unipotent elements in the radical is called the unipotent radical
of the group. Reductive groups can equivalently be defined as groups with trivial unipotent
radical.

Example 2.8. (i) Although we do not give a proof or construction, the general linear group
GL(V ) on a vector space V can be thought of as a group scheme. (For finite-dimensional V ,
this follows from the description we gave earlier of GLn.) Moreover, GL(V ) turns out to be
a connected reductive linear algebraic group.

(ii) The additive group scheme Ga has the affine line A1 = Speck[x] as its underlying scheme.
Given a scheme T , Ga(T ) is defined to be the additive group of global sections of the
structure sheaf of T . (Since schemes are ringed spaces, the global sections of a scheme form
a commutative ring, and thus in particular they have an additive group structure.) This
group scheme is not reductive.

In the theory of Lie groups and algebras, a configuration of vectors known as a root system
is associated to and classifies the group. Similarly, in the theory of reductive linear algebraic
groups, a generalized version of a root system known as the root datum can be used to clas-
sify the group. We will not define root data, but the fact that reductive groups (or more
precisely, connected split reductive groups) can be neatly characterized in terms of their root
data is one reason for the central importance of reductive groups in the theory.

We will now describe a clever trick for generating finite group schemes.

Definition 2.9. Let p be a prime integer, let n ∈ N, and let q := pn. Any Fq-algebra
admits an endomorphism, known as the Frobenius endomorphism Frobq given by the map
x 7→ xq. If X is a scheme over Fq, we can define the absolute Frobenius morphism of X as
follows. Suppose U = Spec(R) is an open affine subset of X. Then R admits a Frobenius
endomorphism, and given an affine open subset V ⊆ U , the Frobenius morphism on V is the
restriction of the Frobenius morphism on R. Thus, we may glue the Frobenius morphisms
on each open affine subset to produce the absolute Frobenius morphism on X.

Definition 2.10. Retaining the notation q = pn for p prime, let k := Fq. Suppose k̄ is the
algebraic closure of k, and G is a connected reductive linear algebraic group over k̄. We
then have an absolute Frobenius morphism F = Frobq : G→ G. The fixed points GF of the
morphism can be defined as the equalizer of F and the identity morphism, and therefore, by
an earlier comment, GF may be viewed as a closed subscheme of G. We say a scheme GF of
this form is a finite group scheme of Lie type or a finite Lie group scheme.

Example 2.11. For G = SLn, which can be defined as a group scheme by analogy with the
definition of GLn given earlier, if F = Frobq, then GF = SLn(Fq).

Now that we have some familiarity with group schemes, we will be a bit more flexible in
treating them as groups or as schemes whenever one point of view is more convenient than
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the other.

In this article, we use irreducible representations of SL2(Fq) as a toy example. These were
classified before the invention of Deligne–Lusztig theory. Such representations correspond to
the conjugacy classes of SL2(Fq), which come in the following four families.

(i) There are 2 conjugacy classes whose elements are of the form(
±1 0
0 ±1

)
.

(ii) There are q−3
2

conjugacy classes whose elements are of the form(
x 0
0 x−1

)
for x ∈ F×q \ {±1}.

(iii) There are q−1
2

conjugacy classes whose elements are of the form(
ω 0
0 ωq

)
where ω ∈ µq+1 \ {±1}, and µq+1 denotes the group of (q + 1)st roots of unity.

(iv) There are 4 conjugacy classes of the form(
x y
0 x−1

)
where x ∈ {±1} and y ∈ F×q /(F×q )2, i.e., b is some representative in F×q of a coset in F×q /(F×q )2.

There are therefore q + 4 distinct irreducible representations of SL2(Fq). The way these
representations were historically constructed is by a technique that we now describe. There
is a torus

T = {
(
x 0
0 x−1

)
|x ∈ F×q } ⊆ SL2(Fq).

This torus is isomorphic to F×q , and its irreducible representations therefore correspond to
characters θi : T → C× for i ∈ {1, ..., q − 1}. However, the representation IndGT θi for such a
character turns out to be too big. Instead, we note that θi can be extended to a character
on the Borel subgroup

B = {
(
x y
0 x−1

)
|x, y ∈ F×q },

and we then consider IndGBθi. This technique is known as parabolic induction. We summarize
its result.

