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Abstract. The Arveson–Douglas conjecture relates a statement about Hilbert space op-
erators to a concrete claim in algebraic geometry. In this article, we give an exposition of
the conjecture and discuss recent progress on it. We begin with a discussion of the Drury–
Arveson Hilbert space and relate it to the Hardy space H2(B). We discuss contractive tuples
and essential normality, motivating the latter concept with a question of Halmos. We then
examine the conjecture and recent progress on it, as well as its relation to K-homology.

1. Introduction.

The Arveson–Douglas conjecture, first formulated by Arveson in 1998, relates a property
of certain Hilbert space operators to a statement in pure algebraic geometry. The modern
statement of the conjecture, due to Douglas, is considerably more general than Arveson’s
original formulation. To introduce the conjecture, we first need some background knowledge.

In what follows, we let z = (z1, ..., zd) be a d-tuple of complex numbers. Then C[z] =
C[z1, ..., zd]. For α ∈ Nd, we let

zα := zα1 ...zαd .

Definition 1.1. The Drury–Arveson Hilbert space H2
d , also known as the d-shift space, is

the completion of C[z] with respect to

〈zα, zβ〉 = δαβ
α1!...αd!

(α1 + ...+ αd)!
, α, β ∈ Nd,

where δ is the Kronecker delta function.

The Drury–Arveson Hilbert space arises in the following natural way. Consider the space
C〈z1, ..., zd〉 of non-commutative polynomials with complex coefficients in the variables z1, ..., zd.
As a C–vector space, C〈z1, ..., zd〉 has a basis of non-commutative monomials in z1, ..., zd. For
monomials m and n in this basis, define

〈m,n〉 :=

{
1, m = n

0, m 6= n.

This extends by bilinearity to an inner product on all of C〈z1, ..., zd〉. Consider the abelian-
ization map C〈z1, ..., zd〉 → C[z1, ..., zd] obtained by quotienting out by the commutator
subgroup. Given α ∈ Nd and zα ∈ C[z], where z = (z1, ..., zd) as usual, exactly

(
α1+...+αd

α1,...,αd

)
=

(α1+...+αd)!
α1!...αd!

distinct non-commutative monomials will be sent to zα by the abelianization map.
The coefficient α1!...αd!

(α1+...+αd)!
in the inner product of H2

d is thus a weighting factor coming from
the abelianization of the standard orthonormal basis for C〈z1, ..., zd〉.
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The space H2
d can be viewed as a multivariable generalization of the classical Hardy space

H2(B) on the complex open unit disk B. We will denote this space H2 for convenience.
The space H2 was historically defined as the Hilbert space of holomorphic functions on the
complex open unit disk whose mean square value on the circle of radius r remains bounded
as r → 1 from below. We can write this latter condition for a function f as

sup
0≤r<1

(
1

2π

∫ 2π

0

|f(reiθ)|2 dθ)1/2 <∞

for every 0 ≤ r < 1. Equivalently, H2 can be defined as follows. Let A be the algebra of
single-variable holomorphic polynomials. Given f ∈ A, there is a Taylor expansion

f(z) = a0 + a1z + ...+ anz
n.

Impose the norm
||f || = |a0|2 + |a1|2 + ...+ |an|2.

By the polarization identity, we obtain an inner product on A. Then H2 is simply the com-
pletion of A under this inner product; indeed, this is the construction used in Arveson’s 1998
paper [2].

Although there are simpler ways of seeing why H2
d is a generalization of this Hardy space, we

choose to give a demonstration that gives a certain perspective on Drury–Arveson Hilbert
space we often encountered in the research literature. First, we introduce a family of Hilbert
spaces, each of which can be specified by giving a corresponding function, known as its
"kernel". Both H2 and H2

d belong to this family.

