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Abstract

This is a series of lecture notes for a class on Diophantine approximations and the
work of Alan Baker taught by Cam Stewart.

1 Sept. 4, 2019.
Consider the following problems.

(i) Find all integer solutions of x3 − 2y3 = 6.

(ii) Given k ∈ Z+, find all integer solutions of y2 = x3 + k.

We did not have a general method of tackling these sorts of Diophantine equations until
Alan Baker’s work in the 1960s. (Baker was a Fields Medalist and Cam’s PhD advisor.)
This course will focus on that work.

Cam Stewart’s office is MC 5016. There is no textbook for this course. The course will
consist of three lectures a week, on Monday, Wednesday, and Friday. We will be given
research topics related to the material covered in class, and everyone will choose one topic.
We will be expected to master the material in the paper, write an essay of about 10 pages,
and present to the class a seminar on that paper. These will be scheduled for the end of the
term. There will also be an oral exam at the end of the term on the course material.

Definition 1.1. A complex number is algebraic if it is the root of a non-zero polynomial
with integer coefficients. A complex number that is not algebraic is said to be transcendental.
The degree of an algebraic number is the degree of its minimal (integer) polynomial.

Definition 1.2. In number theory, we say a function f(x) is effectively computable in terms
of x if given x, there is some Turing machine that computes f(x) in a finite number of steps.
(We will not be concerned with Turing machines in this course; you should just think of this
terminology as meaning that there is some fairly direct formula for computing the function.)

Baker’s work on estimates for linear forms in the logarithms of algebraic numbers, which
has implications for the solutions of Diophantine equations, has its origins in the theory of
transcendental numbers. In 1844, Liouville proved the following.

Theorem 1.3. Let α be an algebraic number of degree d with d > 1. Then there exists a
positive real C(α), which is effectively computable in terms of α, such that

|α− p

q
| > C(α)

qd

for any rational number p
q
with p, q ∈ Z and q > 0.
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Proof. Notice that the result holds if α is not real since in that case, for any p
q
of the

prescribed form, we have

|α− p

q
| ≥ |Im(α)| ≥ |Im(α)|

qd
>

1
2
|Im(α)|
qd

.

Taking C(α) := |Im(α)|
2

, we thus obtain the result.

Now suppose α is real. Let f ∈ Z[x] be the minimal polynomial of α, so f is not the zero
polynomial, has minimal degree among integer polynomials vanishing at α, has content 1,
and has positive leading coefficient. (Recall that the content of a polynomial is the gcd of
its coefficients.)

Since f is the minimal polynomial of α, it is irreducible over Q, so f(p
q
) 6= 0. Since f has

degree d and has integer coefficients, f(p
q
) is a rational with denominator at most qd when

written in lowest terms. Therefore,

1

qd
≤ |f(

p

q
)|.

Now f(α) = 0, so by the mean value theorem, when α is real,

1

qd
≤ |f(α)− f(

p

q
)| = |α− p

q
||f ′(y)|, (*)

where y is a real number between α and p
q
.

Notice that if |α − p
q
| > 1, then we may take C(α) := 1 since 1 > 1

qd
. Suppose next that

|α− p
q
| ≤ 1. Let f(x) =: adx

d + ...+ a1x+ a0. Then f ′(x) = dadx
d−1 + ...+ a1. The value y

is between α and p
q
, so |y| ≤ |α|+ 1. Thus,

|f ′(y)| ≤ dad(|α|+ 1)d−1 + ...+ 2|a2|(|α|+ 1) + |a1| =: C1(α).

(Note that we have here used the assumption that f has positive leading coefficient.) By
(*),

|α− p

q
| ≥ 1/C1(α)

qd
>

1/(2C1(α))

qd
,

so we can take C(α) := 1
2C1(α)

.

But what if C1(α) = 0? We claim that this cannot happen because |f ′(y)| > 0. Indeed, since
f is irreducible, it does not have a double root at α, so f ′(α) 6= 0. For sufficiently large q, if
p
q
is the best rational approximation (in lowest terms) to α and y is between α and p

q
, we can

make |f ′(y)| ≥ 1
2
|f ′(α)| by continuity of the derivative f ′. Therefore, there is some positive

integer N such that for q ≥ N , the above argument works with C(α) = 1
2C1(α)

. Moreover,
for 1 ≤ q < N , we have only finitely many additional inequalities we want to be satisfied, so
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we can choose a possibly smaller but positive C(α) so that the same result holds for these
finitely many cases.

Anton remarks that Schmidt’s textbook on Diophantine approximations proves the previous
result through the use of Taylor’s theorem.

Liouville proved that the number

α =
∞∑
n=1

10−n!

is transcendental. He was able to do this because the sum converges very rapidly. By
truncating the sum, you get very good rational approximations, which he showed are too
good for α to be an algebraic number. This basic idea is still more or less the main method
in proving transcendence results. We now study Liouville’s approach in more detail.

Theorem 1.4. Let α =
∑∞

n=1 10−n!. Then α is transcendental.

Proof. For each positive integer k, let

qk = 10k! and pk = 10k!(
k∑

n=1

10−n!).

Then

|α− pk
qk
| =

∞∑
n=k+1

10−n! <
2

10(k+1)!
=

2

qk+1
k

. (1)

Suppose α is algebraic of degree 1. In this case, it suffices to prove that α is irrational. But
this follows from the fact that it does not have a periodic decimal expansion.

Now suppose that α is algebraic of degree d > 1. Then by Theorem 1.3, there exists C(α) > 0
such that

|α− pk
qk
| > C(α)

qdk
. (2)

Combining (1) and (2), we find that

C(α)

qdk
<

2

qk+1
k

, so qk+1−d
k <

2

C(α)
,

which cannot hold for k sufficiently large.

In 1873, Hermite proved that e is transcendental. In 1874, Cantor proved that the real
transcendental numbers are dense in R. He did this by showing that the algebraic numbers
are countable. In 1882, Lindemann proved that π is transcendental. More generally, the
Hermite–Lindemann theorem states that if β is a non-zero complex number, then at least
one of {β, eβ} is transcendental. Taking β = 2πi gives that π is transcendental. Lindemann
stated and Weierstrass proved in 1885 that if β1, ..., βn are linearly independent over Q, then
eβ1 , ..., eβn are algebraically independent, i.e., they do not satisfy any non-trivial polynomial
equation over Q. We will see that this is what motivated Baker’s work.
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2 Sept. 6, 2019
In 1900, Hilbert proposed a list of 23 problems that he felt were fundamental. Cam talks
about how Hilbert would master one field of mathematics and then switch gears to another.
He would ask naive questions at first, but in a few years he would catch up to the state of
the art in the new field.

Hilbert’s seventh problem is the following: Let α be an algebraic number not equal to 0 or 1,
and let β be an irrational algebraic number. Prove that αβ is transcendental. In 1934, the
seventh problem was independently proved by Gelfond and Schneider.

Theorem 2.1. Let α be an algebraic number not equal to 0 or 1, and let β be an irrational
algebraic number. Then αβ is transcendental.

This was Schneider’s PhD problem! He didn’t know that the problem his advisor gave him
was famous. There had, however, been some progress in 1929 on this problem that suggested
a way to solve it, and Siegel (who was Schneider’s advisor) knew there was probably a way
to do it. Schneider told Cam that he showed Siegel the first proof he came up with and
that Siegel found a mistake. Then Schneider patched it and came back, and Siegel told him,
"Congratulations. You’ll probably get a PhD."

For an example of what Hilbert’s seventh problem is talking about, note that
√

2
√

2
and

eπ = i−2i are transcendental. Baker generalized the Gelfond–Schneider theorem in 1967 by
proving the following result.

Theorem 2.2. If α1, ..., αn are algebraic numbers different from 0 or 1 and β1, ..., βn are
algebraic numbers such that {1, β1, ..., βn} is a Q–linearly independent set, then

αβ1

1 ...α
βn
n

is transcendental.

Remark 2.3. We need the condition that that set is Q–linearly independent to avoid, for
example, the situation where β2 = −β1 and other obviously bad things.

Baker also proved the next theorem.

Theorem 2.4. If β0, ..., βn, α1, ..., αn are any non-zero algebraic numbers, then

eβ0αβ1

1 ...α
βn
n

is transcendental.

It is natural to ask for a quantitative version of these results. In particular, can we estimate
from below the quantity

|β0 + β1 logα1 + ...+ βn logαn − logαn+1|
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for other algebraic numbers αn+1? It is not a priori clear what this means because logαn+1

can be arbitrarily close to the sum of the other terms. So you need to have a lower bound
that depends on some information about the other terms. It turns out to depend on a notion
of height that is a measure of arithmetic complexity.

The above approximation problem motivates the following simpler question. For our pur-
poses, it is enough to consider estimates from below for

|β1 logα1 + ...+ βn logαn| (*)

where β1, ..., βn are integers. (We are taking αn+1 = 1 in the earlier expression.) This is a
degenerate case of the previous situation. Earlier we wanted {1, β1, ..., βn} to be Q–linearly
independent, but if the βi are integers, then that clearly is not the case. Nevertheless, we can
still obtain estimates from Baker’s proof. We will show that (*) is either 0 or it is bounded
away from 0 by an explicit quantity. To make the lower bound explicit, we need a measure
for the complexity of an algebraic number α.

Definition 2.5. Let
f(x) = adx

d + ...+ a1x+ a0

be the minimal polynomial of α. We define the naive height of α, denoted H(α), by

H(α) = max(|ad|, |ad−1|, ..., |a0|).

Baker established lower bounds for linear forms in the logarithms of algebraic numbers in
1966. We will state a result from 1993 due to Baker and Wüstholz.

Theorem 2.6. Let α1, ..., αn be algebraic numbers different from 0 and 1, and let logα1, ..., logαn
denote the principal branch of the logarithm function of α1, ..., αn. Let K = Q(α1, ..., αn),
and let d := [K : Q]. Suppose that Ai := max(H(αi), e) for i = 1, ..., n and that b1, ..., bn are
integers, and let B := max(|b1|, ..., |bn|, e). Let

Λ := b1 logα1 + ...+ bn logαn.

If Λ 6= 0, then
|Λ| > exp(−(16nd)2(n+2) logA1... logAn logB).

This seems like a pretty weak lower bound. It’s an exponential of a negative exponential! It
is not clear immediately that this is a significant result. We also present the following useful
proposition.

Proposition 2.7. Let α be an algebraic number with height H and minimal polynomial
f(x) = adx

d + ...+ a0. Then

|α| < H

|ad|
+ 1.

Proof. We may assume that |α| > 1 since otherwise the result holds. Since α is a root of f ,

0 = adα
d + ...+ a1α + a0,
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so
0 = adα + ad1 + ...+ a0α

−d+1,

which implies that
|adα| = |ad−1 + ...+ a0α

−d+1|.

By the triangle inequality, we obtain

|adα| ≤ H · (1 + |α|−1 + ...+ |α|−d+1) <
H

(1− |α|−1)
,

so
|α| − 1 <

H

|ad|
as required.

Note that xdf( 1
x
) is the minimal polynomial of α−1 provided that α 6= 0, so in this case we

may apply Proposition 2.7 to conclude that

|α| > (
H

|a0|
+ 1)−1.

3 Sept. 9, 2019
The following is a result from Cam’s own PhD thesis that gives a weaker bound than the
result we saw last class of Baker and Wüstholz.

Proposition 3.1. Let b1, ..., bn be integers with absolute values at most B ≥ 2. Let α1, ..., αn
be non-zero algebraic numbers with heights at most A ≥ 2. Let d := [Q(α1, ..., αn) : Q]. Let

Λ := b1 logα1 + ...+ bn logαn,

where log denotes the principal branch of the logarithm function. If Λ 6= 0, then

|Λ| > (3A)−ndB.

Proof. Let aj be the leading coefficient in the minimal polynomial of αj if bj > 0 and α−1
j if

bj < 0. Let
w := a

|b1|
1 ...a|bn|n (αb11 ...α

bn
n − 1),

which is an algebraic integer of degree at most d. Let σ be an embedding of Q(α1, ..., αn)
into C which fixes Q. Then the conjugate σ(w) of w has the form

a
|b1|
1 ...a|bn|n (σ(αε11 )|b1|...σ(αεnn )|bn| − 1)

where εi := bi
|bi| for i = 1, ..., n.

Now, by Proposition 2.7,
|aiσ(αεii )| < 2A
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and, as a consequence,
|σ(w)| < 2(2A)nB.

Since Λ = log(αb11 ...α
bn
n ), if w = 0 and Λ 6= 0, then Λ is a multiple of 2πi and the result holds.

Suppose now that w 6= 0. Let N denote the norm function associated to the field extension
Q(α1, ..., αn)/Q. Then |N(w)| ≥ 1. Since the norm can be written as a product of Galois
conjugates and since σ was arbitrary above,

1 ≤ |N(w)| = |w||σ(w)|d−1 < |w|(2(2A)nB)d−1

so
|w| > (2(2A)nB)−d+1

From the inequality |ez − 1| ≤ |z|e|z|< we find on setting z := Λ that

|w|
a
|b1|
1 ...a

|bn|
n

= |αb11 ...α
bn
n − 1| ≤ |Λ|e|Λ|.

Either |Λ| > 1
2
, in which case we are done, or 1 < e|Λ| ≤ e1/2 < 2. In the latter case,

|Λ| > (2(2A)nB)−d+1

e|Λ|AnB
> 2−d+1(2A)−nBd > (3A)−nBd,

as required. (The last step of the last inequality follows from the fact that n ≥ 1, B ≥ 2,
and 2(log2 3− 1) > 1 if you work it out.)

Note that if Λ 6= 0, then it follows from Proposition 3.1 that

|Λ| > exp(−nd(log 3A)B).

Suppose A ≥ e. Then 3A < A3, so

|Λ| > exp(−3nd(logA)B). (1)

(Note that although Proposition 3.1 assumes A ≥ 2 which is already sufficient to obtain
3A < A3, we are mimicking the assumption in the hypothesis of Theorem 2.6 in taking
A ≥ e.) Recall that Baker and Wüstholz proved that if Λ 6= 0, then

|Λ| > exp(−(16nd)2n+4 logA1... logAn logB). (2)

Without loss of generality, we can suppose that A = An ≥ Ai for i = 1, ..., n. Thus, we see
that (2) is an improvement on (1) whenever

3nd(logA)B > (16nd)2n+4 logA1... logAn logB,

so whenever
B/ logB >

1

3nd
(16nd)2n+4 logA1... logAn−1.
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Thus, we see that we can obtain significant information on linear forms with "large" coeffi-
cients. Basically, large powers of algebraic numbers of small height cannot be too close.

We now consider a simpler situation. The next conjecture is due to Lang and Waldschmidt.

Conjecture 3.2. Let a1, ..., an be positive rational numbers, and let b1, ..., bn be non-zero
integers. Put Bj := max(|bj|, 1). Let B := maxj Bj, let Aj := max(H(aj), 1), and let

Λ := b1 log a1 + ...+ bn log an.

Let ε > 0. Then there exists a positive real number C(ε) such that if Λ 6= 0, then

|Λ| > C(ε)nB

(B1...BnA2
1...A

2
n)1+ε

,

so
|Λ| > C(ε)nB−n(1+ε)A−2n(1+ε)

> exp(−3n(logB + logA+ logC(
1

2
)−1)).

Anton asks why Cam is using C(1
2
) in the previous bound. Cam basically says this is a

matter of notational convenience; we just choose C to be sufficiently small at 1/2.