(i) If θ2
i is not the identity, then IndGBθi is irreducible of dimension q + 1. These representa-

tions are known as principal series.
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(ii) If θ2
i is the identity but θ is not, then IndGBθi is a direct sum of two irreducible represen-

tations each of dimension q+1
2
. These two representations are known as half principal series.

(iii) If θi is the identity, then IndGBθi is a direct sum of the trivial representation and an
irreducible representation of dimension q, which is known as the Steinberg representation.

Note that this leaves q−1
2

undiscovered irreducible representations. We should expect from
our earlier list of conjugacy classes that the remaining representations can be obtained by
somehow inducing characters from the conjugacy classes of the form(

ω 0
0 ωq

)
to all of G. However, these conjugacy classes do not lie in our Borel subgroup. We will soon
see how this leads us down the path to Deligne–Lusztig theory.

3. The Work of Drinfeld and Deligne–Lusztig

Our main references for this section and the last part of the previous section were [6] and
[1]. The canonical references for the material on `-adic cohomology are [8], [9], and [10].

Drinfeld made the following observation. Consider the affine variety X over Fq (where q = pn

is a prime power) given by xyq − xqy = 1. The group µq+1 of (q+ 1)th roots of unity acts on
it by ω · (x, y) := (ωx, ωy). Also, SL2(Fq) acts on it by(

a b
c d

)
· (x, y) :=

(
a b
c d

)(
x
y

)
.

Indeed, this preserves the determinant because

det

(
ax+ by (ax+ by)q

cx+ dy (cx+ dy)q

)
= (det

(
a b
c d

)
)(det

(
x xq

y yq

)
)

= det

(
a b
c d

)
(xyq − xqy)

= det

(
a b
c d

)
.

To proceed further, we need to consider the `-adic cohomology groups with compact support
H i
c(X) := H i

c(X,Q`). Just defining these groups and proving their basic properties was a
monumental work of Grothendieck and others. We therefore summarize the properties we
will be using in the following proposition.

Proposition 3.1. Suppose X is an algebraic variety over Fq for q = pn, p prime. There exist
`-adic cohomology groups with compact support, denoted H i

c(X,Q`) or H i
c(X) for short. They

may be regarded as finite-dimensional Q`–vector spaces, and they vanish for i > 2 dim(X).
(This last property would not hold in such generality for general `-adic cohomology groups
(not with compact support). This is why Deligne and Lusztig use the groups H i

c(X) rather
than H i(X).) A group action on X induces a corresponding group action on H i

c(X). An
automorphism σ on X induces a linear automorphism σ∗ on H i

c(X).
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By the proposition, µq+1 × SL2(Fq) acts on H i
c(X).

Definition 3.2. Let G be a finite group, let χ : G → C× be a character of G, and let
ρ : G → GL(V ) be a representation of G for some vector space V . The χ-isotypic subspace
of V is defined to be

Vχ = {v ∈ V |ρ(g)v = χ(g)v for all g ∈ G}.

Definition 3.3. Let θ : µq+1 → C× be a character. Letting V = H i
c(X), we can regard

elements of G and elements of im(θ) as acting on V . The Deligne–Lusztig (virtual) character
of θ is

R(θ) :=

2 dim(X)∑
i=0

(−1)iH i
c(X)θ,

where H i
c(X)θ denotes the θ-isotypical component of H i

c(X) and the sum is formal. (Tech-
nically, it can be formalized by defining Grothendieck groups, but we will not do that here.)
By the last proposition, the sum only has finitely many non-zero terms.

We state the following result of Deligne and Lusztig in full generality, although we will only
apply it to one specific case.

Theorem 3.4. Suppose X is an algebraic variety over a field k and σ : X → X is an
automorphism of finite order. If σ = su where s, u are powers of σ of orders prime to p and
a power of p, respectively, then

Tr(σ∗, H∗c (X)) = Tr(u∗, H∗c (Xs)).

Here we let Tr(σ∗, H∗c (X)) =
∑2 dim(X)

i=0 (−1)iTr(σ∗, H i
c(X)), where Tr(σ∗, H i

c(X)) is the trace
of the linear endomorphism σ∗ induced by σ on H i

c(X) induced by σ. Also, Xs denotes the
set of fixed points of X under s.