Definition 1.2. Suppose X is a set and H is a Hilbert space of real-valued (resp. complex
valued) functions on X. Given x ∈ X, there is an evaluation functional Lx : H → R (resp.
Lx : H → C) given by

Lx(f) = f(x) for every f ∈ H.
If for every x ∈ X, Lx is continuous on all of H, or equivalently if each Lx is a bounded
operator, we say that H is a reproducing kernel Hilbert space (RKHS). By the Riesz rep-
resentation theorem, if H is an RKHS, then for every x ∈ X, there exists Kx ∈ H such
that

f(x) = Lx(f) = 〈f,Kx〉 for every f ∈ H.
For y ∈ X, we have

Kx(y) = Ly(Kx) = 〈Kx, Ky〉.
This motivates us to define a function K : X ×X → C by

K(x, y) := 〈Kx, Ky〉.
The function K is known as the reproducing kernel of the RKHS H.

Definition 1.3. It follows from the definition that the reproducing kernel K is symmetric
and positive-definite. In this context, positive-definiteness means that

n∑
i,j=1

cicjK(xi, xj) ≥ 0

for any n ∈ N, x1, ..., xn ∈ X, and c1, ..., cn ∈ C. Any function K : X × X → C satisfying
this property is said to be a positive-definite kernel.
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The following theorem, which we do not prove, provides a converse.

Theorem 1.4. (Moore, Aronszajn.) Given a symmetric, positive-definite kernel K : X ×
X → C, there is a unique Hilbert space of functions on X for which K is a reproducing
kernel.

Proof. The theorem and its proof first appeared in [1], where Aronszajn attributes it to E.
H. Moore. �

A third and classical definition of the Hardy space H2 is as the RKHS of the Szego kernel

K(z0, w0) =
1

1− 〈z0, w0〉
where 〈z0, w0〉 is the standard inner product of z0, w0 ∈ B. By analogy, given z, w ∈ Bd, we
could let 〈z, w〉 be their dot product and then consider the RKHS of the kernel

K ′(z, w) :=
1

1− 〈z, w〉
.

The resulting Hilbert space turns out to be the Drury–Arveson Hilbert space. A good refer-
ence for more details is [15].

For each of z1, ..., zd ∈ C[z], there corresponds a multiplication operator Mzi on C[z] defined
by

Mzip(z) = zip(z) for every p(z) ∈ C[z].

The d-tuple (Mz1 , ...,Mzd) extends to a contractive d-tuple onH2
d . We recall what this means.

Definition 1.5. Let H be a Hilbert space. An n-tuple of bounded operators (T1, ..., Tn) on
H is said to be contractive if

T1T
∗
1 + ...+ TnT

∗
n ≤ I,

i.e., if I − (T1T
∗
1 + ... + TnT

∗
n) is a positive operator. This condition is equivalent to having

the operator (T1, ..., Tn), which we view as an operator from H⊕n to H, be a contraction.

We remark that one can always dilate a contractive tuple to a tuple of isometries with or-
thogonal ranges. Moreover, given a contractive tuple of commuting operators, while it is not
in general possible to dilate it to a tuple of mutually commuting isometries, there is a canon-
ical dilation due to Arveson ([2]) and Drury ([7]). It is no coincidence that H2

d is named after
these same two authors, as its construction arose from consideration of tuples of commut-
ing contractions on the part of each author. A good survey article on commuting tuples is [4].

Definition 1.6. Given an ideal I E C[z], since I is closed under multiplication, I is an
invariant subspace for Mz1 , ...,Mzd . We therefore obtain a decomposition

H2
d = I⊥ ⊕ Ī

with respect to which

Mzi =

(
Ai 0
∗ ∗

)
for each 1 ≤ i ≤ d. Let p(z) stand for the image of p(z) ∈ C[z] in C[z]/I. We view I⊥ as
the completion C[z]/I, and we therefore view the d-tuple (A1, ..., Ad) as the extension of the
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d-tuple (L1, ..., Ld) of operators
Lip(z) := zip(z)

on C[z]/I to the completion C[z]/I. Note that the operators Ai, Aj for 1 ≤ i, j ≤ d commute.

