
OUTER AUTOMORPHISMS OF FREE GROUPS

ANDREJ VUKOVIĆ

Abstract. We discuss mapping class groups and Teichmüller spaces. We then use these
constructions to motivate the definition of the Culler–Vogtmann Outer space, and we briefly
discuss applications to the study of outer automorphisms of free groups.

1. Introduction.

Very often in mathematics, we like to study the symmetries of a particular object we care
about. Since we care about the free group on n generators, Fn, it makes sense to study
its automorphism group, Aut(Fn). A particularly nice class of automorphisms is the set of
inner automorphisms, Inn(Fn). Elements of Inn(Fn) are those automorphisms ϕg : Fn → Fn
for g ∈ G such that ϕg(x) = gxg−1 for every x ∈ G. The following lemma shows us that
the set of inner automorphisms is actually a group that is isomorphic to a certain familiar
quotient of G. Inner automorphisms are therefore relatively easy objects to understand.

Lemma 1.1. For any group G, Inn(G) is a normal subgroup of Aut(G), and Inn(G) '
G/Z[G].

Proof. Recall the notation ϕg(x) = gxg−1. The identity automorphism is given by conju-
gation by the group identity. If ϕg ∈ Inn(G) and x ∈ G, then it is easy to check that
(ϕg)

−1 = ϕg−1 ∈ Inn(G). If ϕg, ϕh ∈ Inn(G), then
ϕg ◦ ϕh = ϕgh,

so Inn(G) is closed under composition. If σ ∈ Aut(G), g ∈ G, and x ∈ G, then

σ ◦ ϕg ◦ σ−1(x) = σ ◦ ϕg(σ−1(x))

= σ(gσ−1(x)g−1)

= σ(g)xσ(g)−1

= ϕσ(g)(x).

This proves that Inn(G) is a normal subgroup of Aut(G).

Consider the map φ : G→ Inn(G) given by
φ(g) = ϕg.

Because ϕg ◦ ϕh = ϕgh, φ is a group homomorphism. Clearly im(φ) = Inn(G). Also,

ker(φ) = {g ∈ G|φ(g) = id}
= {g ∈ G|gxg−1 = x for all x ∈ G}
= Z[G].
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By the first isomorphism theorem, Inn(G) ' G/Z[G]. �

By the lemma, we can pass to the quotient group Out(G) = Aut(G)/Inn(G), known as the
group of outer automorphisms of G. Note that F1 ' Z, so

Out(F1) ' Out(Z) ' Aut(Z) = GL1(Z) ' Z/2Z.
In fact, Nielsen proved in [5] that Out(F2) ' GL2(Z) as well. For n > 2, however, we can
only guarantee the existence of a surjection Out(Fn) � GLn(Z) induced by the abelianiza-
tion map Fn � Z.

Historically, the groups GLn(Z) were studied by passing to the subgroup SLn(Z) and then
examining the action of SLn(Z) on certain "homogeneous spaces". It is worth recalling some
details of this setup.

There is an action of SL2(Z) on the complex upper half plane H given by(
a b
c d

)
z =

az + b

cz + d
∈ H

for z ∈ H and a, b, c, d ∈ Z satisfying ad − bc = 1. The group is said to act via fractional
linear transformations. Any discussion of this action would be incomplete without the iconic
picture of its "fundamental domain". Ours is borrowed from [1].

Here S and T are two generators of SL2(Z), and the labels indicate where products of the
generators send the shaded region. The shaded region is the fundamental domain.
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The next proposition lets us characterize H in a way that admits an easy generalization to
higher dimensions. Before stating it, we prove a useful lemma.

Lemma 1.2. Suppose a group G acts on a set X. If x1, x2 ∈ X are in the same G-orbit,
then their stabilizers Gx1 and Gx2 are conjugate. In particular, if the action of G on X is
transitive, then every two stabilizers are isomorphic.

Proof. Since x1 and x2 are in the same G-orbit, there exists g ∈ G such that gx2 = x1. If
h ∈ Gx2 , then hx2 = x2, so

ghg−1x1 = ghx2 = gx2 = x1.

Thus, we obtain an injective homomorphism φ : Gx2 → Gx1 . A short calculation shows that
its inverse is given by h 7→ g−1hg. Thus, Gx1 and Gx2 are conjugate.

If the G-action is transitive, then there is only one G-orbit, so for any x1, x2 ∈ X, Gx1

and Gx2 are conjugate. Since conjugate subgroups are isomorphic, any two stabilizers are
isomorphic in this case. �

Now we are ready for a well-known proposition, which we do not prove.