Cam gives some anecdotes. Apparently Serge Lang could write a 200-page textbook in two
weeks and would get intensely interested in various causes, and Michel Waldschmidt is an
ultramarathon runner and almost single-handedly developed the French school of transcen-
dence theory. Cam thinks that probably nobody in the next millennium will prove the
conjecture above. Anton asks whether the result of Baker and Wüstholz has been improved,
and Cam says the best currently known result in that direction is due to Matveev.

4 Sept. 11, 2019
We motivate the Lang–Waldschmidt conjecture (Conjecture 3.2) from last class. They con-
sidered the set S of linear combinations b1 log a1+...+bn log an with |bj| ≤ Bj andH(αj) ≤ Aj
with αj > 0. Then there are at most (2B1 + 1)...(2Bn + 1) possibilities for the Bj, and since
the aj in Conjecture 3.2 are positive rationals, there are at most A2

1...A
2
n possibilities for

the aj. (The squaring comes from choosing a positive integer numerator and a positive in-
teger denominator.) All these linear combinations lie in the interval [−nB logA, nB logA]
where A := maxj Aj and B := maxj Bj. Under the assumptions that (i) the upper bound
(2B1 + 1)...(2Bn + 1)A2

1...A
2
n is asymptotically the same as the actual number of aj and bj

satisfying those constraints (which is not true in all cases since, for example, the aj might
all be equal) and that (ii) the numbers are independently and uniformly distributed, then
the average distance between two of these linear combinations is

2nB logA

(2B1 + 1)...(2Bn + 1)A2
1...A

2
n

.
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The 1 + ε in the formula from Conjecture 3.2 is just a fudge factor similar to the one in the
statement of the abc conjecture. Similarly, the logA we obtain in the numerator only helps
us in comparison to Lang and Waldschmidt’s conjecture since the average we get is bigger
than the lower bound of the conjecture.

Definition 4.1. Let f ∈ Z[x] be non-zero. We define the Mahler measure, denoted M(f),
of f as follows. Suppose f(x) = adx

d + ...+ a1x+ a0 and

f(x) = ad

d∏
i=1

(x− αi).

Let

M(f) := |ad|
d∏
i=1

max(1, |αi|).

For any algebraic number α, we define M(α) to be M(f) where f is the minimal polynomial
of α.

The Mahler measure thus defines another height function. The following bound relating the
Mahler measure to the naive height is due to Edmund Landau.

Proposition 4.2. For any algebraic number α of degree d,

M(α) ≤ (d+ 1)1/2H(α).

Proof. We will need Jensen’s formula, which we now recall. Let f be an analytic function
on the closed disc of radius r (r > 0) centred at the origin in the complex plane. Suppose
that α1, ..., αm are zeroes of f in that disc, counted with multiplicity. If f(0) 6= 0, then

log |f(0)| = −
m∑
k=1

log(
r

|αk|
) +

1

2π

∫ π

0

log |f(reiθ)| dθ. (*)

We now apply (*) with f the minimal polynomial of α and r = 1. (Note that the last
coefficient of the minimal polynomial is necessarily non-zero, which implies that f(0) 6= 0,
so this is alright.) Let α1, ..., αm be the roots of f of modulus at most 1. Suppose f(x) =
adx

d + ...+ a1x+ a0 = ad(x− α1)...(x− αd). Then f(0) = a0 as mentioned, so

log |a0| − log |a1| − ...− log |am| =
1

2π

∫ 2π

0

log |f(eiθ)| dθ.

But |a0|
|α1...αm| = |ad||αm+1|...|αd| = M(α), so

logM(α) =
1

2π

∫ 2π

0

log |f(eiθ)| dθ.
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Therefore,

M(α) = exp(
1

2π

∫ 2π

0

log |f(eiθ)| dθ),

so

M(α)2 = exp(
1

2π

∫ 2π

0

log |f(eiθ)|2 dθ.

By the arithmetic–geometric mean inequality for integrals (which can be found as Thm. 184
of Inequalities by Hardy, Littlewood, and Polya),

M(α)2 ≤ 1

2π

∫ 2π

0

|f(eiθ)|2 dθ = a2
0 + ...+ a2

d ≤ (d+ 1)H(α)2

as required.

It can be shown that if Λ = b1 logα1 + ...+bn logαn is a linear form in logarithms of algebraic
numbers with the bi some non-zero integer coefficients and if Λ = 0, then we can find a linear
form in logα1,..., logαn with coefficients which are not all zero and are "small". Baker proved
this by analytic means, but the proof was quite involved. Stark showed you could do it using
the geometry of numbers, and Loxton and van der Poorten gave a nice proof along these
lines.

Theorem 4.3. Let α1, ..., αn be non-zero algebraic numbers, and let logα1,..., logαn be
linearly dependent over the rationals. Suppose that

Aj := max(M(αj), e
| logαj |/d, e)

for j = 1, ..., n, where d := [Q(α1, ..., αn) : Q]. Then there exist integers t1, ..., tn, not all
zero, such that

t1 logα1 + ...+ tn logαn = 0

and
|tk| ≤ (11(n− 1)d3)n−1 logA1... logAn

logAk

for k = 1, ..., n.

For the proof, we need some ideas from the geometry of numbers.

Definition 4.4. A set S in Rn is said to be symmetric about the origin O := (0, 0, ..., 0) if
whenever x ∈ S, then −x ∈ S as well. The set S is said to be convex if whenever x ∈ S and
y ∈ S, then all points on the line segment {(1− t)x+ ty | 0 ≤ t ≤ 1} joining x and y are in
S. The volume of S is the Riemann integral of the characteristic function of S proved this
characteristic function is integrable. (Note that it can be shown that every bounded convex
set in Rn has a volume.) Finally, an integer point in Rn is a point with integer coordinates

5 Sept. 13, 2019
The following theorem is known as Minkowski’s convex body theorem. It was proved in 1896.
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Theorem 5.1. Let A be a convex set in Rn that is bounded and symmetric about the origin,
and has volume µ(A). If µ(A) > 2n, then A contains an integer point different from 0 :=
(0, 0, ..., 0).

Proof. Let Am be the set of rational points with denominator m in A, so

Am := {( t1
m
, ...,

tn
m

) ∈ A | (t1, ..., tn) ∈ Zn}.

(Note that we do not require the coordinates to be in lowest terms, so in particular 0 ∈ Am
for every m.) We have

lim
m→∞

|Am|
mn

= µ(A).

Since µ(A) > 2n and the limit above holds, for m sufficiently large we have |Am| > (2m)n.
Thus there exist a = (a1

m
, ..., an

m
) and b = ( b1

m
, ..., bn

m
) in Am with a 6= b and ai ≡ bi (mod 2m)

for i = 1, ..., n. Then 1
2
(a − b) is an integer point different from 0. (Note that it is an

integer point because each difference ai− bi is congruent to 0 mod 2m, hence is even.) Since
a, b ∈ Am, they are also in A. Since A is symmetric, −b in A. Since A is convex, 1

2
(a−b) ∈ A.

This completes the proof.

Remark 5.2. (i) The set B := {(x1, ..., xn) ∈ Rn | |xi| < 1 for i = 1, ..., n} is a symmetric
convex set in Rn of volume µ(B) = 2n, and the only integer point in B is 0. Therefore, the
bound Minkowski obtained is sharp.

(ii) Note that if y is a non-zero integer point in A, then −y is also a non-zero integer point
in A.

The next theorem is known as Minkowski’s linear forms theorem.

Theorem 5.3. Let B := (βij) ∈ GLn(R). Let c1, ..., cn ∈ R>0 with c1...cn ≥ | det(B)|. Then
there exists a non-zero point x = (x1, ..., xn) ∈ Zn such that

|βi1x1 + ...+ βinxn| < ci for i = 1, ..., n− 1

and
|βn1x1 + ...+ βnnxn| ≤ cn.

Proof. Write Li(x) := βi1x1 + ...+ βinxn for i = 1, ..., n and L′i(x) := 1
ci
Li(x) for i = 1, ..., n.

We wish to find a non-zero x ∈ Zn satifying the following system of inequalities:

|L′i(x)| < 1 for i = 1, ..., n− 1

and
|L′n(x)| ≤ 1.

Note that the determinant of the matrix associated with L′1(x), ..., L′n(x) is at most 1. Thus,
we may assume, without loss of generality, that c1 = ... = cn = 1 and | det(B)| ≤ 1.
For each ε > 0, we define Aε to be the set of (x1, ..., xn) ∈ Rn for which

|βi1x1 + ...+ βinxn| < 1 for i = 1, ..., n− 1
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and
|βn1x1 + ...+ βnnxn| < 1 + ε.

Note that Aε is a bounded symmetric subset of Rn. Moreover, it is convex since if λ ∈ R
with 0 ≤ λ ≤ 1, then

|L′i(λx+ (1− λ)y)| = |
n∑
j=1

βij(λxj + (1− λ)yj)|

≤ λ|L′i(x)|+ (1− λ)|L′i(y)|

<

{
λ+ (1− λ) = 1 for i = 1, ..., n− 1,

(λ+ (1− λ))(1 + ε) = 1 + ε for i = n.

Since µ(Aε) ≥ (1 + ε)2n > 2n, by Theorem 5.1, there exists a non-zero integer point xε ∈
Aε. For each positive integer k, we can find a non-zero integer point x 1

k
∈ A 1

k
. The sets

A1, A 1
2
, A 1

3
, etc. all lie in the bounded set A1. But there are only finitely many integer points

in any bounded set. Thus, there must be some integer point x that is contained in A 1
k
for

infinitely many k. Such an x then satisfies |L′i(x)| < 1 for i = 1, ..., n − 1 and L′n(x)| ≤ 1,
which was what we wanted.

The following result is due to Kronecker from 1857.

Theorem 5.4. Suppose that α is an algebraic number with M(α) ≤ 1. Then either α = 0
or α is a root of unity.

Proof. By definition of the Mahler measure, M(α) = |ad|
∏d

i=1 max(1, |αi|) where ad is the
leading coefficient of the minimal polynomial of α and the αi are the roots of the minimal
polynomial. Thus, |ad| ≤ 1, but since the minimal polynomial is an integer polynomial,
ad = 1. Thus, α is an algebraic integer. The conjugates of α are α1, ..., αd. It follows that
M(αk) ≤ 1 for k = 1, 2, ..., d. In particular, |αki | ≤ 1 for i = 1, ..., d.

The elementary symmetric functions in the αki are integers of absolute value at most 2d.
Thus, αk is a root of one of a finite collection of non-zero polynomials. By the pigeonhole
principle, αk = α` for two distinct positive integers k and `. Thus, either α = 0 or α is a
root of unity.

6 Sept. 16, 2019
In 1933, D. H. Lehmer asked the following question.

Question 6.1. Does there exist a positive number ε such that if α is an algebraic number
with M(α) < 1 + ε, then M(α) ≤ 1?

Lehmer showed that if such an ε exists, then it is less than 0.17628081.... He gave the
example of a polynomial f given by

f(x) := x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1.
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The polynomial f is irreducible with roots α1, ..., α10 and with α1 = 1.17628081..., α2 = α−1
1 ,

and all other roots on the unit circle. Indeed, α1 is the smallest known Salem number, where
a Salem number is defined to be a real algebraic integer greater than 1 whose conjugate
roots all have absolute value ≤ 1 and at least one of which has absolute value exactly 1. It
is conjectured that there are Salem numbers arbitrarily close to 1 and greater than 1, and
this seems to be a hard conjecture to prove or disprove.

If we let ε vary with the degree d, we can make some progress. In 1979, Dobrowolski proved
that if α is a non-zero algebraic number of degree d ≥ 2 with

M(α) < 1 +
1

1200
(
log log d

log d
)3,

then α is a root of unity. We will prove an easier bound.

Theorem 6.2. Let d be a positive integer, and let α be a non-zero algebraic number of degree
at most d that is not a root of unity. Then

logM(α) >
1

11d2
.

To prove Theorem 6.2, we need some preliminary results.

Proposition 6.3. Let p be a prime, and let f ∈ Z[x1, ..., xn]. Then there exists a polynomial
g ∈ Z[x1, ..., xn] such that

f(xp1, ..., x
p
n)− (f(x1, ..., xn))p = pg(x1, ..., xn).

Proof. Put x := (x1, ..., xn), so xp = (xp1, ..., x
p
n). If f is a monomial, say f(x) := axi11 ...x

in
n ,

where the ij are non-negative integers, then the result holds since

f(xp)− f(x)p = (a− ap)xpi11 ...xpinn

and a− ap ≡ 0 (mod p) by Fermat’s little theorem.

Suppose that the result holds for monomials f1 and f2 so that

f1(xp)− f1(x)p = pg1(x)

and
f2(xp)− f2(x)p = pg2(x)

with g1, g2 ∈ Z[x1, ..., xn]. Then

(f1 + f2)p − fp1 − f
p
2 =

p−1∑
k=1

(
p

k

)
fk1 f

p−k
2 .

15



Note that p divides
(
p
k

)
for k = 1, ..., p− 1. Thus,

(f1 + f2)(xp)− f1(x)p − f2(x)p = p(g1(x) + g2(x)−
p−1∑
k=1

(p− 1)!

(p− k)!k!
fk1 f

p−k
2 ).

The result follows by induction on the number of monomials in f .

Proposition 6.4. Let α be a non-zero algebraic number. Suppose that h and ` are two
distinct positive integers for which αh and α` are conjugates. Then α is a root of unity.

Proof. Let K be the splitting field of α over Q. Since αh and α` are conjugates, there is
some element σ ∈ Gal(K/Q) for which σ(αh) = α`. We will now show that

σn(αh
n

) = α`
n

for n = 1, 2, ... by induction on n. The claim is plainly true for n = 1. Suppose it is true for
1 ≤ k ≤ n. Then

σn+1(αh
n+1

) = σ(σn(αh
n

)h)

= σ((α`
n

)h)

= (σ(αh))`
n

= (α`)`
n

= α`
n+1

,

as required.

The Galois group Gal(K/Q) is finite, so σ has finite order, say t. Then σt = id, so

σt(αh
t

) = αh
t

.

On the other hand,
σt(αh

t

) = α`
t

,

and so
α`

t

= αh
t

.

But ` 6= h, so α is a root of unity.

Definition 6.5. For any algebraic number α of degree d with conjugates α = α1, ..., αd, we
define the house of α, denoted α , by

α := max(|α1|, ..., |αd|).

7 Sept. 18, 2019
The following theorem from 1978, which we began proving last class, is due to Dobrowolski.
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Theorem 7.1. If α is a non-zero algebraic integer of degree d which is not a root of unity,
then

α > 1 +
1

4ed2
.

Proof. Let α =: α1, ..., αd be the conjugates of α over Q. Let

fh(x1, ..., xd) := xh1 + ...+ xhd

for h = 1, 2, .... Put Sh := fh(α1, ..., αd) for h = 1, 2, .... This is a trace; you can see directly
that it is an integer because it is an algebraic integer (being a polynomial in algebraic inte-
gers) and is in Q (being invariant under the action of the Galois group).

By Fermat’s little theorem,
Sh ≡ Sph (mod p).

By Proposition 6.3,
Shp − Sph = pg(α1, ..., αd)

for some g ∈ Z[x1, ..., xd]. As before, we see that g(α1, ..., αd) is an integer. Therefore,

Shp ≡ Sph (mod p)

for h = 1, 2, ....

Observe that for any positive integer h,

|Sh| ≤ dα h.