We say that the d-tuple (A1, ..., Ad) is induced by the ideal I E C[z].

A remarkable theorem shows that the construction of (A1, ..., Ad) is far more general than it
seems at first glance.

Theorem 1.7. (Arveson, Müller–Vasilescu.) Suppose (T1, ..., Td) is a contractive d-tuple of
commuting operators. Then there exists an ideal I E C[z] whose induced d-tuple of operators
(A1, ..., Ad) coincides with (T1, ..., Td).

Proof. The result is proved in the paper [2] by Arveson and the paper [14] of Müller and
Vasilescu. �

Because of this theorem, it suffices to study tuples (A1, ..., Ad) induced by some ideal I /C[z].

To state the Arveson–Douglas conjecture, we must first define a particularly interesting class
of ideals. However, the definition of these ideals involves the Schatten p-class. We recall what
that is.

Definition 1.8. Suppose H1, H2 are separable Hilbert spaces and T : H1 → H2 is a bounded
operator. Let p ∈ [1,∞), and define the pth Schatten norm to be

||T ||p := (tr(|T |p))1/p,
where |T | =

√
T ∗T is defined by functional calculus as usual. If the operator T has finite pth

Schatten norm, we say it lies in the pth Schatten class, Sp.

The space Sp forms a Banach space with respect to the pth Schatten norm. We think of
the space "S∞" as coinciding with the compact operators, which have finite pth Schatten
norm for every 1 ≤ p <∞. Moreover, S1 is the trace class operators, and S2 is the space of
Hilbert–Schmidt operators, i.e., those with finite Hilbert–Schmidt norm. Indeed, this norm is
precisely the 2nd Schatten norm.

The following definition is motivated by work of Halmos, which we will discuss shortly.

Definition 1.9. We say an operator T is essentially normal if the commutator
[T ∗, T ] = T ∗T − TT ∗

is compact. For p ∈ [1,∞), we say T is p–essentially normal if [T ∗, T ] ∈ Sp.

Definition 1.10. Let I E C[z] be an ideal, and let (A1, ..., Ad) be the d-tuple of operators
induced by I. We say I is essentially normal (resp. p–essentially normal) if [A∗i , Aj] is
compact (resp. in Sp) for all 1 ≤ i, j ≤ d.

To motivate these notions, we discuss a theorem of Weyl and a problem posed by Halmos in
response to it.

Theorem 1.11. (Weyl.) Every self-adjoint bounded operator on a separable Hilbert space
is the sum of a diagonal operator, with respect to some orthogonal basis, and a compact
operator.
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Proof. See [17]. �

In Ten problems in Hilbert space ([11]), Halmos asked whether every normal operator on an
arbitrary Hilbert space is the sum of a diagonal operator and a compact operator. The ques-
tion was quickly settled in the affirmative by Berg ([5]) and Sikonia ([16]). Halmos wondered
whether anything could be said about operators that are the sum of a normal operator and
a compact operator. One observation is that if T is the sum of a normal operator and a
compact operator, then T ∗T − TT ∗ is compact. This is what motivated the definition of es-
sentially normal operators. Once those had been defined, the notion of p–essential normality
was a natural one to investigate because the Schatten classes lie inside the class of compact
operators.

Example 1.12. Not every essentially normal operator is normal. There are many examples,
but one is the unilateral shift S, which acts by Sen = en+1. Thus,

S∗S − SS∗ = I − SS∗ = e0e
∗
0,

which is a rank 1 projection, hence compact. However, its Fredholm index is
ind(S) := dim ker(S)− dim ker(S∗) = −1,

and for any normal operator N we have ker(N) = ker(N∗), hence ind(N) = 0. Moreover,
the Fredholm index is invariant under compact perturbations, so the sum of a normal and
compact operator also has Fredholm index −1. Therefore, S is not even the sum of a normal
operator and a compact operator.

An excellent article on Halmos’s question and related problems is [6].