Proposition 1.3. If a group G acts transitively on a topological space X, then if x ∈ X is
arbitrary and Gx denotes the stabilizer of x, we have that

G/Gx ' X,

where ' denotes homeomorphism. (Notice that the choice of x is arbitrary because of the
previous lemma.)

Although the action of SL2(Z) does not have this property, the action of SL2(R) on H is
in fact transitive, meaning it has only a single orbit. Letting G = SL2(R), we calculate the
stabilizer

Gi = {g ∈ G|gi = i}

= {
(
a b
c d

)
∈ G|ai+ b

ci+ d
= i}

= {a, b, c, d ∈ R|ad− bc = 1, a = d, b = −c}
= SO2(R).

Thus, by the proposition,
H ' SL2(R)/SO2(R).

More generally, it is possible to define actions
SLn(Z) y SLn(R)/SO2(R),

and early attempts at the study of Out(Fn) used its action on SLn(R)/SOn(R) induced by
the surjection Out(Fn) � GLn(Z). However, as is mentioned in [9], this action turns out
not to be proper, i.e., inverses of compact sets under it are not necessarily compact. It is
thus rather badly behaved, so research on Out(Fn) had to move in a different direction.

2. Mapping Class Groups and Teichmüller Spaces.

The development of knot theory in the mid–20th century popularized the notion of "isotopy".
To understand what this means, we first recall the definition of a homotopy.
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Definition 2.1. Let X and Y be topological spaces, and let f, g : X → Y be continuous
functions. A homotopy from f to g is a continuous map H : X×[0, 1]→ Y with the following
properties:

(i) H(−, 0) = f
(ii) H(−, 1) = g
(iii) H(−, t) is a continuous function from X to Y for every t ∈ [0, 1].

By requiring H(−, t) to have stronger properties than simply being continuous, we obtain
the definition of an isotopy. First, we recall what an embedding is. Intuitively, if we have an
embedding from a topological space X to a topological space Y , then we can realize X as a
subspace of Y . The following definition makes this precise.

Definition 2.2. Let X and Y be topological spaces. An embedding f : X → Y is an
injective continuous function that is a homeomorphism onto its image.

The last condition does not follow from the first two, as the following classic example shows.

Example 2.3. Consider g : (0, 1)→ R2 defined by

g(n) =


(6n− 1, 0) if 0 < t ≤ 1

3

(2− 3n, 3n− 1) if 1
3
≤ n ≤ 2

3

(0, 3− 3n) if 2
3
≤ n < 1.

Then g is injective and continuous but not a homeomorphism onto its image. Indeed, g−1 is
not continuous at (0, 0). A graph of the image of g in R2 is provided below.

Definition 2.4. Let X and Y be topological spaces, and let f, g : X → Y be embeddings.
An isotopy from f to g is a continuous map H : X× [0, 1]→ Y with the following properties:

(i) H(−, 0) = f
(ii) H(−, 1) = g
(iii) H(−, t) is an embedding from X to Y for every t ∈ [0, 1].
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In particular, every homeomorphism is an embedding. This allows us to define the mapping
class group of a surface.

Definition 2.5. Let S be a connected, closed, orientable surface equipped with a metric
d. Let Homeo+(S) be the group of orientation-preserving homeomorphisms of S. This is
indeed a group under composition of homeomorphisms. We define a metric δ on it by

δ(f, g) = sup
x∈S

d(f(x), g(x)).

In the topology induced by this metric, we can consider the connected component of the
identity, which we denote by Homeo0(S). This turns out to coincide with the homeomor-
phisms of S which are isotopic to the identity. It is also a normal subgroup of Homeo+(S),
so that we can define the mapping class group

MCG(S) = Homeo+(S)/Homeo0(S).

Remark 2.6. Notice that the previous definition contains several claims we did not check. It
is not even clear a priori that the connected component of the identity in Homeo+(S), which
is made up of homeomorphisms that can be deformed through a path of homeomorphisms
to the identity, coincides with homeomorphisms isotopic to the identity, as our notion of
isotopy involved a path of embeddings, not homeomorphisms. The two notions do turn out
to coincide in this case, but to discuss this would take us too far afield. Instead, we defer to
a good reference on mapping class groups, e.g., [3], for the details.

Calculating examples of mapping class groups is non-trivial since it requires a significant
amount of algebraic topology. We therefore only state some mapping class groups without
proof.