Suppose that

α ≤ 1 +
1

4ed2
.

By Bertrand’s postulate, there is a prime p with

2ed < p < 4ed.

For 1 ≤ h ≤ d,

|Sh| ≤ d(1 +
1

4ed2
)h ≤ d(1 +

1

4ed2
)d = d exp(d log(1 +

1

4ed2
))) ≤ de,

and
|Shp| < d(1 +

1

4ed2
)4ed2 ≤ de.

Therefore,
|Shp − Sh| ≤ 2de < p.

But since Sh ≡ Shp (mod p), we find that Sh = Shp for h = 1, ..., d. But the Newton sums
determine the elementary symmetric polynomials in α1, ..., αd and in αp1, ..., α

p
d. Therefore,
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α and αp have the same minimal polynomial and are thus conjugate. Therefore, α is a root
of unity.

We finally prove Theorem 6.2.

Proof. Let c, k ∈ R+ with k > c. Let

f(t) := log(1 +
1

ct
)− 1

kt
.

Then
f ′(t) = − 1

1 + 1/(ct)

1

ct2
+

1

kt2
,

so for t > 0 we have f ′(t) > 0 when t < 1
k−c . Also, f ′(t) < 0 for t > 1

k−c . Since f(t) is
positive for t sufficiently large, we see that

log(1 +
1

ct
)− 1

kt
> 0

for t > 1
k−c . Take k = 11 and c = 4e. Then

log(1 +
1

4et
) >

1

11t

for t > 1
11−4e

= 7.88.... Thus, for d ≥ 3,

log(1 +
1

4ed2
) >

1

11d2

and also for d = 2,

log(1 +
1

16e
) = 0.022732... ≥ 1

44
= 0.02272....

The result now follows.

Remark 7.2. We are about to discuss valuations. However, what Cam calls a "valuation" I
call an "absolute value", and what Cam calls an "order" and denotes ordp I call a "valuation"
and denote vp. Also, there is a notion of equivalence of absolute values (in my terminology),
and I call such an equivalence class a "place". What all this means will soon become clearer.

Definition 7.3. Let K be a field. A function | | : K → R is an absolute value if:

(i) For every a ∈ K, |a| ≥ 0 and |a| = 0 if and only if a = 0.

(ii) For all a, b ∈ K, |ab| = |a||b|.

(iii) For all a, b ∈ K, |a+ b| ≤ |a|+ |b|.

Example 7.4. The ordinary absolute value on C is an absolute value in the sense just
defined.
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Definition-Example 7.5. Let p be prime. We define the p-adic absolute value on Q by

|a
b
|p := p−vp(a/b)

for a 6= 0 and b 6= 0. The p-adic valuation vp is defined on rationals (in lowest terms) by
vp(a/b) := vp(a)− vp(b). If n is a non-zero integer, then vp(n) is the highest power of p that
divides n. (Note that it does not matter whether n is positive or negative: vp(n) = vp(−n).)
Also, we formally let vp(0) :=∞ where we use the convention that p−∞ = 0. Thus, |0|p = 0
for any prime p.

Definition-Example 7.6. Let k be any field and let T be transcendental over k. Let
K := k(T ) be the field of rational functions in T with coefficients in k. Let λ be a real
number with 0 < λ < 1, and let p(T ) be an irreducible element of K. Then every h ∈ K
can be written in the form

p(T )q
f(T )

g(T )

where f(T ) and g(T ) are not divisible by p(T ) and q is an integer. Then we define | | on K
by

|h| :=

{
λq if h 6= 0.

0 if h = 0.

Notice that this seems to depend on the choice of λ. Later we will see that under the usual
notion of equivalence of absolute values, any choice of λ gives an equivalent absolute value.

Definition-Example 7.7. Let K be a field. Define | |0 on K by

|x|0 :=

{
1 if x 6= 0.

0 if x = 0.

This is known as the trivial valuation on K.

8 Sept. 20, 2019
We have still not defined when two valuations are equivalent, and we remedy this now.

Definition 8.1. If | | and | |1 are absolute values on a field K, we say that they are equivalent
if there exists λ ∈ R>0 such that

|a| = |a|λ1
for every a ∈ K. An equivalence class of absolute values is known as a place.

Remark 8.2. Note that in Example 7.6, each choice of 0 < λ < 1 defines an equivalent
absolute value on k(T ) by the definition of equivalence just given.

Definition 8.3. An absolute value on a field K is said to be non-Archimedean if

|a+ b| ≤ max(|a|, |b|)
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for all a, b ∈ K.

Example 8.4. The absolute value | |p on Qp is non-Archimedean for each prime p.

Remark 8.5. Given an absolute value | | on a field K, we can define a metric and thus a
topology on K by letting d(a, b) := |a − b|. One can check that two absolute values induce
the same topology on K if and only if they are equivalent.

The following beautiful theorem is due to Ostrowski.

Theorem 8.6. Every non-trivial absolute value on Q is equivalent to either the ordinary
absolute value | | or a p-adic absolute value | |p for some prime p.

We will write |a| =: |a|p∞ . Therefore, we think of the Euclidean absolute value as the p-adic
absolute value where p is an "infinite prime". Let S(Q) := {p∞, p a prime in Z}. By the
uniqueness of prime factorization over Z, we have, for all a ∈ Q, the product formula

∏
v∈S(Q)

|a|v =

{
1 if a 6= 0.

0 if a = 0.

Let K be a finite extension of Q. Let OK be the ring of algebraic integers of K. For each
prime p in Z, the ideal (p) in OK splits as a product

(p) = pe11 ...p
et
t

where each pi is a prime ideal in OK and each ei is a positive integer for i = 1, ..., t.

Definition 8.7. The residue class degree of pi is defined to be fi := [OK/pi : OQ/p].

One can show that
e1f1 + ...+ etft = [K : Q].

If K is a Galois extension, then e1 = ... = et and f1 = ... = ft.

We also wish to extend the Euclidean absolute value to the case of an arbitrary number field.
Consider the Q-isomorphisms of K into C. Recall that K = Q(α) for some α by the primi-
tive element theorem and let α = α1, ..., αd be the conjugates of α. The Q-isomorphisms σ
are then determined by the effect of σ on α.

Thus, we may define Q-isomorphisms σi(α) := αi for each i = 1, ..., d. Let α1, ..., αr1 be real
and αr1+1, ..., αr1+2r2 be complex and not real. (Note that r1 + 2r2 = d.) We may suppose
that αr1+i = αr1+r2+i for i = 1, ..., r2.

We now define an absolute value corresponding to each Q-isomorphism σ1, ..., σr1+r2 .

Definition 8.8. The Q-isomorphisms σ1, ..., σr1+r2 are called infinite primes of K. The
prime ideals of OK are called finite primes of K. We denote the union of these two sets by
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S(K). For each element of S(K), we define an absolute value as follows. For β ∈ K and for
v = p a prime ideal of OK , let

|β|v :=

{
NK/Q(p)−ωp(β)/d if β 6= 0.

0 if β = 0.

Here d = [K : Q], NK/Q denotes the norm, and ωp(β) is the order of p in the canonical
decomposition of the fractional ideal (β) in K as the product of prime ideals. If v = σ is an
infinite prime, then

|β|v := |σ(β)|g/d

where g = 1 if σ is a real embedding and g = 2 otherwise.

Once again, it can be shown that the product formula holds because we have unique factor-
ization into prime ideals. That is, if α ∈ K and α 6= 0, then∏

v∈S(K)

|α|v = 1.

We now introduce a new height function h on K. (We remark that the notation h often
refers to the logarithm of the height we now define.)

Definition 8.9. The height of α in K for α 6= 0 is defined by

h(α) :=
∏

v∈S(K)

max(1, |α|v).

Remark 8.10. It follows from our definition of the absolute values that if we extend K to
L and α is in K, then

h(α) =
∏

v∈S(L)

max(1, |α|v).

In other words, h is defined on all of the algebraic numbers!

9 Sept. 23, 2019
What is the connection between h(α) and the Mahler measure M(α)?

Proposition 9.1. Suppose that α is a non-zero algebraic number with minimal polynomial
f(x) := adx

d + · · ·+ ad = ad
∏d

i=1(x− αi). Then

h(α) = M(α)1/d.

Proof. For α 6= 0,
h(α)d =

∏
v∈S(Q(α))

max(1, |α|v)d

=
∏

p∈S(Q(α))

max(1, NK/Q(p)−ωp(α))
∏

σ∈S(Q(α))

max(1, |σ(α)|gσ),
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where K := Q(α),

=
∏

p∈S(Q(α))

max(1, p−fωp(α))
d∏
i=1

max(1, |αi|),

where p is the rational prime lying under p and f is the residue class degree of p,

= |ad|
d∏
i=1

max(1, |αi|) = M(α).

It follows that for an algebraic number α 6= 0 and a positive integer k,

h(αk) =
∏

v∈S(Q(α))

max(1, |αk|v) =

 ∏
v∈S(Q(α))

max(1, |α|v)

k

= h(α)k.

Recall that if f is the minimal polynomial of α, then g(x) = xdf(x−1) is the minimal
polynomial of α−1 (where d is the degree of α). But

M(α) = exp

(
1

2π

∫ 2π

0

log |f(eiθ)| dθ
)

= exp

(
1

2π

∫ 2π

0

log |g(eiθ)| dθ
)

= M(α−1).

Thus,
h(α)|k| = h(αk) for all k ∈ Z.

Furthermore,

h(αβ) =
∏

v∈S(Q(α,β))

max(1, |αβ|v) ≤
∏

v∈S(Q(α,β))

max(1, |α|v)
∏

v∈S(Q(α,β))

max(1, |β|v) ≤ h(α)h(β).

For sums, the bounds you get are not so nice, and Cam does not write them down.

Theorem 9.2. Let α1, . . . , αn be non-zero algebraic numbers that are multiplicatively depen-
dent. Suppose that

Aj := max(h(αj), e)

for i = 1, . . . , n and that A1 ≤ . . . An. Let d := [Q(α1, . . . , αn) : Q]. There exist t1, . . . , tn ∈
Z, not all zero, such that

αt11 · · ·αtnn = 1

with
|tk| ≤

(
11nd3

)n
logA2 · · · logAn

for k = 1, . . . , n.

Remark 9.3. For any positive integer m, Euler’s phi function ϕ(m) counts the number of
integers from 1, 2, . . . ,m that are coprime with m. One can show that there exists a positive
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number c such that foir m > ee, we have

ϕ(m) > c
m

log logm
.

We will use a weaker estimate.

Lemma 9.4. Let m ∈ N. If ϕ(m) = d, then m ≤ 2d2.

Proof. Note that

ϕ(m)2 = m2
∏
p|m

(
1− 1

p

)2

= m

 m∏
p|m

(
1− 1

p

)−2

 .
However, ∏

p|m

(
1− 1

p

)−2

=
∏
p|m

(
p

p− 1

)2

≤ 2
∏
p|m

p ≤ 2m,

and so
ϕ(m)2 ≥ m

2
.

Thus, if ϕ(m) = d, then
m ≤ 2d2.

10 Sept. 25, 2019
We now prove Theorem 9.2.

Proof. We first suppose that n = 1. Thus, α1 is a root of unity in a field of degree d. Thus,
α is an mth root of unity with m ≤ 2d2 and αm = 1. This proves the claim for n = 1.

Assume now that n ≥ 2 and that there exist integers k1, . . . , kn, not all zero, with

αk1
1 · · ·αknn = 1.

Fix an integer j for which
|kj| ≥ |ki|

for i = 1, . . . , n. Put
ci :=

(
11nd3 logAi

)−1

for i = 1, . . . , n, i 6= j, and

cj :=
(
11nd3

)n−1 logA1 · · · logAn
logAj

.
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Notice that
c1 · · · cn = 1.

Consider the following system of inequalities:

(1)
∣∣∣∣xi − ki

kj
xj

∣∣∣∣ ≤ ci for i = 1, . . . , n, i 6= j

and
(2) |xj| ≤ cj.

Associated to this system is the matrix

B =


1 0 · · · −k1/kj · · · 0
0 1 · · · −k2/kj · · · 0

0 0
. . . 0

. . . 0
0 0 · · · −kn/kj · · · 1


One can show that det(B) = 1. (Note that in the 2 × 2 case, this matrix is

(
1 −k1/kj
0 1

)
,

so it works.) By Minkowksi’s linear forms theorem (Theorem 5.1), there exists a non-zero
integer point (b1, ..., bn) satisfying (1) and (2). Set

α := αb11 ...α
bn
n .

We claim that α is a root of unity. Since αk1
1 ...α

kn
n = 1, we can write

αkj =
n∏
i=1

α
bikj−bjki
i ,

so by (1),

h(α)|kj | ≤
n∏

i=1,i 6=j

h(αi)
ci|kj |.

It follows that h(α) ≤
∏n

i=1,i 6=j h(αi)
ci , so

1

d
logM(α) ≤

n∑
i=1,i 6=j

ci log h(αi).

Therefore,

logM(α) ≤ d
n∑

i=1,i 6=j

log h(αi)

11nd3 max(log h(αi), 1)

=
1

11d2
.

By Theorem 6.2, α is a root of unity. As before, α is a root of unity in a field of degree at
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most d and is thus an mth root of unity with m ≤ 2d2. Thus,

1 = αm = αb1m1 ...αbnmn .

Furthermore, by (2),

|bjm| ≤ cjm ≤ (2d2)(11nd3)n−1 logA1 · · · logAn
logAj

≤ (11nd3)n logA2 · · · logAn

since A1 ≤ A2 ≤ · · · ≤ An.
For i 6= j, we use the fact that |ki| ≤ kj for i 6= j to deduce from (1) and (2) that

|bi| ≤ ci + |bj| ≤ 1 + cj ≤
3

2
cj,

so
|bim| ≤ 3d2(11nd3)n−1 logA1 · · · logAn

logAj

≤ (11nd3)n logA2 · · · logAn

for i = 1, . . . , n, i 6= j. The result follows.

Cam talks about how Harold Stark was given the PhD problem of pushing the bound up on
non-existence of imaginary quadratic fields with class number 1. He proved a very strong
bound. Then he was reading a math review by Morgan Ward of a paper by Heegner where
Heegner proved that the class number problem was solved. This scared Stark, but his ad-
visor made some calls and it turned out that Heegner’s proof was flawed. Stark got a job
at the University of Michigan and continued to work on the problem. He was then denied
tenure because his file did not look very impressive. That summer, he solved the problem
and was hired as a full professor at MIT. He then discovered, along with several others, that
Heegner’s argument was essentially sound and that the proof could be patched.

We will show some applications of Theorem 2.6 and Theorem 9.2. Let Let N be an integer,
and let Sa,b(N) be the sum of the digit sum of N in base a with the digit sum of N in base b.
In 1970, Senge and Strauss proved that if a and b are integers larger than 1 with log a/ log b
irrational, then the number of integers n for which Sa,b(n) lies below a given bound is finite.
(Here Cam points out that Strauss had a joint paper with Einstein and another one with
Erdős.) The proof was not effective because given the bound, the proof does not tell us the
size of n needed for the sum to exceed the bound. We can overcome this issue by means of
Theorems 2.6 and 9.2.

Let α and β be integers with 0 ≤ α < a and 0 ≤ β < b. Denote the number of digits in
the expansion of a positive integer n in base a all of which are different from α by Lα,a(n).
Define Lβ,b(n) similarly, and put

Lα,a,β,b(n) := Lα,a(n) + Lβ,b(n).
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Then the sum of the digits of n in base a plus the sum of the digits of n in base b is greater
than or equal to L0,a,0,b(n).