Recall that given an ideal I, we have an associated algebraic set
V (I) = {x ∈ Cd|f(x) = 0 for all f ∈ I}.

We are now ready to state the conjecture that is the main subject of this article.

2. The State of the Conjecture.

Conjecture 2.1. (Arveson, Douglas.) Suppose I E C[z] is a homogeneous ideal, i.e., an
ideal generated by homogeneous polynomials. Then I is p–essentially normal for every p >
dim(V (I)).

It is quite remarkable that the presence of an operator-theoretic property for a homogeneous
ideal should depend solely on the dimension of its associated algebraic set, a purely geometric
object. In fact, the conjecture is thought to hold even for non-homogeneous ideals, but the
homogeneous case is difficult enough to currently be the main task at hand.

There are many partial results on the Arveson–Douglas conjecture.

Theorem 2.2. (Arveson, 1998.) The Arveson–Douglas conjecture holds for I = (0). In this
case, V (I) = Cd, so given a homogeneous ideal I E C[z], it is p–essentially normal for every
p > d.

Proof. See [2]. �

A few years later, Arveson extended his result.



6 ANDREJ VUKOVIĆ

Theorem 2.3. The conjecture is true for ideals generated by monomials zα for α ∈ Nd.

Proof. The theorem is announced [3], but the result seems to be unpublished. �

A few years later, there was a new breakthrough

Theorem 2.4. (Guo–Wang, 2008.) The conjecture is true for d ≤ 3, and for ideals generated
by one homogeneous polynomial.

Proof. See [10]. �

The method of proof is essentially a commutative algebra argument and the study of a
certain exact sequence that relates the Arveson–Douglas conjecture to a statement about
K-homology. Indeed, in [10], the conjecture is shown to imply exactness of the sequence

0→ K → C∗(A1, ..., Ad) +K → C(V (I) ∩ ∂Bd)→ 0.

Here K is the class of compact operators on the Hilbert space associated to the ideal I E C[z].
This exact sequence yields an odd K-homology element for V (I) ∩ ∂Bd. This is one of a
series of analogies between the Arveson–Douglas conjecture and the Baum–Connes conjec-
ture, which proposes a link between the K-theory of reduced group C∗-algebras and the
K-homology of the classifying space of proper actions of the group.

In 2012, there was another breakthrough on the Arveson–Douglas conjecture with a series
of results by Kennedy and Kennedy–Shalit.

Theorem 2.5. (Kennedy, 2012). The Arveson–Douglas conjecture is true for ideals gener-
ated by homogeneous polynomials in mutually disjoint variables.

Proof. See [12]. �

We recall some terminology from algebraic geometry.

Definition 2.6. Recall that a subset of Cd is an affine variety if it is of the form V (I) for
some ideal I and is irreducible, i.e., cannot be written as a union of two proper subsets of the
form V (I1) and V (I2) for ideals I1, I2. Each affine variety (and indeed each algebraic set) V
has an associated ideal

I(V ) = {f ∈ C[z]|f(z) = 0 for every z ∈ V }.
The coordinate ring of an algebraic set V is the quotient of the polynomial ring by I(V ).

Theorem 2.7. (Kennedy–Shalit, 2012.) Let V and W be homogeneous varieties (i.e., va-
rieties of the form V (I) for homogeneous ideals I) in Cd with isomorphic coordinate rings.
Then the Arveson–Douglas conjecture holds for V if and only if it holds for W .

Proof. See [13]. �

Two recent breakthroughs by Engliš–Eschmeier (2013) ([9]) and by Douglas–Tang–Yu (2014)
([8]) rely on an index theorem due to Boutet de Monvel to make further progress on the
conjecture. It is not surprising that index theory should make an appearance in work on
the Arveson–Douglas conjecture because of the conjecture’s connection to Baum–Connes
theory. Indeed, the Atiyah–Singer index theorem can be viewed as a special case of the
Baum–Connes conjecture.
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