Example 2.7. The mapping class group of the sphere S2 is isomorphic to Z/2Z. The
mapping class group of the torus T2 = R2/Z2 is isomorphic to SL(2,Z). Note that we
discussed the group SL(2,Z) earlier, in the context of its action on the upper half plane H.
As we will see shortly, this is not a coincidence.

The notion of Teichmüller space was introduced by Oswald Teichmüller in his study of quasi-
conformal mappings. The study of "moduli spaces", spaces which parameterize some family
of surfaces or of differential structures on a surface, began with Riemann’s 19th century work
on his namesake surfaces. Teichmüller’s insight was that by looking at complex structures
on a surface up to the action of homeomorphisms that are isotopic to the identity, we obtain
a moduli space that is in many respects simpler to work with than previous moduli spaces.
This is the Teichmüller space of the surface. In particular, Teichmüller placed a topology on
the Teichmüller space of surfaces of genus g ≥ 2 and proved these spaces are homeomorphic
to balls of dimension 6g − 6.

The study of Teichmüller spaces was further developed by many geometers throughout the
1960s, culminating in Thurston’s work on the relationship between Teichmüller spaces and
mapping class groups in the late 1970s. We follow Thurston’s definition of a Teichmüller
space.

Definition 2.8. Let S be a connected, closed, orientable surface. The Teichmüller space
T (S) is the set of pairs (X, g) where X is a surface and g : S → X is a homeomorphism,
defined up to isotopy. (We are implicitly using the fact that isotopy defines an equivalence
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relation, which we do not prove.) We refer to such a pair (X, g) as a marked Riemann
surface, and we refer to the homeomorphism g as a marking.

As is the case for mapping class groups, Teichmüller spaces are non-trivial to calculate. We
are only concerned with one example, however.

Example 2.9. The Teichmüller space of the torus T2 is H, the complex upper half plane.
Recall that the mapping class group of the torus was MCG(T2) = SL2(Z). We know that
SL2(Z) acts on H. This suggests that we might generally have an action of mapping class
groups on their corresponding Teichmüller spaces, and in fact we do.

Definition 2.10. Let S be a connected, closed, orientable surface equipped with a metric.
Let (X, f) ∈ T (S) and h ∈ MCG(S). We define an action MCG(S) y T (S) by

(X, f) 7→ (X, f ◦ h−1).
We do not check that this gives a well-defined action. (Recall that (X, f) is only defined up
to isotopy of f .) Instead, we defer the details to a standard reference like [3]. We also do
not check that, in the particular case of T2, this action reproduces the action of SL2(Z) on
H by fractional linear transformations. An illustrated discussion of this fact is given at [7].

The construction of Outer space cleverly transports the relationship between mapping class
groups and Teichmüller spaces to the setting of geometric group theory. The analogy is that
Outer space is to Out(Fn) as Teichmüller spaces are to their mapping class groups. We will
now dive into this analogy.

3. Outer Space and Applications.

This section concerns the main construction of the groundbreaking 1986 paper [2] by Culler
and Vogtmann. We assume the reader can calculate the fundamental group of some basic
shapes. In particular, let Rn be the topological space obtained by taking n copies of S1, each
with a distinguished point, and identifying them along their distinguished points. Below is
a picture of the space R3.

We also choose an orientation for each loop in Rn. Then π1(Rn) ' Fn, as is proved, for
example, in [4]. Basically, the n generators of Fn correspond to the n oriented loops, and
an element of Fn corresponds to the concatenation of those loops (up to homotopy) in the
order they appear in the word.
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We wish to modify the definition of Teichmüller space in a way that is appropriate to our
new setting. To accomplish this, we replace the role of the surface S in the definition of Te-
ichmüller space with Rn and take the target X to be a finite graph. Since we essentially only
care about Rn because of its fundamental group, we replace the notion of homeomorphism
in the definition of Teichmüller space with the weaker notion of homotopy equivalence. We
recall what this means.

Definition 3.1. Let X and Y be topological spaces. We say X and Y are homotopy
equivalent if there exists continuous maps f : X → Y and g : Y → X such that f ◦ g is
homotopic to the identity on Y and g ◦ f is homotopic to the identity on X.

Homotopy equivalence is an equivalence relation, and two homotopy equivalent spaces have
the same sequence of homotopy groups, as is shown in [4]. In particular, they have the same
fundamental group.