11 Sept. 30, 2019
Example 11.1. Since 33 = 25 + 1 and 33 = 33 + 2 · 3,

L0,2,0,3(33) = L0,2 + L0,3 = 2 + 2 = 4.

The sum of the digits appearing in the two expansions is 5.

Example 11.2. Since 63 = 25 + 24 + 23 + · · · 2 + 1 = 2 · 52 + 2 · 5 + 3, we have

L1,2,2,5(63) = 1.

Notice that the condition of Senge and Strauss that log a/ log b is irrational is necessary
because if ar = bs with r, s ∈ N, then when n = ark = bsk for k = 1, 2, . . . , we have that
the sum of the digits in base a plus the sum of the digits in base b is the same as L0,a,0,b(n) = 2.

The following is a 1980 result of Stewart. Cam explains that he proved it during a Dutch
PhD defense. Apparently Dutch PhD defenses are rather formal affairs and anyone who
attempts one gets their thesis: you have effectively already been awarded your thesis by the
time you get to the defense, unlike in the British or Canadian systems.

12 Oct. 2, 2019
Theorem 12.1. Let a and b be integers larger than one, and suppose that log a/ log b is
irrational. Let α and β be integers with 0 ≤ α < a and 0 ≤ β < b. There is a positive
number C, which is effectively computable in terms of a and b, such that if n is an integer
larger than 25 then

Lα,a,β,b(n) >
log log n

log log log n+ C
− 1.

Proof. Suppose n > a+ b. We can form the expansions

n = a1a
m1 + α

(
am1 − 1

a− 1

)
+ a2a

m2 + · · ·+ an′a
mr

and

n = b1b
`1 + β

(
b`1 − 1

b− 1

)
+ b2b

`2 + · · ·+ btb
`t

where 0 < a1 < a, −α ≤ ai < a− α with ai 6= 0 for i = 2, . . . , r and 0 < b1 < b, −β ≤ bi <
b− β with bi 6= 0 for i = 2, . . . , t, and m1 > m2 > · · · > mr ≥ 0, `1 > `2 > · · · > `t ≥ 0. We
put

θ := c1 log log n (1)
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where c1 is a positive number larger than 4 which is effectively computable in terms of a and
b alone.

We shall assume that c2, c3, . . . are positive numbers which are effectively computable in
terms of a and b alone and may be determined independently of c1. We first assume that

n > c2 > 25.

Define k to be the unique integer for which

θk ≤ log n

4 log a
< θk+1, (2)

and put
Θ1 := (0, θ],Θ2 := (θ, θ2], . . . ,Θk := (θk−1, θk].

If each interval Θs for s = 1, . . . , k contains at least one term either of the form m1 −mi or
`1 − `j, then the theorem holds since then

Lα,a,β,b(n) ≥ r + t− 2 ≥ k, (3)

while from (2),
(k + 1) log θ > log log n− log(4 log a),

hence
k >

log log n

log θ
− log(4 log a)− 1.

Thus,

k >
log log n

log log log n+ log a
− log(4 log a)− 1 (4).

Our result now follows from (3) and (4) since Lα,a,β,b(n) ≥ 0. Thus we may assume that
there exists an integer s with 1 ≤ s ≤ k for which Θs contains no term of the form m1 −mi

or `1 − `j. Define p and q by the inequalities

mi −mp ≤ θs−1,m1 −mp+1 ≥ θs, (5)

`1 − `q ≤ θs−1, `1 − `q+1 ≥ θs (6)

with the convention that mr+1 and `t+1 are zero. We now write

(b−1)(a−1)n = ((b− 1)(a− 1)a1 + (b− 1)α) am1+(b−1)(a−1)a2a
m2+· · ·+(b−1)(a−1)ara

mr−(b−1)α

= A1a
mp + A2

where A1 and A2 are integers and

A1 := ((b− 1)(a− 1)a1 + (b− 1)α) am1−mp + · · ·+ (b− 1)(a− 1)ap.
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We have
0 < A1 < (b− 1)(a− 1)am1−mp+1 + (b− 1)αam1−mp ,

so
0 < A1 < 2(b− 1)(a− 1)am1−mp+1 (7).

Then
A2 = (b− 1)(a− 1)amp+1a

mp+1 + · · ·+ (b− 1)(a− 1)ara
mr − (b− 1)α,

so
0 ≤ |A2| ≤ 2(b− 1)(a− 1)amp+1+1. (8)

Similarly, we have
(b− 1)(a− 1)n = B1b

`q +B2,

where
0 < B1 < 2(b− 1)(a− 1)b`1−`q+1 (9)

and
0 ≤ |B2| < 2(b− 1)(a− 1)b`q+1+1. (10)

We have
(b− 1)(a− 1)n

(b− 1)(a− 1)n
= 1 =

A1a
mp

B1b`q

(
1 +

A2

A1amp

)(
1 +

B2

B1b`q

)
1

.

If x and y are real numbers with absolute value at most 1/2, then

max

{
1 + x

1 + y
,

1 + y

1 + x

}
≤ 1 + 4 max(|x|, |y|). (11)

Notice that
|A2|
A1amp

<
2(b− 1)(a− 1)amp+1 + 1

(b− 1)(a− 1)am1
≤ 2a−m1+mp+1+1,

and by (5),
m1 −mp+1 ≥ θs ≥ θ = c1 log log n,

and thus for n sufficiently large,

|A2|
A1amp

<
1

2
and similarly

|B2|
B1b`q

<
1

2
.

Thus on putting R := A1a
mp

B1b
`q , we see from (11) that

1 ≤ max(R,R−1) ≤ 1 + 4 max

{
|A2|
A1amp

,
|B2|
B1b`q

}
≤ 1 + 8 max{a−m1+mp+1+1, b−`1+`q+1+1}.

Furthermore, since log(1 + x) < x for x > 0,

0 < | logR| ≤ 8abmax
{
a−m1+mp+1 , b−`1+`q+1

}
.

28



Therefore, if logR 6= 0, then by (5) and (6),

log | logR| < c3 − c4θ
s. (12)

On the other hand, we have

| logR| =
∣∣∣∣log

(
A1

B1

)
+mp log a− `q log b

∣∣∣∣ ,
and we may apply Theorem 2.6 to ive a lower bound for | logR|. We take n = 3, d = 1,
and b1, b2, b3 to be A1

B1
, a, and b, respectively, in Theorem 2.6. Note that mp and `q are at

most logn
log 2

. The height of A1

B1
is at most the maximum of A1 and B1. Then by Theorem 2, if

logR 6= 0, then
| logR| ≥ exp(−c5 log(4 max(A1, B1)) log log n).

Now, from (7) and (9),

log | logR| > −c6 max(1,m1 −mp, `1 − `q) log log n,

which, from (5) and (6), yields

log | logR| > −c7θ
s−1 log log n.

Comparing this estimate with (12), we find that

c4θ
s < c7θ

s−1 log log n+ c3,

hence
θ < c8 log log n+ c9.

However, this contradicts (1) if c1 is chosen to be larger than c8 +c9. This is possible since c8

and c9 are determined independently of c1. Therefore, the assumption that logR 6= 0 must
be false, so we have logR = 0. In particular,

log
A1

B1

+mp log a− `q log b = 0.

By Theorem 9.2, there exists a relation of the form

x1 log
A1

B1

+ x2 log a+ x3 log b = 0

with integer coefficients x1, x2, x3, not all zero, satisfying

max{|x1|, |x2|, |x3|} ≤ c10 log(max(|A|, |B|)).

[TO BE CONTINUED NEXT CLASS]
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13 Oct. 4, 2019
We continue the proof from last class. We had just arrived at logR = 0. In particular,

log
A1

B1

+mp log a− `q log b = 0.

By Theorem 9.2, there exists a relation

x1 log
A1

B1

+ x2 log a+ x3 log b = 0

with x1, x2, x3 integers, not all 0, satisfying

max(|x1|, |x2|, |x3|) ≤ c10 log(max |A1|, |B1|).

By (5) and (7), log |A1| < c11θ
s−1. By (6) and (9), logB1 < c12θ

s−1. Thus, by (2),

|x2| ≤ c13θ
s−1 ≤ c13θ

k−1 <
log n

4 log a

for n sufficiently large. Now, by (5),

mp ≥ m1 − θs−1,

and since m1 ≥ logn
2 log a

and θs−1 < logn
4 log a

, we see that

mp >
log n

4 log a
> |x2|.

If x1 = 0, then log a
log b

is rational. If x1 6= 0, then we may eliminate log A1

B1
from the two

equations to get
(x1mp − x2) log a− (x1`q − x3) log b = 0,

and since mp > |x2|, we see that mp − x2 6= 0, hence again log a
log b

is rational, as required.

Let p be a prime with p ≥ 3. Let 1 = n1 < n2 < . . . be the increasing sequence of
positive integers all of whose prime factors are at most p. In 1898, Størmer proved that
lim infi→∞(ni+1 − ni) > 2. In 1908, Thue proved that limi→∞(ni+1 − ni) = ∞. In 1965,
Erdős gave the following improvement of Thue’s result, by means of a theorem of Mahler
(which used a p-adic version of Thue’s work): "Let 0 < ε < 1. Then there exists a positive
number N(ε) such that for ni > N(ε), ni+1−ni > n1−ε

i ." In 1973, Tijdeman applied estimates
for linear forms in logarithms to prove the following theorem.

Theorem 13.1. Let p be a prime number, and let n1 < n2 < . . . be the sequence of positive
integers all of whose prime factors are at most p. There exists a positive number C, which
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is effectively computable in terms of p, such that

ni+1 − ni >
ni

(log ni)C
for ni ≥ 3.

Tijdeman also showed that there’s an upper bound (with a different constant C), so apart
from adjusting constants, you cannot do better than Tijdeman’s bound.

Proof. Let p1, . . . , pk be the primes of size at most p. Let us consider the prime decomposition
of ni and ni+1:

ni+1 = pa1
1 · · · p

ak
k

where ai ≥ 0 for i = 1, . . . , k, and
ni = pb11 · · · p

bk
k

where bj ≥ 0 for j = 1, . . . , k. Note that

log
ni+1

ni
= (a1 − b1) log p1 + · · ·+ (ak − bk) log pk.

This is a linear form in logarithms, and it is small when ni and ni+1 are near each other. We
invoke Theorem 2.6 with K := Q, d := 1, and α1, . . . , αk given by p1, . . . , pk, respectively,
and n := k. The coefficients are (a1−b1), . . . , (ak−bk). We can estimate their size as follows:

max
i=1,...,k

|ai − bi| ≤
log ni+1

log ni
≤ 1 +

log ni
log 2

.

By Theorem 2.6, ∣∣∣∣log

(
ni+1

ni

)∣∣∣∣ > exp
(
−kck log p1 · · · log pk log log ni

)
.

Thus, since log pi < c1 log k for i = 1, . . . , k by the prime number theorem,

log

(
ni+1

ni

)
> exp

(
−kc2k log log ni

)
.

Hence,

log

(
ni+1

ni

)
> exp (−ec3p log log ni) ,

so
log

(
ni+1

ni

)
>

1

(log ni)e
c3p
.

On the other hand,

log

(
ni+1

ni

)
= log

(
1 +

ni+1 − ni
ni

)
<
ni+1 − ni

ni
.

The result follows by comparing the upper and lower bounds established above for log(ni+1/ni).
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14 Oct. 7, 2019
Tijdeman also proved the following theorem.

Theorem 14.1. Let p and q be distinct primes, and let 1 = n1 < n2 < . . . be the sequence
of positive integers whose prime factors are all p or q. There exist positive numbers c and
N0, which are effectively computable in terms of p and q, such that

ni+1 − ni <
ni

(log ni)c

for ni > N0.

To prove Theorem 14, we need some basic results from Diophantine approximation.

For any real number α, we define a sequence of real numbers α0, α1, . . . by putting α0 := α
and

αk :=
1

αk+1 − [αk−1]

provided αk−1 − [αk−1] 6= 0 for k = 1, 2, . . . (where [·] denotes the integer part). Next, we
put ak := [αk] for k = 0, 1, 2, . . . . Then

α = a0 +
1

a1 + 1

...+ 1

ak−1+ 1
αk

.

We put, for k = 0, 1, 2, . . . ,
pk
qk

:= a0 +
1

a1 + 1

...+ 1

ak−1+ 1
ak

where qk > 0 and gcd(pk, qk) = 1. The numbers ai are known as the partial quotients of α,
and the rationals pk/qk are known as the convergents of α. We have the following facts: If
pk/qk is a convergent to α with k ≥ 1, then∣∣∣∣α− pk

qk

∣∣∣∣ < 1

qkqk+1

<
1

q2
k

.

A finite continued fraction
a0 +

1

a1 + 1

...+ 1
an

is denoted by [a0, a1, . . . , an]. Note that given α, we find pk/qk for k = 1, 2, . . . to be given
by pk/qk = [a0, . . . , ak].
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We will now show that pk and qk are generated by the following recursive rule:

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2 (1)

for n ≥ 2, where p0 = a0, q0 = 1 and p1 = a0a1 + 1, q1 = a1. We will do so by induction. We
check that the result holds for n = 2. Assume it holds for n = k − 1 ≥ 2, and we will prove
it for n = k. Define coprime integers p′j and q′j with qj > 0 for j = 0, 1, 2, . . . by

p′j
q′j

:= [a1, . . . , aj+1]

and apply our inductive hypothesis with j = k − 1 to get

p′k−1 = akp
′
k−2 + p′k−3,

q′k−1 = akq
′
k−2 + q′k−3.

However,
pj
qj

= a0 +
q′j−1

p′j−1

=
a0p
′
j−1 + q′j−1

p′j−1

,

hence pj = a0p
′
j−1 + q′j−1 and qj = p′j−1. Thus, on taking j = k, we get

pk = a0(akp
′
k−2 + p′k−3) + akq

′
k−2 + q′k−3

= ak(a0p
′
k−2 + q′k−2) + a0p

′
k−3 + q′k−3

= akpk−1 + pk−2

and
qk = p′k−1 = akp

′
k−2 + p′k−3 = akqk−1 + qk−2

as required. By definition of α1, α2, . . . , we have

α = [a0, a1, . . . , an, αn+1],

where 0 < 1/αn+1 ≤ 1/an+1 and α lies between pn/qn and pn+1/qn+1.

Proposition 14.2. With the above notation, we have

pnqn+1 − pn+1qn = (−1)n+1

for n = 0, 1, 2, . . . .

Proof. We prove this by induction. For n = 0 it holds since

p0q1 − p1q0 = a0a1 − (a1a0 + 1) = −1 = (−1)0+1.

Assume it holds for n = k − 1 and then apply the recurrence relation (1). We get

pkqk+1 − pk+1qk = pk(ak+1qk + qk−1)− (ak+1pk + pk−1)qk
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= okqk−1 − pk−1qk

= (−1)k+1

as required.

One can show that if ∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
,

then p/q = pk/qk for some k ∈ N. Finally, we have

p0/q0 < p2/q2 < · · · < α < · · · < p5/q5 < p3/q3 < p1/q1,

and by Proposition 14.2,
pk−1

qk−1

− pk
qk

=
(−1)k

qk−1qk
.