Example 3.5. Suppose 1 6= ω ∈ µq+1. By the previous fixed point formula,
Tr(ω,H∗c (X)) = Tr(1, H∗c (Xω)).

However, Xσ = ∅, as can be seen from the definition of X as the curve xyq − xqy = 1.
Therefore, the trace of any non-identity element ω ∈ µq+1 on H∗c (X) is zero. This virtual
character therefore corresponds to a multiple of the regular representation, which in this
context turns out to be Q`[µq+1]. This implies that every θ-isotypic component in the sum
for R(θ) has the same degree, and for θ = 1 this degree turns out to be 1 − q. It follows
that −R(θ) is a degree q − 1 representation of SL2(Fq). It turns out that if θ2 6= 1, then the
representation is irreducible, and if θ2 = 1, it is a direct sum of two irreducible representations
of degree q−1

2
. These are exactly the representations of SL2(Fq) that we hoped to recover

using Deligne–Lusztig theory.

Lang proved the following theorem, although in greater generality than we state it.

Theorem 3.6. Suppose GF is a finite group of Lie type. Let T be a maximal torus of G
stable under F . Then there exists a Borel subgroup of G containing T and stable under F .

Deligne and Lusztig invented the following construction to generalize Drinfeld’s technique.
Let T be a maximal torus of G stable under F . By Lang’s theorem, there exists a Borel
subgroup B of G containing T and stable under F . The group

W := NG(T )/T
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is known as the Weyl group of G corresponding to the maximal torus T . Because the action
of G by conjugation on its Borel subgroups is transitive, there is a bijection between G/B
and the Borel subgroups of G given by mapping the image of an element g ∈ G in G/B to
the conjugate gBg−1. The following theorem is now useful.

Theorem 3.7. (Bruhat decomposition.) Suppose G is a connected reductive linear algebraic
group over an algebraically closed field k̄. Let B be a Borel subgroup of G, and let W be a
Weyl group of G corresponding to a maximal torus in B. Then

G = BWB =
⊔
w∈W

BwB.

We can therefore identify W with the double cosets B \G/B.

Definition 3.8. Let G be a connected reductive linear algebraic group, g ∈ G, and B a
Borel subgroup of G. We say that the two Borel subgroups gBg−1 and B are in relative
position w where w is the image of g in W along the isomorphism W ' B \ G/B obtained
from the Bruhat decomposition.

Note that G/B can itself be regarded as a projective variety over k̄.

Definition 3.9. Let G be a connected reductive linear algebraic group over Fq. Let B be a
Borel subgroup of G containing a maximal torus T . Let w ∈ W ' B \G/B. Let F : G→ G
be the absolute Frobenius morphism. Let U be the unipotent radical of B. We define the
variety

Y (w) := {gU ∈ G/U |g−1F (g) ∈ UwU} ⊆ G/U.

The set
TwF := {t ∈ T |wF (t)w−1 = t}

is a torus which acts on Y (w) on the right. Let θ be a character of the torus TwF , and let

Rw(θ) :=

2 dim(Y (w))∑
i=0

(−1)iH i
c(Y (w))θ.

The varieties Y (w) are known as Deligne–Lusztig varieties.

Example 3.10. Take G = SL2 over Fq. The torus

T = {
(
x 0
0 x−1

)
|x ∈ F×q }

and the Borel subgroup

B = {
(
x y
0 x−1

)
|x, y ∈ F×q }

are stable under the Frobenius morphism F . One finds that the Weyl group with respect to
T is isomorphic to S2 = {e, w}. If U is the unipotent radical of B, then elements of G/U
can be identified with one-dimensional subspaces L of F2

q along with the additional data of
vectors u ∈ F2

q/L, v ∈ L for which det(v, u) = 1. Therefore, the Deligne–Lusztig variety

Y (w) consists of vectors v for which det(v, F (v)) = 1. Writing v =

(
x
y

)
, we obtain

det

(
x xq

y yq

)
= 1
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and calculate the torus
TwF = {

(
x 0
0 xq

)
|x ∈ F×q } ' µq+1.

This recovers Drinfeld’s curve!
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