Remark 3.2. (This remark is an aside for readers knowledgeable about homotopy the-
ory.) It would be interesting to know what happens if we replace the notion of homotopy
equivalence in the definition of Outer space with the even weaker notion of weak homotopy
equivalence. A weak homotopy equivalence f : X → Y is a continuous map that induces
isomorphisms on all homotopy groups. One can then say that two spaces X and Y have the
same weak homotopy type if they become isomorphic in the homotopy category obtained by
turning the weak equivalences into isomorphism, or more formally, passing to the localization
Ho(Top)/Ho(sSet) where Ho(Top) is the homotopy category of topological spaces, which we
localize at Ho(sSet), the homotopy category of simplicial sets.

We are now ready to state the definition of Outer space.

Definition 3.3. Let Rn be the bouquet of n circles. As a set, Outer space On consists of
pairs (g,Γ), modulo a certain equivalence relation and satisfying the following conditions:

(i) Γ is a finite graph with each vertex of degree at least 3.

(ii) The map g : Rn → Γ induces a homotopy equivalence between Rn and Γ, called the
marking. (This means that there exists another map h : Γ→ Rn such that g and h together
induce a homotopy equivalence between Rn and Γ. This second map will be used in the
remark below to give another characterization of points in Outer space.)

(iii) Each edge of Γ is assigned some positive real length, with the normalization condition
that the sum of the lengths is 1, making Γ into a metric space via the path metric. That is,
the distance between two points is the length of the shortest path connecting them, where
the length is obtained by summing the lengths of the edges traversed or partially traversed.

We then impose an equivalence relation on this set by saying that points (g,Γ) and (g′,Γ′)
are equivalent if there is an isometry h : Γ→ Γ′ such that g ◦ h is homotopic to g′.

A topology is given on Outer space as follows. Let C be the set of conjugacy classes in Fn,
or equivalently the set of cyclically reduced words in Fn. We define a map from On to RPn
in the following way. Suppose (g,Γ) ∈ On. For each cyclically reduced word w, there is a
unique cyclically reduced edge path loop in Γ homotopic to g(w). The length of this loop
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can be viewed as an element of RP. We thus obtain an injection On → RPC, and we assign
On the subspace topology obtained from RPC. Outer space is therefore a topological space.

Remark 3.4. We can represent an element (g,Γ) of Outer space in a different way. First,
we choose a maximal tree T of Γ. We orient each edge in Γ \ T and label it by some word
of Fn. The labels then uniquely determine a continuous map h : Γ → Rn sending T to the
basepoint of Rn and sending each edge of Γ \ T to the loop in Rn indicated by its label.
The labels are chosen so that this map h is a homotopy inverse for g, i.e., the maps h and g
induce the homotopy equivalence between Rn and Γ.

Note that a representation of (g,Γ) of this form, although useful and easy to visualize, is not
unique because it depends on the choice of maximal tree and labels. We include a picture,
borrowed from [8], of such a point.

Intuitively, we think of two points in Outer space as being close if they are obtained by
"small deformations" of one another. These deformations do not necessarily have to be
homeomorphisms. Identifying a short portion of two adjacent edges is also allowed. Because
of the condition that the sum of the edge lengths has to be 1, Outer space is topologically
the union of simplices. The following illustration of O2 is borrowed from [9].
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It is reasonable to conjecture from such an illustration that On is contractible for all n. In
fact, this is the main result of Culler and Vogtmann’s paper [2].

We now describe the action of Out(Fn) on On.

Definition 3.5. The group of outer automorphisms of Fn, Out(Fn), acts on On as follows.
Let Rn be the bouquet of n circles. Given α ∈ Out(Fn), pick a representative f : Rn → Rn

for α. Then let (g,Γ)α = (g ◦ f,Γ).

Remark 3.6. Note that the value (g ◦ f,Γ) turns out not to depend on the choice of
representative f . Also, the stabilizer of the point (g,Γ) can be proved to be isomorphic to
the group of isometries of Γ, which is finite; this is proved in [6]. In this respect, the action
of Out(Fn) on On is much more nicely behaved than its action on SLn(R)/SOn(R).

Aside from its inherent beauty and resolution of the problem of finding a nice action of
Out(Fn) on some space, the theory of Outer space has several applications. It can be shown
that because the action of Out(Fn) on Outer space has finite stabilizers, there is a finite-
index, torsion-free, normal subgroup Γ of Out(Fn) that acts freely on On. In particular,
its cohomology can be proved to be equal to that of the quotient On/Γ and to vanish
in all dimensions except the dimension of On. Similar observations, often using a certain
deformation retract of On, denotedKn and known as the spine of Outer space, can be used to
prove that Out(Fn) has finitely-generated cohomology in all dimensions and has only finitely
many conjugacy classes of finite subgroups. These results and many more are discussed in
[8] and [9].
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