15 Oct. 9, 2019
The following lemma is due to Tijdeman.

Lemma 15.1. Let p and q be distinct primes. Let h0/k0, h1/k1, . . . be the sequence of
convergents to log p/ log q. There exists a positive number c, which is effectively computable
in terms of p and q, such that

kj+1 < kcj log q for j = 2, 3, . . . .

Proof. One has kj ≥ 2 for j ≥ 2. Since∣∣∣∣ log p

log q
− hj
kj

∣∣∣∣ < 1

kjkj+1

for j = 0, 1, 2, . . . ,

we obtain
|kj log p− hj log q| < log q

kj+1

. (1)

On the other hand, by Theorem 2.6 with α1 := p and α2 := q, we see that

|kj log p− hj log q| > exp(−c1 log max(kj, hj)).

Here c1, c2, . . . are positive numbers that are effectively computable in terms of p and q
(although we have not used ci for i 6= 1 yet!). Since hj/kj is approximately log p/ log q, we
see that

|kj log p− hj log q| > exp(−c2 log kj) = k−c2j (2)

Our result then follows from (1) and (2).

We are now ready to prove Theorem 14.1.
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Proof. Put n := ni =: puqv where u and v are non-negative integers. We assume, without
loss of generality, that pu ≥

√
n, so

u ≥ log n

2 log p
. (*)

Let h0/k0, h1/k1, . . . be the sequence of convergents to log p/ log q. Then k1 < k2 < . . . , and
so for some index j we have kj ≤ u < kj+1. We may suppose that n ≥ 3 and j ≥ 2. There
are two cases to consider depending on whether hj/kj is larger than log p/ log q or it is not.

Case 1: hj
kj
> log p

log q
.

Put n′ := pu−kjqv+hj , and note that n′ ∈ Z and n′ > n. We have

hj
kj
− log p

log q
<

1

kjkj+1

.

Thus,

log
n′

n
= log

qhj

pkj
= hj log q − kj log p <

log q

kj+1

.

Recall that
kj+1 > u ≥ log n

2 log p
.

Thus,

log
n′

n
<

2 log p log q

log a
, (1)

so for n sufficiently large in terms of p and q,

n′

n
− 1 < exp

(
2 log p log q

log n

)
− 1 <

1

2
.

For x ∈ R+,

log(1 + x) = x− x2

2
+
x3

3
− · · · > x− x2

2

and
x− x2

2
>
x

2
for 0 < x <

1

2
.

Thus,

log
n′

n
= log

(
1 +

(
n′

n
− 1

))
>

1

2

(
n′

n
− 1

)
for n sufficiently large. Therefore, by (1),

n′

n
<

4 log p log q

log n
,

so n′ < n + c1
n

logn
, where c1, c2, . . . are positive numbers that are effectively computable in
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terms of p and q. Since ni+1 ≤ n′,

ni+1 < ni + c1
ni

log ni
.

Case 2: hj
kj
< log p

log q
.

Then
hj−1

kj−1

>
log p

log q
.

Put n′ := pu−kj−1qv+hj−1 . Again n′ ∈ Z and n′ > n, so

n′ ≥ ni+1.

We have
hj−1

kj−1

− log p

log q
<

1

kj−1kj
.

Therefore,

log
n′

n
log

qhj−1

pkj−1
= hj−1 log q − kj−1 log p <

log q

kj
.

We find from Lemma 16 that

kj >

(
kj+1

log q

)1/c

.

Since u ≥ logn
2 log p

and since kj+1 > u, we see that

log
n′

n
<

log q

kj
<

(log q)1+1/c

(kj+1)1/c
<

(2 log p)1/c(log q)1+1/c

(log n)1/c
. (2)

Thus for n sufficiently large,

log
n′

n
>

1

2

(
n′

n
− 1

)
(3)

and so from (2) and (3),
n′ < n+ c2

n

(log n)1/c
.

Since n′ ≥ ni+1,
ni+1 < ni + c2

ni
(log ni)1/c

< ni +
ni

(log ni)c4
,

as required.
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16 Oct. 11, 2019
Today we give some background information about algebraic number theory.

Let K be a finite extension of Q. Then there exists a monic polynomial f ∈ Q[x] that is
irreducible and for which K is given by Q[x]/fQ[x].

Suppose that f is of degree n and factors over C as f(x) = (x−α1) · · · (x−αn). By the prim-
itive element theorem, there exists an element θ such that K = Q(θ). Note that α1, . . . , αn
are distinct since f is irreducible over Q.

There are n distinct embeddings of K in C. They are given by mapping θ to αi for i =
1, 2, . . . , n and fixing elements of Q. The images Q(α1), . . . ,Q(αn) are conjugate fields in C.
We may order the αi so that α1, . . . , αr1 are real and αr1+1, . . . , αn are not real. Then we
have

αr1+i = αr1+r2+i

for i = 1, 2, . . . , r2 where r1 + 2r2 = n.

The ring of algebraic integers of K, denoted by OK , consists of the elements of K which are
roots of a monic polynomial with integer coefficients.

Example 16.1. We have OQ = Z.

Definition 16.2. An integral domain O is said to be a Dedekind domain if the following
three conditions are satisfied:

(i) O is a Noetherian ring.
(ii) O is integrally closed in its field of fractions.
(iii) All non-zero prime ideals of O are maximal ideals.

We will not prove the following fact.

Proposition 16.3. The ring of algebraic integers of K when K is a finite extension of Q is
a Dedekind domain.

In a Dedekind domain, we have unique factorization into prime ideals. However, we need
not have unique factorization into irreducible elements of OK . (There was a failed attempt
to prove FLT in the 1800s that assumed this.)

Let K be a finite extension of Q with ring of algebraic integers OK . There exist elements
w1, . . . , wn such that each element in OK can be written as an integral linear combination
of w1, . . . , wn. Further, the representation is unique. The set {w1, . . . , wn} is known as an
integral basis for OK . Any two integral bases are related by a matrix of determinant ±1.
The discriminant D of K is defined by

D := det((σi(wj))i,j)
2
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where σ1, . . . , σn are the embeddings of K into C. Notice that the σi(wj) are algebraic inte-
gers and D is the same as σi(D) for i = 1, . . . , n, so D is an integer and D 6= 0.

Consider the set S of non-zero ideals of OK . We define a relation ∼ on S by saying that
a ∼ b if there exist α, β ∈ OK with αβ 6= 0 such that

a(α) = b(β),

where (α) is the principal ideal in OK generated by α and similarly for (β). Then ∼ is an
equivalence relation. If a ∼ (1), then a is a principal ideal. We may define a multiplication
on equivalence classes by multiplication on representatives of the classes, and this is well-
defined. This turns the set of equivalence classes into a group. The group is a finite abelian
group called the ideal class group of K. The order of the group is called the class number
of K and is denoted by hK or just h when K is understood. In particular, ah is a principal
ideal whenever a is a non-zero ideal of OK . The class number h measures, in some sense,
how far OK is from having unique factorization (i.e., being a UFD).

17 Oct. 21, 2019
Last week was reading week.

Let K be a finite extension of Q, and let OK denote the ring of algebraic integers. Let U(K)
denote the group of units (i.e., invertible elements) of OK . Note that U(K) contains all roots
of unity in K.

In 1846, Dirichlet proved that U(K) is a finitely-generated abelian gorup of rank r1 + r2− 1
where r1 is the number of real embeddings of K in C and r − 2 is the number of pairs of
complex embeddings. In particular, U(K) is isomorphic (under addition, not multiplication,
as Jason points out) to

µ(K)× Zr

where µ(K) is a finite torsion subgroup of U(K) containing the roots of unity in K and
r := r1 + r2 − 1. As always, let

σ1, . . . , σr1

be the real embeddings and

σr1+1, . . . , σr1+r2 , σr1+1, . . . , σr1+r2

be the complex embeddings. By Dirichlet’s theorem, there exist units u1, . . . , ur such that if
x is a unit in OK , then there exists a root of unity ζ and integers a1, . . . , an such that

x = ζua1
1 · · ·uarr .

In this case, {u1, . . . , ur} is known as a fundamental system of units. In general, it is not
unique. However, we can attach a unique volume to a system of fundamental units.
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We define the logarithmic embedding L of K× into Rr1+r2 given by

L(x) := (log |σ1(x)|, . . . , log |σr1(x)|, 2 log |σr1+1(x)|, . . . , 2 log |σr1+r2(x)|).

Then L is an abelian group homomorphism. Furthermore, for any α ∈ K we define the norm
from K to Q of α by

NK/Q(α) :=
d∏
i=1

σi(α)

where d := r1 + 2r2. The norm is multiplicative, and the norm of an algebraic integer is
an integer (a rational integer, i.e., an element of Z). The norm of a unit is ±1. Therefore,
L : U(K)→ H, where H is the hyperplane in Rr1+r2 given by

H := {(x1, . . . , xr1+r2) ∈ Rr1+r2 | x1 + · · ·+ xr1+r2 = 0}.

Furthermore, the image of U(K) under L is a lattice in H, and the kernel is µ(K). The
volume of a fundamental region of the lattice is called the regulator of K and is denoted by
RK . The regular does not depend on the choice of fundamental units.

By definition, we have
RK = | det(δj log |σj(ui)|)i,j=1,...,r|

where

δj :=

{
1 if 1 ≤ j ≤ r1,

2 if r1 < j < r1 + r2.

In 1989, Friedman proved that
RK > 0.2052.

In 1918, Landau proved that there is a positive number C, which depends on d = r1 + 2r2,
such that

hKRK < C|D|1/2(log |D|)d−1.

Furthermore, there exists a fundamental system of units {u1, . . . , ur} such that

max
1≤i≤r

| log |u(i)
j || < C(d)RK

where C(d) is a positive number which depends on d. The norm of an ideal I in OK is
defined by N(I) := |OK/I|. For any α ∈ OK , we let (α) denote the principal ideal generated
by α. We have N((α)) = |NK/Q(α)|.

For any finite extension K/Q, we define the Dedekind zeta function ζK(s) for s ∈ C, Re(s) >
1, by

ζK(s) :=
∑
a

1

Nas

where the sum is over all non-zero ideals a of OK . Just as for the Riemann zeta function,
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we have an Euler product given by

ζK(s) =
∏
p

1

1− 1
Nps

where the product is over all prime ideals p of OK . The function ζK(s) can be analytically
continued to all of C except for s = 1 where there is a simple pole. There is a functional
equation relating ζK(s) to ζK(1− s), and there is a generalized Riemann hypothesis stating
that all of the zeroes of ζK(s) with 0 ≤ Re(s) ≤ 1 have Re(s) = 1

2
.

Let w(K) be the number of roots of unity in K. Then the residue at s = 1 of ζK(s) is
significant. We have

lim
s→1

(s− 1)ζK(s) = 2r1(2π)r−2 h(K)RK

w(K)
√
|D|

.

18 Oct. 23, 2019
Let F (x, y) = anx

n + · · ·+ a1xy
n−1 + a0y

n be a binary form with integer coefficients, n ≥ 3,
and with non-zero discriminant. Let m be a non-zero integer. The equation

F (x, y) = m (*)

in integers x and y is known as a Thue equation. It is given this name because in 1909, Thue
proved that (*) has only finitely many solutions in integers x and y. His proof was ineffective
in that it did not yield an upper bound for the size of solutions. For example,

x3 − 2y3 = 6

has only one solution (x, y) = (2, 1).

In 1968, Baker, by means of estimates for linear forms in logarithms of algebraic numbers,
gave a method for finding all solutions of Thue equations. This follows from the following
theorem.
Theorem 18.1. Let F ∈ Z[x, y] be an irreducible binary form of degree at least 3, and let
m be a non-zero integer. All solutions in integers (x, y) to F (x, y) = m satisfy

max(|x|, |y|) < |2m|C log log |3m|

where C > 0 is effectively computable in terms of F .
Proof. Let C1, C2, . . . denote positive numbers which are effectively computable in terms of
F . Let

F (x, y); = anx
n + · · ·+ a1xy

n−1 + a0y
n.

We may suppose without loss of generality that an = 1 since if not we replace F (X, y) by
an−1
n F (x, y) = F (X, y) where X := anx and replace m by an−1

n m.
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We write
F (x, 1) = (x− α(1)) · · · (x− α(n))

where α(1), . . . , α(n) are real and α(r1+i) = α(r1+r2+i) with r1 + 2r2 = n. Then if F (x, y) = m,
we have

(x− α(1)y) · · · (x− α(n)y) = m.

Put
β(i) := x− α(i)y

for i = 1, . . . , n. Let K := Q(α(1)), and let η1, . . . , ηr be a fundamental syste mof units for
K chosen so that

| log |η(j)
i || < C1.

Every point P in Rr is within C2 of some point of the lattice with basis

(log |η(1)
i |, . . . , log |η(r)

i |)

for i = 1, . . . , r. Take

P := (log ||m|−1/nβ(1)|, . . . , log ||m|−1/nβ(r)|).

Then we see that there are integers b1, . . . , br such that

|b1 log |ηj)1 |+ · · ·+ br log |η(j)
r |+ log ||m|−1/nβ(j)|| < C2

for j = 1, . . . , r. Thus, if we set

γ(j) := β(j)(η
(j)
1 )b1 · · · (η(j)

r )br (**)

for j = 1, . . . , n, then ∣∣log
(
|m|−1/n|γ(j)|

)∣∣ < C2 (1)

for j = 1, . . . , r. Since |γ(r1+i)| = |γ(r1+r2+i| for i = 1, . . . , r2, we see that (1) holds for
j = 1, . . . , n with the exception of j = n when r2 = 0 and of j = r1 + r2 and j = r1 + 2r2

when r2 6= 0. But
|γ(1) · · · γ(n)| = |m|,

so
n∑
j=1

log ||m|−1/n|γ(j)|| = 0.

Therefore, we see that (1) holds for j = 1, . . . , n. Observe that γ = γ(1) is an algebraic
integer and is a root of a monic polynomial whose coefficients are elementary symmetric
polynomials in γ(1), . . . , γ(n) and so have size at most C3|m| in absolute value. This proof
will be continued next class!
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19 Oct. 25, 2019
I was away for convocation. The following is basically this portion of the proof from Dan
Wolczuk’s notes.

Taking logarithms of (**), we obtain

b1 log |η(j)
1 |+ · · ·+ br log |η(j)

r | = log

∣∣∣∣γ(j)

β(j)

∣∣∣∣
for j = 1, . . . , r. By Cramer’s rule, for i = 1, . . . , r we have

bi =

det


log |η(1)

1 | · · · log | γ(1)

β(1) | · · · log |η(1)
r |

...
...

...
log |η(r)

1 | · · · log | γ(r)

β(r) · · · log |η(r)
r |


det

log |η(1)
1 | · · · log |η(1)

r |
...

...
log |η(r)

1 | · · · log |η(r)
r |


(2).

We want to bound |bi| in terms of m, hence to bound |x| and |y| in terms of m. Let
B := max(|b1|, . . . , |br|) and suppose |bi| = B. Let ∆ be the denominator of (2). Then

∆ = RK2−r2 .

Expanding the numerator of (2) along the ith column, we get

max
1≤j≤r

∣∣∣∣log

∣∣∣∣γ(j)

β(j)

∣∣∣∣∣∣∣∣ > C4B.

Suppose the maximum occurs for j = J . Then

| log |m|−1/n log |β(J)|| =
∣∣∣∣log
|β(J)

γ(J)
+ log |m|−1/n|γ(J)|

∣∣∣∣
> C4B − C2.

We have
n∑
j=1

log |m|−1/n|β(j)| = 0,

so it follows that for some ` with 1 ≤ ` ≤ n,

log(|m|−1/n|β(`)|) < C2 − C4B

n− 1
.
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In particular,
|β(`)| < |m|1/nC6e

−C5B.

Now, since |β(1) · · · β(n)| = |m|, there exists an integer k with k 6= ` such that

|β(k) > |m|1/nC−1/(n−1)
6 eC5B/(n−1). (4).

Let j be an integer satisfying 1 ≤ j ≤ n, j 6= k, and j 6= `. (Since n ≥ 3, such a j exists.)
Then we have

(α(k) − α(`))β(j) − (α(j) − α(`))β(k) = (α(k) − α(j))β(`).

Note that

(α(k) − α(`))(x− α(j)y)− (α(j) − α(`))(x− α(k)y) = (α(k) − α(j))(x− α(`)y).

The coefficient of y in this expression is

−(α(k) − α(`))α(j) + (α(j) − α(`))α(k) = −(α(`)α(k) − α(`)α(j))

= −(α(k) − α(j))α(`).

Dividing by (α(k) − α(`))β(k)γ(j)/γ(k), we get

β(j)γ(k)

γ(j)β(k)
− α(j) − α(`)γ(k)

α(k) − α(`)γ(j)
=
α(k) − α(j)

α(k) − α(`)

β(`)γ(k)

β(k)γ(j)
.

Thus, (
η

(k)
1

η
(j)
1

)b1

· · ·

(
η

(k)
r

η
(j)
r

)br

− αr+1 = λ

where

αr+1 :=
α(j) − α(`)

α(k) − α(`)

γ(k)

γ(j)

and

λ :=

(
α(k) − α(j)

α(k) − α(`)

)
β(`)γ(k)

β(k)γ(j)
.

Let αi := η
(k)
i /η

(j)
i . Then

αb11 · · ·αbrr α−1
r+1 = 1 + λ.

20 Oct. 28, 2019
Today we finish the proof of the upper bound on solutions to the Thue equation. In what
follows, when you see log, you can assume we are taking the principal value of the logarithm.

Recall that B is the maximum of |b1|, . . . , |bn|. Note that if the maximum occurs for |bi|,
then we may suppose that bi is positive by replacing the unit ηi by η−1

i . We still have a
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fundamental system of units after making this replacement, so the regulator does not change.

Now,

log(αb11 · · ·αbrr α−1
r+1) = log

(
1 +

λ

αr+1

)
.

Set

Λ := log(αb11 · · ·αbrr α−1
r+1) = b1 logα1 + · · ·+ br logαr − logαr+1 + br+2 log(−1),

where br+2 is chosen so that all the logarithms take their principal value. Thus,

|br+2| ≤ |b1|+ · · ·+ |br|+ 1 + 1 ≤ (r + 2)B.

We put K := Q(α(j), α(k), α(`)) and d := [K : Q]. Then d ≤ n3. We may apply Thm. 2 since
λ 6= 0, hence Λ 6= 0, to get

|Λ| > exp(−c6 logAr+1 log((r + 2)B))

where Ar+1 := max(H(αr+1), e). Put

θ1 :=
α(j) − α(`)

α(k) − α(`)
,

θ2 := γ(k), and

θ3 := 1/γ(j),

so αr+1 = θ1θ2θ3. Then

H(αr+1) = H(θ1θ2θ3) ≤ 2dM(θ1θ2θ3)

= (2h(θ1θ2θ3))d ≤ (2h(θ1)h(θ2)h(θ3))d

≤ (2M(θ1)M(θ2)M(θ3)−1)d

≤ (2d3/2H(θ1)H(θ2)H(θ−1
3 ))d

by Proposition 4.2,
≤ (C7m

2)d.

Thus,
logAr+1 ≤ C8 log 2|m|.

Thus, by (6), we have
log |Λ| > −c9 log 2|m| logB. (7)

But

|Λ| = | log(1 + λ/(αr+1))| = | log

(
1 +

α(k) − α(j)

α(j) − α(`)

)
β(`)β(k)

|
.
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By (4) and (5), ∣∣∣∣α(k) − α(j)

α(j) − α(`)

β(`)

β(k)

∣∣∣∣ ≤ c10e
−c11B.

Thus, there exists c12 such that either B < c12 or c10e
−c11B < 1

2
. Since | log(1 + z)| < 2|z| for

|z| < 1/2 and z ∈ C, we see that
|Λ| < 2c10e

−c11B,

hence
log |Λ| < c13 − c11B.

Therefore, B < c14 or log |Λ| < −c15B. Thus, by (7),

B

logB
< c16 log |2m|.

Therefore,
B < c17 log |2m| log log |4m|.

But now

x =
α(2)β(1) − α(1)β(2)

α(2) − α(1)
,

y =
β(1) − β(2)

α(2) − α(1)
,

so
max(|x|, |y|) < c18 max(|β(1)|, |β(2)|).

We have
|β(i)| = |γ(i)(η

(i)
1 )−b1 · · · (η(i)

r )−br |

for i = 1, 2, hence

max(|x|, |y|) < c19|m|1/nec20B < c21|2m|c22 log log |4m|.

Since Baker’s original proof, the upper bound on max(|x|, |y|) has been improved to |2m|C
by work of Feldman. Feldman’s invented the Feldman polynomials to this end.

In fact, one can prove that if K is a finite extension of Q; if F is a binary form of degree at
least 3, non-zero discriminant, and coefficients in OK ; and if µ is a non-zero element of OK ,
then the Diophantine equation

F (x, y) = µ

has only finitely many solutions in elements x, y ∈ OK . Furthermore,

max(x, y ) < C

where C is a positive number depending only on F , K, and µ. (This holds even if F is not
irreducible.)
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21 Oct. 30, 2019
We are given the list of essay topics for the course and are told to sign into PMATH 940 on
Learn, click on "Connect > Groups > View Available Groups", and then join the group you
want by number. Cam is not looking for a verbatim repetition of the paper, but a 10-page
article discussing the paper, key arguments in it, and related work. Each talk will be one
hour long.

Let f ∈ Z[x] be a polynomial of degree d ≥ 2. Let n be a positive integer with m ≥ 3. We
can consider the superelliptic equation

ym = f(x)

in integers x and y. Suppose f(x) = (x−α1) · · · (x−αd). If a factor of y divides x−αi and
x − αj, then it divides the difference αi − αj, and roughly speaking, each x − αi should be
"almost an mth power". By the theory of the generalized Thue equation, we should therefore
get finitely many solutions.

To make the argument rigorous, we need the following facts from algebraic number theory:

If K is a finite extension of Q, there is a fundamental system of units of OK , say η1, . . . , ηr,
such that

max
i,j=1,...,r

| log |η(i)
j || < CR (I)

where R is the regulator and C is a positive number that depends on [K : Q].

When we have such a fundamental system, then every unit η in U(K) can be written as

η = η1ηb11 · · · ηbrr

where η1 is a root of unity, b1, . . . , br are integers, and

η1 = 1. (II)

Next, suppose that α is a non-zero element of OK for which |NK/Q(α)| ≤ M . Then there
exists a positive number C2, which is effectively computable in terms of d, R, and M , and a
unit ε such that

εα < C2. (III)

Finally, let a be a non-zero ideal of OK . There exists a non-zero ideal b such that ab is a
principal ideal and

N(b) ≤
√
|D| (IV)

where D is the discriminant.

Theorem 21.1. Let f be a monic polynomial with integer coefficients and at least 2 simple
roots, and let m be an integer with m ≥ 3. There exists a positive number C, which is
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effectively computable in terms of f and m, such that if x and y are integers with

ym = f(x),

then
max(|x|, |y|) < C.

To prove this result, we need the following lemma.

Lemma 21.2. Let m ≥ 2. Let f be a monic polynomial with integer coefficients and a
simple root α. Let K be the splitting field of f . If x and y are integers for which

ym = f(x),

then there exist algebraic integers γ, φ, and δ such that

x− α =

(
γ

φ

)
δm

and max(γ , φ ) < C where C is a positive number depending only on m and f .

Proof. Let f(x) =: (x − α1) · · · (x − αn), and suppose that α := α1. Let C1, C2, . . . denote
positive numbers that are effectively computable in terms of m and f . Let η1, . . . , ηr be a
fundamental system of units satisfying (I). Put

∆ :=
n∏
i=2

[α− αi]

where [α−αi] is the principal ideal generated by α−αi for i = 2, . . . , n. Since α is a simple
root, ∆ is a non-zero ideal.

Suppose that x and y are integers for which ym = f(x). If x = α, the result holds with δ = 0
and γ = φ = 1. Suppose now that x 6= α, and consider the ideal equation

[y]m = [x− α][x− α2] · · · [x− αn].

Let p be a prime ideal which divides [x−α]. Let `i be the exact power of p dividing [x−αi]
for i = 1, . . . , n.

We continue this proof next class.

22 Nov. 1, 2019
We continue the proof from last class.

Recall that ∆ =
∏n

i=2[α− αi]. We considered the ideal equation

[y]m = [x− α1] · · · [x− αn]. (*)
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For any prime ideal p, let p`i be the exact power of p dividing [x− αi], i = 1, . . . , n.

First, suppose that `1 ≥ `i for i = 2, . . . , n. Then

p`i | [x− α]− [x− αi] ⊇ [α− αi]

for i = 2, . . . , n. Thus,
p`2+···+`n | ∆.

Therefore by (*),
`1 + `2 + · · ·+ `n ≡ 0 (mod m),

hence
`1 ≡ −(`2 + · · ·+ `n) ≡ (m− 1)(`2 + · · ·+ `n) (mod m).

Next, suppose that `1 < `j for some j with 2 ≤ j ≤ n. Then

p`1 | [α− αj],

so p`1 | ∆. In both cases, the exponent of p dividing [x − α] is congruent to a (mod m)
where a is at most (m− 1) times the power of p dividing ∆.

In particular,
[x− α] = abm (1)

where a and b are non-zero ideals in OK and a | ∆m−1. By (IV) from last class, there eixst
non-zero ideals a1 and b1 with

max(N(a1), N(b1)) < C1

for which the ideals aa1 and bb1 are principal, say aa1 = [γ1] and bb1 = [δ1]. Multiplying
both sides of (1) by a1b

m
1 , we get

a1b
m
1 [x− α] = [γ1][δ1]m.

Notice that a1b
m
1 is a principal ideal, say a1b

m
1 = [φ1]. Furthermore,

N([φ1]) = N(a1)N(b1)m < C2.

Also,
N([γ1]) = N(a)N(a1) ≤ N(∆)m−1N(a1) < C3.

By (III) from last class, we can find associates γ2 and φ2 of γ1 and φ1, respectively, such that

max(γ2 , φ2 ) < C4.

Therefore, since
a1b

m
1 [x− α] = aa1(bb1)m,
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we deduce that
x− α = ε(γ2/φ2)δm1

where ε is a unit in OK . By (I) and (II) from last class, we can write ε as

ε1ε
m
2

where ε1 and ε2 are units and
ε1 < C5.

Thus,

x− α =

(
ε1γ2

φ2

)
(ε2δ1)m.

Set γ := ε1γ2, φ := φ2, and δ := ε2δ1. We then have

γ = ε1γ2 < C6

and
φ = φ2 < C4

which implies the result.

Proof of Theorem 21.1. Let C1, C2, . . . be positive numbers which are effectively computable
in terms of f and m. Let

f(x) =: (x− α1) · · · (x− αn),

and suppose that α1 and α2 are simple roots of f .

Let K be the splitting field of f . By Lemma 21.2, there exist

γ1, γ2, φ1, φ2, δ1, δ2 ∈ OK

with γ1φ1 6= 0 and γ2φ2 6= 0 such that

x− αi =

(
γi
φi

)
δmi (1)

for i = 1, 2, and
max(γ1 , γ2 , φ1 , φ2 ) < C1. (2)

Therefore,
γ1φ2δ

m
1 − γ2φ1δ

m
2 = (α2 − α1)φ1φ2.

Thus, (δ1, δ2) is a solution of g(x, y) = µ where

µ := (α1 − α2φ1φ2)

and
g(x, y) := γ1φ2x

m − γ2φ1y
m.
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Since γ1φ2γ2φ1 6= 0 and α1 6= α2 by the generalization to algebraic number fields of our result
on the Thue equation,

max(δ1 , δ2 ) < C2. (3)

By (1), (2), and (3), |x| < C3 and |y| < C4, which proves the claim.

Remark 22.1. If m = 2 and f has at least 3 simple zeroes, then a slightly more complicated
argument yields an effective upper bound for max(|x|, |y|).

We will soon begin our study of the Catalan equation. Apparently Tijdeman proved there
are only finitely many solutions but the upper bound was huge. People tried to reduce
this bound, but meanwhile Mihailescu gave a different approach that allowed him to solve
it completely. Tijdeman’s argument generalizes to arbitrary algebraic number fields, but
Mihailescu’s does not. We will cover the former in this class, not the latter.

23 Nov. 4, 2019
In 1844, Catalan conjectured that the only two consecutive powers of positive integers are 8
and 9. This comes down to solving the Diophantine equation

xm − yn = 1 (1)

in integers x, y,m, and n all larger than 1.

In 1976, Tijdeman proved that all solutions of (1) are less than some effectively computable
positive number. In 2002, Mihailescu gave a complete proof of the conjecture using proper-
ties of cyclotomic fields. Mihailescu’s proof, developed in the process of refining Tijdeman’s
result, actually does not use results about linear forms in logarithms, relying instead on more
algebraic methods. We will follow Tijdeman’s argument.

The following result is due to Tijdeman.

Theorem 23.1. There exists an effectively computable positive number C such that all so-
lutions of (1) in integers x, y,m, n > 1 satisfy

max(x, y,m, n) < C.

Proof. Let C1, C2, . . . denote effectively computable positive numbers. We may suppose
without loss of generality that m and n are distinct primes, say p and q. We now may
consider the equivalent equation

xp − yq = ε (2)

with p > q, x, y > 1, and ε ∈ {1,−1}. We first assume that p, q, x, y > C1. Note that p and
q are both odd. Furthermore, since p > q, by (2) x < y. Also by (2), (x, y) = 1.
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Moreover, from (2) we have

xp = yq + ε = (y + ε)(yq−1 − εyq−2 + · · ·+ εq−1).

Let d be the gcd of y + ε and yq−1 − εyq−2 + · · ·+ εq−1. Note that y = ε+ (y − ε). Thus,

yq = εq +

(
q

1

)
εq−1(y − ε) + · · ·+ (y − ε)q,

so
yq − εq

y − ε
=

(
q

1

)
εq−1 +

(
q

2

)
εq−1(y − ε) + · · ·+ (y − ε)q−1.

Suppose h | y − ε and h | yq−εq
y−ε . Thus, h | q. But q is an odd prime, so h = 1 or h = q, and

q divides yq−εq
y−ε to the first power only. In a similar fashion, we can write y = −ε + (y + ε),

so d = 1 or d = q, and q divides yq+ε
y+ε

to exactly the first power.

Thus, there are integers δ ∈ {0,−1} and s > 0 such that

y + ε = qδsp. (3)

In a similar way, we have

yq = xp − ε = (x− ε)(xp−1 + · · ·+ εp−1),

and so there are integers γ ∈ {0,−1} and r > 0 such that

x− ε = pγrq. (4)

In fact, if γ = −1, then p | r, and if δ = −1, then q | s. Further, since x and y exceed C1,
we see that r and s are both larger than 1. Thus, we see that

pγrq > 2q−1 and qδsp > 2p−1.

Now by (3), y = qδsp − ε, and by (4), x = pγrq + ε, so we have

(pγrq + ε)p − (qδsp − ε)q = ε. (5)

From (2), (3), and (4) we deduce that

2prpq ≥ (rq + 1)p + 1 ≥ xp + 1 ≥ yq ≥ (qδsp − 1)q ≥ spq

(2q)q
.

Similarly,

2qspq ≥ (sp + 1)q + 1 ≥ yq + 1 ≥ xp ≥ (pγrq − 1)p ≥ rpq

(2p)p
.

Thus, since p > q > C1,
spq ≤ 4pqqrpq.
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Hence
s ≤ 41/qq1/pr ≤ 2r. (6)

Similarly,
r ≤ (4p)1/qs. (7)

We will continue this proof next class.

24 Nov. 6, 2019
We continue the proof from last class.

Recall that we consider
xp − yq = ε

with p, q odd primes, p > q, and ε ∈ {−1, 1}. Also, recall Equations (3) and (4):

y + ε = qδsp,

x− ε = pγrq

where δ, γ ∈ {−1, 0}. Thus, we obtained Equation (5):

(pγrq + ε)p − (qδsp − ε)q = ε.

Furthermore, we proved Inequalities (6) and (7):

s ≤ 2r,

r ≤ (4p)1/qs.

We now note that

max((x− 1)p, (y − 1)q) < xp = yq + ε < min((x+ 1)p, (y + 1)q). (8)

Therefore,
(x− ε)p − (y + ε)q 6= 0,

so
(pγrq)p − (qδsp)q 6= 0.

Thus, if we set
Λ1 := p log(pγrq)− q log(qδsp),

we see that
Λ1 6= 0.

Plainly
pγrq ≥ 2q−1
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and either 2q−1 ≥ 12p3 or 12p3 > 2q1 . In the latter case,

log 12 + 3 log p > (q − 1) log 2,

so
q < C2 log p. (9)

We now assume that 2q1 > 12p3. (Note that we cannot have 2q−1 = 12p3 because p is an
odd prime.) Then in particular, pγrq > 12p3. Now, x− ε = pγrq, so since |ε| = 1,∣∣∣∣ x

pγrq
− 1

∣∣∣∣ =
1

pγrq
, (10)

and xp − yq = ε, so ∣∣∣∣yqxp − 1

∣∣∣∣ =
1

xp
. (11)

Also, y + ε = qδsp, so ∣∣∣∣ y

qδsp
− 1

∣∣∣∣ =
1

qδsp
. (12)

Since | log(1 + z)| ≤ 2|z| for |z| ≤ 1/2, we deduce from (10), (11), and (12) and from the
inequalities −1 ≤ γ ≤ 0, −1 ≤ δ ≤ 0, and p > q that∣∣∣∣log

(
x

pγrq

)∣∣∣∣ = | log x− log(pγrq)|,

and so ∣∣∣∣log

(
x

pγrq

)∣∣∣∣ =

∣∣∣∣log

(
1 +

(
x

pγrq
− 1

))∣∣∣∣ ≤ 2

∣∣∣∣ x

pγrq
− 1

∣∣∣∣ ≤ 2

pγrq
.

Thus,
|p log x− p log(pγrq)| ≤ 2p1−γr−q ≤ 2p2r−q. (13)

Similarly we find that

|p log x− q log y| ≤ 2

xp
≤ 2pr−q (14)

and
|q log y − q log(qδsp)| ≤ 2q1−δs−p ≤ 2q2s−q,

which since p > q and (7) holds gives

|q log y − q log(qδsp)| ≤ 8p3r−q. (15)

Therefore,
|p log(pγrq)− q log(qδsp)| ≤ 12p3r−q. (16)

Recall that Λ1 = p log(pγrq)− q log(qδsp), and so

Λ1 = p log(pγ)− q log(qδ) + pq log(r/s).
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We now apply Theorem 2.6 with A1 := p, A2 := q < p, A3 := 2r, since s ≤ 2r, n := 3,
d := 1, and B := p2. (These variable names do not agree with the ones from the statement
of the theorem, but you get the idea.) Recall that Λ1 6= 0, so

|Λ1| > exp(−C3(log p)3 log r). (17)

Comparing (16) and (17), we find that

rq ≤ 12p3rC3(log p)3

< rC4(log p)3

.

Thus, we see that
q < C4(log p)3

and by our assumption (9) we see that

q < C5(log p)3.

We will now show that p is bounded. It follows from (3), (4), and (8) that

(pγrq + ε)p − qδqspq = xp − (y + ε)q 6= 0.

Thus,
Λ2 = p log(pγrq + ε)− q log(qδsp) 6= 0.

Also, Λ2 = −q log(qδ) + p log
(
pγrq+ε
sq

)
. We have, by (14) and (15), that

|p log x− q log(qδsp)| ≤ 2

xp
+ 2q2s−p.

Furthermore, since xp = yq + ε and y + ε = qδsp,

xp = yq + ε > y + ε = qδsp ≥ sp

q
.

Thus, ∣∣∣∣−qδ log q + p log

(
pγrq + ε

sq

)∣∣∣∣ ≤ 4q2s−p,

i.e., |Λ2| ≤ 4q2s−p.

We will continue this proof next class.

25 Nov. 8, 2019
Recall that

Λ2 = −qδ log q + p log

(
pγrq + ε

sq

)
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and
|Λ2| < 4q2s−p. (21)

Thus, by Theorem 2.6 with n := 2, A1 := q, A2 := 5psq, B := p. Since Λ2 6= 0, we obtain

|Λ2| > exp(−C6(log p)2 log(5psq)). (22)

Comparing (21) and (22), we find that

sp ≤ 4q2(5psq)C6(log p)2

,

and by (19) we see that sp ≤ sC7(log p)5 . Thus, p ≤ C7(log p)5, hence p ≤ C8 and also q ≤ C8.
Therefore, we may assume that p and q are fixed, and then by Theorem 21.1, we see that |x|
and |y| are bounded. This completes the argument subject to our original hypothesis that
|x|, |y|, p, and q all exceed C1.

To handle the remaining cases, we can again use arguments based on estimates for linear
forms in logarithms. However, we can also appeal to a result of Hyyrö from 1964. He proved
that if xm − yn = 1 with x, y,m, n > 1 and (x, y,m, n) 6= (3, 2, 2, 3), then x, y > 1011.

In 1850, V.-A. Lebesgue proved that there are no solutions of

xm − y2 = 1

in integers x, y,m > 1. In 1965, Chao Ko proved that there is only one solution of

x2 − yn = 1

in integers x, y, n > 1. These three results combined with our argument suffice to complete
the proof.

One might wonder whether one could prove there are only finitely many solutions to the
other famous equation

xn + yn = zn

using a linear forms approach. In 1977, Cam proved that there are only finitely many solu-
tions in integers x, y, z, n with n > 2 and |x−y| bounded to this equation. This is a nice result!

We now give an estimate for linear forms in two logarithms based on a zero estimate due to
Nesternko. Cam describes Nesterenko as an excellent Russian mathematician who is also a
very proficient ballroom dancer.

Lemma 25.1. Let L and K1, . . . , Kn be integers with 0 ≤ K1 < K2 < · · · < Kn < L, and
let E be a set of at least L non-zero complex numbers. There exist a1, . . . , an in E such that

det(aKij )i,j=1,...,n 6= 0.

Proof. We proceed by induction on n. Certainly the result holds for n = 1 since the elements
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of E are non-zero. Let n > 1, and suppose that the result holds for n− 1. Thus there exist
a1, . . . , an−1 in E such that

det(a
Kj
i )i,j=1,...,n−1 6= 0.

Consider the polynomial P (z) given by

P (z) := det

a
K1
1 · · · aK1

n−1 zK1

... . . . ...
...

aKn1 · · · aKnn−1 zKn


= AzKn + · · · ,

where A := det(a
Kj
i )i,j=1,...,n−1 6= 0. Note that P (ai) = 0 for 1 ≤ i ≤ n− 1, so

P (z) = (z − a1) · · · (z − an−1)Q(z)

for some Q(z). Since the cardinality |E \ {z1, . . . , zn−1})| is greater than or equal to

L− n− 1 > Kn − (n− 1) = degQ(z),

we can find an in E such that P (an) 6= 0. Our result follows.

Proposition 25.2. Let α1, α2, and β be complex numbers with α1α2 6= 0. Let K,L,R1, R2,
S1, and S2 be positive integers. [At this point, I have to leave to proctor a test. But I got
the rest of the Proposition later from Pranabesh’s notes.] Let P ∈ C[x, y] be a non-zero
polynomial with degree at most K − 1 in x and degree L− 1 in y. Put R := R1 +R2− 1 and
S := S1 + S2 − 1. Suppose that the cardinality of

{αr1αs2 | 0 ≤ r < R1, 0 ≤ s < S1}

is ≥ L and that the cardinality of

{r + sβ | 0 ≤ r < R2, 0 ≤ s < S2}

is ≥ (K − 1)L. Then at least one of the numbers

p(r + sβ, αr1α
s
2)

for 0 ≤ r < R and 0 ≤ s < S is non-zero.

26 Nov. 11, 2019
We now prove Proposition 25.2.

Proof. We may suppose that P (x, 0) 6= 0 since otherwise P (x, y) = ymQ(x, y) with m ≥ 1
and we could replace P by Q because α1α2 6= 0. Suppose that

P (r + sβ, αr1α
s
2) = 0 (1)
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for 0 ≤ r < R and 0 ≤ s < S. Let us write

P (x, y) =
n∑
i=1

Qi(x)yKi

with the Qi’s non-zero and

0 = K1 < K2 < · · · < Kn < L.

Put
E := {αr1αs2 | 0 ≤ r < R1, 0 ≤ s < S1}.

By assumption, the cardinality of E is at least L. By Lemma 25.1, we have that there is a
subset L of {(r, s) | 0 ≤ r < R1, 0 ≤ s < S1} of size n such that

B := det((αr1α
s
2)Ki)i=1,...,n

(r,s)∈L
6= 0.

We now define for each pair (r, s) ∈ L the polynomial Pr,s(x, y) by

Pr,s(x, y) := P (x+ r + sβ, αr1α
s
2y).

Thus,

Pr,s(x, y) =
n∑
i=1

Qi(x+ r + sβ)(αr1α
s
2)KiyKi . (2)

We now put
∆(x) := det

(
Qi(x+ r + sβ)(αr1α

s
2)Ki

)
i=1,...,n
(r,s)∈L

.

Write
Qi(x) = bix

mi + · · ·

with bi 6= 0 for i = 1, . . . , n. We see that

∆(x) = b1 · · · bnBXm1+···+mn + · · · .

Notice that b1 · · · bnB 6= 0.

Consider the system of equations (2) as a system of linear equations in z1, . . . , zn where
zi := yKi for i = 1, . . . , n. Thus by Cramer’s rule and the fact that K1 = 0, there exist
polynomials Sr,s ∈ C[x, y] for (r, s) ∈ L for which

z1∆(x) = yK1∆(x) = ∆(x) =
∑

(r,s)∈L

Pr,s(x, y)Sr,s(x). (3)

Note that by (1),

Pr,s(r0 + s0β, α
r0
1 α

s0
2 ) = P (r + r0 + (s+ s0)β, αr+r01 αs+s02 ) = 0
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for 0 ≤ r0 < R2 and 0 ≤ s0 < S2. By (3),

∆(r0 + s0β) = 0

for 0 ≤ r0 < R2 and 0 ≤ s0 < S2. By assumption, the cardinality of

{r0 + s0β | 0 ≤ r0 < R2, 0 ≤ s0 < S2}

is greater than (K − 1)L. Thus,

(K − 1)L ≤ m1 + · · ·+mn ≤ n(L− 1) < L(K − 1),

which is a contradiction. Therefore, (1) does not hold, and the result follows.

We will use these results to establish a version of Theorem 2.6 with n = 2.

Theorem 26.1. Let α1 and α2 be non-zero algebraic numbers, and let K := Q(α1, α2),
d := [K : Q]. Let logα1 and logα2 be some branch of the logarithm function at α1 and α2,
respectively. Let b1 and b2 be non-zero integers. Put

Λ := b1 logα1 + b2 logα2.

Put
Ai := max{h(αi)

d, exp(| logαi|), e}

for i = 1, 2.

There exists a positive number C, which is effectively computable in terms of d, such that if
Λ 6= 0, then

|Λ| > exp(−C logA1 logA2(logB′)2)

where
B′ := max

(
3,
|b1|

logA2

+
|b2|

logA1

)
.

Presentations will be during the last week of classes. We will arrange oral exam dates in the
period after December 10.

27 Nov. 13, 2019
We now prove Theorem 26.1.

Proof. We may assume without loss of generality that α1 and α2 have absolute value at least
1. We may also assume that b1 > 0 and that b2 < 0. Replacing b2 with −b2, we can write

Λ = b2 logα2 − b1 logα1

with b1, b2 > 0.
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Let K ≥ 3, L ≥ 2, R1, R2, S1, and S2 be positive integers. Put N := KL, R := R1 +R2− 1,
and S := S1 + S2 − 1. (Use |S| to denote the cardinality of a set S.) If the conditions

|{αr1αs2 | 0 ≤ r < R1, 0 ≤ s < S1}| ≥ L (1)

and
|{rb2 + sb1 | 0 ≤ r < R2, 0 ≤ s < S2}| ≥ (K − 1)L (2)

hold, then the (KL×RS) matrix((
rb2 + sb1

k

)
α`r1 α

`s
2

)
(r,s),(k,`)

,

where 0 ≤ r < R, 0 ≤ s < S, k = 1, . . . , K, and ` = 1, . . . , L is of maximal rank since
otherwise there exist complex numbers ck,` for k = 0, . . . , K − 1, ` = 0, . . . , L− 1 such that
the polynomial

P (X, Y ) :=
∑

ck,`

(
X

k

)
Y ` = 0

for X = rb2 +sb1, 0 ≤ r < R2 and 0 ≤ s < S2, and Y = αr1α
s
2 for 0 ≤ r < R1 and 0 ≤ s < S1.

However, this contradicts Proposition 25.2.

Suppose that (1) and (2) hold. We can then extract an N × N minor of the matrix with
non-zero determinant, say

∆ := det

((
rjb2 + sjb1

ki

)
α
`irj
1 α

`isj
2

)
i,j=1,...,N

6= 0. (3)

We first observe that

N∑
i=1

ki =
N

K

K−1∑
i=0

i =
N

K

K(K − 1)

2
=
N(K − 1)

2
.

We also introduce the quantity b where

b := ((R− 1)b2 + (S − 1)b1)

(
K−1∏
k=1

k!

)− 2
K2−K

.

If we expand the determinant in (3), we get N ! terms, and each term is a product EαE1
1 αE2

2

where E is a product of binomial coefficients(
rjb2 + sjb1

ki

)
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while E1 is a sum of terms `irj and E2 is a sum of terms `isj. We have

1 ≤ E ≤ ((R− 1)b2 + (S − 1)b1)
∑N
i=1 ki∏N

i=1(ki!)
=

((R− 1)b2 + (S − 1)b1)
N(K−1)

2(∏K−1
k=1 k!

)L
Also we have E1 ≤ NLR and E2 ≤ NLS. Therefore, we have

h(∆) ≤ N !((R− 1)b2 + (S − 1)b1)
N(K−1)

2(∏K−1
k=1 k!

)L h(α1)NLRh(α2)NLS.

Thus,
h(∆) ≤ NNb

KN
2 h(α1)NLRh(α2)NLS.

From this we will deduce that

log |∆| ≥ −dN logN − dKN log b

2
− dLN(R log h(α1) + S log h(α2)).

The proof will be continued next class.

28 Nov. 15, 2019
Recall that the essays are due Dec. 6. They may be submitted to Cam electron-
ically. Cam gives out a sign-up sheet for our talks. Final exams will probably be
half an hour each sometime in the range December 10–12. (My talk is from 10:30
to 11:30 on Wednesday, Dec. 4.)

Recall also that
0 6= ∆ = det

((
rjb2 + sjb1

ki

)
α
`irj
1 α

`isj
2

)
i,j=1,...,N

,

that we defined b by

b := ((R− 1)b2 + (S − 1)b1)

(
K−1∏
k=1

k!

)−2/(K2−K)

,

and that we defined E0 by

E0 :=
(((R− 1)b2 + (S − 1)b1)N(K−1)/2(∏K−1

k=1 k!
)L .

The terms in the expansion of the determinant ∆ have the form EαE1
1 αE2

2 where E ≤ E0,
E1 ≤ NLR, and E2 ≤ NLS.
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Suppose that M(αi) = |ai|
∏

σ max(1, |σ(αi)|) for i = 1, 2 where a1, a2 ∈ N. Then a1α1 and
a2α2 are algebraic integers, so aNLR1 aNLS2 ∆ is an algebraic integer. Since ∆ 6= 0, it follows
that

|
∏
σ

σ(a1
NLRaNLS2 ∆)| ≥ 1.

Notice that
|σ∆| ≤ N !E0 max(1, |σ(α1)|)NLR max(1, |σ(α2)|)NLS,

so

|∆| ≥ (N !E0)−d

(∏
σ 6=id

max(1, |σ(α1)|)

)−NLR(∏
σ 6=id

max(1, |σ(α2)|)

)−NLS
(aNLR1 aNLS2 )−d.

Since E0 ≤ bKN/2, we have

|∆| ≥ N−Ndb−KNd/2M(α1)−dNLRM(α2)−dNLS.

Therefore,

log |∆| ≥ −dN logN − (dKN/2) log b− d2LN(R log h(α1) + S log h(α2)). (4)

We now remark that

b ≤ (Rb2 + Sb1)

(
K−1∏
k=1

kk−K

)2/(K2−K)

≤ (Rb2 + Sb1) exp

(
2/(K2 −K)

K−1∑
k=1

(k −K) log k

)
.

But notice that
K−1∑
k=1

k log k ≤ 2 +

∫ K−1

1

(x log x+ (1/2)x) dx

≤ 2 + [
1

2
x2 log x]K−1

1

≤ 2 +
1

2
(K − 1)2 log(K − 1).

and
K−1∑
k=1

log k = log((K − 1)!)

> log

((
K − 1

e

)K−1
)

= (K − 1) log

(
K − 1

e

)
,
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so

exp

(
2

K(K − 1)

K−1∑
k=1

(k −K) log k

)

< exp

(
2

K(K − 1)

(
2 +

1

2
(K − 1)2 log(K − 1)−K(K − 1) log

(
K − 1

e

)))
≤ exp

(
4

K(K − 1)
+
K − 1

K
log(K − 1)− 2 log

(
K − 1

e

))
≤ exp (1 + log(K − 1)− 2 log(K − 1) + 2)

≤ exp(3− log(K − 1))

≤ e3/(K − 1) < e4/K.

Thus,

b ≤ Rb− 2 + Sb1

K
e4. (5)

We now introduce the quantity Λ′ given by

Λ′ := Λ max{e|Λ|LS/b2LS/b2, e
|Λ|LR/b1LR/b1}.

Next, let ρ be a real number larger than 1. We will now prove a lemma.

Lemma 28.1. If |Λ′| ≤ ρ−N+1/2, then

log |∆| ≤ −N2 log(ρ/2) +N logN +
KN log ρ

2
+
KN log b

2
+ ρNLR| logα1|+ ρNLS| logα2|.

Proof. We may assume without loss of generality that

b1| logα1| ≤ b2| logα2|.

We have Λ = b2 logα2 − b1 logα1, so

logα2 =
Λ

b2

+
b1

b2

logα1.

Put β := b1/b2. Then
logα2 = β logα1 + Λ/b2,

so
α2 = αβ1e

Λ/b2 .

By the multilinearity of the determinant,

∆ = det

(
bki2

ki!
(rj + sjβ)kiα

`irj
1 α

`isj
2

)
1≤i,j≤N

.
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Notice that
α
`irj
1 α

`isj
2 = α

`i(rj+sjβ)
1 eΛ/b2`isj .

Now we put
e

Λ
b2
`isj = 1 + Λ′θi,j

where
θi,j =

exp(`isjΛ/b2)− 1

Λ′
,

so that
|θi,j| ≤

b2(exp(|`i|sjΛ/b2)− 1)

LSΛe|Λ|LS/b2

Since ex − 1 ≤ xex for x > 0,

|θi,j| ≤
b2(|`i|sjΛ/b2)e`isjΛ/b2

LSΛe|Λ|LS/b2
≤ 1.

29 Nov. 18, 2019
Thus,

∆ = det

(
bkii
ki!

(rj + sjβ)kiα
`i(rj+sjβ)
1 (1 + θijΛ

′)

)
i,j=1,...,n

.

Therefore, ∆ can be written as

∆ =
∑

I⊆{1,...,n}

(Λ′)N−|I|∆I (6)

where
∆I := det

(
ϕi(z1) · · · ϕi(zN)
θi1ϕi(z1) · · · θiNϕi(zN)

)
.

We mean by this notation that a row of the matrix is of the form (ϕi(z1), . . . , ϕi(zN)) when
i ∈ I and of the form (θi1ϕi(z1), . . . , θiNϕi(zN)) when i /∈ I. Also,

ϕi(z) := bki2

zki

ki!
α`izi

and
zj := rj + sjβ

for 1 ≤ i, j ≤ n. We now define, for each I ⊆ {1, . . . , n}, the function ΦI(x) by

ΦI(x) := det

(
ϕi(xz1) · · · ϕi(xzN)
θi1ϕi(xz1) · · · θiN(xzN)

)
.

Here we use the same notational convention as before, so the first row is the form taken
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when i ∈ I and the second row is the form taken otherwise.

Observe that ΦI(1) = ∆I . Our next step is to show that ΦI(x) has a zero of multiplicity
(ν2 − ν)/2 where ν := |I|. Notice that we certainly have that x

∑
i∈I ki divides ΦI(x), and so

ΦI(x) has multiplicity at least

(0 + · · ·+ 0)(L times) + (1 + ·+ 1)(L times) + · · ·+
[ ν
L

]
+ · · ·+

[ ν
L

]
(L times)

= L

([
ν
L

]2 − [ ν
L

]
2

)
.

In fact, Laurent showed by examining the Taylor expansion of the ϕi(xz)’s that the multi-
plicity is at least

ν2 − ν
2

.

By the maximum modulus principle applied to ΦI(x)/x(ν2−ν)/2, we find that

|∆I | = |ΦI(1)| ≤ ρ−(ν2−ν)/2 max
|x|=ρ
|ΦI(x)|.

By (6),
|∆| ≤ 2N max

0≤ν≤N

(
ρ−(N−1/2)(N−ν)−(ν2−ν)/2

)
max
I

max
|x|=ρ
|ΦI(x)|.

Notice that
min

0≤ν≤N
((N − 1/2)(N − ν) + (ν2 − ν)/2)

= min
0≤ν≤N

(N2 −N/2−Nν + ν2/2)

= N2 −N/2−N2 +N2/2

= N(N − 1)/2.

Thus,
|∆| ≤ 2Nρ−(N2−N)/2 max

I
max
|x|=ρ
|ΦI(x)|. (7)

Furthermore,

|ΦI(x)| ≤ N !

(
N∏
i=1

(b2|x|(R + βS))ki

ki!

)
exp(

N∑
i=1

`i(R + Sβ)|x|| logα1|).

Since β| logα1| ≤ | logα2|, we have

|ΦI(x)| ≤ N !(|x|b)(K−1)N/2 exp(|x|(NLR| logα1|+NLS| logα2|)). (8)

64



For N ≥ 6, we have 2NN ! ≤ NN , and so by (7) and (8),

log |∆| ≤ −N
2 log ρ

2
+
N log ρ

2
+N logN +

(K − 1)N log ρ

2
+

(K − 1)N log b

2

+ρNLR| logα1|+ ρNLS| logα2|,

and the lemma follows.

We now continue the Proof of Theorem 26.1.

We compare our upper bound for log |∆| with our lower bound, which we established under
the assumption that Λ′ is small. We get

−2d logN − 2dK log b− 2d2LR log h(α1)− 2d2LS log h(α2)

≤ −N log ρ+ log ρ+ 2 logN + (K − 1) log ρ+ (K − 1) log b+ 2ρLR| logα1|+ 2ρLS| logα2|,

so
N log ρ ≤ 2(d+ 1) logN + 3dK log b+K log ρ+

2LR(ρ| logα1|+ d2 log h(α1)) + 2LS(ρ| logα2|+ d2 log h(α2)).

30 Nov. 20, 2019
Cam says that for the oral exam, we should know the strategy of every proof, but we aren’t
expected to know every detail. The exams will be half an hour long and in MC 5479. Mine
is from 11 to 11:30 on Wednesday, Dec. 11.

Cam also says that the essay should be a longer expository result of the paper we write about
(in particular, don’t just rewrite the paper), situating it in historical context by relating it
to any relevant problems.

From where we left off last class, we get

N log ρ ≤ 2(d+ 1) logN + 3dK log b+K log ρ+ 2L(ρ+ d)(R logA1 + S logA2). (9)

Set
B := max{log ρ, d(7 + logB′)},

and, letting [·] denote the integer part, set

K := [c2B logA1 logA2], L := [B], R1 := [B logA1],

S1 := [B logA2], R2 := [cB logA1] + 1, S2 := [cB logA2] + 1

where c ≥ 1 will be chosen later.
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Notice that R1, S1 ≥ L, so if α1 and α2 are not both roots of unity, then condition (1) holds.
On the other hand, if they are both roots of unity our result follows immediately.

The argument now splits into two cases.

Case (i): The set {rb2 + sb1 | 0 ≤ r < R2, 0 ≤ s < S2} has R2S2 elements.

Case (ii): The set {rb2 + sb1 | 0 ≤ r < R2, 0 ≤ s < S2} has fewer than R2S2 elements.

We first deal with Case (i). In Case (1),

R2S2 > (cB logA1)(cB logA2)

and (K − 1)L ≤ c2B logA1 logA2, so R2S2 > (K − 1)L. The conditions (1) and (2) hold.
Now, by (5),

d logB ≤ B.

Thus the right hand side of (9) is bounded from above by

2(d+ 1) log(c2B2 logA1 logA2) + 3c2B2 logA1 logA2

+c2 log ρB logA1 logA2 + (2(ρ+ d)B)(2(1 + c))B logA1 logA2,

which in turn is less than

(2(d+ 1) log(c2) + 4c2 + 8(ρ+ d)c)B2 logA1 logA2.

But
N log ρ = KL log ρ ≥ 1

2
c2B2 logA1 logA2 log ρ,

so
1

2
c2 log ρ ≤ 4c2 + 2(d+ 1) log(c2) + 8(ρ+ d)c.

Take ρ := c. Then, taking c sufficiently large in terms of d, we obtain a contradiction.
Therefore, in Case (i), our assumption that |Λ′| < ρ−N+1/2 is false. Thus, |Λ′| ≥ ρ−N+1/2.

We get

|Λ| > exp(−(N + 1/2) log c)(max{exp(|Λ|LS/b2)(LS/b2), exp(|Λ|LR/b1)(LR/b1)})−1.

We may assume |Λ| < 1/(LS) and |Λ| < 1/(LR) since otherwise the result holds. Then

1 + logR + logS + logL < B2 logA1 logA− 2,

so
|Λ| > exp(−2N log c).

But N = KL > (1/2)c2B2 logA1 logA2, so the result follows in Case (i).
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Finally, we consider Case (ii). Then there exist integers r and s with |r| ≤ R − 1 and
|s| ≤ S − 1 for which

rb2 + sb1 = 0.

Accordingly, b2 = (−s/r)b1. Then

|Λ| = |b1 logα1 + b2 logα2|

= |b1 logα1 − (s/r)b1 logα2|

= |b1/r||r logα1 − s logα2|,

and by Proposition 3.1 and the fact that H(α) ≤ 2dh(α)d, the result follows. This completes
the proof of Theorem 26.1.

Cam explains that having proved this bound for a linear form of two logarithms, there is
a cheap trick that allows us to get a bound for linear forms of n logarithms strong enough
to solve the Thue equation. However, it is not as strong as Theorem 2.6. To get that,
you basically need to redo this whole proof for the n logarithm case. This involves showing
the linear form is small and then constructing a complicated polynomial in n variables that
vanishes at too many points in a small volume.

31 Nov. 22, 2019
Cam asks us to email our essays to cstewart@uwaterloo.ca on or before Decem-
ber 6. He says he will not hold us to technical details on the proof of the result
about linear forms in two logarithms during our oral exams but wants us to un-
derstand all the results in the course. He says he will ask us some questions at the
blackbord, he’ll be happy, we’ll be happy, and everyone will walk away delighted.

Let α1, . . . , αn be non-zero algebraic numbers of heights A1, . . . , An (with Ai ≥ 2). Put
K := Q(α1, . . . , αn) and d := [K : Q]. Let p be a prime ideal in OK lying over the rational
prime p. Let ordp(θ) for θ ∈ K be the order of p in the fractional ideal generated by θ.

In 1977, van der Poorten proved the following.

Theorem 31.1. There exist positive numbers C0 and C1 such that

ordp(αb11 · · ·αbnn − 1) < (C0nd)C1n
pd

log p
logA1 · · · logAn(logB)2

for all integers b1, . . . , bn of absolute value at most B (≥ 2) for which αb11 · · ·αbnn 6= 1.

There were some technical points overlooked by van der Poorten. These were fixed by Kun-
rui Yu in 1989.
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For any integer n, let P (n) denote the greatest prime factor of n with the convention that
P (0) = P (±1) = 1. In 1977, Shorey, van der Poorten, Tijdeman, and Schinzel used both
complex and p-adic estimates for linear forms to prove the following.

Theorem 31.2. Let F be a binary form with integer coefficients, degree at least 3, and
non-zero discriminant. Let x and y be coprime integers for which F (x, y) 6= 0, and put

z := max(|x|, |y|, 3).

There is a positive number C, which is effectively computable in terms of F , such that

P (F (x, y)) > C log log z.

In 1984/85, Oesterlé and Masser made the following conjecture, known as the abc conjecture.

Conjecture 31.3. Let ε > 0. Then there exists a positive number C(ε) such that if a, b,
and c are positive integers with (a, b, c) = 1 and

a+ b = c,

then
c < C(ε)G1+ε

where
G = G(a, b, c) :=

∏
p|abc

p.

With Kunrui Yu, Cam showed in 2001 by means of estimates for p-adic and complex linear
forms that there exists a positive number C1 such that, with the previous assumptions,

c < exp(C1G
1/3(logG)3).

Cam now tells us the story of Mochizuki’s attempt to prove the abc conjecture.

The remainder of the course will be spent giving talks. I will not take notes on these.
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